National Library of Energy BETA

Sample records for tower solar photovoltaic

  1. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  3. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  4. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  5. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  6. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  7. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  8. The 200 ft. Solar Tower at Sandia ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories provides 218 computer-controlled heliostats to reflect concentrated solar energy onto the tower, producing a total thermal capacity of 6 MW and peak flux to 300...

  9. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  10. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  12. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  14. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  15. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  16. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    646 Million Sep 2011 CALIFORNIA VALLEY SOLAR RANCH TITLE XVII Photovoltaic Solar NRG Energy, Inc. & NRG Solar, LLC San Luis Obispo, California Loan Guarantee 1.2 ...

  17. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic ...

  18. Recording of SERC Monitoring Technologies - Solar Photovoltaics |

    Energy Savers [EERE]

    Department of Energy Recording of SERC Monitoring Technologies - Solar Photovoltaics Recording of SERC Monitoring Technologies - Solar Photovoltaics This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt. PDF icon serc_webinar_20111020_solar_pv_transcipt.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water SERC Photovoltaics for Residential Buildings

  19. High-Temperatuer Solar Selective Coating Development for Power Tower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers | Department of Energy High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_ambrosini.pdf More Documents & Publications High-Temperature Solar Selective Coating Development for Power Tower

  20. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Costs | Department of Energy Solar Power Tower Improvements with the Potential to Reduce Costs Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Pratt Whitney Rocketdyne logo Rocketdyne, under the Baseload CSP FOA, is designing, fabricating, and testing a several components of a molten salt solar power tower that is in line with SunShot Initiative cost targets. Approach Receiver test panel design incorporates significant cost reductions. Rocketdyne is

  1. Energy 101: Solar Photovoltaics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The literal translation of the word photovoltaic is light-electricity. Photovoltaic systems generate power without pollution - and recent advancements have greatly increased their efficiency. Enough energy from the sun hits the earth

  2. Concentrating Solar Power Tower System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other

  3. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  4. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  5. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  6. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  7. Sandia Energy - Sandia Tool Determines Value of Solar Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Determines Value of Solar Photovoltaic Power Systems Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Sandia Tool Determines Value of Solar...

  8. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  9. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's ...

  10. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR PDF icon DOE-LPOIllustrated-Posters04PVFull.pdf More Documents & Publications ANTELOPE VALLEY SOLAR RANCH ...

  11. Solar Photovoltaic Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar ... and Process for the Mass Production of Photovoltaic Modules ...

  12. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  13. Ningbo Zhousheng Solar Photovoltaic Manufactory Co Ltd | Open...

    Open Energy Info (EERE)

    Zhousheng Solar Photovoltaic Manufactory Co Ltd Jump to: navigation, search Name: Ningbo Zhousheng Solar Photovoltaic Manufactory Co Ltd Place: Ningbo, Zhejiang Province, China...

  14. Bengbu Sanxin Solar Photovoltaic Glass Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Jump to: navigation, search Name: Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Place: Bengbu, Anhui Province, China Product: Glass...

  15. Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar |...

    Open Energy Info (EERE)

    Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name: Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place: Shanghai Municipality,...

  16. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar...

    Open Energy Info (EERE)

    Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd Jump to: navigation, search Name: Jiangsu Jiasheng Photovoltaic Technology Co Ltd (aka JS Solar Ltd) Place: Jiangsu...

  17. Rooftop Solar Photovoltaic Technical Potential in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed ... 80401 303-275-3000 * www.nrel.gov Rooftop Solar Photovoltaic Technical Potential in the ...

  18. Udhaya Energy Photovoltaics P Ltd UPV Solar | Open Energy Information

    Open Energy Info (EERE)

    Udhaya Energy Photovoltaics P Ltd UPV Solar Jump to: navigation, search Name: Udhaya Energy Photovoltaics (P) Ltd. (UPV Solar) Place: Coimbatore, Tamil Nadu, India Zip: 641 407...

  19. EPV Solar Inc formerly Energy Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    EPV Solar Inc formerly Energy Photovoltaics Jump to: navigation, search Name: EPV Solar Inc (formerly Energy Photovoltaics) Place: Robbinsville, New Jersey Zip: 8691 Product: US...

  20. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  1. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local ...

  2. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; ...

  3. NREL: Learning - Solar Photovoltaic Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Technology Basics Photo of a large silicon solar array on a roof with a blue sky and trees in background. A large silicon solar array installed on the roof of a...

  4. Alpine SunTower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    www.renewableenergyfocus.comview2513pge-and-nrg-energy-collaborate-on-92-mw-solar-thermal-power Retrieved from "http:en.openei.orgwindex.php?titleAlpineSunTowerSola...

  5. Sandia Energy - NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell Home Videos Renewable Energy Energy Facilities Partnership News Concentrating Solar Power Solar National Solar Thermal Test...

  6. Solar Two: A successful power tower demonstration project

    SciTech Connect (OSTI)

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  7. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  8. Conversion of Solar Two to a Kokhala hybrid power tower

    SciTech Connect (OSTI)

    Price, H.W.

    1997-06-01

    The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

  9. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Recording of SERC Monitoring Technologies - Solar Photovoltaics ...

  10. Solar Photovoltaic Cell/Module Shipments Report

    Reports and Publications (EIA)

    2016-01-01

    Detailed data on manufacturing, imports, and exports of solar photovoltaic cell modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices.

  11. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  12. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  13. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  14. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  15. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Solar Leadership | Department of Energy Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership April 29, 2014 - 8:40am Addthis Agua Caliente, located in Yuma County, Arizona, is now the largest solar photovoltaic power plant in the world. | Photo courtesy of NRG Energy. Agua Caliente, located in Yuma County, Arizona, is now the largest solar

  16. Photovoltaics

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  17. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  18. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics |

    Energy Savers [EERE]

    Department of Energy Solar Photovoltaics Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics. PDF icon serc_webinar_20111020_solar_pv.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Recording of SERC Monitoring Technologies - Solar

  19. Renewable Energy Ready Home Solar Photovoltaic Specifications | Department

    Energy Savers [EERE]

    of Energy Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. PDF icon rerh_solar_electric_guide.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

  20. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify the amount of

  1. Solar Photovoltaic (PV) System Permit Application Checklist

    Broader source: Energy.gov [DOE]

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  2. Siting Solar Photovoltaics at Airports: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  3. Solar Photovoltaic Financing: Deployment on Public Property by State and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Governments | Department of Energy Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses. PDF icon 43115.pdf More Documents & Publications Solar Photovoltaic Financing: Deployment on Public Property by State and Local

  4. Powering New Markets: Utility-scale Photovoltaic Solar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar PDF icon DOE_LPO_Utility-Scale_PV_Solar_Markets_February2015.pdf More Documents & Publications Financing Innovation to Address Global Climate Change LPO_BROCHURE_CSP LPO Financial Performance Report LPO Loan Portfolio Financial Performance Report As of September 2014, more than $810 million of interest has been earned

  5. Advancing Solar Through Photovoltaic Technology Innovations | Department of

    Energy Savers [EERE]

    Energy Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of

  6. Monitoring SERC Technologies - Solar Photovoltaics | Department of Energy

    Office of Environmental Management (EM)

    Photovoltaics Monitoring SERC Technologies - Solar Photovoltaics On Oct. 20, 2011, Peter McNutt, an electrical engineer with the Market Transformation Center at NREL, presented a webinar about Solar Photovoltaics and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Field Inspection Guidelines for PV Systems Procuring Solar Energy: A Guide for Federal Facility Decision

  7. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  8. Tunable Nanocrystalline CZTS for Solar Photovoltaics with No...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to replace the current first generation of solar photovoltaic technology due to their lower manufacturing cost and increased electrical output. Nanocrystal cells, one of the...

  9. Leading By Example Solar Photovoltaic Canopy Grant Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers a state grant program for solar photovoltaic canopies installed at state facilities, including executive agencies, state institutions of higher education, and other quasi...

  10. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  11. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy ...

  12. System and method for aligning heliostats of a solar power tower

    DOE Patents [OSTI]

    Convery, Mark R.

    2013-01-01

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  13. Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic

    Office of Environmental Management (EM)

    power at San Joaquin National Cemetery | Department of Energy Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing the proposed construction of a Photovoltaic System at the San Joaquin National Cemetery (SNC) in San Joaquin, Calofornia. PDF icon CX

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Van Geet, O.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  15. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project

    SciTech Connect (OSTI)

    REILLY, HUGH E.; KOLB, GREGORY J.

    2001-11-01

    This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

  16. Analysis of Web Based Solar Photovoltaic Mapping Tools | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Information Resources » Analysis of Web Based Solar Photovoltaic Mapping Tools Analysis of Web Based Solar Photovoltaic Mapping Tools A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms,

  17. Solar Photovoltaic Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Photovoltaic Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (123) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar

  18. Photovoltaics and Solar Energy (2 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics and Solar Energy (2 Activities) Photovoltaics and Solar Energy (2 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Solar Summary This module addresses issues dealing with the energy from the sun, the energy needs of students in the classroom and, ultimately, our energy needs as a nation. Students will use a photovoltaic (PV) cell to measure the energy from the sun. Using a light bulb with a known wattage, the students will

  19. Two earth sheltered passive solar residences with photovoltaic electricity

    SciTech Connect (OSTI)

    Strong, S.J.; Osten, R.J. Jr.

    1980-01-01

    The design and construction of two earth sheltered passive solar residence with photovoltaic electricity are described. The sizing and design of the P.V. system as well as the module fabrication and array integration are also discussed.

  20. Concord Municipal Light Plant- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

  1. Solar Photovoltaic Financing: Residential Sector Deployment | Department of

    Energy Savers [EERE]

    Energy Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the

  2. Modular assembly of a photovoltaic solar energy receiver

    DOE Patents [OSTI]

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  3. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5060 Sargent & Lundy LLC Consulting Group Chicago, Illinois Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 October 2003 * NREL/SR-550-35060 Executive Summary: Assessment of Parabolic Trough and Power Tower

  4. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation from Solar Energy | Department of Energy Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy The U.S. Department of Energy's (DOE) Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study

  5. Laminated photovoltaic modules using back-contact solar cells

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  6. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  7. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels

    SciTech Connect (OSTI)

    Nozik, Arthur J.

    2010-07-02

    Quantum confinement of electronic particles (negative electrons and positive holes) in nanocrystals produces unique optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production at lower cost. These approaches and applications are labeled third generation solar photon conversion. Prominent among these unique properties is the efficient formation of more than one electron-hole pair (called excitons in nanocrystals) from a single absorbed photon. In isolated nanocrystals that have three-dimensional confinement of charge carriers (quantum dots) or two-dimensional confinement (quantum wires and rods) this process is termed multiple exciton generation. This Perspective presents a summary of our present understanding of the science of optoelectronic properties of nanocrystals and a prognosis for and review of the technological status of nanocrystals and nanostructures for third generation photovoltaic cells and solar fuels production.

  8. Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  9. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics Presenter: Peter McNutt, NREL Engineer October 20, 2011 Innovation for Our Energy Future Purpose NREL PIX 15620 Assist SERC grantees and DOE project officers in monitoring SERC technologies. This webinar will guide viewers through the technology monitoring checklist developed for completed SERC solar PV installations. The webinar is intended to inform SERC grantees and project officers how to identify proper quality,

  10. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  11. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  12. NREL to Host Photovoltaics Presentation at 2014 Solar Day - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL to Host Photovoltaics Presentation at 2014 Solar Day June 3, 2014 The Energy Department's National Renewable Energy Laboratory will host several events at the 2014 Denver Solar Day on Sunday, June 8. The free expo is expected to attract more than 2,000 photovoltaics (PV) installers, PV buyers, students, utility officials and members of the public. NREL, a global leader in solar photovoltaic research, also takes a leading role in educating the public about renewable energy. Solar Day

  13. Solar Leasing for Residential Photovoltaic Systems

    Broader source: Energy.gov [DOE]

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

  14. Solar Photovoltaic Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing Summaries (125) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a ...

  15. Lightweight 'solar cloth' photovoltaics have flexible future...

    Open Energy Info (EERE)

    content Printed decorative solar panels could become part of our homes and offices Hello, I provide user supp... The top one on this page: htt... Can you send the specific...

  16. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  17. Forest County Potawatomi Community: Installation of Solar Photovoltaic Systems

    Office of Environmental Management (EM)

    Forest County Potawatomi Community Installation of Solar Photovoltaic Systems Presented by: Nathan Karman Legal Department Forest County Potawatomi Community March 27, 2014 "Let us share our natural resources for the good of our People. Let us work for clean air and water and pray for the courage to stand up to those who would abuse our Mother Earth. So be it." - Bemwetek (Elder James Thunder) Excerpt from 2007 Class I Air Redesignation Public Hearing Prayer Community's Commitment to

  18. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David Kearney Kearney & Associates Vashon, Washington NREL Technical Monitor: Mark Mehos Subcontract Report NREL/SR-5500-57272 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  19. DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology

    Energy Savers [EERE]

    Development | Department of Energy Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost

  20. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  1. Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.

    2014-03-01

    This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

  2. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic...

  3. Pueblo of Jemez - Concentrating Photovoltaics Solar Project

    Energy Savers [EERE]

    Solar Project November 17, 2008 Greg Kaufman Environmental Scientist Pueblo of Jemez Department of Resource Protection 575-834-3210 gkaufman@jemezpueblo-drp.org The Pueblo of Jemez * Federally-recognized Tribe * 45 Miles NW of Albuquerque, NM * Has occupied the Jemez Valley for over 800 years. * 2,200 Tribal members in village of Walatowa; 3,000 Tribal members total. * Only Towa-speaking Tribe. Population has high Towa fluency rate. * Has a unique K-12 charter school system emphasizing science

  4. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  5. Forest County Potawatomi Community Installation of Solar Photovoltaic Systems

    Office of Environmental Management (EM)

    Installation of Solar Photovoltaic Systems Presented by: Tansey Smith Sustainability Coordinator Land and Natural Resources May 7, 2015 The People The Potawatomi were once a part of a historical confederacy made up of the Ojibwa, Odawa and Potawatomi Nations known as the Council of the Three Fires. The Ojibwa were addressed as the "Older Brother" as such were also the "Keeper of the Faith". The Odawa were referred to as the "Middle Brother" and were the

  6. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  7. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  8. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  9. Linkages for DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy‘s (DOE) Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV Subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  10. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  11. NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |

    Office of Environmental Management (EM)

    Department of Energy NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL

  12. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  13. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  14. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect (OSTI)

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  15. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called...

  16. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called photovoltaic (PV)...

  17. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model Preprint Nathan Blair, Mark Mehos, and Craig Christensen National Renewable Energy Laboratory Craig Cameron Sandia National Laboratories Presented at SOLAR 2008 - American Solar Energy Society (ASES) San Diego, California May 3-8, 2008 Conference Paper NREL/CP-670-42922 May 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE

  18. Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...

    Broader source: Energy.gov (indexed) [DOE]

    Summary Oncor Electric Delivery offers rebates to its customers that install photovoltaic (PV) systems on homes or other buildings.* Oncor customers of all rate classes...

  19. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  20. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect (OSTI)

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  1. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    Energy Savers [EERE]

    Solar Energy Prospecting in Remote Alaska An Economic Analysis of Solar Photovoltaics in the Last Frontier State by Paul Schwabe, National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Solar Energy Prospecting in Remote Alaska ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the

  2. Phase Change Material Tower

    Office of Environmental Management (EM)

    Innovative Technology Solutions for Sustainability ABENGOA SOLAR SunShot Concentrating Solar Power Program Review 2013 April 24, 2013 Luke Erickson Phase Change Material Tower Innovative technology solutions for sustainability ABENGOA SOLAR Project Details Title: "Conversion Tower for Dispatchable Solar Power" Award: $3,875,104 from ARPA-E HEATS Program Project Term: 1/11/2012 to 1/10/2015 Project Plan: 2012: Modeling and begin lab scale demonstration 2013: Lab scale to prototype 2014:

  3. Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

  4. NREL: Photovoltaics Research - Potential of Perovskite Solar Cells Featured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Solar Today Potential of Perovskite Solar Cells Featured in Solar Today February 11, 2016 Familiar with perovskite solar cells? If not, you'll probably hear more about them soon. Perovskites are a family of materials receiving considerable attention by solar cell researchers due to the rapid rise of solar conversion efficiencies, increasing from about 4% to almost 22% in just six years. In an interview published in Solar Today (winter 2015 edition), Dr. Jao van de Lagemaat, director of

  5. New Hampshire Electric Co-Op- Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to $0.25 per DC...

  6. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System

    Broader source: Energy.gov [DOE]

    A 2010 Rocky Mountain Institute report estimated that structural systems alone cost about $0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking...

  7. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  8. Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Power Tower Power Tower DOE funds solar research and development (R&D) in power tower (central receiver) systems as one of four concentrating solar power (CSP) technologies aiming to meet the goals of the SunShot Initiative. More than 50 MW of power from CSP power towers are installed in the United States, Spain, and Germany. The SunShot Initiative funds (R&D) on power tower systems and related aspects within the industry, national laboratories and

  9. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG EnergyeSolar Location Kern County, California Coordinates 35.4937274, -118.8596804...

  10. American Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Logo: American Photovoltaics Name: American Photovoltaics Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Solar Product: Will...

  11. Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work

    Broader source: Energy.gov [DOE]

    Grocery shoppers in Burlington, Vt., are picking up much more than food and household items these days. Strolling the aisles of community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars.

  12. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water ... Infrastructure Hydrogen Production Market Transformation ... Tribal Energy Program Intellectual Property Current EC ...

  13. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  14. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  15. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  16. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect (OSTI)

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photothermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  17. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    SciTech Connect (OSTI)

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  18. Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  19. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  20. Valuation of Solar Photovoltaic Systems Using a Discounted Cash...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandra K. Adomatis, SRA Solar energy systems include ... is primarily due to the current incentives, with more ... and tilt towards the south to maximize energy production. ...

  1. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of breakeven prices than is variation in building load or solar generation profiles. vi This report is available at no cost from the National Renewable Energy Laboratory...

  2. Thermoelectrics and Photovoltaics - Center for Solar and Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intrinsic losses, associated with thermalization and absorption, experienced by p-n junction solar cells. Through a combination of density functional theory (DFT) and molecular...

  3. Ligitek Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Jump to: navigation, search Name: Ligitek Photovoltaic Place: Taiwan Sector: Solar Product: Ligitek solar is a fully owned subsidiary of Ligitek Electronics, that will...

  4. Increasing the solar photovoltaic energy capture on sunny and cloudy days

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2011-01-15

    This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days. (author)

  5. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    Energy Savers [EERE]

    by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz,

  6. GreenTower | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developer of a solar chimney technology, with greenhouses for food production. Hopes to deploy this in Namibia. References: GreenTower1 This article...

  7. Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier

    SciTech Connect (OSTI)

    Kazmerski, L. L.

    2012-01-01

    The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

  8. Converting solar-photovoltaic power into exportable products

    SciTech Connect (OSTI)

    Oman, H.

    1997-12-31

    Nations, states, and even communities must generate exportable products that earn money for buying needed imports. Exports have ranged from tourist services to hardwood logs. Fertile land, with irrigation water and fertilizer, grows exportable food. On the other hand a hot dry desert with no mineral resources presents a challenge to its occupants. Solar power could be generated and exported, but that requires construction of expensive transmission lines which are in service only when the sun shines. Among new options is a solar-powered plant that recovers zinc from the zinc oxide produced during discharge of zinc-air electric-vehicle batteries. A hectare-size solar-power plant with 30-percent efficient solar cells can in eight hours recover enough zinc to power 36,000 /km (22,000 miles) of travel in lightweight 4-passenger electric vehicles. A by-product could be renewable fuel for use by local residents in electric bicycles. One oriented solar panel, 10 meters by 10 meters in size, with 30-percent efficient solar cells, could in one day deliver enough energy for traveling 14,700 km (9176 miles) on bicycles. This by far exceeds the travel distance that could be obtained in one day by riding on an animal that is pastured on a s0-by-10 meter area.

  9. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect (OSTI)

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  10. Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market David Feldman and Travis Lowder National Renewable Energy Laboratory Technical Report NREL/TP-6A20-62605 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  11. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  12. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  13. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology and Policy

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) system prices in the United States are considerably different both across geographic locations and within a given location. Variances in price may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on the stability of solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. The paper finds that PV system prices differ based on characteristics of the systems. More interestingly, evidence suggests that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  14. Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

    2006-01-01

    This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

  15. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  16. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. Solar Photovoltaic Financing: Deployment by Federal Government Agencies

    SciTech Connect (OSTI)

    Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

    2009-07-01

    The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

  19. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  20. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  1. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  2. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect (OSTI)

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  3. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  4. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  5. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  6. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  7. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  8. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  9. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect (OSTI)

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  10. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  11. Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC ... Conversion EfficiencySolarEnergyPhotovoltaicsPV ... used in microsystem production with groundbreaking ...

  12. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  13. Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint

    SciTech Connect (OSTI)

    Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

    2012-08-01

    Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

  14. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-08-01

    The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

  16. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  17. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  18. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  19. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  20. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect (OSTI)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)

  1. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

  2. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    SciTech Connect (OSTI)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul; Margolis, Robert

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  3. PROJECT PROFILE: Enabling High Concentration Photovoltaics with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells Funding ...

  4. Dazhan Photovoltaic Co | Open Energy Information

    Open Energy Info (EERE)

    Dazhan Photovoltaic Co Jump to: navigation, search Name: Dazhan Photovoltaic Co Place: Wenzhou City, Zhejiang Province, China Sector: Solar Product: China-based solar energy cell...

  5. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect (OSTI)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1?x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18?}cm{sup ?3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  6. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  7. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Coggeshall, C.

    2008-05-01

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  8. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAICS FOR ELECTRIC VEHICLE CHARGING REGULATORY AND POLICY CONSIDERATIONS ABSTRACT Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policymakers, utilities, and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefts and

  9. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions Emerson Reiter, Kristen Ardani, and Robert Margolis National Renewable Energy Laboratory Ryan Edge Solar Electric Power Association Technical Report NREL/TP-7A40-65063 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This

  10. Microsystems Enabled Photovoltaics (MEPV) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Microsystems Enabled Photovoltaics (MEPV) Solar Glitter(tm) Photovoltaic Technology Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Microsystems Enabled Photovoltaics (MEPV) "Solar Glitter" (3,459 KB) Technology Marketing Summary Revolutionary microsolar technology utilizes glitter-sized photovoltaic cells to change how we generate and use solar power. The

  11. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  12. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  13. Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells

    SciTech Connect (OSTI)

    Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

    2012-01-01

    One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

  14. NREL: Photovoltaics Research - Concentrator Photovoltaic (CPV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrator Photovoltaic (CPV) Report - Fraunhofer ISE and NREL Analyze Status of Market and Technology February 4, 2015 The German Fraunhofer Institute for Solar Energy Systems...

  15. Implementing Solar Photovoltaic Projects on Historic Buildings and in Historic Districts

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Walker, A.

    2011-01-01

    Despite a global recession, the number of photovoltaic (PV) installations in the United States grew 30% from 2008 to 2009. A number of trends point toward continued growth of new PV installations. The efficiency of solar panels is increasing, while installation costs are going down. At the same time, federal, state, and local regulations are requiring that greater amounts of energy must come from renewable sources. Incentives for solar power technology implementation are being created and regulatory barriers removed. Corporations and governments are focusing on solar power to demonstrate leadership in environmental sustainability and resource conservation. Architects and builders are including PV arrays as a way to meet green building standards and property owners are seeking PV as a way to reduce their utility bills, as well as their carbon footprints. This publication focuses on the implementation of PV systems on historic properties. Many private property owners, as well as local, state, and national government entities, are seeking guidance on how best to integrate solar PV installations on historic buildings. Historic preservationists maintain that preserving, reusing, and maintaining historic structures is a key sustainable design strategy while also recognizing the importance of accommodating renewable energy technologies where they are appropriate. In some cases, however, conflicts have arisen over the installation of PV panels on historic properties. Addressing these conflicts and providing guidance regarding solutions and best practices is an important step toward resolving or eliminating barriers. Historic properties and districts in the United States provide tangible connections to the nation's past. Thousands of buildings, sites, districts, structures, and objects have been recognized for their historic and architectural significance. Local, state, and national designations of historic properties provide recognition, protection, and incentives that help to preserve those properties for future generations. At the national level, the National Register of Historic Places includes more than 86,000 listings, which encompass a total of more than 1.6 million historic resources. State registers of historic places also provide recognition and protection for historic sites and districts. Locally, more than 2,400 communities have established historic preservation ordinances. Typically implemented through zoning overlays, these local land use regulations manage changes to hundreds of thousands of historic properties. Over a period of 2 years (2007 and 2008) the U.S. Department of Energy (DOE) designated 25 major U.S. cities as Solar America Cities. DOE provided financial and technical assistance to help the cities develop comprehensive approaches to accelerate the adoption of solar energy technologies. The Solar America Cities partnerships represent the foundation of DOE's larger Solar America Communities program. As a part of this program, DOE identified the implementation of solar projects on historic properties and in historic districts as one area to address. A workshop titled 'Implementing Solar Projects on Historic Buildings and in Historic Districts' was held in Denver, Colorado, in June of 2010. Participants included representatives from the solar industry as well as historic preservationists from nonprofit organizations and government agencies at the local, state, and national levels. The workshop provided an opportunity to gain a common understanding of solar technologies and historic preservation procedures and priorities. The workshop participants also discussed some of the challenges involved in locating PV systems on historic properties and identified potential solutions. This publication is based on the discussions that occurred at this workshop and the recommendations that were developed by participants. Ideas expressed by participants in the workshop, and included in this document, do not necessarily reflect the opinion of any government council, agency, or entity.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  17. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  18. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  19. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric Kristen Ardani and Robert Margolis National Renewable Energy Laboratory Technical Report NREL/TP-7A40-65066 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  20. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  1. Efficient Polymer Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return...

  2. Solar Glare Hazard Analysis Tool (SGHAT) - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Energy Analysis Energy Analysis Find More Like This Return to Search Solar Glare Hazard Analysis Tool (SGHAT) ...

  3. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  4. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  5. Renewable Energies and Photovoltaics Spain S L REPS | Open Energy...

    Open Energy Info (EERE)

    and Photovoltaics Spain S L REPS Jump to: navigation, search Name: Renewable Energies and Photovoltaics Spain S.L. (REPS) Place: Spain Sector: Solar Product: Spanish solar project...

  6. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  7. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  8. Project Profile: Plug-and-Play Solar Photovoltaics for American Homes

    Broader source: Energy.gov [DOE]

    Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

  9. SMUD Kokhala Power Tower Study

    SciTech Connect (OSTI)

    Price, Henry W.; Whitney, Daniel D.; Beebe, H.I.

    1997-06-01

    Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

  10. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  11. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  12. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL’s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  13. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect (OSTI)

    Yang, Yang; OBrien, Paul G.; Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 ; Ozin, Geoffrey A. E-mail: kherani@ecf.utoronto.ca; Kherani, Nazir P. E-mail: kherani@ecf.utoronto.ca

    2013-11-25

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  14. Phase Change Material Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Material Tower Phase Change Material Tower This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_erickson.pdf More Documents & Publications Direct s-CO2 Reciever Development High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 2014 SunShot Initiative Peer Review Report

  15. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  16. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Project Profile: Brayton Cycle Baseload Power Tower Project Profile: Brayton Cycle Baseload Power Tower Wilson logo Wilson Solarpower, under the Baseload CSP FOA, is validating a proposed utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh. Approach Photo of a tower in the background with slanted panels connected by a wire in the foreground. Wilson is developing, building, testing, and evaluating two

  17. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect (OSTI)

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial, lattice-mismatched growth of a GaAs segment that extrude out of a Si wire via a self-aligned SiO2 hollow cylindrical mask. With this growth strategy, misfit dislocations that would normally form at the GaAs/Si interface during thin film epitaxy may bend over to and thus terminate at the sidewall of the SiO2 tube. A reactive-ion etching technique was employed 1) to remove Si to form a hollow, self-aligned SiO2 cylindrical tube as a growth template for GaAs epitaxy using a vertical, showerhead, low-pressure metal-organic chemical-vapor deposition reactor that was operated at 0.1 atm. Successful epitaxy of axial GaAs wires on non-polar, <111>-oriented Si wire substrates was found at temperatures of ~850C. This and the other III-V/Si heterojunction wire synthesis strategies described here are promising approaches to realize future III-V/Si tandem solar cell designs.

  18. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000C and achieve energy conversion efficiencies greater than 50%.

  19. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  20. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  1. Sandia Energy - Glitter-Sized Photovoltaic Cells in Utility-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Home Renewable Energy Energy News Photovoltaic Solar Glitter-Sized Photovoltaic Cells in Utility-Scale Solar...

  2. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    DOE Patents [OSTI]

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  3. NREL: Photovoltaics Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics Research Photo of Photovoltaic Solar Panels. Photovoltaic (PV) research at the National Renewable Energy Laboratory (NREL) focuses on boosting solar cell conversion efficiencies, lowering the cost of solar cells, modules, and systems, and improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through fundamental research, advanced materials and devices, and technology development. Our scientists are pursuing critical activities that will

  4. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  5. Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint

    SciTech Connect (OSTI)

    Kandt, A.

    2011-04-01

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

  6. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  7. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  8. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado

    SciTech Connect (OSTI)

    Roberts, B.

    2011-07-01

    The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Stringfellow Superfund Site in Riverside, California

    SciTech Connect (OSTI)

    Mosey, G.; Van Geet, O.

    2010-12-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on the Stringfellow Superfund Site in Riverside, California. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.13/kWh and incentives offered by Southern California Edison under the California Solar Initiative. According to the assessment, a government-owned, ground-mounted PV system represents a technically and economically feasible option. The report recommends financing options that could assist in the implementation of such a system.

  10. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar » Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what

  11. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  12. Design of solar cells for use in photovoltaic/thermal collectors

    SciTech Connect (OSTI)

    Cox, C.H. III

    1980-01-01

    A promising design development for combined photovoltaic/thermal (PV/T) collectors is one in which the photovoltaic cell is both the conversion device for electrical energy and the absorber of thermal energy. To accomplish this, the PV cell design is modified to use the approximately 25 percent of the air mass 1 spectrum at lambda > 1.1 ..mu..m that is currently rejected by the cell. The parameters investigated are: cell back metallization, back surface field, texture etching and anti-reflective coating. A model indicating the increase in absorptance as a function of these parameters is presented, together with the results of experimental measurements. Discussion closes with the presentation of a PV/T collector design that incorporates the improved cells, has 10 percent greater thermal output than current PV/T collectors, and exhibits no degradation in electrical output.

  13. New Tomorrow Photovoltaic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow Photovoltaic Co Ltd Jump to: navigation, search Name: New Tomorrow Photovoltaic Co Ltd Place: Shenzhen, Guangdong Province, China Zip: 518112 Sector: Solar Product:...

  14. Xi an Huanghe Photovoltaic Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huanghe Photovoltaic Technology Co Ltd Jump to: navigation, search Name: Xi'an Huanghe Photovoltaic Technology Co Ltd Place: Xi'an, Shaanxi Province, China Sector: Solar Product:...

  15. Sandia Energy - Sandians Win 'Best Paper' Award at Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Win 'Best Paper' Award at Photovoltaic Conference in Japan Home Renewable Energy Energy Facilities News SunShot News & Events Photovoltaic Solar Systems Analysis Computational...

  16. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  17. SOLAR MERIDIONAL CIRCULATION FROM DOPPLER SHIFTS OF THE Fe I LINE AT 5250 A AS MEASURED BY THE 150-FOOT SOLAR TOWER TELESCOPE AT THE MT. WILSON OBSERVATORY

    SciTech Connect (OSTI)

    Ulrich, Roger K.

    2010-12-10

    Doppler shifts of the Fe I spectral line at 5250 A from the full solar disk obtained over the period 1986 to 2009 are analyzed to determine the circulation velocity of the solar surface along meridional planes. Simultaneous measurements of the Zeeman splitting of this line are used to obtain measurements of the solar magnetic field that are used to select low field points and impose corrections for the magnetically induced Doppler shift. The data utilized is from a new reduction that preserves the full spatial resolution of the original observations so that the circulation flow can be followed to latitudes of 80{sup 0} N/S. The deduced meridional flow is shown to differ from the circulation velocities derived from magnetic pattern movements. A reversed circulation pattern is seen in polar regions for three successive solar minima. A surge in circulation velocity at low latitudes is seen during the rising phases of cycles 22 and 23.

  18. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    SciTech Connect (OSTI)

    Doyle, Chris; Loomans, Len; Truitt, Andrew; Lockhart, Robert; Golden, Matt; Dabbagh, Kareem; Lawrence, Richard

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agencies should verify compliance.

  19. Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market

    SciTech Connect (OSTI)

    Feldman, D.; Lowder, T.

    2014-11-01

    This report provides a high-level overview of the developing U.S. solar loan product landscape, from both a market and economic perspective. It covers current and potential U.S. solar lending institutions; currently available loan products; loan program structures and post-loan origination options; risks and uncertainties of the solar asset class as it pertains to lenders; and an economic analysis comparing loan products to third party-financed systems in California.

  20. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    Broader source: Energy.gov [DOE]

    This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  1. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  2. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    SciTech Connect (OSTI)

    Klein, Petra M.

    2012-10-15

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  3. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    DOE Patents [OSTI]

    Jorgensen, Gary J. (Pine, CO); Carasso, Meir (Lakewood, CO); Wendelin, Timothy J. (Golden, CO); Lewandowski, Allan A. (Evergreen, CO)

    1992-01-01

    A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  4. EERE Success Story-Solar Junction Develops World Record Setting...

    Energy Savers [EERE]

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell ...

  5. Residential Solar and Wind Energy Systems Tax Credit

    Broader source: Energy.gov [DOE]

    Qualifying technologies include solar domestic water heating systems, solar swimming pool and spa heating systems, photovoltaic systems, photovoltaic phones and street lights, passive solar...

  6. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  7. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  8. Sylcom Solar | Open Energy Information

    Open Energy Info (EERE)

    Sylcom Solar provides the design, research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric...

  9. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  10. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  11. Armor Tower, Inc.

    Office of Environmental Management (EM)

    Mr. Edward Rosenbloom Chief Executive Officer Armor Tower, Inc. P.O. Box 49779 Charlotte, North Carolina 28277 WEL-2015-06 Dear Mr. Rosenbloom: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving an Armor Tower, Inc. (Armor Tower) employee at the Brookhaven National Laboratory (BNL). Armor Tower is a second-tier subcontractor to Brookhaven Science Associates, LLC (BSA), which is the Department of Energy's (DOE)

  12. Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Photovoltaics The SunShot Initiative supports the research and development of photovoltaic (PV) technologies to improve efficiency and reliability and to lower manufacturing costs in order to make solar electricity cost-competitive with other sources of energy by 2020. As of November 2015, four years into the decade-long SunShot Initiative, the solar industry is about 70% of the way to achieving SunShot's cost target of $0.06 per kilowatt-hour for utility-scale PV (based on 2010

  13. Photovoltaic-Reliability R&D Toward a Solar-Powered World (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Granata, J.

    2009-08-01

    Presentation about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

  14. Interagency Advanced Power Group Solar Photovoltaic Panel Fall meeting minutes, October 22, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This report contains discussions on the following topics: Leaf, TPL, and {sup 60}Co Gamma source testing facilities; in-house photovolatic research effort; US Army`s interest developing small thermophotovoatic power source for a variety of missions; charging lead acid batteries with unregulated photovolatic panels; testing of solar array panels for space applications; polycrystalline CuInSe{sub 2} & CdTe PV solar cells and, current activities in the US photovolatic program.

  15. Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2011-10-01

    Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C) ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics in the Commonwealth of Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-03-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on brownfield sites in the Commonwealth of Puerto Rico. All of the assessed sites are landfills. The sites were assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.119/kWh and incentives offered by Puerto Rico and by the serving utility, PREPA. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  17. New Jersey Solar Power LLC NJ Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Solar Power LLC NJ Solar Power Jump to: navigation, search Name: New Jersey Solar Power LLC (NJ Solar Power) Place: New Jersey Sector: Solar Product: A photovoltaic engineering...

  18. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  19. Canrom Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    Canrom Photovoltaics Inc Jump to: navigation, search Name: Canrom Photovoltaics Inc Place: Niagara Falls, New York Zip: 14305 Sector: Solar Product: Developer of a thin-film CdTe...

  20. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect (OSTI)

    Loferski, J.J.

    1983-12-01

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  1. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  2. Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales

    SciTech Connect (OSTI)

    Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M.

    2013-05-01

    The characteristics of variability and uncertainty of PV solar power have been studied extensively. These characteristics can create challenges for system operators who must ensure a balance between generation and demand while obeying power system constraints at the lowest possible cost. A number of studies have looked at the impact of wind power plants, and some recent studies have also included solar PV. The simulations that are used in these studies, however, are typically fixed to one time resolution. This makes it difficult to analyze the variability across several timescales. In this study, we use a simulation tool that has the ability to evaluate both the economic and reliability impacts of PV variability and uncertainty at multiple timescales. This information should help system operators better prepare for increases of PV on their systems and develop improved mitigation strategies to better integrate PV with enhanced reliability. Another goal of this study is to understand how different mitigation strategies and methods can improve the integration of solar power more reliably and efficiently.

  3. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  4. Sandia Photovoltaics Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Program Managers Charlie Hanley and Jeff Nelson Solar Program Mission * Work with Solar industry to develop new integrated components and systems - World Class measurements and characterization capabilities and facilities - Enhanced understanding of performance & reliability - Improved, integrated overall systems - Increased manufacturing yield and throughput * Develop innovative technology solutions by partnering with internal and external R&D groups * Perform

  5. PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50%

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Solar Cells | Department of Energy Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $8,000,000 The efficiency and concentration of III-V multi-junction solar cells are essential to reduce the cost of high concentration photovoltaic

  6. Charge transport in zirconium doped anatase nanowires dye-sensitized solar cells: Trade-off between lattice strain and photovoltaic parameters

    SciTech Connect (OSTI)

    Archana, P. S.; Gupta, Arunava; Yusoff, Mashitah M.; Jose, Rajan

    2014-10-13

    Zirconium (Zr) is doped up to 5 at.?% in anatase TiO{sub 2} nanowires by electrospinning and used as working electrode in dye-sensitized solar cells. Variations observed in the photovoltaic parameters were correlated by electrochemical impedance spectroscopy, open circuit voltage decay, and X-ray diffraction measurements. Results show that homovalent substitution of Zr in TiO{sub 2} increased the chemical capacitance and electron diffusion coefficient which in turn decreased charge transport resistance and charge transit time. However, lattice strain due to size mismatch between the Zr{sup 4+} and Ti{sup 4+} ions decreased open circuit voltage and fill factor thereby setting a trade-off between doping concentration and photovoltaic properties.

  7. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  8. Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020from $0.15 per kilowatt hour to less than $0.07. 1366s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with todays state-of-the-art technologies. 1366s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366s technology, the cost of silicon wafers could be reduced by 80%.

  9. NREL: Photovoltaics Research - Company Partners in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices

  10. Agua Caliente Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Agua Caliente Solar Project Facility 290-megawatt photovoltaic solar generating facility Sector Solar Facility Type Utility scale solar Owner...

  11. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  12. City of Boulder - Solar Access Ordinance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Construction Local Government Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name...

  13. Crystalline Silicon Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovoltaics Research Crystalline Silicon Photovoltaics Research DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion on the production and manufacturing of this solar technology. Background Crystalline silicon PV cells are the most common solar cells used in commercially available solar panels, representing 87% of world PV cell

  14. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar

  15. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  16. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  17. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  18. Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Dubai, United Arab Emirates Sector: Solar Product: Dubai-based solar photovoltaic module manufacturing company. References: Solar Technologies1 This article is a...

  19. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  20. Photosynthetic water oxidation versus photovoltaic water electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel from the energy of the sun based on either natural photosynthetic biomassbiofuel production or photovoltaic devices utilizing solar energy for electrical current production. ...

  1. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  2. Sandia Energy - Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About MEPV Researchers at Sandia National Laboratories are pioneering solar photovoltaic (PV) technologies that are cheaper to produce and easier to install than...

  3. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  4. Photovoltaics for Residential Buildings Webinar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet's Jan. 25, 2011, presentation about using solar photovoltaic (PV) systems to provide ...

  5. NREL: Photovoltaics Research - Keith A. Emery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responsivity Measurements," Proc. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Joint Research Center report EUR 18656, p. 2298, 1998. T. Moriarty...

  6. Alternating Current Photovoltaic Building Block - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Alternating Current Photovoltaic Building Block Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (891 KB) Technology Marketing Summary This technology provides a fully integrated and self-containing alternating current (AC) photovoltaic (PV) Building Block device and method that allows photovoltaic applications to become true plug-and-play devices. The

  7. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  8. Sandia Energy - Launch of Solar Testing Site in Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Renewable Energy Energy Facilities Partnership News SunShot News & Events Photovoltaic Solar Solar Newsletter Photovoltaic Regional Testing Center (PV RTC) Launch of...

  9. SolarPower Restoration Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: SolarPower Restoration Systems is pursuing Building Integrated Photovoltaics (BIPV) systems and large scale Photovoltaic Power (PV) Array Systems over concrete...

  10. Technique Reveals Critical Physics in Deep Regions of Solar Cells...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells. When developing a solar photovoltaic (PV) cell, designers benefit from having...

  11. Department of Veterans Affairs, FONSI - Ground mounted solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery ...

  12. Loan Guarantees for Three California PV Solar Plants Expected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in conditional loan guarantees to three California photovoltaic solar power plants today. ... Billion in Loans for Three California Photovoltaic Solar Power Plants Department of ...

  13. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  14. Tower Camera Handbook

    SciTech Connect (OSTI)

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  15. Denver International Airport Photovoltaic System

    Broader source: Energy.gov [DOE]

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  16. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  17. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development for Nanostructured Photovoltaics Low-Cost Nanofabrication Method To Develop Nanostructured, Dye-Sensitized Solar Cells Introduction Photovoltaic (PV) manufacturing is an emerging industry that promises a renewable, carbon-free source of energy for the United States. However, the high temperatures required to manufacture conventional silicon-based crystalline PV cells result in a manufacturing process that is energy-intensive and expensive. Dye-sensitized solar cells (DSSCs), which

  18. Organic Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Organic Photovoltaics Research Organic Photovoltaics Research Graphic showing the seven layers of an organic PV cell: electrode, donor, acceptor, active layer, PEDOT:PSS, transparent conductive oxide, and glass. DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits of the technology. Below is a list of the projects, summary of the benefits, and discussion on the production and manufacturing of this solar technology.

  19. Fact Sheet: Photovoltaics | Department of Energy

    Office of Environmental Management (EM)

    Photovoltaics Fact Sheet: Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering

  20. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  1. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and easily be integrated into their house with minimal retrofit installation costs. ... With minimal equipment and training, builders can easily conduct a shading study or choose ...

  2. Solar dish engine

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Composite Tower Solutions | Open Energy Information

    Open Energy Info (EERE)

    needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates: 40.233765, -111.668509 Show Map Loading map......

  4. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  5. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  6. Smart Solar Rooftops - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Solar panels, or photovoltaic panels, use photovoltaic cells to create energy. These cells ... allowing for low-cost production combined with a ...

  7. The Silicon Solar Cell Turns 50

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daryl Chapin, Calvin Fuller, and Gerald Pearson likely never imagined inventing a solar cell that would revolutionize the photovoltaics industry. There wasn't even a photovoltaics...

  8. Sandia Energy - Solar Glare Hazard Analysis Tool Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Available for Download Home Renewable Energy Energy News News & Events Photovoltaic Solar Solar Newsletter Solar Glare Hazard Analysis Tool...

  9. Solar and Wind Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name...

  10. City of San Jose - Solar Access Design Guidelines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Program Info Sector Name Local Website http:www.sanjoseca.govindex.aspx?NID1725 State California Program...

  11. NREL: Photovoltaics Research - Accomplishments in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Accomplishments in Photovoltaic Manufacturing R&D Successful efforts within the PV Manufacturing R&D Project were recognized by the solar industry. Key highlights from the project are summarized below. Overall, the project resulted in a more than 50% reduction in manufacturing costs and a substantial return on investment for both the U.S. government and the industries involved. A number of companies participating in the project were able to make technological

  12. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels...

  13. Project Profile: CSP Tower Air Brayton Combustor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Air Brayton Combustor Project Profile: CSP Tower Air Brayton Combustor SWRI logo The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing an external combustor capable of operating at much higher temperatures than the current state-of-the-art technology. Approach Illustration with a horizontal pipe with a vertical pipe that highlights fuel injector tubes. This project

  14. Stateline Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates...

  15. Blythe Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329,...

  16. Enterprise Solar Solutions | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: New York-based company that specializes in commercial solar photovoltaic applications for businesses. References: Enterprise Solar Solutions1 This article...

  17. Shanghai Solar Watt Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 200040 Sector: Renewable Energy, Solar, Wind energy Product: Providing photovoltaic systems, solar air heating systems, solar water pumping systems, wind energy...

  18. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  19. With growing numbers of solar energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending SOLAR GLARE HAZARD ANALYSIS TOOL (SGHAT) TECHNOLOGY SUMMARY Figure 1. Glare from solar panels viewed from an air traffic control tower. Figure 2. Screen image of glare...

  20. Sunset Reservoir Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  1. Modeling and Optimization of Hybrid Solar Thermoelectric Systems...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, ...

  2. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  3. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  4. Next Generation Photovoltaics Round 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Next Generation Photovoltaics Round 2 Next Generation Photovoltaics Round 2 Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On Sept. 1, 2011, the U.S. Department of Energy (DOE) announced $24.5 million to fund the Next Generation Photovoltaics II projects

  5. PROJECT PROFILE: Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project aims to develop, demonstrate, and validate a sensing and control mechanism for using power loads to address variable photovoltaic (PV) generation, which will reduce two-way power flow and mitigate voltage instability on distribution level circuits. The availability of this technology will enable increased penetration of renewables while weakening the challenges that arise due to their intermittency in generation by using flexibility on load side.

  6. Enhanced Thin Film Organic Photovoltaic Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Enhanced Thin Film Organic Photovoltaic Devices Brookhaven National Laboratory Contact BNL About This Technology An Embodiment of the Optical Field Confinement Device An Embodiment of the Optical Field Confinement Device Technology Marketing Summary A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure

  7. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  8. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  9. Broward County Online Solar Permitting

    Broader source: Energy.gov [DOE]

    Broward County now offers Go SOLAR Online Permitting*, for rooftop solar photovoltaic system permitting. This online permitting system may be used for residential or low commercial properties that...

  10. Dalkia Solar | Open Energy Information

    Open Energy Info (EERE)

    Agullent, Spain Zip: 46890 Sector: Solar Product: Agullent-based installer of photovoltaic and solar thermal power plants. Coordinates: 38.824755, -0.547039 Show Map...

  11. Plovdiv Solar | Open Energy Information

    Open Energy Info (EERE)

    The project developer Plovdiv Solar Ltd. and Sinosol Group will jointly realize photovoltaic power plants on a 330 ha project site near Lyubimets. References: Plovdiv Solar1...

  12. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  13. Trina Solar | Open Energy Information

    Open Energy Info (EERE)

    Limited Name: Trina Solar Limited Place: Changzhou, China Sector: Solar Product: Photovoltaics Number of Employees: 5001-10,000 Year Founded: 1997 Website: www.trinasolar.com ...

  14. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  15. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  16. Low-cost, Modular, Building-integrated Photovoltaic-Thermal Collector -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Low-cost, Modular, Building-integrated Photovoltaic-Thermal Collector University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2225B (Integrated Thermal-Photovoltaic) Marketing Summary.pdf (111 KB) Technology Marketing Summary Buildings consume approximately 40% of the

  17. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Santo Domingo Pueblo in Sandoval County, New Mexico

    SciTech Connect (OSTI)

    Geiger, J.; Lisell, L.; Mosey, G.

    2013-07-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Pueblo of Santo Domingo in Sandoval County, New Mexico, for a renewable energy production feasibility study. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess specific areas on the Pueblo for potential installation of photovoltaic (PV) systems and to estimate the cost, performance, and site impacts of different PV options. The report also recommends financing options that could assist in the implementation of these PV systems.

  18. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  20. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  1. Brayton Cycle Baseload Power Tower CSP System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Cycle Baseload Power Tower CSP System Brayton Cycle Baseload Power Tower CSP System This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_anderson.pdf More Documents & Publications High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY13 Q3 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1

  2. Photovoltaic module with adhesion promoter

    SciTech Connect (OSTI)

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  3. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    This document introduces the Energy Department’s new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects—from community organizers and advocates to utility managers and government officials—navigate the process of developing shared systems, from early planning to implementation.

  4. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  5. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  6. Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabled Photovoltaics (MEPV) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  8. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  9. Project Profile: Evaluating the Causes of Photovoltaics Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motivation Photovoltaic technologies, including silicon and thin film solar cells, have experienced unprecedented cost reductions among electricity-conversion technologies. A ...

  10. SunShot Initiative Workshop on Silicon Photovoltaics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative held a workshop on silicon photovoltaics research directions beyond 2020 in conjunction with the NREL workshop on crystalline silicon solar cells and modules. ...

  11. NREL: Photovoltaics Research - NREL Records Progress Toward Understand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy. Research continues into nanotubes, which have the potential to be used in photovoltaics, telecommunications, biological imaging, and solar fuels. Before that can happen,...

  12. Lab Breakthrough: Microelectronic Photovoltaics | Department of Energy

    Office of Environmental Management (EM)

    Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. View the entire YouTube Lab Breakthroughs playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are MEMS? MEMS are

  13. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium

  14. Sandia Energy Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandia's Continuously Recirculating Falling-Particle Receiver Emplaced at Top of Solar Tower http:energy.sandia.govsandias-continuously-recirculating-falling-particle-r...

  15. Cooling Towers: Understanding Key Components of Cooling Towers...

    Broader source: Energy.gov (indexed) [DOE]

    terfscoolingtowers.pdf More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for Cooling Towers Install an Automatic...

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  17. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  18. Solar Energy Systems - Research - Systems Analysis - Smart Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Systems Analysis Solar Fuels Research: Systems Analysis Smart grid photovoltaic Systems analysis photovoltaic A team of energy and grid experts from Agronne,...

  19. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the proposed construction of a Photovoltaic System at the Calvertion National ... Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San ...

  20. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objectives | Department of Energy Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_coogan.pdf More Documents & Publications CSP Tower Air Brayton Combustor - FY12 Q4 CSP Tower Air Brayton Combustor

  1. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  2. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  3. Approaches to Future Generation Photovoltaics and Solar Fuels: Multiple Exciton Generation in Quantum Dots, Quantum Dot Arrays, Molecular Singlet Fission, and Quantum Dot Solar Cells

    SciTech Connect (OSTI)

    Nozik, A. J.; Beard, M. C.; Johnson, J. C.; Hanna, M. C.; Luther, J. M.; Midgett, A.; Semonin, O.; Michel, J.

    2012-01-01

    One potential, long-term approach to more efficient future generation solar cells is to utilize the unique properties of quantum dots (QDs) and unique molecular chromophores to control the relaxation pathways of excited states to produce enhanced conversion efficiency through efficient multiple electron-hole pair generation from single photons . We have observed efficient multiple exciton generation (MEG) in PbSe, PbS, PbTe, and Si QDs and efficient singlet fission (SF) in molecules that satisfy specific requirements for their excited state energy level structure to achieve carrier multiplication. We have studied MEG in close-packed QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies in the 3-5% range via both nanocrystalline Schottky junctions and nanocrystalline p-n junctions. These solar cells also show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy. We have also observed very efficient SF in thin films of molecular crystals of 1,3 diphenylisobenzofuran with quantum yields of 200% at the optimum SF threshold of 2Eg (HOMO-LUMO for S{sub 0}-S{sub 1}), reflecting the creation of two excited triplet states from the first excited singlet state. Various possible configurations for novel solar cells based on MEG in QDs and SF in molecules that could produce high conversion efficiencies will be presented, along with progress in developing such new types of solar cells. Recent analyses of the effect of MEG or SF combined with solar concentration on the conversion efficiency of solar cells will be discussed.

  4. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect (OSTI)

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  5. NREL: Photovoltaics Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 December 28, 2012 Award-Winning PV Cell Pushes Efficiency Higher NREL and Solar Junction outsmart the solar spectrum and set a world record with a 44%-efficient solar cell. December 4, 2012 NREL Teams with Berkeley Lab to Analyze Solar Pricing Trends and Benchmark "Soft" Costs for PV Systems The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (LBL) jointly released two reports examining solar photovoltaic (PV)

  6. SCE Roof Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer...

  7. Denver Federal Center Solar Park | Open Energy Information

    Open Energy Info (EERE)

    Federal Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison...

  8. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  9. Emcore/SunPeak Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Facility EmcoreSunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909,...

  10. Cimarron I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757,...

  11. Desert Sunlight Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038,...

  12. Agua Caliente Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Caliente Solar Power Plant Facility Agua Caliente Solar Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Yuma County, Arizona Coordinates...

  13. Golden Hills Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892,...

  14. McKenzie Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Facility Facility McKenzie Solar Plant Sector Solar Facility Type Photovoltaic Facility Status In Service Owner Recurrent Energy Developer Recurrent Energy Energy...

  15. Solar/Wind Contractor Licensing | Open Energy Information

    Open Energy Info (EERE)

    Licensing Louisiana InstallerContractor Photovoltaics Solar Water Heat Yes Tennessee Solar Panel Installation Specialty and Solar Thermal-Geothermal Licensing (Tennessee)...

  16. List of Solar Water Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Solar Water Heat Ground Source Heat Pumps Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  17. Sandia Energy - Price Premiums for Solar Home Sales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Premiums for Solar Home Sales Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Systems Analysis Price Premiums for Solar Home Sales Previous...

  18. Solar Thermal Technologies Available for Licensing - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating solar power technologies include thermal storage and the following systems: Linear concentrating Dishengine Power tower Visit the DOE Solar Energy Technologies ...

  19. Hudson Light & Power- Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    Hudson Light & Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  20. GreyStone Power- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  1. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  2. Reticulated Organic Photovoltaics

    SciTech Connect (OSTI)

    Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

    2012-03-21

    This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

  3. Residential Solar Permit Requirements

    Broader source: Energy.gov [DOE]

    Washington's State Building Code sets requirements for the installation, inspection, maintenance and repair of solar photovoltaic (PV) energy systems. Local jurisdictions have the authority to...

  4. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  5. Cost Competitive Electricity from Photovoltaic Concentrators Called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Imminent' - News Releases | NREL Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National

  6. Photovoltaic Cell Basics | Department of Energy

    Energy Savers [EERE]

    Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches

  7. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  8. Effects of Metastabilities on CIGS Photovoltaic Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Effects of Metastabilities on CIGS Photovoltaic Modules Effects of Metastabilities on CIGS Photovoltaic Modules This poster describes a SunShot Initiative solar project led by a team from Nexcis Photovoltaic Technology entitled "Effects of Metastabilities on CIGS Photovoltaic Modules." The team studied the driving force of the mechanisms which governs the different observed phases during storage, light exposition and annealing. The aim of this study is to obtain a better

  9. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search Increasing Solar Efficiency through Luminescent Solar Concentrators Argonne National Laboratory Contact ANL About This Technology <span class="caption1"><span style="font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;;

  10. Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the power output of PV cells, they are connected together to form larger units called modules. Modules, in turn, can be connected to form even larger units called arrays, which can be interconnected to produce more power, and so on.

  11. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  12. Burrington s Solar Edge | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services, Solar Product: The company sells, installs and maintains solar photovoltaic equipment, in addition to providing consulting, site analysis and project planning...

  13. Corum Solar Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Co Ltd Place: Taichung City 408, Taiwan Sector: Efficiency, Solar Product: Photovoltaic, semiconductor, and microelectronics research institute for development of...

  14. Apollon Solar SAS | Open Energy Information

    Open Energy Info (EERE)

    of new solar technologies and marketing strategies aiming at reducing costs for photovoltaic energy systems for the end user. References: Apollon Solar SAS1 This article is a...

  15. Gehrlicher Solar AG | Open Energy Information

    Open Energy Info (EERE)

    96465 Sector: Solar Product: Germany-based company that plans, builds and markets photovoltaic and solar thermal plants. It consults for local, private and environmental...

  16. Prosperity Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Prosperity Solar Power Inc Place: Taipei City, Taiwan Product: Focused on photovoltaic module production. References: Prosperity Solar Power Inc1 This article is a...

  17. Whitfield Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: RG6 6AU Sector: Renewable Energy, Solar Product: Developing solar photovoltaic concentrators aimed at generating clean renewable energy for the world market....

  18. Uni-Solar | Open Energy Information

    Open Energy Info (EERE)

    Type Test & Evaluation Partner Partnering Center within NREL National Center for Photovoltaics Uni-Solar is a company located in Auburn Hills, MI. References "Uni-Solar"...

  19. Kammerer Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  20. Denver Public Schools Get Solar Energy System

    Broader source: Energy.gov [DOE]

    Main Street Power, a solar development company based in Boulder, is installing solar photovoltaic systems on the rooftops of 12 Denver Public Schools.

  1. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect (OSTI)

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  2. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  3. Two New Reports on Utility-Scale Solar from NREL | OpenEI Community

    Open Energy Info (EERE)

    on First Solar projects). A full quarter of the 16,043 MW were from concentrated solar thermal power projects: 9% parabolic troughs and 16% tower systems. Tower technology...

  4. NREL: Performance and Reliability R&D - Photovoltaic Performance and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshops Photovoltaic Performance and Reliability Workshops NREL hosts workshops focused on photovoltaic (PV) performance and reliability to encourage collaboration and communication among solar program staff, national laboratory teams, and industry partners. Workshop summaries and presentation content are available for the following meetings. NREL also coordinates an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can share information

  5. Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open...

    Open Energy Info (EERE)

    Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name: Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place: Kunming, Yunnan Province,...

  6. SunDwel Solar Limited | Open Energy Information

    Open Energy Info (EERE)

    SunDwel Solar Limited Jump to: navigation, search Logo: SunDwel Solar Limited Name: SunDwel Solar Limited Address: 1 Tower Road Place: Washington, United Kingdom Sector: Solar...

  7. EERE Success Story-Solar Junction Develops World Record Setting

    Office of Environmental Management (EM)

    Concentrated Photovoltaic Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on

  8. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  9. Marin Solar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94901 Sector: Solar Product: Marin Solar is a residential installer of photovoltaic systems. References: Marin Solar1 This article is a stub. You can help OpenEI by...

  10. Gate Solar | Open Energy Information

    Open Energy Info (EERE)

    Spain Sector: Solar Product: JV set up for the promotion, exploitation and sale of photovoltaic solar power plants. References: Gate Solar1 This article is a stub. You can help...

  11. Homebuilder's Guide to Going Solar

    DOE R&D Accomplishments [OSTI]

    2008-12-00

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  12. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  13. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore » generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  14. NREL: Photovoltaics Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 November 26, 2014 NREL Releases User Guide for PV Dynamic Model Simulation Report explains how to use NREL's tool for modeling the dynamic behavior of photovoltaic inverters. November 20, 2014 NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids The Energy Department's National Renewable Energy Laboratory (NREL) and SolarCity have entered into a cooperative research agreement to address the operational issues associated with large amounts of distributed solar energy on

  15. Mass Solar Loan Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers fixed low-interest loans to residents purchasing solar photovoltaic (PV) systems. One purpose of this program is to provide more opportunity for residents to own solar PV...

  16. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  17. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  18. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $646 million loan guarantee to finance Antelope Valley Solar Ranch 1, a 242-MW photovoltaic (PV) solar generation project.

  19. How to Build a Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  20. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  1. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  2. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System ...

  3. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  4. Solar Easements | Department of Energy

    Energy Savers [EERE]

    State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Solar Pool Heating Program Info Sector Name State State Kansas Program Type Solar/Wind Access Policy Summary Parties may voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. An easement must be expressed in writing and recorded with the register of deeds for

  5. Solar Rights | Department of Energy

    Energy Savers [EERE]

    Rights Solar Rights < Back Eligibility Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Arizona Program Type Solar/Wind Access Policy Summary Arizona law protects individual homeowners' private property rights to solar access by dissolving any local covenant, restriction or condition attached to a property deed that restricts the use of solar energy.

  6. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  7. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  8. Project Profile: High-Temperature Solar Selective Coating Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Tower Receivers | Department of Energy Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National Laboratories logo Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  9. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  10. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  11. Shining Stars of Solar: Meet Three SunShot Postdoctoral Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The focus of my postdoctoral research was on integrated devices for solar fuels. Solar fuels devices are akin to photovoltaics (solar cells), except instead of light being ...

  12. EmmVee Solar Systems Pvt Ltd ESSPL | Open Energy Information

    Open Energy Info (EERE)

    Bangalore, Karnataka, India Zip: 560 024 Sector: Solar Product: Manufactures and markets solar thermal and solar photovoltaic products. Coordinates: 12.97092, 77.60482 Show...

  13. Sandia Energy - Cool Earth Solar and Sandia Team Up in First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus Home Renewable Energy Energy Partnership News News & Events Concentrating Solar Power Livermore Valley Open Campus (LVOC) Photovoltaic Solar Solar Newsletter Cool Earth...

  14. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Energy Savers [EERE]

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $1.2 billion loan guarantee to finance California Valley Solar Ranch, a 250-MW photovoltaic (PV)

  15. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  16. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vaporliquidsolid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 m) and low surface recombination velocities (S << 70 cms-1). Single-wire radial pn junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  17. Munro Solar | Open Energy Information

    Open Energy Info (EERE)

    Raynham, Massachusetts Zip: 02767 Region: Greater Boston Area Sector: Solar Product: Photovoltaics Number of Employees: 51-200 Year Founded: 1946 Phone Number: (508) 536-2196...

  18. Solar Ready Buildings Planning Guide

    SciTech Connect (OSTI)

    Lisell, L.; Tetreault, T.; Watson, A.

    2009-12-01

    This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

  19. Solar Express | Open Energy Information

    Open Energy Info (EERE)

    Express Place: Italy Product: A joint venture established to install some 11MW of photovoltaic generation capacity around the country. References: Solar Express1 This article...

  20. Aspen Solar | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Design, installation & maintenance of active, passive, and photovoltaic energy systems Website: www.aspensolar.com Coordinates: 39.649755, -106.617574...

  1. Yingli Solar | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Holding Company Limited Place: Baoding, China Sector: Solar Product: Photovoltaics Website: www.yinglisolar.com References: 1 This article is a stub. You can help...

  2. University Crystalline Silicon Photovoltaics Research and Development

    SciTech Connect (OSTI)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  3. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell. Researchers make measurements of conversion efficiency and quantum efficiency to characterize the performance of PV cells. Based on these results, researchers may redesign aspects of the cell-e.g.,

  4. Photovoltaic Cell Material Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these

  5. DOE Forms National Center for Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forms National Center for Photovoltaics For more information contact: Kerry Masson, 303/275-4083 e:mail: Public Affairs Golden, Colo., Nov. 19, 1996 -- The U.S. Department of Energy (DOE) today announced it is forming a National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL), a move that enhances linkages between DOE-funded solar energy research programs conducted by NREL and Sandia National Laboratories and several state and federal agencies and universities across

  6. NREL: Photovoltaics Research - NREL and Partners Demonstrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-of-a-Kind Use of Utility-Scale PV for Ancillary Services and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may

  7. Improved Organic Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2768B (Organic PV) Marketing Summary_1.pdf (146 KB) Technology Marketing Summary Traditionally, photosensitive optoelectronic devices such as solar cells have been constructed of a number of inorganic semiconductors. Purity and crystalline grain size are a large

  8. Photovoltaic System Performance Basics | Department of Energy

    Energy Savers [EERE]

    System Performance Basics Photovoltaic System Performance Basics August 20, 2013 - 4:17pm Addthis Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of its components. Reliability The reliability of PV arrays is an important factor in the cost of PV systems and in consumer acceptance. However, the building blocks of arrays, PV cells, are considered

  9. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Local Government Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info Sector Name State State North Dakota Program Type Solar/Wind Access Policy Summary North Dakota's solar easement law is similar to those established by many other U.S. states. The law allows a property owner to obtain a solar easement from another property owner for

  10. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name State State Alaska Program Type Solar/Wind Access Policy Summary Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. Source

  11. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info Sector Name State State Georgia Program Type Solar/Wind Access Policy Summary In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's Solar Easements Act of 1978, easements may be established to allow owners of solar-energy systems to

  12. Diffraction: Enhanced Light Absorption of Solar Cells and Photodetectors -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search Diffraction: Enhanced Light Absorption of Solar Cells and Photodetectors Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (890 KB) Technology Marketing SummaryThe solar and photovoltaic industry has grown steadily over the last several years. In order to maintain

  13. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  14. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  15. Organic Photovoltaic Cells with an Electric Field Integrally-Formed at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterojunction Interface - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Organic Photovoltaic Cells with an Electric Field Integrally-Formed at the Heterojunction Interface National Renewable Energy Laboratory Brookhaven National Laboratory Contact NREL About This Technology Figure 4 Figure 4 Figure 6 Figure 6 Technology Marketing SummaryStandard solar cells made from inorganic semiconductors, such as silicon cells, have dominated the

  16. Illinois Solar Energy Association- Renewable Energy Credit Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system owners, providing them with an opportunity to recei...

  17. Sandia Energy - Solar Energy Research Institute for India and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Institute for India and the United States Kick-Off Home Renewable Energy Energy Partnership News SunShot News & Events Concentrating Solar Power Photovoltaic...

  18. CalRENEW-1 Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates...

  19. SRP - Solar Water Heating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on SRCC rating) Summary NOTE: SRP no longer provides incentives for solar electric photovoltaic systems. SRP's Solar Electric Program provides incentives to its residential...

  20. Nellis AFB Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nellis AFB Solar Power Plant Facility Nellis AFB Sector Solar Facility Type Photovoltaic Developer Fotowatio Renewable Ventures Location Clark County, Nevada Coordinates...

  1. High Plains Ranch Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858,...

  2. Nanocrystal solar cells processed from solution (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nanocrystal solar cells processed from solution Citation Details In-Document Search Title: Nanocrystal solar cells processed from solution A photovoltaic device having a first...

  3. Guidelines for Solar and Wind Local Ordinances | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State Virginia Program Type SolarWind Permitting Standards Summary In March 2011, the Virginia...

  4. Procuring and Implementing Solar Projects on Public Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls This webinar covered good practices for photovoltaic and solar water heating request for ...

  5. NREL-Solar Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1...

  6. Bruceville Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Bruceville Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  7. Dillard Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Dillard Road Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  8. Research & Development Needs for Building-Integrated Solar Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). ... More Documents & Publications Impact of Solar PV Laminate Membrane Systems on Roofs Energy ...

  9. Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is PV different? | Department of Energy Soft Costs » Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Logo of Massachusetts Institute of Technology. The bar chart below the logo shows the cost reduction in photovoltaics compared to other energy-conversion technologies. PV is performing better than coal, natural gas, nuclear fusion, wind, and solar thermal

  10. Multijunction III-V Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Multijunction III-V Photovoltaics Research Multijunction III-V Photovoltaics Research Graphic showing the 10 layers of a multijunction PV cell: contact, bottomm cell, nucleation, buffer region, tunnel junction, middle cell, wide-bandgap tunnel junction, top cell, contact, and antireflective coating. DOE invests in multijunction III-V solar cell research to drive down the costs of the materials, manufacturing, tracking techniques, and concentration methods used with this

  11. Salvage Values Determines Reliability of Used Photovoltaics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Salvage Values Determines Reliability of Used Photovoltaics Salvage Values Determines Reliability of Used Photovoltaics Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_energyideas_mccabe.pdf More Documents & Publications Revitalizing American Competitiveness in Solar Technologies Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems Retrospective Benefit-Cost Evaluation of DOE

  12. High-Efficiency Multijunction Photovoltaics | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Efficiency Multijunction Photovoltaics This Task Group focuses on novel approaches to InGaN and multijunction photovoltaics for unprecedented high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient simultaneous coupling of electrons and photons through the various junctions. Figure 1 shows a device architecture that is one of the goals of the project: a five-junction (5J) solar cell using a high-bandgap InGaN top junction

  13. Solar Rights Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rights Act Solar Rights Act < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Solar Pool Heating Program Info Sector Name State Website http://www.gosolarcalifornia.ca.gov/solar_basics/rights.php State California Program Type Solar/Wind Access Policy Summary The Solar

  14. Applied Solar Technologies Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Delhi (NCT), India Sector: Solar Product: Delhi-based firm that provides off-grid solar power to telecom towers. It builds and operates solar installations and takes...

  15. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers dissipate heat from recirculating water used to cool chillers, air conditioners, or other process equipment to the ambient air. Heat is rejected to the environment from cooling towers through the process of evaporation. Therefore, by design, cooling towers use significant amounts of water.

  16. Homebuilder's Guide to Going Solar (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  17. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Environmental Management (EM)

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. PDF icon waterfs_coolingtowers.pdf More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for

  18. Photovoltaic Silicon Cell Basics | Department of Energy

    Energy Savers [EERE]

    Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the

  19. Solar Easements | Department of Energy

    Energy Savers [EERE]

    Residential Savings Category Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name State State Idaho Program Type Solar/Wind Access Policy Summary Similar to laws in other states, Idaho's solar easement provision does not create an automatic right to sunlight. Rather, the law allows parties to enter into solar easement contracts voluntarily for the purpose of ensuring adequate exposure of a solar-energy system. The easement is transferred with the

  20. Department of Energy Offers Conditional Loan Guarantee Commitments to Support Nearly $4.5 Billion in Loans for Three California Photovoltaic Solar Power Plants

    Broader source: Energy.gov [DOE]

    Projects Expected to Create 1,400 Jobs and Generate Approximately 1330 Megawatts of Installed Solar Power

  1. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  2. Carlson Solar | Open Energy Information

    Open Energy Info (EERE)

    Product: Carlson Solar is an installer of residential and small-scale commercial photovoltaic systems. References: Carlson Solar1 This article is a stub. You can help OpenEI...

  3. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  4. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water ... Infrastructure Hydrogen Production Market Transformation ... Tribal Energy Program Intellectual Property Current EC ...

  5. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  6. Concentrating Solar Power Facilities and Solar Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hours/m²/day) 2500 4000 6000 8000 Data provided by CSP World. Map by Daniel Wood

  7. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  8. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  9. Photovoltaic Experts GmbH | Open Energy Information

    Open Energy Info (EERE)

    Experts GmbH Jump to: navigation, search Name: Photovoltaic Experts GmbH Place: Germany Sector: Services, Solar Product: Germany-based company provides all services and products...

  10. NREL: Photovoltaics Research - Michael Deceglie, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near junction defects in silicon heterojunction solar cells," IEEE Journal of Photovoltaics, 4, pp. 154-159, 2014. T.J. Silverman, M.G. Deceglie, B. Marion, S. Cowley, B....

  11. Request for Information: Photovoltaic Reliability and Durability Research and Development

    Broader source: Energy.gov [DOE]

    The United States Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to solar photovoltaic (PV) reliability and durability research and development.

  12. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    SciTech Connect (OSTI)

    Khrypunov, G. S. Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 ?m. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  13. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for ... Characterize the optical performance, material properties, and temperature stability. ...

  14. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

  15. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  16. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  17. Photovoltaic Cell Conversion Efficiency Basics | Department of Energy

    Energy Savers [EERE]

    Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of

  18. Scaling Up Nascent Photovoltaics AT Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scaling Up Nascent Photovoltaics AT Home Scaling Up Nascent Photovoltaics AT Home Three awardees are helping the nation reclaim its competitive edge in solar manufacturing through SUNPATH, which stands for Scaling Up Nascent PV AT Home. This program strengthens the domestic manufacturing industry by supporting the initial ramp up to high-volume production. The targeted SUNPATH funding enables innovative, high-tech companies to accelerate cost reductions and commercialization of solar

  19. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect (OSTI)

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  20. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Trough Plants Seville, Spain 50 MW Iberdrola Energia Solar de Puertollano Puertollano (Ciudad Real) Abengoa PS10 and PS 20, Seville, Spain Power Tower Pilot Plants 6 MW thermal ...