Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

2

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last yearÂ’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

3

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the rest of the winter, and into the next gasoline season. Inventories are a good measure of the supply/demand balance that affects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

4

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

The most recent data show OECD inventories remaining at very low The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the winter, and even extending to the next gasoline season. Inventories are a good measure of the supply/demand balance that effects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

5

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the winter, and even extending to the next gasoline season. Inventories are a good measure of the supply/demand balance that effects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

6

World Oil: Market or Mayhem?  

E-Print Network [OSTI]

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

7

EIA - International Energy Outlook 2007-Low World Oil Price Projections  

Gasoline and Diesel Fuel Update (EIA)

Low World Oil Price Case Projections (1990-2030) Low World Oil Price Case Projections (1990-2030) International Energy Outlook 2007 Low World Oil Price Projections Tables (1990-2030) Formats Table Data Titles (1 to 12 complete) Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region, Low World Oil Price Case Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel, Low World Oil Price Case Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

8

Energy Information Administration (EIA) - High World Oil Price Case  

Gasoline and Diesel Fuel Update (EIA)

High World Oil Price Case Projections Tables (1990-2030) High World Oil Price Case Projections Tables (1990-2030) International Energy Outlook 2007 High World Oil Price Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High World Oil Price Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

9

Figure 4. World Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

10

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: As global production changed relative to demand, the world moved from a period of "over supply" in 1998 to one of "under supply" in 1999 and 2000. Inventories are a good means of seeing the imbalance between petroleum production and demand. For example, when production exceeds demand, inventories rise. A large over supply will put downward pressure on prices, while under supply will cause prices to rise. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in December 1998. However, when demand exceeded production in 1999 and early 2000, inventories fell to the low levels seen above, and prices rose to $35 per

11

Long Term World Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: The following pages summarize a recent EIA presentation on estimates of the world conventional oil resource base and the year when production from it will peak and then begin to decline. A version of this presentation was given by former EIA Administrator Jay Hakes to the April 18, 2000 meeting of the American Association of Petroleum Geologists in New Orleans, Louisiana. Specific information about this presentation may be obtained from John Wood (john.wood@eia.doe.gov), Gary Long (gary.long@eia.doe.gov) or David Morehouse (david.morehouse@eia.doe.gov). Long Term World Oil Supply http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld001.htm [8/10/2000 4:56:23 PM] Slide 2 of 20 http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld002.htm [8/10/2000 4:56:24 PM]

12

World frontiers beckon oil finders  

SciTech Connect (OSTI)

This paper discusses the international aspects of the petroleum industry. Most who work in the industry agree that the possibilities for huge are found largely in international regions. Something that is helping fuel that possibility is the way countries are increasingly opening their doors to US oil industry involvement. Listed in this paper is a partial list of the reported projects now underway around the world involving US companies. It is not intended to be comprehensive, but rather an indication of how work continues despite a general lull atmosphere for the oil industry. These include Albania, Bulgaria, Congo, Czechoslovakia, Dominican Republic, Ethiopia, Ireland, Malta, Madagascar, Mongolia, Mozambique, Nigeria, Panama, Paraquay, and Senegal.

Not Available

1991-09-01T23:59:59.000Z

13

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

14

Kuwait: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports that the major event in Kuwait today is the ongoing effort to control blowouts stemming from Iraqi demolition of oil wells and producing facilities last February. A total of 732 wells---about two- thirds of all wells in Kuwait---were blown up. All but 80 caught on fire.

Not Available

1991-08-01T23:59:59.000Z

15

World oil prices expected to fall  

Science Journals Connector (OSTI)

World oil prices expected to fall ... The good news is that world oil prices probably will fall somewhat in the near future. ... The bad news is that oil prices probably will begin rising again in the mid-1980s, and even the optimists suspect that they will continue to do so thereafter. ...

1983-10-10T23:59:59.000Z

16

International Energy Outlook 1999 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4669 bytes) oil.gif (4669 bytes) A moderate view of future oil market developments is reflected in IEO99. Sustained high levels of oil prices are not expected, whereas continued expansion of the oil resource base is anticipated. The crude oil market was wracked with turbulence during 1998, as prices fell by one-third on average from 1997 levels. Even without adjusting for inflation, the world oil price in 1998 was the lowest since 1973. The declining oil prices were influenced by an unexpected slowdown in the growth of energy demand worldwide—less than any year since 1990—and by increases in oil supply, particularly in 1997. Although the increase in world oil production in 1998 was smaller than in any year since 1993, efforts to bolster prices by imposing further limits on production were

17

International Energy Outlook 2001 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets picture of a printer Printer Friendly Version (PDF) In the IEO2001 forecast, periodic production adjustments by OPEC members are not expected to have a significant long-term impact on world oil markets. Prices are projected to rise gradually through 2020 as the oil resource base is expanded. Crude oil prices remained above $25 per barrel in nominal terms for most of 2000 and have been near $30 per barrel in the early months of 2001. Prices were influenced by the disciplined adherence to announced cutbacks in production by members of the Organization of Petroleum Exporting Countries (OPEC). OPECÂ’s successful market management strategy was an attempt to avoid a repeat of the ultra-low oil price environment of 1998 and early 1999. Three additional factors contributed to the resiliency of oil prices in

18

Conference assesses world oil supply scene  

SciTech Connect (OSTI)

This paper reports that the Offshore Northern Seas conference heard a number of long term outlooks in Stavanger, Norway, last week, all with the same conclusion: the oil and gas industry needs massive investment if it is to match future demand. Norwegian Prime Minister Gro Harlem Bruntland built her scenario on a doubling of world population every 40 years. Mrs. Bruntland emphasized the growing dependence of the world economy on Middle East developments. Two thirds of the world's oil reserves are in the Persian Gulf region, she said, but only 28% of production comes from there. As the rest of the world depletes its reserves, dependence on Persian Gulf oil will grow.

Not Available

1992-08-31T23:59:59.000Z

19

Predicting the Peak in World Oil Production  

Science Journals Connector (OSTI)

The US Department of Energy's Energy Information Administration (EIA) recently predicted that world oil production could continue to increase for more than three decades, based on the recent US Geological Surv...

Alfred J. Cavallo

2002-09-01T23:59:59.000Z

20

Peaking of World Oil Production  

Science Journals Connector (OSTI)

Nonrenewable and renewable energy sources make up the two major energy categories of interest to our industrial civilization. Nonrenewable energy includes different fossil fuels (coal, oil, natural gas) th...

J. Edward Gates

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

World Oil and Gas Picture Bright  

Science Journals Connector (OSTI)

The world's hydrocarbon energy picture is rosy and promises to shape up even better in coming years. ... World oil reserves may eventually hit 500 billion metric tons, more than 10 times those estimated for the end of 1962, according to Prof. E. H. A. Bentz. ...

1962-11-26T23:59:59.000Z

22

Panama: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports that Texaco signed a contract to explore 1.1 million acres in Blocks 1 and 2, on and offshore the northwestern coast. The firm has not revealed any plans beyond conducting a preliminary analysis. No drilling was reported last year. Switzerland-based Idria Oil and Gas, which drilled and abandoned three offshore wells with oil and gas shows in 1989, the it has no plans for 1991. However, the firm the it may drill three wells in 1992.

Not Available

1991-08-01T23:59:59.000Z

23

International Energy Outlook - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets International Energy Outlook 2004 World Oil Markets In the IEO2004 forecast, OPEC export volumes are expected to more than double while non-OPEC suppliers maintain their edge over OPEC in overall production. Prices are projected to rise gradually through 2025 as the oil resource base is further developed. Throughout most of 2003, crude oil prices remained near the top of the range preferred by producers in the Organization of Petroleum Exporting Countries (OPEC), $22 to $28 per barrel for the OPEC “basket price.” OPEC producers continued to demonstrate disciplined adherence to announced cutbacks in production. Throughout 2003, the upward turn in crude oil prices was brought about by a combination of three factors. First, a general strike against the Chavez regime resulted in a sudden loss of much of Venezuela’s oil exports. Although the other OPEC producers agreed to increase their production capacities to make up for the lost Venezuelan output, the obvious strain on worldwide spare capacity kept prices high. Second, price volatility was exacerbated by internal conflict in Nigeria. Third, prospects for a return to normalcy in the Iraqi oil sector remained uncertain as residual post-war turmoil continued in Iraq.

24

Iraq: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports that no reliable information on Iraqi E and P operations and only a few reports on oil field facilities damage have been available since last August. Most of what is known originated from the Middle East Economic Survey (MEES), the authoritative newsletter covering the Middle East. According to MEES reports in major northern oil fields (Kirkuk, Bai Hasan and Jambur) is put at 800,000 bpd. The northern fields and the pipeline system through Turkey to the Mediterranean Sea that serves as an export outlet for the area apparently were not damaged much by coalition air strikes or subsequent fighting by the Kurds. Last May production was estimated at 250,000 bpd, presumably from northern fields. If and when U.N. sanctions are lifted, Iraq should be able to export promptly through the Turkish line.

Not Available

1991-08-01T23:59:59.000Z

25

STEO January 2013 - world oil prices  

U.S. Energy Information Administration (EIA) Indexed Site

Gap between U.S. and world oil prices to be cut by more than Gap between U.S. and world oil prices to be cut by more than half over next two years The current wide price gap between a key U.S. and a world benchmark crude oil is expected to narrow significantly over the next two years. The spot price for U.S. benchmark West Texas Intermediate crude oil, also known as WTI , averaged $94 a barrel in 2012. That's $18 less than North Sea Brent oil, which is a global benchmark crude that had an average price of $112 last year. The new monthly forecast from the U.S. Energy Information Administration expects the price gap between the two crude oils to shrink to $16 a barrel this year and then to $8 in 2014. That's when WTI would average $91 a barrel and Brent would be at $99. The smaller price gap will result from new pipelines coming on line that will lower the cost of

26

The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008  

Science Journals Connector (OSTI)

The assessment of future global oil production presented in the IEA’s World Energy Outlook 2008 (WEO 2008) is divided into 6 fractions; four relate to crude oil, one to non-conventional oil, and the final fraction is natural-gas-liquids (NGL). Using the production parameter, depletion-rate-of-recoverable-resources, we have analyzed the four crude oil fractions and found that the 75 Mb/d of crude oil production forecast for year 2030 appears significantly overstated, and is more likely to be in the region of 55 Mb/d. Moreover, analysis of the other fractions strongly suggests lower than expected production levels. In total, our analysis points to a world oil supply in 2030 of 75 Mb/d, some 26 Mb/d lower than the IEA predicts. The connection between economic growth and energy use is fundamental in the IEA’s present modelling approach. Since our forecast sees little chance of a significant increase in global oil production, our findings suggest that the “policy makers, investors and end users” to whom WEO 2008 is addressed should rethink their future plans for economic growth. The fact that global oil production has very probably passed its maximum implies that we have reached the Peak of the Oil Age.

Kjell Aleklett; Mikael Höök; Kristofer Jakobsson; Michael Lardelli; Simon Snowden; Bengt Söderbergh

2010-01-01T23:59:59.000Z

27

Gabon: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports on Gabon's largest oil field, Rabi Kounga, and a flurry of smaller reservoirs which have boosted production to 300,000 bopd. Regional geology is so complex that it generates a large discovery only once every twenty years, and operators come and go due to low discovery ratios, following market ups and downs. A hard core four remain: Elf first, Shell, British Gas, which bought Tenneco, and Amoco. Shell's Rabi Kounga discovery, which stretches from shore to shelf, boosted exploration and renewed interest for onshore licenses. The low discovery rate, however, reflects the complexity of Gabonese basins.

Not Available

1991-08-01T23:59:59.000Z

28

Quantifying the Uncertainty in Estimates of World Conventional Oil Resources.  

E-Print Network [OSTI]

??Since Hubbert proposed the "peak oil" concept to forecast ultimate recovery of crude oil for the U.S. and the world, there have been countless debates… (more)

Tien, Chih-Ming

2010-01-01T23:59:59.000Z

29

World Oil Price, 1970-2020  

Broader source: Energy.gov (indexed) [DOE]

World Oil Price, 1970-2020 World Oil Price, 1970-2020 (1999 dollars per barrel) 17.09 50- 45 - 40 - I Nominal dollars 35- 1995 _2020 15 - J 9, AE02000 5- 10 - HHistory Projections 0 1970 1980 1990 2000 2010 2020 35AS0570 ^a .i^ Petroleum Supply, Consumption, and Imports, 1970-2020 (million barrels per day) 30- History Projections 25 - 20 - 20~ Consumption _ Net imports 15 - Domestic supply . _ 5- 0 0 1970 1980 1990 2000 2010 2020 '-'e^~~~ u,~~ ~35AS0570 ., te Petroleum Consumption by Sector, 1970-2020 (million barrels per day) 20- History Projections 15- XTransportation 10 Industrial Eect i city gener - 5- 1970 1980 1990 2000 2010 2020 .n 35AS0570 r-N Crude Oil Production by Source, 1970-2020 (million barrels per day) 8 History Projections 6- Lower 48 conventional 4- Lower 48 offshore 2- lasa k r 0 § ^.^^^r"_ "^^"' ^Lower 48 EOR

30

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

31

Short-Term World Oil Price Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices peaked last fall as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. So where do we see crude oil prices going from here? Crude oil prices are expected to be about $28-$30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. Let's explore why we think prices will likely remain high, by looking at an important market barometer - inventories - which measures the

32

Summary World Oil Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Oil Data (from World on the Edge) Oil Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world oil. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This world oil dataset includes the following data: World oil production (1950 - 2009): Top 20 producing countries (2009); Oil production in U.S. (1900 - 2009); Oil consumption in U.S. (950 - 2010); Oil consumption in China (1965 - 2009); Oil consumption in E.U. (1965 - 2009); Top 20 oil importing countries (2009); World's 20 largest oil discoveries; Real price of gasoline (2007); Retail gas prices by country (2008); and fossil fuel consumption subsidies (2009).

33

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

34

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

35

Spare Capacity (2003) and Peak Production in World Oil  

Science Journals Connector (OSTI)

Reliable estimates of minimum spare capacity for world oil production can be obtained by comparing production ... before and following the collapse of the Iraqi oil industry in March 2003. Spare production was .....

Alfred J. Cavallo

2004-03-01T23:59:59.000Z

36

Who Are the Major Players Supplying the World Oil Market?  

Reports and Publications (EIA)

Energy in Brief article on the world supply of oil through ownership of national oil companies and, for some governments, their membership in the Organization of the Petroleum Exporting Countries (OPEC).

2013-01-01T23:59:59.000Z

37

Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: September 6, 6: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 to someone by E-mail Share Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Facebook Tweet about Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Twitter Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Google Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Delicious Rank Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Digg Find More places to share Vehicle Technologies Office: Fact #336:

38

Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: September 17, 7: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 to someone by E-mail Share Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Facebook Tweet about Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Twitter Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Google Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Delicious Rank Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Digg Find More places to share Vehicle Technologies Office: Fact #487:

39

EIA - AEO2010 - World oil prices and production trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

World oil prices and production trends in AEO2010 World oil prices and production trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 World oil prices and production trends in AEO2010 In AEO2010, the price of light, low-sulfur (or “sweet”) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for “total liquids,” which includes conventional petroleum liquids—such as conventional crude oil, natural gas plant liquids, and refinery gain—in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil. World oil prices can be influenced by a multitude of factors. Some tend to be short term, such as movements in exchange rates, financial markets, and weather, and some are longer term, such as expectations concerning future demand and production decisions by the Organization of the Petroleum Exporting Countries (OPEC). In 2009, the interaction of market factors led prompt month contracts (contracts for the nearest traded month) for crude oil to rise relatively steadily from a January average of $41.68 per barrel to a December average of $74.47 per barrel [38].

40

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

42

Dominant Middle East oil reserves critically important to world supply  

SciTech Connect (OSTI)

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z

43

Regression and Time Series Analysis of the World Oil Peak of Production: Another Look  

Science Journals Connector (OSTI)

This paper analyzes world oil production data as a population/resource growth model. Both US and world oil production data are analyzed in terms of ... , is not a suitable model for world oil production. A flexib...

Peter Caithamer

2008-08-01T23:59:59.000Z

44

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

45

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...  

Broader source: Energy.gov (indexed) [DOE]

8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact 578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was...

46

Multi-fractal Analysis of World Crude Oil Prices  

Science Journals Connector (OSTI)

In order to reveal the stylized facts of world crude oil prices, R/S (Rescaled Range Analysis) method is introduced in this paper. For illustration, WTI (West Texas Intermediate) and Brent daily crude oil prices are used in this paper. The calculated ...

Xiucheng Dong; Junchen Li; Jian Gao

2009-04-01T23:59:59.000Z

47

Forecasting World Crude Oil Production Using Multicyclic Hubbert Model  

Science Journals Connector (OSTI)

OPEC’s actual production was mainly unrestricted until the 1973 Arab oil embargo. ... On the basis of the analysis of all 47 investigated oil producing countries, the results of our study estimated that the world ultimate reserve of crude oil is around 2140 BSTB and that 1161 BSTB are remaining to be produced as of 2005 year end. ... MSTB/D = thousand stock tank barrels per day ...

Ibrahim Sami Nashawi; Adel Malallah; Mohammed Al-Bisharah

2010-02-04T23:59:59.000Z

48

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

49

World oil and geopolitics to the year 2010  

SciTech Connect (OSTI)

This paper focuses on the interplay of market forces and politics in the world oil market projected to the year 2010. It argues that world oil demand will increase considerably, with Asian demand growing the fastest. Given that the growth of oil supply of producers outside the Organization of the Petroleum Exporting Countries (OPEC) will be trivial, the call on OPEC oil will increase substantially. Yet, given their declining per-capita oil revenues, OPEC members may not be able to make timely investments in required upstream projects. If this happens, the supply constraint will lead to higher prices and intensified international competition for Arabian/Persian Gulf oil. Thus, foreign investment will be needed increasingly in OPEC states if prices are to remain stable. But geopolitical and institutional barriers to foreign investment in many OPEC members hinder foreign investment. It is imperative that major players in the world oil market cooperate to reduce such barriers in time to ensure that supply corresponds to rising demand. 22 refs., 8 figs., 10 tabs.

Amirahmadi, H.

1995-12-31T23:59:59.000Z

50

Neutral zone: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports on the Neutral Zone between Kuwait and Saudi Arabia, much in the news during the Gulf war, that returned to production in June when offshore output resumed at a rate of 100,000 bpd. By this month, offshore production should have attained near its pre-war level of 250,000 bpd. Because of war damage onshore, production will not be restarted onshore for some time. Neutral Zone oil is jointly owned by Kuwait and Saudi Arabia. Texaco's Getty unit operates some 900 mostly pumping wells in South Umm Gudair, Wafra and South Fawaris onshore fields. However, only about 50 were producing 130,000 bpd last August when Iraqis invaded. Japan's Arabian Oil Co. operates 165 wells-all flowing-in offshore Khafji, Hout and Lulu fields that have a maximum productive capacity of about 300,000 bpd.

Not Available

1991-08-01T23:59:59.000Z

51

Venezuelan projects advance to develop world`s largest heavy oil reserves  

SciTech Connect (OSTI)

A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

Croft, G.; Stauffer, K. [Pantera Petroleum Inc., San Leandro, CA (United States)

1996-07-08T23:59:59.000Z

52

World oil demand’s shift toward faster growing and less price-responsive products and regions  

Science Journals Connector (OSTI)

Using data for 1971–2008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product – transport oil, fuel oil (residual and heating oil), and other oil – for six groups of countries. Most of the demand reductions since 1973–74 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole – by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC – we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project.

Joyce M. Dargay; Dermot Gately

2010-01-01T23:59:59.000Z

53

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

54

China`s impact on the world crude-oil  

SciTech Connect (OSTI)

China`s oil market is in transition, and this has dramatically shaped its crude and petroleum product balances. During the last five years (1989-1993), imports of crude and refined products increased rapidly, while exports of crude and refined products declined year after year. In 1993 petroleum product imports surged to a record high of 354,000 barrels per day (b/d) at the same time that crude imports also increased to a record high of 315,000 b/d. If we combine imports and exports of both crude oil and products, China was a net oil importer of about 200,000 b/d during 1993. This marked the first time since 1960s that China has fallen into net oil importer status. Four major changes have characterized China`s oil imports and exports during the last two decades. First, China has made vigorous efforts to diversify its total exports away from oil-based goods to non-oil items. Second, the composition of oil exports has changed, shifting from dependence on crude oil exports toward a greater proportion of finished or semi-finished products. Third, the oil import pattern has also shifted from primarily heavy products to primarily light products. Finally, Northern China has continued to export oil across the Pacific Basin, but Southern China has begun importing petroleum from Indonesia and the Middle East. These trends indicate that China will become increasingly vital to both the regional and global oil trade. Overall, Asian oil imports are expected to double in the next ten years.

Wang, H. [Energy Security Analysis, Inc., Washington, DC (United States)

1993-12-31T23:59:59.000Z

55

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network [OSTI]

-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

Yang, Daegil

2011-02-22T23:59:59.000Z

56

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

57

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

at the world price of oil and prices of gasoline and otherincremental pro?ts when oil prices rise come from both U.S.the recent increases in oil prices and attempts to clarify

Borenstein, Severin

2008-01-01T23:59:59.000Z

58

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

industry means that all oil demand pushes up the price ofearly 1980s drove down oil demand by 7% worldwide betweento suggest that the demand side of the world oil market or

Borenstein, Severin

2008-01-01T23:59:59.000Z

59

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1996...

60

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1997...

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimal operating strategies coping with uncertainties of world oil prices for China's strategic petroleum reserve  

Science Journals Connector (OSTI)

Since 2003, China has begun to establish its own strategic petroleum reserves (SPR) to strengthen its oil supply security. Due to the unpredictable feature of the oil supply interruption or sudden price rising, questions about operating the SPR become an important issue for China's policy makers. This paper analysed the operating strategies for China's SPR by developing a stochastic dynamic programming model, which considered uncertainties of the world oil prices and the construction process of China's SPR sites. Different situations, including normal world oil prices, short-term world oil price rising, continuously high world oil prices and continuously oil price decrease were considered and discussed. Optimal SPR operating strategies coping with uncertainties of world oil prices for China were derived and relevant policy implications were obtained. The influence effects on world oil price caused by the acquisition or drawdown actions of China's SPR were considered, too.

Xin Chen; Hailin Mu

2013-01-01T23:59:59.000Z

62

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007  

Broader source: Energy.gov [DOE]

The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

63

Big questions cloud Iraq's future role in world oil market  

SciTech Connect (OSTI)

This paper reports that Iraq raises questions for the world oil market beyond those frequently asked about when and under what circumstances it will resume exports. Two wars since 1981 have obscured encouraging results from a 20 year exploration program that were only beginning to come to light when Iraq invaded Kuwait in August 1990. Those results indicate the country might someday be able to produce much more than the 3.2 million b/d it was flowing before a United Nations embargo blocked exports. If exploratory potential is anywhere near what officials asserted in the late 1980s, and if Iraq eventually turns hospitable to international capital, the country could become a world class opportunity for oil companies as well as an exporter with productive capacity approaching that of Saudi Arabia. But political conditions can change quickly. Under a new, secular regime, Iraq might welcome non-Iraqi oil companies and capital as essential to economic recovery. It's a prospect that warrants a new industry look at what the country has revealed about its geology and exploration history.

Tippee, B.

1992-03-09T23:59:59.000Z

64

Low Total OECD Oil Stocks* Keep Market Balance Tight  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This chart illustrates why EIA sees crude oil prices staying relatively high. It shows global inventories, as measured by OECD petroleum stocks. EIA sees a tenuous supply/demand balance over the remainder of 2001. Global inventories remain low, and need to recover to more adequate levels of forward demand coverage in order to avoid continued price volatility. The most recent data show OECD inventories remaining at very low levels. Low inventories increase the potential for price volatility throughout 2001. Inventories are a good measure of the supply/demand balance that affects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. OECD inventories illustrate the changes in the world petroleum

65

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network [OSTI]

Energy Systems 2010 #12;Future world oil production: Growth, plateau, or peak? Larry Hughes2 and Jacinda governments to reduce their energy intensity (6), the growth in oil production resumed in the mid-1980s World Energy Outlook, production is projected to increase to 103.8 million barrels of oil a day by 2030

Hughes, Larry

66

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil" "Sourcekey","R00003","R12003","R13003" "Date","U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel)","U.S. Crude Oil Domestic...

67

On the relationship between world oil prices and GCC stock markets  

E-Print Network [OSTI]

On the relationship between world oil prices and GCC stock markets Mohamed El Hedi Arouri Associate ABSTRACT We provide comprehensive evidence on the relationship between oil prices and stock mar- kets to be more sensitive to negative than to positive oil shocks. Keywords: oil prices, stock markets, GCC

Paris-Sud XI, Université de

68

Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: June 10, 2002 0: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 to someone by E-mail Share Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Facebook Tweet about Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Twitter Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Google Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Delicious Rank Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Digg Find More places to share Vehicle Technologies Office: Fact #220:

69

Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: May 11, 1999 8: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 to someone by E-mail Share Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Facebook Tweet about Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Twitter Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Google Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Delicious Rank Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Digg Find More places to share Vehicle Technologies Office: Fact #88: May

70

Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

80: July 11, 2005 80: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Google Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Delicious Rank Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #380:

71

Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: May 5, 2003 6: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 to someone by E-mail Share Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Facebook Tweet about Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Twitter Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Google Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Delicious Rank Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Digg Find More places to share Vehicle Technologies Office: Fact #266:

72

Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Percentages of Total Imported Crude Oil by API Gravity Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History 20.0º or Less 16.07 17.25 17.35 14.65 17.17 19.70 1983-2013 20.1º to 25.0º 34.75 32.07 33.66 33.41 32.73 35.52 1983-2013 25.1º to 30.0º 9.35 8.59 8.61 11.45 8.98 7.73 1983-2013 30.1º to 35.0º 25.99 30.03 26.36 28.73 29.89 26.56 1983-2013 35.1º to 40.0º 11.94 10.60 12.42 9.74 9.89 8.80 1983-2013 40.1º to 45.0º 1.62 1.23 1.13 1.70 1.14 W 1983-2013 45.1º or Greater 0.28 0.23 0.48 0.31 0.20 W 1983-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

73

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

74

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

XLS Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - XLS Updated through 12:00 AM on July 16, 2010. 52Item84Recovery...

75

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

ODS format Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - ODS format Updated through 12:00 AM on July 16, 2010....

76

Are World Oil's Prospects Not Declining All That Fast?  

Science Journals Connector (OSTI)

...oil sands of Alberta, wringing oil from beneath North Dakota by fracking, drilling down to the superdeep deposits beneath the...inaccessible oil deposits like the Canadian oil sands and North Dakota tight oil, a lower decline rate makes for abundant...

Richard A. Kerr

2012-08-10T23:59:59.000Z

77

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

78

Antarctica: World Hunger for Oil Spurs Security Council Review  

Science Journals Connector (OSTI)

...international benchmark. It bans...permits nor bans exploration for oil and minerals...de-veloped for oil and mineral exploration in the Arctic...conservative." His cost esti-mates...Antarctic exploration and exploita-tion...Antarctic oil and mineral...

Deborah Shapley

1974-05-17T23:59:59.000Z

79

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

80

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

82

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

83

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

84

Oil Prices: 1985 and 1990  

Science Journals Connector (OSTI)

Today oil is the world’s major energy resource. It accounts for about 54 percent of the world’s total energy consumption. Because of conservation and the development of alternative resources in industrialized ...

Thomas L. Saaty; Luis G. Vargas

1982-01-01T23:59:59.000Z

85

China's new oil import status underpins world's most dynamic petroleum scene  

SciTech Connect (OSTI)

China is poised to become a net importer of oil in 1994--95. That sets the stage for China importing more than 1 million b/d of crude oil and refined products on a net basis by the turn of the century. That development underpins a bigger story -- arguably the biggest story on the petroleum scene today. The turnabout that is seeing the world's fifth biggest oil producer go from significant oil exporter in recent years to major oil importer by the turn of the century points to several other truisms in the petroleum industry: That an oil demand surge in the Asia-Pacific region led by China will fuel overall world oil demand growth for years to come; that a refining and petrochemical boom in a country that accounts for about one fifth of the world's population has dramatic implications for those two industries; that privatization has gathered so much momentum in the global petroleum industry that even Communist China has embraced some form of it; that China's domestic crude supply shortfall is creating unprecedented opportunities for foreign upstream investors in one of the world's most prospective yet underexplored and underexploited regions; and that the same new openness that is distinguishing China's petroleum industry today is turning some of its state owned companies into major competitors to be reckoned with on the international scene, upstream and downstream. The paper discusses China's oil export/import balance, supply/demand outlook, policy changes, and new regulations governing export of crude oil and products.

Not Available

1994-05-09T23:59:59.000Z

86

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

87

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

88

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

89

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

90

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil  

Science Journals Connector (OSTI)

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil ...

Jose A. Garcia-Mesa; M. Dolores Luque de Castro; Miguel Valcarcel

1993-12-01T23:59:59.000Z

91

Waterflood control system for maximizing total oil recovery  

DOE Patents [OSTI]

A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

Patzek, Tadeusz Wiktor (Oakland, CA); Silin, Dimitriy Borisovich (Pleasant Hill, CA); De, Asoke Kumar (San Jose, CA)

2007-07-24T23:59:59.000Z

92

Antarctica: World Hunger for Oil Spurs Security Council Review  

Science Journals Connector (OSTI)

...Japan, New Zealand, Norway, South Africa...New Zea-land, Norway, and the United...that technology for offshore drilling in the stormy...Frank, the Federal Energy Office and the Department...also found where offshore oil is. There have...the authorities got wind of this planning...

Deborah Shapley

1974-05-17T23:59:59.000Z

93

Greater Burgan of Kuwait: world's second largest oil field  

SciTech Connect (OSTI)

Greater Burgan (Main burgan, Magwa, and Ahmadi) field is located in the Arabian Platform geologic province and the stable shelf tectonic environment of the Mesopotamian geosyncline, a sedimentary basin extending from the Arabian shield on the west to the complexly folded and faulted Zagros Mountains on the east. The structural development in Cretaceous time represents a major anticlinorium bounded by a basin to the west and a synclinorium to the east. Greater Burgan is located within this anticlinorium. The field consists of three dome structures 25 km wide and 65 km long with gentle dips of only few degrees. Faults have little throw and did not contribute to the trapping mechanism. The structural deformation may have been caused by halokinetic movements and most likely by basement block faulting that may have started in the Paleozoic. Greater Burgan was discovered in 1938. All production during the last 40 years has been by its natural pressure. Although natural gas injection has been carried out for some time, no waterflooding has been initiated yet. Recoverable reserves of the field are 87 billion bbl of oil. During the last 5 years giant reserves have been added in this field from the deeper strata of Jurassic age. Several deep wells have been drilled to the Permian for the purpose of discovering gas. So far, no Permian gas has been found in Kuwait. The Permian is 25,000 ft deep, and it is unlikely gas will be found there in the future. However, the potential of the Jurassic reservoirs will be a major target in the future. Also, there is a great possibility of discovering oil in stratigraphic traps, as several producing strata in the nearby fields pinch out on the flanks of this giant structure. Enhanced oil recovery should add significant reserves in the future.

Youash, Y.Y.

1989-03-01T23:59:59.000Z

94

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

95

Applicability of Total Acid Number Analysis to Heavy Oils and Bitumens  

Science Journals Connector (OSTI)

The standard method employed for TAN, ASTM D664, was not even developed for crude oils, let alone heavy oil and bitumens. ... Funding from the following CCQTA TAN II project members is acknowledged:? Alberta Research Council, Inc., BP, Baker Petrolite, ConocoPhillips Canada, Enbridge Pipelines, Inc., ENCANA Corp., GE Betz, Husky Energy, Japan Canada Oil Sands Ltd., Marathon Petroleum Co., Maxxam Analytics, Inc., Nalco Canada, Inc., National Centre for Upgrading Technology, Petro-Canada, Shell Pipelines US, Suncor Energy, Inc., Terasen Pipelines, and Total E&P Canada Ltd. ...

Bryan Fuhr; Branko Banjac; Tim Blackmore; Parviz Rahimi

2007-04-17T23:59:59.000Z

96

Total Crude Oil and Products Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total All Countries 96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 Afghanistan 0 0 0 0 0 0 1997-2013 Albania 110 0 55 0 0 1998-2013 Algeria 1 462 476 685 1 1996-2013 Andora 0 0 2005-2013 Angola 1 0 1 0 0 1995-2013 Anguilla 0 0 0 0 2005-2013 Antigua and Barbuda 0 0 3 0 0 0 1995-2013 Argentina 2,256 1,324 1,457 1,727 1,129 1,753 1993-2013 Armenia 0 2005-2013 Aruba 386 241 743 818 928 1,600 2005-2013 Australia 328 114 232 394 333 290 1993-2013 Austria 0 1 0 0 0 0 1995-2013 Azerbaijan 0 0 0 0 2 1995-2013 Bahama Islands 316 624 624 1,019 1,969 2,118 1993-2013 Bahrain 1 2 0 1 277 1 1993-2013 Barbados

97

Total Crude Oil and Products Exports by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total All Countries 522,879 659,392 738,803 858,685 1,089,848 1,172,965 1981-2012 Afghanistan 0 0 2 4 3 7 1997-2012 Albania 0 0 0 0 0 166 1998-2012 Algeria 2,602 5 1,257 4 1,226 219 1996-2012 Andora 0 2005-2011 Angola 25 33 615 7 27 12 1995-2012 Anguilla 0 1 1 1 5 2 2005-2012 Antigua and Barbuda 3 8 10 146 231 634 1995-2012 Argentina 3,208 6,431 6,600 6,951 14,632 19,097 1993-2012 Armenia 0 0 0 2005-2012 Aruba 1,931 3,542 2,410 2,578 2,835 2,969 2005-2012 Australia 3,343 3,618 4,689 3,561 4,022 3,748 1993-2012 Austria 9 6 1 1 10 2 1995-2012 Azerbaijan 0 0 1 1 175 1995-2012 Bahama Islands 11,946 9,732 14,878 19,582 16,125 15,113 1993-2012

98

World oil and gas resources-future production realities  

SciTech Connect (OSTI)

Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

Masters, C.D.; Root, D.H.; Attanasi, E.D. (U.S. Geological Survey, Reston, VA (US))

1990-01-01T23:59:59.000Z

99

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

100

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

102

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

103

Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances  

Science Journals Connector (OSTI)

Abstract Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk.

J. Pinedo; R. Ibáñez; J.P.A. Lijzen; Á. Irabien

2013-01-01T23:59:59.000Z

104

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

105

U.S. Total Stocks of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly Monthly Annual Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Total Crude Oil and Petroleum Products (Incl. SPR) 1,806,930 1,795,196 1,793,557 1,786,470 1,781,747 1,769,150 1990-2013 Total Crude Oil and Petroleum Products (Excl. SPR) 1,110,961 1,099,227 1,097,588 1,090,501 1,085,778 1,073,181 1990-2013 Crude Oil (Including SPR) 1,084,057 1,084,432 1,087,385 1,081,800 1,071,215 1,068,274 1982-2013 Commercial Crude Oil

106

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

107

An Econometric Analysis of the Relationship among the U.S. Ethanol, Corn and Soybean Sectors, and World Oil Prices.  

E-Print Network [OSTI]

??This thesis aimed to investigate the relationships among the following variables: U.S. corn prices, U.S. ethanol production, U.S. soybean prices and world oil prices. After… (more)

Savernini, Maira Q. M.

2009-01-01T23:59:59.000Z

108

,"Crude Oil and Petroleum Products Total Stocks Stocks by Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Stocks Stocks by Type" Total Stocks Stocks by Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","9/2013","1/15/1956" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_a_ep00_sae_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_a_ep00_sae_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

109

Total replacement of soybean oil-meal in growing pig diets : Use of peas supplemented with tryptophan  

E-Print Network [OSTI]

Total replacement of soybean oil-meal in growing pig diets : Use of peas supplemented or 40 p. 100) with a lucerne protein concentrate (10 or 5 p. 100) used as natural source of tryptophan (trial 2). As compared to control diets (maize-soybean oil-meal), the utilization of peas (winter variety

Paris-Sud XI, Université de

110

,"Total Crude Oil and Petroleum Products Exports"  

U.S. Energy Information Administration (EIA) Indexed Site

Exports" Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Exports",6,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_exp_a_ep00_eex_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_a_ep00_eex_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

111

A REVIEW OF PREVIOUS USGS WORLD ENERGY ASSESSMENTS1  

E-Print Network [OSTI]

of world undiscovered conventional natural-gas resources and identified (discovered) natural-gas reserves-145-97 (October, 1997), entitled "Changing perceptions of world oil and gas resources as shown........................................................RV-1 World Gas Resources Were Viewed as Less Exploited Than Those of Oil............RV-2 Total World

Laughlin, Robert B.

112

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

113

Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans  

E-Print Network [OSTI]

Global relationships of total alkalinity with salinity and temperature in surface waters, R. A. Feely, and R. M. Key (2006), Global relationships of total alkalinity with salinity 35)2 + d (SST Ã? 20) + e (SST Ã? 20)2 fits surface total alkalinity (AT) data for each of five

114

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

115

Table 5. Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011 : Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011 million barrels Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions AdjustmentsAcquisitions Extensions Discoveries in Old Fields DiscoveriesProduction 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Crude Oil and Lease Condensate (million barrels) 2002 423 682 1,105 51 600 318 187 1,105 2,082 24,023 180 2003 192 -9 183 -416 530 717 137 1,384 2,068 23,106 -917 2004 80 444 524 37 731 36 159 926 2,001 22,592 -514 2005 237 558 795 327 946 209 57 1,212 1,907 23,019 427 2006 109 43 152 189 685 38 62 785 1,834 22,311 -708 2007 21 1,275 1,296 44 865 81 87 1,033 1,872 22,812 501 2008 318 -2,189 -1,871 187 968 166 137 1,271 1,845 20,554 -2,258 2009 46 2,008 2,054

116

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

increases in the price of crude oil during the last half ofdollar-denominated price of crude oil increased about 50%.month contract) price per gallon of crude oil and gasoline

Borenstein, Severin

2008-01-01T23:59:59.000Z

117

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

118

Attenuated Total Reflection Infrared (ATR-IR) Spectroscopy of a Water-in-Oil Emulsion  

Science Journals Connector (OSTI)

Water-in-oil (w/o) emulsions are of great interest in many areas including food technology and the oil and gas industry. However, the molecular mechanisms that lead to a stable...

Kiefer, Johannes; Frank, Kerstin; Schuchmann, Heike P

2011-01-01T23:59:59.000Z

119

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

120

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1  

SciTech Connect (OSTI)

This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

Not Available

1994-04-11T23:59:59.000Z

122

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

123

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

124

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

125

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

126

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

127

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

128

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

129

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

130

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

131

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Proved Reserves",1,"Annual",2013,"6301899" ,"Data 2","Changes in Reserves During...

132

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

133

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

134

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

135

Progress report to the National Science Foundation for the period July 1, 1980 to December 31, 1981 of the project on cartel behavior and exhaustible resource supply : a case study of the world oil market  

E-Print Network [OSTI]

The M.I.T. World Oil Project has been developing forecasting methods that integrate the following considerations which influence investment in oil capacity and the level of oil exports: (1) the geology and microeconomics ...

International Energy Studies Program (Massachusetts Institute of Technology)

1982-01-01T23:59:59.000Z

136

World oil prices and O.E.C.D. trade balance  

Science Journals Connector (OSTI)

This paper develops a theoretical model which postulates that while the drop in oil prices during the 1980s has benefitted O.E. ... favorable productivity shock, the concomitant shift in oil market share from Ara...

Dominick Salvatore; Greg Winczewski

1990-01-01T23:59:59.000Z

137

Technology Is Turning U.S. Oil Around But Not the World's  

Science Journals Connector (OSTI)

...technologies of fracking and horizontal...oil boom in North Dakota. CREDIT: JIM...as the “fracking” that is now unlocking North Dakota's oil riches...production in North Dakota and elsewhere in the west, fracking of “tight...

Richard A. Kerr

2012-02-03T23:59:59.000Z

138

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network [OSTI]

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

139

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

forecasts of expanded U.S. oil drilling suggest productionoil market in order to evaluate its e?ect on prices. Drilling

Borenstein, Severin

2008-01-01T23:59:59.000Z

140

Application of the HYTORT process to oil shales throughout the world  

SciTech Connect (OSTI)

A deficiency of hydrogen relative to carbon in oil shale reduces the amount of kerogen that can be converted to hydrocarbon products by conventional retorting methods. HYTORT Process utilizes a hydrogen-rich gas to maximize this oil yield. A plant flowsheet and process economics are described. A hydroretorting assay using only a small sample of feed material has been developed to provide a measurement of the potential oil yield possible with the HYTORT Process. Details are given for results of this test on oil shale deposits of Sweden, Jordan, Brazil, South Africa, Sicily, Canada, and USA. 29 references.

Janka, J.C.; Rex, R.C. Jr.

1985-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Application of the HYTORT process to oil shales throughout the world  

SciTech Connect (OSTI)

The HYTORT /sup R/ process is a unique oil shale retorting process which uses an atmosphere of hydrogen gas at elevated pressure to produce higher yields of oil than are possible using conventional thermal retorting techniques. In the U.S., HYTORT process development efforts have played a key role in recognition of the significance of the Devonian oil shales as a major fossil energy resource. The results presented in this paper show that application of the HYTORT process to oil shales of countries such as Sweden, Italy, Jordan, and Canada may yield equally significant results.

Janaka, J.C.; Rex, R.C.

1984-08-01T23:59:59.000Z

142

Econometric Modelling of World Oil Supplies: Terminal Price and the Time to Depletion  

E-Print Network [OSTI]

This paper develops a novel approach by which to identify the price of oil at the time of depletion; the so-called terminal price of oil. It is shown that while the terminal price is independent of both GDP growth and the price elasticity of energy...

Mohaddes, Kamiar

2012-03-02T23:59:59.000Z

143

,"U.S. Total Crude Oil and Products Imports"  

U.S. Energy Information Administration (EIA) Indexed Site

7,"Annual",2012,"6/30/1981" 7,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_impcus_a2_nus_ep00_im0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_ep00_im0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 10:29:12 AM" "Back to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1","MTTIMUSPG1","MTTIMXX1","MTTIMUSAG1","MTTIMUSAO1","MTTIMUSEC1","MTTIMIZ1","MTTIMUSKU1","MTTIMLY1","MTTIMUSNI1","MTTIMQA1","MTTIMUSSA1","MTTIMUSTC1","MTTIMUSVE1","MTTIMUSVV1","MTTIM_NUS-NAL_1","MTTIMUSAR1","MTTIM_NUS-NAA_1","MTTIMUSAS1","MTTIM_NUS-NAU_1","MTTIM_NUS-NAJ_1","MTTIMUSBF1","MTTIM_NUS-NBA_1","MTTIM_NUS-NBB_1","MTTIM_NUS-NBO_1","MTTIMUSBE1","MTTIM_NUS-NBH_1","MTTIM_NUS-NBN_1","MTTIM_NUS-NBL_1","MTTIMUSBR1","MTTIMUSBX1","MTTIM_NUS-NBU_1","MTTIM_NUS-NBM_1","MTTIMUSCM1","MTTIMUSCA1","MTTIM_NUS-NCD_1","MTTIM_NUS-NCI_1","MTTIMUSCH1","MTTIMUSCO1","MTTIMUSCF1","MTTIMUSCG1","MTTIM_NUS-NCW_1","MTTIM_NUS-NCS_1","MTTIM_NUS-NHR_1","MTTIM_NUS-NCY_1","MTTIM_NUS-NCZ_1","MTTIM_NUS-NDA_1","MTTIM_NUS-NDR_1","MTTIMUSEG1","MTTIM_NUS-NES_1","MTTIM_NUS-NEK_1","MTTIM_NUS-NEN_1","MTTIM_NUS-NFI_1","MTTIMUSFR1","MTTIMUSGB1","MTTIM_NUS-NGG_1","MTTIMUSBZ1","MTTIM_NUS-NGH_1","MTTIM_NUS-NGI_1","MTTIM_NUS-NGR_1","MTTIMUSGT1","MTTIM_NUS-NGV_1","MTTIM_NUS-NHK_1","MTTIM_NUS-NHU_1","MTTIM_NUS-NIN_1","MTTIMUSID1","MTTIM_NUS-NEI_1","MTTIM_NUS-NIS_1","MTTIMUSIT1","MTTIM_NUS-NIV_1","MTTIM_NUS-NJM_1","MTTIMUSJA1","MTTIM_NUS-NKZ_1","MTTIMUSKS1","MTTIM_NUS-NKG_1","MTTIM_NUS-NLG_1","MTTIM_NUS-NLI_1","MTTIM_NUS-NLH_1","MTTIMMY1","MTTIM_NUS-NMT_1","MTTIM_NUS-NMR_1","MTTIMUSMX1","MTTIM_NUS-NMQ_1","MTTIM_NUS-NMO_1","MTTIM_NUS-NWA_1","MTTIMUSNL1","MTTIMUSNA1","MTTIM_NUS-NNZ_1","MTTIM_NUS-NNU_1","MTTIM_NUS-NNE_1","MTTIMUSNO1","MTTIM_NUS-NMU_1","MTTIM_NUS-NPK_1","MTTIM_NUS-NPM_1","MTTIM_NUS-NPP_1","MTTIMUSPE1","MTTIM_NUS-NRP_1","MTTIM_NUS-NPL_1","MTTIMUSPO1","MTTIMUSRQ1","MTTIMUSRO1","MTTIM_NUS-NRS_1","MTTIM_NUS-NSG_1","MTTIMUSSN1","MTTIM_NUS-NSK_1","MTTIM_NUS-NSF_1","MTTIMUSSP1","MTTIM_NUS-NPG_1","MTTIM_NUS-NWZ_1","MTTIMUSSW1","MTTIM_NUS-NSZ_1","MTTIMUSSY1","MTTIM_NUS-NTW_1","MTTIMUSTH1","MTTIM_NUS-NTO_1","MTTIM_NUS-NTN_1","MTTIMUSTD1","MTTIM_NUS-NTS_1","MTTIMUSTU1","MTTIM_NUS-NTX_1","MTTIM_NUS-NUR_1","MTTIMUSUK1","MTTIM_NUS-NUY_1","MTTIM_NUS-NUZ_1","MTTIM_NUS-NVM_1","MTTIMUSVQ1","MTTIMUSYE1"

144

,"U.S. Total Crude Oil and Products Imports"  

U.S. Energy Information Administration (EIA) Indexed Site

6,"Monthly","9/2013","1/15/1981" 6,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_impcus_a2_nus_ep00_im0_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_ep00_im0_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 10:29:49 AM" "Back to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1","MTTIMUSPG1","MTTIMXX1","MTTIMUSAG1","MTTIMUSAO1","MTTIMUSEC1","MTTIMIZ1","MTTIMUSKU1","MTTIMLY1","MTTIMUSNI1","MTTIMQA1","MTTIMUSSA1","MTTIMUSTC1","MTTIMUSVE1","MTTIMUSVV1","MTTIM_NUS-NAL_1","MTTIMUSAR1","MTTIM_NUS-NAA_1","MTTIMUSAS1","MTTIM_NUS-NAU_1","MTTIM_NUS-NAJ_1","MTTIMUSBF1","MTTIM_NUS-NBA_1","MTTIM_NUS-NBB_1","MTTIM_NUS-NBO_1","MTTIMUSBE1","MTTIM_NUS-NBH_1","MTTIM_NUS-NBN_1","MTTIM_NUS-NBL_1","MTTIMUSBR1","MTTIMUSBX1","MTTIM_NUS-NBU_1","MTTIM_NUS-NBM_1","MTTIMUSCM1","MTTIMUSCA1","MTTIM_NUS-NCD_1","MTTIM_NUS-NCI_1","MTTIMUSCH1","MTTIMUSCO1","MTTIMUSCF1","MTTIMUSCG1","MTTIM_NUS-NCW_1","MTTIM_NUS-NCS_1","MTTIM_NUS-NHR_1","MTTIM_NUS-NCY_1","MTTIM_NUS-NCZ_1","MTTIM_NUS-NDA_1","MTTIM_NUS-NDR_1","MTTIMUSEG1","MTTIM_NUS-NES_1","MTTIM_NUS-NEK_1","MTTIM_NUS-NEN_1","MTTIM_NUS-NFI_1","MTTIMUSFR1","MTTIMUSGB1","MTTIM_NUS-NGG_1","MTTIMUSBZ1","MTTIM_NUS-NGH_1","MTTIM_NUS-NGI_1","MTTIM_NUS-NGR_1","MTTIMUSGT1","MTTIM_NUS-NGV_1","MTTIM_NUS-NHK_1","MTTIM_NUS-NHU_1","MTTIM_NUS-NIN_1","MTTIMUSID1","MTTIM_NUS-NEI_1","MTTIM_NUS-NIS_1","MTTIMUSIT1","MTTIM_NUS-NIV_1","MTTIM_NUS-NJM_1","MTTIMUSJA1","MTTIM_NUS-NKZ_1","MTTIMUSKS1","MTTIM_NUS-NKG_1","MTTIM_NUS-NLG_1","MTTIM_NUS-NLI_1","MTTIM_NUS-NLH_1","MTTIMMY1","MTTIM_NUS-NMT_1","MTTIM_NUS-NMR_1","MTTIMUSMX1","MTTIM_NUS-NMQ_1","MTTIM_NUS-NMO_1","MTTIM_NUS-NWA_1","MTTIMUSNL1","MTTIMUSNA1","MTTIM_NUS-NNZ_1","MTTIM_NUS-NNU_1","MTTIM_NUS-NNE_1","MTTIMUSNO1","MTTIM_NUS-NMU_1","MTTIM_NUS-NPK_1","MTTIM_NUS-NPM_1","MTTIM_NUS-NPP_1","MTTIMUSPE1","MTTIM_NUS-NRP_1","MTTIM_NUS-NPL_1","MTTIMUSPO1","MTTIMUSRQ1","MTTIMUSRO1","MTTIM_NUS-NRS_1","MTTIM_NUS-NSG_1","MTTIMUSSN1","MTTIM_NUS-NSK_1","MTTIM_NUS-NSF_1","MTTIMUSSP1","MTTIM_NUS-NPG_1","MTTIM_NUS-NWZ_1","MTTIMUSSW1","MTTIM_NUS-NSZ_1","MTTIMUSSY1","MTTIM_NUS-NTW_1","MTTIMUSTH1","MTTIM_NUS-NTO_1","MTTIMUSTD1","MTTIM_NUS-NTS_1","MTTIMUSTU1","MTTIM_NUS-NTX_1","MTTIM_NUS-NUR_1","MTTIMUSUK1","MTTIM_NUS-NUY_1","MTTIM_NUS-NUZ_1","MTTIM_NUS-NVM_1","MTTIMUSVQ1","MTTIMUSYE1"

145

Peak Oil  

Science Journals Connector (OSTI)

At the start of the new millennium, the expression “Peak Oil” was unknown. Nevertheless, a discussion about when the world’s rate of oil production would reach its maximum had already ... . King Hubbert presented...

Kjell Aleklett

2012-01-01T23:59:59.000Z

146

Final report to the National Science Foundation for the period July 1, 1978 to June 30, 1980 of project on cartel behavior and exhaustible resource supply : a case study of the world oil market.  

E-Print Network [OSTI]

The M.I.T. World Oil Project has been developing improved methods and data for analysis of the future course of the world oil market. Any forecast of this market depends on analysis of the likely demand for oil imports by ...

M.I.T. World Oil Project.

1981-01-01T23:59:59.000Z

147

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

148

Total Phospholipids in Edible Oils by In-Vial Solvent Extraction Coupled with FTIR Analysis  

Science Journals Connector (OSTI)

The peak intensities (heights) of specific bands, for example, 970 cm–1 (asymmetric C—N stretching of (CH)3N+), 1090 cm–1 (C—O stretch in C—O—PO2–), 1172 cm–1 (asymmetric C—O stretch in C?O—O—C), 1243 cm–1 (asymmetric PO2– stretch), and 1740 cm–1 (C?O stretch), of the PL differential spectra and second-derivative differential spectra were related to the PC concentrations added. ... 91 ... Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS Press: Champaign, IL, USA, 2009; Method Ca 12–55. ...

Xianghe Meng; Qin Ye; Qiuyue Pan; Yang Ding; Min Wei; Yun Liu; Fred R. van de Voort

2014-03-20T23:59:59.000Z

149

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway...

150

E-Print Network 3.0 - active plant oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant 765 MW Narva Oil Plant 1,3 M bbl Narva Open Pit Mine Mines total annual... of oil shale fired capacity world largest ... Source: Utah, University of - Center for the...

151

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

due to the energy intensive production process, corn-basedis corn-based ethanol. Over 95% of transportation energy isCorn ethanol does signi?cantly reduce oil consumption, most likely by about 80%, but the coal and natural gas sourced energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

152

Millikan's Oil-Drop Experiment: A Centennial Setup Revisited in Virtual World  

Science Journals Connector (OSTI)

Early in the last century Robert Millikan developed a precise method of determining the electric charge carried by oil droplets.1–3 Using a microscope and a small incandescent lamp he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing Millikan demonstrated the existence of a fundamental unit of electric charge and established its quantization. Now renowned as one of the most famous experiments of 20th-century physics Millikan's oil-drop experiment has been reproduced with more or less success in most if not all high school and university physics classes. This has encouraged many improvements of the apparatus now making this experiment much more accurate and easier to realize for advanced students. However the required apparatus remains rather expensive and for introductory college or high school students the experiment is still quite difficult to conduct. As an alternative to the traditional setup a realistic computer-based simulator to replicate the Millikan oil-drop experiment has been developed. Using this software students are able to undertake a complete experiment obtain an accurate set of results and thus gain a better understanding of the original experiment and its historical importance.

Michel Gagnon

2012-01-01T23:59:59.000Z

153

U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Total Lower 48 States Federal Offshore Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico (Louisiana) Federal Offshore, Gulf of Mexico (Texas) Alaska Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC Distict 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah West Virginia Wyoming Miscellaneous Period:

154

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total All Countries 12,036 11,114 9,667 9,441 8,450 7,393 1973-2012 Persian Gulf 2,159 2,368 1,678 1,705 1,842 2,149 1993-2012 OPEC* 5,946 5,899 4,675 4,787 4,429 4,093 1993-2012 Algeria 663 548 490 510 355 241 1993-2012 Angola 508 513 458 393 346 233 1993-2012 Ecuador 182 202 138 135 147 117 1993-2012 Iran 1993-1995 Iraq 484 627 450 415 459 476 1996-2012 Kuwait 181 210 182 197 191 305 1993-2012 Libya 117 103 79 70 15 60 2004-2012 Nigeria 1,133 982 798 1,006 803 419 1995-2012 Qatar 2 0 10 0 4 4 1993-2012 Saudi Arabia 1,483 1,529 1,003 1,096 1,193 1,364 1993-2012 United Arab Emirates 9 3 31 -2 -4 -1 1993-2012 Venezuela 1,339 1,162 1,037 968 919 875 1993-2012

155

Total All Countries Exports of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Fiji Finland France French Guiana French Pacific Islands Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Ivory Coast Jamaica Japan Jordon Kazakhstan Kenya Korea, South Korea, North Kyrgyzstan Kutubu Kuwait Latvia Lebanon Liberia Libya Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands/Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Saudi Arabia Senegal Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Soloman Islands South Africa Spain Spratly Islands Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Tonga Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Arab Emirates United Kingdom Uruguay Uzbekistan Vanuatu Venezuela Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Zambia Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

156

Total Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA) Indexed Site

Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Egypt El Salvador Equatorial Guinea Ethiopia Eritrea Estonia Fiji Finland France French Pacific Islands French Guiana Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Jordan Kazakhstan Kenya Korea, South Kutubu Kyrgyzstan Latvia Lebanon Liberia Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Senegal Serbia and Montenegro Sierra Leone Singapore Slovakia Slovenia South Africa Spain Spratly Islands Sri Lanka Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Kingdom Uruguay Uzbekistan Vanuatu Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Other Non OPEC Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

157

Peak Population: Timing and Influences of Peak Energy on the World and the United States  

E-Print Network [OSTI]

Peak energy is the notion that the world’s total production of usable energy will reach a maximum value and then begin an inexorable decline. Ninety-two percent of the world’s energy is currently derived from the non-renewable sources (oil, coal...

Warner, Kevin 1987-

2012-11-28T23:59:59.000Z

158

Peak Oil  

Science Journals Connector (OSTI)

Between 2000 and 2010, world oil prices advanced from approximately $25 per barrel to more than $100 per barrel. The price appreciation of oil over the decade was around ten times the rate of inflation.

Robert Rapier

2012-01-01T23:59:59.000Z

159

Growing Energy- How Biofuels Can Help End America's Oil Dependence  

Broader source: Energy.gov [DOE]

America's oil dependence threatens our national security, economy, and environment. We consume 25 percent of the world's total oil production, but we have 3 percent of its known reserves. We spend tens of billions of dollars each year to import oil from some of the most unstable regions of the world. This costly habit endangers our health: America's cars, trucks, and buses account for 27 percent of U.S. global warming pollution, as well as soot and smog that damage human lungs.

160

Monitoring of Total Type II Pyrethroid Pesticides in Citrus Oils and Water by Converting to a Common Product 3-Phenoxybenzoic Acid  

E-Print Network [OSTI]

Monitoring of Total Type II Pyrethroid Pesticides in Citrus Oils and Water by Converting to a Common Product 3-Phenoxybenzoic Acid Mark R. McCoy, Zheng Yang, Xun Fu,§ Ki Chang Ahn, Shirley J. Gee an alternative method that converts the type II pyrethroids to a common chemical product, 3-phenoxybenzoic acid

Hammock, Bruce D.

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Saudi Aramco describes crisis oil flow hike  

SciTech Connect (OSTI)

On Aug. 2, 1990, Iraqi forces invaded Kuwait and triggered one of the most severe crises in the world's oil supplies since World War II. Within a few days of the invasion, Iraqi and Kuwaiti oil exports were embargoed, and almost 4.6 million b/d oil of production was removed from world markets. This shortfall amounted to about 20% of total Organization of Petroleum Exporting Countries production at the time and could have proven disastrous to the world's industrial and financial well-being. However, there was no disruption to the major economies of the world. This paper reports that the primary reason for the cushioning of this impact was the massive expansion in production undertaken by Saudi Arabian Oil Co. (Saudi Aramco).

Not Available

1991-12-02T23:59:59.000Z

162

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

163

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

164

Oil market in international and Norwegian perspectives.  

E-Print Network [OSTI]

??Crude oil is the most important energy source in global perspective. About 35 percent of the world’s primary energy consumption is supplied by oil, followed… (more)

Singsaas, Julia Nazyrova

2009-01-01T23:59:59.000Z

165

Oil Price Trackers Inspired by Immune Memory William Wilson , Phil Birkin , and Uwe Aickelin  

E-Print Network [OSTI]

Analysis of oil price trends The price of WTI crude oil (a world marker price for oil price movements

Aickelin, Uwe

166

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network [OSTI]

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

167

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network [OSTI]

Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela) account for roughly 77% of the world’s proven oil

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

168

WORLD PRODUCTION AND TRADE IN  

E-Print Network [OSTI]

WORLD PRODUCTION AND TRADE IN FISH MEAL AND OIL UNITED STATES DEPARTMENT OF THE INTERIOR · FISH ON OF FISH MEAL AND OIL , ESPECIALLY DUR ING 1953 TO 1959, THE PRI NC IPAL MARKET S FOR THE PRODUCTS- DICATE WHAT IS INCLUDED BESIDES FISHMEAL AND FISH BODY OIL. #12;WORLD PRODUCTION AND TRADE IN FISH MEAL

169

Peak Oil and the Arctic National Wildlife Refuge  

Science Journals Connector (OSTI)

When Peak Oil is reached, oil production is slated to decline. If the ... world’s economic engine is still running on oil, there is potential for instability in the global economy as oil becomes scarcer and more ...

Peter Van Tuyn

2014-01-01T23:59:59.000Z

170

Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations  

Science Journals Connector (OSTI)

Abstract This study investigated factors enhancing the performance of the bioremediation of Total Petroleum Hydrocarbons (TPHs) in crude oil-contaminated soil in laboratory and field observations. The bioaugmentation process used local microbial consortia (MC1, MC2 and MC3) combined with the biostimulation processes of nutrient addition (mineral–salt medium, MSM and NPK) and enhanced air stimulation (air supply and Oxygen Releasing Compound (ORC™)). The microcosm tests were conducted in tank and soil column setups, whereas the field test was performed in test plots inside an oil and gas facility in Malaysia. In the microcosm tank experiment, the combination of bioaugmentation (10% inoculum size of MC3) and MSM biostimulation yielded the highest TPH degradation of 79% of the total. In the column experiments, the degradation of \\{TPHs\\} in the top soil was highest in columns combining bioaugmentation and nutrient addition, whereas in the bottom soil, the degradation of \\{TPHs\\} was highest in columns combining bioaugmentation with the addition of both nutrients and ORCs. In the field demonstration, 97% of the \\{TPHs\\} were degraded in the top soil (0–1 m) when bioaugmented with MC2. The kinetic analysis study of the microcosm tank showed that a combination of both biostimulation and bioaugmentation in the soil column achieved the fastest rate constant of 0.0390 day?1. The field test also demonstrated a comparable rate constant of 0.0339 day?1. The kinetic rate constants in both the laboratory and field indicated that the best treatment method for the contaminated site is a combination of MC3 bioaugmentation and nutrient biostimulation.

Fatihah Suja; Fazli Rahim; Mohd Raihan Taha; Nuraini Hambali; M. Rizal Razali; Alia Khalid; Ainon Hamzah

2014-01-01T23:59:59.000Z

171

Prediction of Oil Prices Using Bagging and Random Subspace  

Science Journals Connector (OSTI)

The problem of predicting oil prices is worthy of attention. As oil represents the backbone of the world economy,...

Lubna A. Gabralla; Ajith Abraham

2014-01-01T23:59:59.000Z

172

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

173

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

174

Modelling the costs of non-conventional oil: A case study of Canadian bitumen  

E-Print Network [OSTI]

90% of world extra-heavy oil resources in place occur in Venezuela. Major oil shale resources are in China, Estonia, the United States, Australia, and Jordan, (UNDP, 2000 p141). World coal resources in place are estimated at over 20 trillion barrels... than those which would be produced by burning the total estimated resource base of conventional oil and gas: “It implies that even the more ambitious targets for stabilising the atmosphere are not necessarily inconsistent with using all the gas and oil...

Méjean, A; Hope, Chris

175

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

176

Oil shale - Heir to the petroleum kingdom  

Science Journals Connector (OSTI)

Oil shale - Heir to the petroleum kingdom ... A discussion of oil shale provides students with real-world problems that require chemical literacy. ...

Y. Schachter

1983-01-01T23:59:59.000Z

177

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

178

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

179

Oil Prices, Opec and the Poor Oil Consuming Countries  

Science Journals Connector (OSTI)

In 1950, the year O.P.E.C. (Organisation of Petroleum Exporting Countries) was formed, the world oil industry was dominated by a group of seven oligopolistic major international oil companies, who were collective...

Biplab Dasgupta

1976-01-01T23:59:59.000Z

180

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

and Weimer, D.L. (1984) Oil prices shock, market response,OPEC behavior and world oil prices (pp. 175-185) London:many decades. Recent high oil prices have caused oil-holding

Leighty, Wayne

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chapter 5 - Crude Oil  

Science Journals Connector (OSTI)

Abstract Oil has been the number one source of energy in the world since the middle of the twentieth century. The world is very dependent on petroleum for transportation fuels, petrochemicals and asphalt. But ever increasing demand has caused the price of oil to spike in recent years, and only the world economic crisis has been able to temper demand and bring the price down to more reasonable levels. However, the demand and price are likely to shoot up again when the economy recovers. At the same time, the peak oil theory of M. King Hubbert predicts that world oil production is likely to peak soon. This prediction raises questions about what source of energy will come to the fore when oil is not able to keep up.

Brian F. Towler

2014-01-01T23:59:59.000Z

182

Economics of Peak Oil  

Science Journals Connector (OSTI)

Abstract ‘Peak oil’ refers to the future decline in world production of crude oil and the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This article argues that economic analysis is indeed appropriate for analyzing oil scarcity because standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced as peaking is not a good indicator of scarcity, peak oil techniques are overly simplistic, the catastrophes predicted by the peak oil literature are unlikely, and the literature does not contribute to correcting identified market failures. Efficiency of oil markets could be improved by instead focusing on remedying market failures such as excessive private discount rates, environmental externalities, market power, insufficient innovation incentives, incomplete futures markets, and insecure property rights.

S.P. Holland

2013-01-01T23:59:59.000Z

183

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

184

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

185

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

186

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

187

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

188

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

189

ENERGY CONTENT OF WORLD TRADE  

E-Print Network [OSTI]

This paper constructs a comprehensive dataset of oil and total energy embedded in world trade of manufacturing goods for 73 countries from 1978 to 2000. Applying the data to debates on the dependency on foreign energy sources makes clear that achieving complete energy independence in the foreseeable future is unlikely to be feasible and may not be desirable. Applying it to the discussion of environmental Kuznets curves (EKCs) highlights an important distinction between production and consumption of energy. Richer countries use relatively less energy in their industrial production yet still consume relatively large amounts of energy indirectly. A further investigation largely excludes structural shifts of production in and out of the manufacturing sector as an explanation for the downward-sloping portion of the EKC. Country-level analyses add caveats but show tentative support for the cross-country conclusions.

Gernot Wagner

190

Drunk On Oil: Russian Foreign Policy 2000-2007  

E-Print Network [OSTI]

world’s largest natural gas reserves, about twice that oftotal recoverable reserves. 139 Gas fields are declining asgas. 12 Russia has around 6% to 10% of the world’s known oil reserves.

Brugato, Thomas

2008-01-01T23:59:59.000Z

191

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Greene, Janet L. Hopson, and Jia Li L. Greene, Janet L. Hopson, and Jia Li A risk analysis is presented of the peaking of world conventional oil pro- duction and the likely transition to unconventional oil resources such as oil sands, heavy oil, and shale oil. Estimates of world oil resources by the U.S. Geological Survey (USGS) and C. J. Campbell provide alternative views of ultimate world oil resources. A global energy scenario created by the International Institute of Applied Systems Analysis and the World Energy Council provides the context for the risk analysis. A model of oil resource depletion and expansion for 12 world regions is combined with a market equilibrium model of conventional and unconventional oil sup- ply and demand. The model does not use Hubbert curves. Key variables

192

www.fightbac.o anola oil is  

E-Print Network [OSTI]

Ca co Th Ca "Canola" c which is Addition Ca he Ca in Th ca Ca m C know? anola oil is ooking oils. he average anola oil is comes fro s another nal Inform anola oil is eart healthy anola oil is n the world. he part of th anola meal anola oil ca many crop va ano the lowest . canola see a good sou m

193

Jute in the world, worlds of jute  

Science Journals Connector (OSTI)

This paper is in two parts. The first sketches out the reach of jute round the world from ancient times to the present, and, through examples ranging from Brazil to Bangladesh and from Cote d'Ivoire to the USA, makes the case that jute has played such a significant role that it deserves a place in world history alongside other great commodities like spices, sugar, tea, cotton, coal, and oil, that have shaped global history. The second part of the paper opens up the worlds of jute - from peasants who grew the jute, to male and female workers in Calcutta and Dundee, to the factory owners and managers - and makes comparisons between jute settings in different countries. A key issue explored is the interplay between the economic and ideological forces inherent in the manufacturing and marketing of jute products and the local cultures and traditions of workers and peasants within which the drama of jute was played out.

Gordon T. Stewart

2014-01-01T23:59:59.000Z

194

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

2007). The world will reach peak oil production rates, atenergy security costs, and peak oil as emergencies, we willwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

195

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

tar sands/ extra-heavy oil and shale have zero Resource-D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Report

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

196

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

197

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

energy security costs, and peak oil as emergencies, we will2007). The world will reach peak oil production rates, atwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

198

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

playing key role in peak-oil debate, future energy supply.of di?ering views of peak oil, including Yergin’s, isHubbert’s Peak: The Impending World Oil Shortage. Princeton

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

199

Drunk On Oil: Russian Foreign Policy 2000-2007  

E-Print Network [OSTI]

World Stocks Sag as Oil Price Surges. ” The New York Times,Second, the increase in oil prices may make Russia moreof action. Nevertheless, oil prices still have a significant

Brugato, Thomas

2008-01-01T23:59:59.000Z

200

Crude Existence: The Politics of Oil in Northern Angola  

E-Print Network [OSTI]

tion. A drop in world oil prices, coupled with a decrease indisbursements declined and oil prices dropped sharply inThe drastic drop in oil prices and further agricultural

Reed, Kristin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Natural Gas in Sub-Saharan Africa Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 2 Sub-Saharan Africa Source: U.S. Department of State Liquid Fuels Reserves and Production in Sub-Saharan Africa 3 4 Sub-Saharan Africa (SSA) produced nearly 6 million bbl/d of liquid fuels in 2012, which was about 7% of total world oil production. Overview Sub-Saharan Africa contains 62.6 billion barrels of proved crude oil reserves. The Middle East has 13 times that amount and Central and South America has 5 times that amount. Middle East 30% North America 20% Eurasia 15% Sub-Saharan Africa 7% North Africa 5% Asia & Oceania 10% Central & South America 9% Europe 4% Global Liquid Fuels Production, 2012 Source: EIA, International Energy Statistics 0 200 400 600 800 1,000 Middle East Central & South America

202

The Next Oil Crisis Looms Large--and Perhaps Close  

Science Journals Connector (OSTI)

...world oil production is in sight...million barrels per day, then begin a...Countries (OPEC), which...crises of 1973 and 1979...world oil production peaks (see...million barrels per day, then...Countries (OPEC), which...crises of 1973 and 1979...world oil production peaks...

Richard A. Kerr

1998-08-21T23:59:59.000Z

203

Oil prices and the developing countries  

Science Journals Connector (OSTI)

Many of the present difficulties of the world economy have been blamed on the two oil-price explosions of the 1970s. Professor Chichilnisky shows ... , at least in the case of the oil-importing developing countri...

Graciela Chichilnisky

204

Economic effects of peak oil  

Science Journals Connector (OSTI)

Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market.

Christian Lutz; Ulrike Lehr; Kirsten S. Wiebe

2012-01-01T23:59:59.000Z

205

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

Bellman Jr., R.

2012-01-01T23:59:59.000Z

206

Costs of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

207

Cost of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

208

The future of oil: Geology versus technology  

Science Journals Connector (OSTI)

Abstract We discuss and reconcile the geological and economic/technological views concerning the future of world oil production and prices, and present a nonlinear econometric model of the world oil market that encompasses both views. The model performs far better than existing empirical models in forecasting oil prices and oil output out-of-sample. Its point forecast is for a near doubling of the real price of oil over the coming decade, though the error bands are wide, reflecting sharply differing judgments on the ultimately recoverable reserves, and on future price elasticities of oil demand and supply.

Jaromir Benes; Marcelle Chauvet; Ondra Kamenik; Michael Kumhof; Douglas Laxton; Susanna Mursula; Jack Selody

2015-01-01T23:59:59.000Z

209

Future oil supply scenarios and required investment  

Science Journals Connector (OSTI)

The supply of oil, like any other commodity, is sensitive to price changes. However, movements in oil supply are dependent on other additional factors, the most important of which are the geology of the region and the fiscal and contractual regimes. Total world oil supply to meet the current demand is estimated at about 52 mb/d (excluding the former CPEs). Since non-OPEC production has plateaued and is expected to fall in the future, the additional future oil supplies must come from OPEC member countries. This conclusion is borne out if we examine the respective reserves and reserves-to-production ratio of OPEC and non-OPEC producers. Of the world's total proven oil reserves of about 922 billion barrels (excluding the former CPEs), OPEC holds 84 per cent. The reserves-to-production ratio of OPEC member countries presently stands at more than 100 years, and with known reserves regularly being revised upwards. For the rest of the world, excluding the former CPEs, the ratio is only 16 years. During the 1990s, the largest growth in production capacity to meet the increasing demand is expected to come from OPEC member countries, particularly the Middle Eastern ones. Non-OPEC regions, such as North America and the Soviet Union, are expected to continue their decline. whereas the North Sea region will mature and start to fall at the end of the decade. The per barrel investment cost in capacity expansion in OPEC region, particularly in the Middle-East, is the lowest in the world to develop a new capacity and to main current output. This is in line with the present low level of production cost in the region. The application of enhanced recovery techniques to some of the mature fields in OPEC countries would not change the picture in general terms, and the impact of the new technology will be to further reduce the cost of oil production. In order to meet the increasing future oil demand, substantial additional investment, especially in the upstream sector, is required by OPEC member countries. To enhance the investment needed, OPEC producers must be able to predict the oil demand, which means that co-operation measures between all producers, oil companies, the consumers and their governments are urgently needed. The future pattern of energy requirements is expected to stimulate upstream exploratory and development activities as well as other development of infrastructures, such as pipelines in the gas and oil industries. The numerous accidents in recent years in energy production, transport, distribution, refining and conversion have confirmed the need to tighten the environmental regulations, and the need to increase investments in all the energy industries after a decade of under-investment, especially in the oil upstream.

A. Miremadi; I.A.H Ismail

1994-01-01T23:59:59.000Z

210

Oil, economic growth and strategic petroleum stocks  

Science Journals Connector (OSTI)

Abstract An examination of over 40 years of data reveals that oil price shocks are invariably followed by 2–3 years of weak economic growth and weak economic growth is almost always preceded by an oil price shock. This paper reviews why the price-inelastic demand and supply of oil cause oil price shocks and why oil price shocks reduce economic growth through dislocations of labor and capital. This paper also reviews the current state of oil-supply security noting that previous episodes of supply instability appear to have become chronic conditions. While new unconventional oil production technologies have revitalized North American oil production, there are significant barriers to a world-wide uptake of these technologies. Strategic petroleum stocks could provide a large measure of protection to the world economy during an oil supply disruption if they are used promptly and in sufficient volume to prevent large oil-price spikes. Despite the large volume of world-wide emergency reserves, their effectiveness in protecting world economies is not assured. Strategic oil stocks have not been used in sufficient quantity or soon enough to avoid the economic downturns that followed past oil supply outages. In addition, the growth of U.S. oil production has reduced the ability of the U.S. Strategic Petroleum Reserve to protect the economy following a future oil supply disruption. The policy implications of these findings are discussed.

Carmine Difiglio

2014-01-01T23:59:59.000Z

211

U.S. Partners with Canada to Renew Funding for World's Largest  

Broader source: Energy.gov (indexed) [DOE]

U.S. Partners with Canada to Renew Funding for World's Largest U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields July 20, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) and Natural Resources Canada announced today a total of $5.2 million has been committed by the two governments to bring a benchmark carbon dioxide (CO2) injection project to successful conclusion in 2011. Natural Resources Canada (NRCan) and DOE will partner to renew funding for the International Energy Agency (IEA) Greenhouse Gas Weyburn-Midale CO2 Monitoring and Storage project. The renewed endorsements will allow the project's final phase to focus on best practices for the safe and permanent

212

Oil Shale as an Energy Resource in a CO2 Constrained World: The Concept of Electricity Production with in Situ Carbon Capture  

Science Journals Connector (OSTI)

Electricity is assumed consumed in a Nissan Leaf electric car, using U.S. federal (CAFE) efficiency estimates of 34 kWh per 100 miles. ... These are calculated by multiplying energy consumption in processes (e.g., drilling) by the fuel-specific emissions factor for the fuel consumed in that process (e.g., drilling consumes diesel with emissions of 77 g of CO2/MJ). ... For EPICC, equals total electricity generation, less self-consumption of process stages that consume electricity: pumping, freeze wall, reclamation, and other minor uses. ...

Hiren Mulchandani; Adam R. Brandt

2011-03-11T23:59:59.000Z

213

Oil and democracy in Argentina, 1916-1930  

SciTech Connect (OSTI)

Argentine society in the 1920s experience strong political, cultural, and economic divisions between the littoral regional surrounding Buenos Aires and the interior provinces to the west and north. Economic recession through World War 1 sparked efforts to wean the economy from total dependence upon agricultural production and export, and petroleum deposits in the south and northwest corners of Argentina offered a wider economic base. Regional conflict quickly arose concerning oil production and control over oil revenues. By mounting a popular anti-imperialist campaign against Standard Oil of New Jersey, the primary interior oil producer, dominant political forces in Buenos Aires worked to nationalize all oil deposits to the detriment of interior provincial interests. To maintain the kinds of political control necessary to fend off this threat, interior conservatives reverted to electoral fraud and violence, especially in the major oil-producing province of Salta. This thesis reconstructs and analyzes the process by which political division on the oil issue hardened and gave way to a conservative reaction leading to an authoritarian regime.

Biddle, N.L.

1991-01-01T23:59:59.000Z

214

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

215

EIA - Projections of Oil Production Capacity and Oil Production In three  

Gasoline and Diesel Fuel Update (EIA)

Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) International Energy Outlook 2006 Projections of Oil Production Capacity and Oil Production In Three Cases Data Tables (1990-2030) Formats Table Data Titles (1 to 6 complete) Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Oil Production Capacity by Region and Country, Reference Case Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800.

216

The recovery of oil from carbonate reservoirs by fluid injection  

E-Print Network [OSTI]

Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... for Field A 12, Cumulative Oil Recovery Versus Total Water and Oil Throughflow for Field B 13, -20, Permeability Distribution Plots $5-52 The object of this project was to study the extent of the variations of the permeability in carbonate reservoirs...

Coleman, Dwayne Marvin

2012-06-07T23:59:59.000Z

217

E-Print Network 3.0 - andalusian olive oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey Summary: equivalent, and (3) dark olive, sparsely fossiliferous, low-grade oil shale that fractures semi... -5294 Geology and Resources of Some World Oil-Shale Deposits...

218

Numerical Simulation of Low Salinity Water Flooding Assisted with Chemical Flooding for Enhanced Oil Recovery.  

E-Print Network [OSTI]

?? World proved oil reserve gradually decreases due to the increase production but decrease new field discovery. The focus on enhance oil recovery from the… (more)

Atthawutthisin, Natthaporn

2012-01-01T23:59:59.000Z

219

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

220

U.S. Reflects World Market  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: U.S. crude oil inventories reflect the world situation. U.S. inventories were drawn down in 1999 as world demand exceeded world supply of crude oil as OPEC cut back on production. Low crude oil inventories go hand in hand with low product inventories. Product inventories were also drawn down to help meet demand, as was seen with gasoline this Spring. The rise in crude oil inventories earlier this year, while indicating an improvement in the market balance, appears to be short-lived, just as we had predicted a few months ago. Looking at U.S. crude stock levels in April and May can be misleading, since increases then were more reflective of the surge in WTI and U.S. product prices in the 1st quarter. With U.S. crude oil stocks drawn down by more than 20 million barrels from

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

222

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

223

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

224

Physical modeling and computer graphic simulation of the depletion of world energy reserve  

Science Journals Connector (OSTI)

A physical modeling device and a computer graphic simulation program of the depletion of world energy reserve are developed to demonstrate how rapidly our energy reserve is depleted, how quickly and enormously our demands for energy grows, and how important energy conservation is to us. In both modeling and simulation cases, the total world energy reserve, the current energy usage annual growth rate, and the current energy consumption rate are given as parameters. One can view the energy shortage in terms of the rapidly falling levels in the physical water tank or the simulated oil barrels.

Chih Wu

1981-01-01T23:59:59.000Z

225

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

226

Application of solar energy in the oil industry—Current status and future prospects  

Science Journals Connector (OSTI)

Abstract The scope of this review is to highlight the potential contributions of solar energy in meeting the energy requirements of the oil and gas industry. It includes an assessment of the key factors that impact the world energy scene and the anticipated role of solar energy up to 2035. It appears that oil and gas will continue to play a dominant role in meeting world energy demand over the next two decades, accounting for nearly 60% of total primary energy, and reaching around 9960 Mtoe in 2035. The energy consumption of the oil and gas industries is nearly 10% of its total energy production and is expected to grow to a higher value with the growth of the share of unconventional oil and gas resources. The amounts of energy projected to be consumed by the oil and gas industry is estimated to be at least 39.4 EJ by 2035. The energy supply to meet the demand of the oil and gas industry is based mostly on hydrocarbon energy sources, which leads to high levels of ecological footprints. Solar energy utilization within the industry will reduce its fossil fuels consumption, and therefore reduce its ecological footprints. Specifically, solar energy will help the industry in meeting part of its energy requirements in locations where conventional fuels, such as natural gas, are limited. This paper reviews various efforts made in developing solar technologies to suit the oil and gas industry. It also shows that some upstream oil and gas industries have already utilized solar energy in demonstration field applications. The review concludes that the application of solar energy in the oil and gas industry presents a very good opportunity for future business of the renewable energy industry. These opportunities includes the use of photovoltaic and solar thermal technologies.

M. Absi Halabi; A. Al-Qattan; A. Al-Otaibi

2015-01-01T23:59:59.000Z

227

Towards a more coherent oil policy in Russia? S. Boussena,  

E-Print Network [OSTI]

Towards a more coherent oil policy in Russia? S. Boussena, Professor, University of Grenoble II of Russia on the world oil scene. The first is the development of its oil production (over 9 Mb/d in 2004. Will Russia be a key variable in world energy balances? Could Russia ­ as some suggest and even desire

Paris-Sud XI, Université de

228

world | OpenEI  

Open Energy Info (EERE)

world world Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

229

oil supply | OpenEI  

Open Energy Info (EERE)

oil supply oil supply Dataset Summary Description CIA: World Factbook assessment of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated with a high degree of confidence to be commercially recoverable from a given date forward, from known reservoirs and under current economic conditions. Estimated as of January 1st, 2010. Source CIA Date Released January 01st, 2010 (4 years ago) Date Updated Unknown Keywords crude oil energy energy data international oil oil supply Data text/csv icon 2010 Proved Oil Reserves (csv, 4.6 KiB) text/plain icon Original Text Format (txt, 6.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency

230

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

231

Measuring Dependence on Imported Oil  

Gasoline and Diesel Fuel Update (EIA)

Dependence on Imported Oil Dependence on Imported Oil by C. William Skinner* U.S. dependence on imported oil** can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA believes that the net-imports definition gives a clearer indication of the fraction of oil consumed that could not have been supplied from domestic sources and is thus the most appropriate measure. With this issue of the Monthly Energy Review, the Energy Information Administration (EIA) introduces a revised table that expresses depend- ence on imports in terms of both measures. How dependent is the United States on foreign oil? How dependent are we on oil from the Persian Gulf or other sensitive areas? Do we import more than we produce domes-

232

Response of Professional Societies and Conservation Organizations to Peak Oil and Economic Growth  

Science Journals Connector (OSTI)

Peaking of the world’s oil supply is resulting in economic, social, ... way to live and is utterly dependent on oil. Addressing current environmental problems is already a ... up their efforts to address global i...

David L. Trauger; Rhonda D. Jackson

2014-01-01T23:59:59.000Z

233

„Peak Oil  

Science Journals Connector (OSTI)

Wissenschaftliche Voraussagen deuten auf „Peak Oil“, das Maximum globaler Erdölförderung, in unserer ... der demokratischen Systeme führen. Psychoanalytische Betrachtung darf „Peak Oil“ für die Zivilisation als e...

Dr. Manuel Haus; Dr. med. Christoph Biermann

2013-03-01T23:59:59.000Z

234

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

235

Using oil shale ash waste as a modifier for asphalt binders  

Science Journals Connector (OSTI)

Oil shale rocks represent one of the most available ... Jordan land contains about 50 billion tons of oil shale, which makes Jordan the third in the ... world of the reserve of this material. Oil shale ash is a b...

Khalid Ghuzlan; Ghazi Al-Khateeb…

2013-10-01T23:59:59.000Z

236

E-Print Network 3.0 - abandoned in-situ oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

...33 10. In-situ shale-oil resources of some world oil-shale deposits... in 33 countries are estimated at 409 billion tons of in-situ shale oil,...

237

Oil Market Assessment  

Gasoline and Diesel Fuel Update (EIA)

Logo Oil Market Assessment - September Logo Oil Market Assessment - September 12, 2001 EIA Home Page Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon. Rumors of scattered closures of U.S. refineries, pipelines, and terminals were reported, and Louisiana Offshore Oil Port operations were partially suspended. While the NYMEX and New York Harbor were temporarily closed, operations are expected to resume soon. Most, if not all petroleum industry infrastructure is expected to resume normal operations today or in the very near term. Prices at all levels (where markets were open) posted increases yesterday, but many prices fell today, as initial reactions

238

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

239

A BREAF OVERVIEW OF MOTOR FUELS FROM SHALE OIL OF KUKERSITE  

E-Print Network [OSTI]

conventional oil) have existed since before World War II. While long-term full-scale applications had in most

V. Oja

240

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

242

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

243

Oil history, potential converge in Azerbaijan  

SciTech Connect (OSTI)

Azerbaijan, the oldest known oil producing region in the world, still holds great potential for new discoveries and increased production. A multi-billion dollar production sharing agreement was recently signed with a consortium of primarily western oil companies to develop three oil fields in the Caspian Sea. Soon, Azerbaijan will offer new exploration acreage both offshore and onshore. This paper describes the history of oil production in Azerbaijan, offshore developments, tectonics, stratigraphy, petroleum traps, mud volcanoes, and short summaries of several oil producing areas. Current production is about 9 million tons/yr of oil and 7 billion cu m/yr of natural gas.

Narimanov, A.A. [State Oil Co. of Azerbaijan, Baku (Azerbaijan); Palaz, I. [Amoco Production Co., Houston, TX (United States)

1995-05-22T23:59:59.000Z

244

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

245

Peak oil supply or oil not for sale?  

Science Journals Connector (OSTI)

Abstract The restrictions imposed by climate change are inevitable and will be exerted either via precautionary mitigation of (mainly energy-related) CO2 emissions or via irreversible impacts on ecosystems and on human habitats. Either way, oil markets are bound to incur drastic shrinking. Concern over peak oil supply will crumble when the irrevocable peak oil demand is created. Replacing oil in the world's energy economies requires redirected market forces, notably in the form of steadily increasing oil end-use prices. Yet, thus far, crude oil prices have obeyed the market fundamentals of expanding-contracting demand and oligopolistic supply. A hockey stick supply curve supports high sales prices, providing large rents to submarginal sources. Cutting oil demand and maintaining high prices implies reducing the supply hockey stick's length by curtailing some oil producers. In such a scenario, the alliances, goals, and tactics of oil geopolitics are set to change. We identify a distribution over friendly and hostile oil suppliers, with others drifting in between the two sides. Conflicts and warfare are less aimed at conquering oil fields for exploitation than at paralyzing production capabilities of opponents or of unreliable transient sources. Covert warfare and instigation of internal conflicts are likely tactics to exhaust hostile opponents.

Aviel Verbruggen; Thijs Van de Graaf

2013-01-01T23:59:59.000Z

246

Global Energy & Mining Data, World Bank (1970 - 2007) | OpenEI  

Open Energy Info (EERE)

Global Energy & Mining Data, World Bank (1970 - 2007) Global Energy & Mining Data, World Bank (1970 - 2007) Dataset Summary Description The energy-mining_xml_en.zip and energy-mining_xls_en.zip files contain identical data, but in different formats (XML and Excel, respectively). In particular, each contains files with the following contents: Alternative and Nuclear Energy: Percentage of Total Energy Use Combustible Renewables and Waste: Metric Tons of Oil Equivalent Combustible Renewable and Waste: Percentage of Total Energy Electric Power Consumption Electric Power Transmission and Distribution Losses Electric Power Transmission and Distribution Losses: Percentage of Output Electricity Production from Coal Sources Electricity Production from Coal Sources: Percentage of Total Electricity Production from Hydroelectric Sources

247

Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae  

Science Journals Connector (OSTI)

...depletion of the world's reserves of oil and...sources of energy during the...sources of energy in the framework...depletion of the world's reserves of oil and...depletion of the world's reserves of oil and...sources of energy during the...

Juan Cesar Federico Ortiz-Marquez; Mauro Do Nascimento; Maria de los Angeles Dublan; Leonardo Curatti

2012-01-20T23:59:59.000Z

248

Fact #742: August 27, 2012 Oil Price and Economic Growth  

Broader source: Energy.gov [DOE]

Major oil price shocks have disrupted world energy markets five times in the past 30 years (1973-74, 1979-80, 1990-91, 1999-2000, and 2008). Most of the oil price shocks were followed by an...

249

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April  

E-Print Network [OSTI]

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

Kulp, Mark

250

International Oil Supplies and Demands. Volume 1  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

251

International Oil Supplies and Demands. Volume 2  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

252

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

253

World energy projections to 2030  

Science Journals Connector (OSTI)

This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO2 emissions. In Section 3, the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates.

Patrick Criqui; Nikolaos Kouvaritakis

2000-01-01T23:59:59.000Z

254

Crude Existence: The Politics of Oil in Northern Angola  

E-Print Network [OSTI]

oil corporations including Conoco, Petrofina, Texaco, Elf Aqui- taine, British Petroleum, Braspetro, Total, Cities Services, Mitsubishi, and Marathon

Reed, Kristin

2009-01-01T23:59:59.000Z

255

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

256

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

257

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, (National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States))

1996-01-01T23:59:59.000Z

258

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, [National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

259

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges… (more)

Overå, Lars

2010-01-01T23:59:59.000Z

260

Oil price fluctuations and Its effect on GDP growth.  

E-Print Network [OSTI]

?? During the year of 2008, the world has experienced historically high oil prices reaching an all time high of 147 USD per barrel in… (more)

Gonzalez , Aaron

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Peak Oil: Knowledge, Attitudes, and Programming Activities in Public Health.  

E-Print Network [OSTI]

?? Peak Oil, or the world reaching the maximum rate of petroleum extraction, poses risks such as depletion of energy resources, amplification of existing threats… (more)

Tuckerman, Samantha Lynn

2012-01-01T23:59:59.000Z

262

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

263

Heavy Oil Production Technology Challenges and the Effect of Nano Sized Metals on the Viscosity of Heavy Oil.  

E-Print Network [OSTI]

?? Heavy oil and bitumen make up 70% of the discovered petroleum resources in the world. Only a very small fraction of these resources have… (more)

Bjørnseth, Fabian

2013-01-01T23:59:59.000Z

264

Energy and the Evolution of World-Systems: Fueling Power and Environmental Degradation, 1800-2008  

E-Print Network [OSTI]

the world’s total energy consumption. In the semiperiphery,of India, whose 2008 total energy consumption of 626531.1000s) % of Total Energy Consumption, pc % of Total Power %

Lawrence, Kirk Steven

2011-01-01T23:59:59.000Z

265

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

266

ORNL/TM-2003/259 RUNNING OUT OF AND INTO OIL  

E-Print Network [OSTI]

ORNL/TM-2003/259 RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL DEPLETION AND TRANSITION THROUGH Government or any agency thereof. #12;#12;ORNL/TM-2003/259 RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL ...................................................................................................................1 2. WORLD OIL RESOURCE ESTIMATES

267

Development of oil formation theories and their importance for peak oil  

Science Journals Connector (OSTI)

This paper reviews the historical development of both biogenic and non-biogenic petroleum formation. It also examines the recent claim that the so-called “abiotic” oil formation theory undermines the concept of “peak oil,” i.e. the notion that world oil production is destined to reach a maximum that will be followed by an irreversible decline. We show that peak oil is first and foremost a matter of production flows. Consequently, the mechanism of oil formation does not strongly affect depletion. We would need to revise the theory beyond peak oil only for the extreme — and unlikely — hypothesis of abiotic petroleum formation.

Mikael Höök; Ugo Bardi; Lianyong Feng; Xiongqi Pang

2010-01-01T23:59:59.000Z

268

Fact #859 February 9, 2015 Excess Supply is the Most Recent Event to Affect Crude Oil Prices  

Broader source: Energy.gov [DOE]

Crude oil prices have been extremely volatile over the past few decades. World events can disrupt the flow of oil to the market or cause uncertainty about future supply or demand for oil, leading...

269

Fossil Energy Research Benefits Enhanced Oil Recovery  

Broader source: Energy.gov (indexed) [DOE]

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

270

Dilmaya's World  

E-Print Network [OSTI]

burning on a funeral pyre. I had never lived for more than a day or in a world without toilets or toilet papers, where there was no central heating and no window glass to keep out the cold Himalayan winds. * * * Short of finding the very... infancy to puberty in a remote Himalayan village. So Dilmaya allowed this, as well as encouraging our love for her sons and husband. All this was achieved while she looked after us physically and stretched her mind and body to the limits...

Alan, Macfarlane

2014-08-27T23:59:59.000Z

271

Have we run out of oil yet? Oil Peaking analysis from an optimist's perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 (2006) 515-531 Have we run out of oil yet? Oil peaking analysis from an optimist's perspective $ David L. Greene à , Janet L. Hopson, Jia Li Oak Ridge National Laboratory, National Transportation Research Center, University of Tennessee, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA Available online 27 December 2005 Abstract This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or

272

world bank | OpenEI  

Open Energy Info (EERE)

world bank world bank Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

273

A model of peak production in oil fields  

Science Journals Connector (OSTI)

We developed a model for oil production on the basis of simple physical considerations. The model provides a basic understanding of Hubbert’s empirical observation that the production rate for an oil-producing region reaches its maximum when approximately half the recoverable oil has been produced. According to the model the oil production rate at a large field must peak before drilling peaks. We use the model to investigate the effects of several drilling strategies on oil production. Despite the model’s simplicity predictions for the timing and magnitude of peak production match data on oil production from major oil fields throughout the world.

Daniel M. Abrams; Richard J. Wiener

2010-01-01T23:59:59.000Z

274

Life cycle analysis of world electricity in the 21st century using the world energy LCA model  

Science Journals Connector (OSTI)

World energy and electricity demand by the year 2100 has been analysed using the World Energy LCA (Life Cycle Analysis) Model. Three energy scenarios are set-up: the current fossil fuel-intensive pattern, as well as renewable-intensive and nuclear-intensive alternatives. The performance of CO2 emissions, resource availability, total investment costs, indirect energy consumption from the life cycle standpoint and total fatality risks are compared between these scenarios. The result shows that the renewable and nuclear scenarios achieve the 1990 CO2 emission level by 2100, while the total investment cost and indirect energy consumption for the renewable scenario would hamper its wide scale adoption. In the case of the current fossil-fuel scenario, coal is used for as much as 53% of primary energy, which gives about a three times higher fatality rate compared with the other scenarios. Although resource availability will not constrain all three scenarios, the marginal production cost of oil and gas will double by the year 2100. As a whole, the nuclear scenario becomes advantageous from the comparisons made in the present study.

Toshihide Takeshita; Yohji Uchiyama; Keishiro Ito; Hisashi Hayashibe

1998-01-01T23:59:59.000Z

275

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

276

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. Current Trends Influencing World Energy Demand Changing world events and their effects on world energy markets shape the long-term view of trends in energy demand. Several developments in 1999—shifting short-term world oil markets, the recovery of developing Asian markets, and a faster than expected recovery in the economies of the former Soviet Union— are reflected in the projections presented in this year’s International Energy Outlook 2000 (IEO2000). In 1998, oil prices reached 20-year lows as a result of oil surpluses

277

The end of the age of oil David Goodstein  

E-Print Network [OSTI]

1986 1989 1992 1995 1998 2001 Non-OPEC OPEC bnbbls Source: BP Statistical Review of World Energy 2003 Tired Saudi Fields By JEFF GERTH The New York Times, February 24, 2004 ...the country's oil fields now (99 Quads) #12;Fossil Fuels Oil Natural gas Shale oil Methane hydrate Coal #12;Coal Hundreds, maybe

Bertini, Robert L.

278

Oil production models with normal rate curves Dudley Stark  

E-Print Network [OSTI]

Oil production models with normal rate curves Dudley Stark School of Mathematical Sciences Queen;Abstract The normal curve has been used to fit the rate of both world and U.S.A. oil production. In this paper we give the first theoretical basis for these curve fittings. It is well known that oil field

Stark, Dudley

279

North Dakota and Texas help boost U.S. oil reserves to highest...  

U.S. Energy Information Administration (EIA) Indexed Site

in total U.S. oil reserves, driven by the continued development of North Dakota's Bakken shale formation. North Dakota's proved oil reserves now exceeds the oil reserves in the...

280

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

282

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

283

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

284

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

285

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

286

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

287

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

288

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

289

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

290

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

291

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

292

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

293

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

294

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

295

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

296

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

297

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

298

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

299

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

300

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

302

Traversing the mountaintop: world fossil fuel production to 2050  

Science Journals Connector (OSTI)

...the decline in prices during the mid-1980s...essentially the USA. By 1970, North...leading source of energy for the world...order to keep oil prices declining to ruinous...discovered early in the history of exploration...market and oil prices would have collapsed...which begun in the USA in the early 1930s...

2009-01-01T23:59:59.000Z

303

Maximum of oil output of a treadle-powered peanut oil press  

E-Print Network [OSTI]

The manual processing of food products has become a substantial part of the daily routine of a typical household in the developing world. Consumption of oil is an essential part of an individual's diet and thus, the ...

Patel, Ravi M. (Ravi Mahendra)

2007-01-01T23:59:59.000Z

304

BP Statistical Review of World Energy  

E-Print Network [OSTI]

conversion factors 44 Definitions 45 Further information Find out more online BP Statistical Review of-specific data according to energy type, region and year. · An oil, natural gas and LNG conversion calculatorBP Statistical Review of World Energy June 2008 #12;Introduction 1 Group chief executive

Laughlin, Robert B.

305

Oil spills - increasing US dependence on oil imports heightens risks to environment  

SciTech Connect (OSTI)

Calamitous oil spills in recent years have focused attention on the devastation the world`s leading energy source can wreak on the environment. In Alaska, the 1989 grounding of the supertanker Exxon Valdez in Prince William Sound caused the worst U.S. oil spill ever and promoted Congress to pass stringent oil-pollution legislation. In the Persian Gulf, {open_quotes}eco-terroism{close_quotes} committed by Iraqi forces during the gulf war left hundreds of wells burning and oil free-flowing out of Kuwait`s refineries and oil-shipping terminals. With the United States and much of the global community increasingly dependent on petroleum moved by supertankers, oil spills will continue to threaten the environment for the foreseeable future.

NONE

1992-01-17T23:59:59.000Z

306

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

307

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

308

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

309

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

310

World Air Transport Sustainability Analysis  

E-Print Network [OSTI]

Statement · Develop a quantitative model to assess the carbon footprint of world aviation, including and fraction of total fuel provided in future. For example: Fuel type Relative GHG Intensity Relative SOx Intensity Relative PM Intensity Relative HC/VOC Intensity 2010 Usage 2020 Usage 2030 Usage 2040 Usage 2050

311

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

312

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

313

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone...

314

Gravity of world crude barrel to rise by 1995  

SciTech Connect (OSTI)

This paper reports on the loss of crude exports from Iraq and Kuwait in 1990-91 and their gradual reentry into oil markets which will have a profound effect on world crude quality. Accordingly, the proportion of heavy crude in world markets will decline the next 5 years.

Not Available

1991-12-16T23:59:59.000Z

315

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

316

World Energy Use: ISO Standards that Can Help | Department of...  

Broader source: Energy.gov (indexed) [DOE]

World Energy Use: ISO Standards that Can Help This one-page flyer shows total world energy consumption of marketed energy by economic sector as well as a list of ISO standards...

317

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

318

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

319

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

320

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

322

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

323

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

324

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

325

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

326

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

328

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

329

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

330

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

331

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

332

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

SciTech Connect (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

333

Oil price volatility and oil-related events: An Internet concern study perspective  

Science Journals Connector (OSTI)

Abstract Oil-related events have increased the uncertainty and complexity of the worldwide oil market. This paper investigates the effects of four types of oil-related events on world oil prices, using an event study methodology and an AR-GARCH model. The Internet information concerning these events, which is derived from search query volumes in Google, is introduced in an analytical framework to identify the magnitude and significance of the market response to oil-related events. The results indicate that world oil prices responding to different oil-related events display obvious differentiation. The cumulative abnormal returns, which reflect the influence of the global financial crisis, tend to drop first and then reverse and rise, while the cumulative abnormal returns induced by other oil-related events present a stronger persistent effect. The impact of the global financial crisis on oil price returns is significantly negative, while the impact of the Libyan war and hurricanes is significantly positive. However, the reactions of oil price returns to different OPEC production announcements are inconsistent.

Qiang Ji; Jian-Feng Guo

2015-01-01T23:59:59.000Z

334

OIL IMPORTS: For and Against  

Science Journals Connector (OSTI)

OIL IMPORTS: For and Against ... The eight—Ashland Oil, Atlantic Richfield, Cities Service, Marathon Oil, Mobil Oil, Standard Oil (Ind.), ...

1969-07-28T23:59:59.000Z

335

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections reflect a change in short-term expectations for world oil prices. In the long term, OPEC production cutbacks are expected to be relaxed, and prices are projected to rise gradually through 2020 as the oil resource base is expanded. The IEO2000 projections reflect a change in short-term expectations for world oil prices. In the long term, OPEC production cutbacks are expected to be relaxed, and prices are projected to rise gradually through 2020 as the oil resource base is expanded. The crude oil market rebounded dramatically in 1999. Prices rose from the low monthly average of $9.39 per barrel (nominal U.S. dollars) in December 1998 to $24.44 in December 1999, an increase of almost $15 a barrel. Prices were influenced by the successful adherence to announced cutbacks in production by members of the Organization of Petroleum Exporting Countries (OPEC) as well as several non-OPEC countries, notably, Mexico and Norway. In addition, the price decline in 1998 significantly dampened the annual

336

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

337

An Investigation into the Derived Demand for Land in Palm Oil Production.  

E-Print Network [OSTI]

??Over the years, the world industry of oil palm has been rapidly increasing in the tropical areas of Asia, Africa and America. One of the… (more)

Lau, Jia Li

2009-01-01T23:59:59.000Z

338

Management of Oil Windfalls in Mexico  

E-Print Network [OSTI]

this paper to estimate oil windfalls follows Bevan et al (1992). The exercise is done using national accounts statistics, employing the national income identity, R I C NO O Y + + = + = (1) where total production (Y) can be divided in oil (O) and non-oil (NO) production, that equals the gross domestic expenditure (GDE), formed by consumption (C) and investment (I), plus the resource balance (R)

Historical Experience And; Stephen Everhart; Robert Duval-hernandez

339

Oilfields of the World. Third edition  

SciTech Connect (OSTI)

This third edition (updated to 1984) covers all of the world's major producing areas (both onshore and offshore) on six continents. It offers essential geologic, reserves, and production data on 13 nations that have become commercial oil producers in the last five years: Benin, Cameroon, Congo Republic, Ghana, Ivory Coast, Sudan, Zaire, Greece, The Phillippines, Sharjah, Thailand, Guatemala, and Surinam. Numerous maps display the geologic details of each area. This book also contains full-color maps of the oil and gas fields of the North Sea, Persian Gulf, Mexico, Venezuela, and Brazil.

Tiratsoo, E.N.

1985-01-01T23:59:59.000Z

340

Impact of 1973 Oil Embargo and 2005 Katrina on Energy Efficiency  

E-Print Network [OSTI]

influence that they had on the world through oil. One of the many results of the oil embargo was higher oil prices all through out the western world, particularly North America. The embargo forced to consider many things about energy..., such as the cost and supply, which up to 1973 no one had worried about. Although the embargo ended only years after it began in 1973, the Oil Producing and Exporting Countries (OPEC) nations had quadrupled the price of oil in the west. The rising oil prices...

Mehta, P.

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 18: Reported proved nonproducing reserves of crude oil...  

Gasoline and Diesel Fuel Update (EIA)

: Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012 Lease...

342

Table 18: Reported proved nonproducing reserves of crude oil...  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, " "nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012"...

343

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

344

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

345

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

346

The decline of the world’s energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971–2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

José Goldemberg; Luiz Tadêo Siqueira Prado

2011-01-01T23:59:59.000Z

347

The great Arctic oil race begins  

Science Journals Connector (OSTI)

... oil, and up to 30% of its gas — and most of it is offshore. On 17 January, Moe awarded 26 production licences for developed ... . On 17 January, Moe awarded 26 production licences for developed offshore oil areas in the Norwegian and Barents Sea to companies including Statoil, Total, ExxonMobil ...

Quirin Schiermeier

2012-01-31T23:59:59.000Z

348

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

349

International Energy Outlook 1999 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

world.gif (5615 bytes) world.gif (5615 bytes) The IEO99 projections indicate substantial growth in world energy use,including substantial increases for the developing economies of Asia and South America. Resource availability is not expected to limit the growth of energy markets. In 1998, expectations for economic growth and energy market performance in many areas of the world were dashed. The Asian economic crisis proved to be deeper and more persistent than originally anticipated, and the threat and reality of spillover effects grew through the year. Oil prices crashed. RussiaÂ’s economy collapsed. Economic and social problems intensified in energy- exporting countries and in emerging economies of Asia and South America. Deepening recession in Japan made recovery more difficult in Asia

350

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

351

of oil yields from enhanced oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

352

Shale Oil Value Enhancement Research  

SciTech Connect (OSTI)

Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

James W. Bunger

2006-11-30T23:59:59.000Z

353

Heating oils, 1982  

SciTech Connect (OSTI)

Properties of 235 heating oils marketed in the United States were submitted for study and compilation under agreement between BETC and API. The fuels were manufactured by 25 petroleum refining companies in 88 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1982 compared with data for 1981 are tabulated. Analyses of grade 6 foreign import oils are presented.

Shelton, E.M.

1982-08-01T23:59:59.000Z

354

Heating oils, 1980  

SciTech Connect (OSTI)

Properties of 247 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The fuels were manufactured by 26 petroleum refining companies in 87 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuel are defined by the American Society for Testing and Materials Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1980 compared with data for 1979 are shown in tables. Analyses of grades 2, 5(light), and 6 foreign import oils are presented.

Shelton, E.M.

1980-10-01T23:59:59.000Z

355

Heating oils, 1981  

SciTech Connect (OSTI)

Properties of 249 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 28 petroleum refining companies in 92 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1981 compared with data for 1980 are shown in Tables 1 through 6. Analyses of grade 6 foreign import oils are presented in Table 13.

Shelton, E.M.

1981-08-01T23:59:59.000Z

356

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

357

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network [OSTI]

there to protect world oil demand” (in Plesch et al. , 2005,instability related to U.S. demand for oil. Although to ourassociated with U.S. demand for Persian Gulf oil. If this is

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

358

The Oil Waste History of Smackover Field, Arkansas  

Science Journals Connector (OSTI)

...emulsions resulted in low recovery amounts of pipeline oil, about 30 of the total amount of...Becker, J.-R. (1997). Crude oil waxes, emulsions, and asphaltenes. Tulsa...on stream - a history of Interstate Oil Pipeline Company 1909-1959. Baton Rouge, LA...

Mary L. Barrett

359

Composition of the essential oil of White sage, Salvia apiana.  

SciTech Connect (OSTI)

The essential oil of white sage, Salvia apiana, was obtained by steam distillation and analysed by GC-MS. A total of 13 components were identified, accounting for >99.9% of the oil. The primary component was 1,8-cineole, accounting for 71.6% of the oil.

Hochrein, James Michael; Irwin, Adriane Nadine; Borek, Theodore Thaddeus, III

2003-08-01T23:59:59.000Z

360

Oil and Gas Production Optimization; Lost Potential due to Uncertainty  

E-Print Network [OSTI]

Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

Johansen, Tor Arne

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

International Energy Outlook 2006 - World Coal Markets  

Gasoline and Diesel Fuel Update (EIA)

Coal Markets Coal Markets International Energy Outlook 2006 Chapter 5: World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. CoalÂ’s share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. Figure 48. World Coal Consumption by Region, 1980-2030 (Billion Short Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. Coal Share of World energy Consumption by Sector 2003, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 10. World Recoverable Coal Reserves (Billion Short Tons) Printer friendly version

362

Combustion of oil on water: an experimental program  

SciTech Connect (OSTI)

This study determined how well crude and fuel oils burn on water. Objectives were: (1) to measure the burning rates for several oils; (2) to determine whether adding heat improves the oils' combustibility; (3) to identify the conditions necessary to ignite fuels known to be difficult to ignite on ocean waters (e.g., diesel and Bunker C fuel oils); and (4) to evaluate the accuracy of an oil-burning model proposed by Thompson, Dawson, and Goodier (1979). Observations were made about how weathering and the thickness of the oil layer affect the combustion of crude and fuel oils. Nine oils commonly transported on the world's major waterways were tested. Burns were first conducted in Oklahoma under warm-weather conditions (approx. 30/sup 0/C) and later in Ohio under cold-weather conditions (approx. 0/sup 0/C to 10/sup 0/C).

None

1982-02-01T23:59:59.000Z

363

Steep increase in oil prices as gulf crisis lingers on  

Science Journals Connector (OSTI)

Following a brief interruption, the recovery in world commodity prices witnessed during the first months of the year has continued. Crude oil prices reached their highest level for 16 months. The increase in prices

Klaus Matthies

364

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last yearÂ’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

365

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

366

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

367

SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS  

SciTech Connect (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Munroe, Norman

2009-01-30T23:59:59.000Z

368

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

369

World Energy Resources  

Science Journals Connector (OSTI)

World Energy Resources ... Coal reserves are by far the largest proved energy sources we have, said Parker. ...

1954-05-17T23:59:59.000Z

370

U.S. crude oil production expected to exceed oil imports later this year  

U.S. Energy Information Administration (EIA) Indexed Site

crude oil production expected to exceed oil imports later crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year are on track to fall to their lowest level since 1997. U.S. oil production is expected to continue to rise over the next two years as imports fall. As a result, the share of total U.S. petroleum consumption met by net imports is forecast to fall to 32 percent next year, the lowest level since 1985 and nearly half the peak level of 60 percent seen in

371

Review article Use of essential oils for the control of Varroa jacobsoni  

E-Print Network [OSTI]

Review article Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies - Essential oils and essential oil components offer an attractive alternative to synthetic acaricides (mainly monoterpenes) are the main components of essential oils, comprising about 90 % of the total. More

Paris-Sud XI, Université de

372

Western oil shale conversion using the ROPE copyright process  

SciTech Connect (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

373

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-Print Network [OSTI]

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

374

An assessment of oil supply and its implications for future prices  

Science Journals Connector (OSTI)

This paper examines three issues related to both the U.S. and world oil supply: (1) the nature of the ... be the primary source of U.S. oil imports; and (3) the cyclic behavior of oil prices. it shows that U.S. p...

Danilo J. Santini

1998-06-01T23:59:59.000Z

375

Efficient screening of enhanced oil recovery methods and predictive economic analysis  

Science Journals Connector (OSTI)

Oil demand for economic development around the world is rapidly increasing. Moreover, oil production rates are getting a peak in mature reservoirs and tending to decline in the near future, which has led to considerable researches on enhanced oil recovery ... Keywords: Artificial neural network, EOR data, Economical study, Fluid characteristics, Rock, Screening

Arash Kamari, Mohammad Nikookar, Leili Sahranavard, Amir H. Mohammadi

2014-09-01T23:59:59.000Z

376

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

377

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

378

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

379

Effect of demineralization of El-lajjun Jordanian oil shale on oil yield  

Science Journals Connector (OSTI)

The effect of demineralization on oil yield and mineral composition of Jordanian oil shale was investigated. A standard digestion procedure using a range of inorganic and organic acids including HCl, HNO3, HF, and CH3COOH was used to enhance the oil recovery of oil shale samples collected from the El-lajjun area. The total yield of the digested samples, as determined by Fischer Assay, has shown a maximum value (two folds the untreated sample) obtained when using CH3COOH. The kaolin in the treated oil shale with a high concentration of CH3COOH is believed to have transformed to illite as found in the XRD analysis. The treatment of oil shale using \\{HCl\\} has shown an increased ratio of oil to gas as a result of the digestion of calcite in the oil shale. At higher concentrations of HNO3, the acid is believed to react with the kerogen in the oil shale resulting in high levels of low molecular weight compounds. Therefore, the amount of non-condensable gases produced by Fischer assay after treatment with a high concentration of HNO3 is relatively high. HF is believed to drive off water from the oil shale by dissolving the clay minerals leading to increased oil to gas ratio.

Adnan Al-Harahsheh; Mohammad Al-Harahsheh; Awni Al-Otoom; Mamdoh Allawzi

2009-01-01T23:59:59.000Z

380

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Total Crude Oil and Products Imports  

Gasoline and Diesel Fuel Update (EIA)

Import Area: U.S. Import Area: U.S. Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History All Countries 311,620 293,713 317,538 316,119 299,380 297,359 1981-2013 Persian Gulf 66,194 56,827 59,730 66,973 64,391 59,920 1993-2013 OPEC* 125,395 114,753 117,595 120,909 117,616 105,745 1993-2013 Algeria 5,200 2,625 3,478 3,255 4,092 2,036 1993-2013 Angola 10,162 8,115 7,496 11,660 6,792 6,422 1993-2013 Ecuador 5,533 6,071 6,140 10,833 7,662 7,794 1993-2013 Iraq 9,937 6,850 9,275 12,308 8,618 7,000 1996-2013 Kuwait 11,181 6,518 9,585 13,006 8,980 10,382 1993-2013 Libya

382

Total Crude Oil and Products Imports from All Countries  

Gasoline and Diesel Fuel Update (EIA)

Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Egypt El Salvador Equatorial Guinea Estonia Finland France Gabon Georgia, Republic of Germany Ghana Gibralter Greece Guatemala Guinea Hong Kong Hungary India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Kazakhstan Korea, South Kyrgyzstan Latvia Liberia Lithuania Malaysia Malta Mauritania Mexico Midway Islands Morocco Namibia Netherlands Netherlands Antilles New Zealand Nicaragua Niue Norway Oman Pakistan Panama Papua New Guinea Peru Philippines Poland Portugal Puerto Rico Romania Russia Senegal Singapore Slovakia South Africa Spain Spratly Islands Swaziland Sweden Switzerland Syria Taiwan Thailand Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Ukraine United Kingdom Uruguay Uzbekistan Vietnam Virgin Islands (U.S.) Yemen

383

U.S. Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Import Area: U.S. Import Area: U.S. Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country 2007 2008 2009 2010 2011 2012 View History All Countries 4,915,957 4,726,994 4,267,110 4,304,533 4,174,210 3,878,852 1981-2012 Persian Gulf 789,607 867,559 616,371 624,638 679,403 789,082 1993-2012 OPEC* 2,182,607 2,179,305 1,743,143 1,790,811 1,662,720 1,563,273 1993-2012 Algeria 244,605 200,652 180,018 186,019 130,723 88,487 1993-2012 Angola 185,352 187,790 167,877 143,512 126,259 85,335 1993-2012 Ecuador 74,179 80,714 67,471 77,224 75,072 65,913 1993-2012 Iraq 176,709 229,300 164,357 151,619 167,690 174,080 1996-2012 Kuwait 66,185 76,986 66,477 71,782 69,890 111,586 1993-2012

384

West Coast (PADD 5) Total Crude Oil and Products Imports  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History All Countries 40,216 40,703 46,595 47,285 42,741 43,793 1981-2013 Persian Gulf 14,230 13,361 14,442 14,250 16,435 14,465 1993-2013 OPEC* 22,029 19,569 22,946 25,238 25,775 23,528 1993-2013 Algeria 344 744 1,559 1995-2013 Angola 1,885 1,648 3,742 2,790 2,098 2,497 1995-2013 Ecuador 4,439 4,264 3,739 8,092 5,312 6,177 1993-2013 Iraq 2,870 2,210 5,918 5,585 4,514 4,960 1995-2013 Kuwait 1,297 686 314 1,034 295 1995-2013 Libya 149 106 12 382 2005-2013 Nigeria 296 293 7 1995-2013 Qatar 1995-2004 Saudi Arabia 10,063 10,465 8,210 8,665 10,887 9,210 1993-2013 United Arab Emirates 1995-2011 Venezuela 982 279 66 1993-2013 Non OPEC*

385

U.S. Total Refiner Acquisition Cost of Crude Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History Composite 94.74 59.29 76.69 101.87 100.93 100.49 1968-2013 Domestic 98.47 59.49 78.01 100.71 100.72 102.91 1968-2013 Imported 92.77 59.17...

386

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

4,145 3,518 4,213 11,299 8,112 3,643 1993-2013 Georgia, Republic of 92 63 1995-2013 Germany 4,378 2,528 984 470 274 1,387 1995-2013 Ghana 453 14 112 993 1995-2013 Greece 167 295...

387

East Coast (PADD 1) Total Crude Oil and Products Imports  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

716 501 615 612 1993-2014 Gabon 650 649 32 1993-2014 Georgia, Republic of 1995-2010 Germany 107 35 14 24 8 125 1993-2014 Ghana 1995-2012 Gibralter 2012-2012 Greece 12 28 28...

388

West Coast (PADD 5) Total Crude Oil and Products Imports  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Finland 12 58 99 1995-2013 France 534 493 156 1995-2013 Gabon 1,523 550 1995-2013 Germany 140 950 4 5 2 178 1995-2013 Greece 1995-2003 Guatemala 118 2005-2012 Guinea 1995-2002...

389

Percentages of Total Imported Crude Oil by API Gravity  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History 20.0 or Less 13.22 14.08 15.13 17.20 16.66 16.20 1978-2013 20.1 to 25.0 23.50 26.11 26.01 27.47 29.77 33.87 1978-2013 25.1 to...

390

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

mines or wells." "During manufacturing processes, it is possible that the thermal energy content of" "an energy input is not completely consumed for the production of...

391

EIA cites importance of key world shipping routes  

SciTech Connect (OSTI)

A disruption of crude oil or products shipments through any of six world chokepoints would cause a spike in oil prices, the US Energy Information Administration (EIA) warns. The strategic importance of each major shipping lane varies because of differing oil volumes and access to other transportation routes. But nearly half of the 66 million b/d of oil consumed worldwide flows through one or more of these key tanker routes, involving: 14 million b/d through the Strait of Hormuz from the Persian Gulf to the Gulf of Oman and Arabian Sea; 7 million b/d through the Strait of Malacca from the northern Indian Ocean into the South China Sea and Pacific Ocean; 1.6 million b/d through the Bosporus from the Black Sea to the Mediterranean Sea; 900,000 b/d through the Suez Canal from the Red Sea to the Mediterranean Sea; 600,000 b/d through Rotterdam Harbor from the North Sea to Dutch and German refineries on or near the Rhine River; and 500,000 b/d through the Panama Canal from the Pacific Ocean to the Caribbean Sea. In today's highly interdependent oil markets, the mere perception of less secure oil supplies is enough to boost oil prices, EIA said. Growing oil and product tanker traffic is increasing the likelihood of supply disruptions through oil arteries because of bad weather, tanker collisions, or acts of piracy, terrorism, or war. What's more, the increasing age of the world tanker fleet and dependability of navigational equipment could increase chances of accidents and, therefore, oil supply disruptions.

Not Available

1994-03-07T23:59:59.000Z

392

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

393

Politicians must summon courage to prevent an oil spill  

SciTech Connect (OSTI)

According to the analysis presented in this article, the U.S. must find a political solution to some of the economic problems that have been plaguing the oil industry. If indeed, increasing world demand, declining world production and continued political instability in the key Persian Gulf oil-producing nations constitute a threatening oil/energy crisis, then it will continue to become more evident. The author discusses how the U.S. Congress should be persuaded to move. They must take action in a political arena dominated by a consumer's bias, regional prejudices and a general unawareness that the nation's energy tank is near empty.

Nelson, J.K.B. (Grey Wolf Drilling Co. (US))

1989-12-01T23:59:59.000Z

394

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

395

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

396

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

397

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

398

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

399

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

400

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

402

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

403

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

404

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

405

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

406

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

407

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

408

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

409

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

410

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

411

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

412

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

413

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

414

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

415

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

416

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

417

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

418

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

419

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

420

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

422

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

423

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

424

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

425

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

426

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

427

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

428

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

429

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

430

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

431

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

432

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

433

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

434

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

435

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

436

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

437

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

438

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

439

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

440

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

442

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

443

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

444

Baseballs and Barrels: World Statistics Day | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day October 20, 2010 - 1:06pm Addthis Dr. Richard Newell Dr. Richard Newell Does the American League hold more baseball World Series titles than the National League? Yes. Does Saudi Arabia produce more crude oil than Russia? No. How do I know? Statistics. The month of October not only marks the beginning of Major League Baseball's World Series and Energy Awareness Month, but also the celebration of the first ever World Statistics Day on October 20th. Statistics don't just help us answer trivia questions - they also help us make intelligent decisions. If I heat my home with natural gas, I'm probably interested in what natural gas prices are likely to be this winter. If my business manufactures solar panels, I would want to know how

445

Oil and gas resources in the West Siberian Basin, Russia  

SciTech Connect (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

446

Development of Nuclear Energy in the Third World --- Need and Constraints  

Science Journals Connector (OSTI)

The world is passing through a deepening energy crisis caused by sharp rise in oil prices and fast depleting reserves of petroleum. This has created an economic instability and a feeling of energy insecurity i...

Munir Ahmad Khan

1980-01-01T23:59:59.000Z

447

World Shale Resources  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

with crude oil approaching the 1970 all-time high of 9.6 million barrels per day * Light-duty vehicle energy use declines sharply reflecting slowing growth in vehicle miles...

448

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

449

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

450

China's Global Oil Strategy  

E-Print Network [OSTI]

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

451

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

452

China's Global Oil Strategy  

E-Print Network [OSTI]

Analysts agree that the Persian Gulf region will continue tos oil imports. 17 The Persian Gulf region is particularlyaccess to oil from the Persian Gulf because of conflict

Thomas, Bryan G

2009-01-01T23:59:59.000Z

453

oil1990.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

454

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National Centre...

455

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

456

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

457

First Factor Impacting Distillate Prices: Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: World oil prices have tripled from their low point in December 1998 to August this year, pulling product prices up as well. But crude prices are expected to show a gradual decline as increased oil production from OPEC and others enters the world oil market. We won't likely see much decline this year, however, as prices are expected to end the year at about $30 per barrel. The average price of WTI was almost $30 per barrel in March, but dropped to $26 in April as the market responded to the additional OPEC production. However, prices strengthened again, averaging almost $32 in June, $30 in July, and $31 in August. The continued increases in crude oil prices indicate buyers are having trouble finding crude oil, bidding higher prices to obtain the barrels available.

458

World Elephant Centre:.  

E-Print Network [OSTI]

??The World Elephant Centre tackles two problems of our time, in a global relevance framework. In fact, it is not only a typical case of… (more)

Rota, M.

2014-01-01T23:59:59.000Z

459

World Wide Chemistry  

Science Journals Connector (OSTI)

World Wide Chemistry ... Plutonium has been produced for the first time at Britain's Atomic Energy Research Establishment at Harwell. ... Indian Ore Reserves ...

G. ABRAHAMSON; RAFFAELE SANSONE

1949-04-11T23:59:59.000Z

460

A predictive ocean oil spill model  

SciTech Connect (OSTI)

This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

Sanderson, J.; Barnette, D. [Sandia National Labs., Albuquerque, NM (United States); Papodopoulos, P. [Oak Ridge National Lab., TN (United States); Schaudt, K. [Marathon Oil Co., Littleton, CO (United States); Szabo, D. [Mobil Research and Development Corp., Dallas, TX (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Staking claims to China's borderland : oil, ores and statebuilding in Xinjiang Province, 1893-1964  

E-Print Network [OSTI]

China’s oil and natural gas reserves and “they were not tos total and natural gas reserves estimated at one quarter ofreserves in 1935; that same year, another team investigated the oil and gas

Kinzley, Judd Creighton; Kinzley, Judd Creighton

2012-01-01T23:59:59.000Z

462

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

463

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

464

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

465

Effect of modifying host oil on coprocessing  

SciTech Connect (OSTI)

The world`s supply of petroleum crudes is becoming heavier in nature so that the amount of vacuum bottoms has been steadily increasing. Coprocessing of coal with these resids (1,000 F+) is an attractive way of obtaining useful distillates from these readily available cheap materials. The objective of this work is to pretreat the host oil in ways that would improve its performance in coprocessing with coal. The following are examples of some ways in which heavy oil could be made into a better host oil: converting aromatic structures to hydroaromatics capable of donating hydrogen to coal, cracking the heavy oil to lower molecular weight material that would be a better solvent, and removing metals, sulfur, and nitrogen. The work reported here used a Venezuelan oil obtained from the Corpus Christi refinery of Citgo. Two coals, Illinois No. 6 and Wyodak subbituminous, were coprocessed with host oils. The authors have found that mild pretreatment of a Citgo resid (1,000 F) using either Mo naphthenate or Mo/Fe{sub 2}O{sub 3}/SO{sub 4}, as well as a pretreatment using the homogeneous catalyst Co{sub 2}(CO){sub 8} under synthesis gas can increase the available (donatable) hydrogen content of the resid. When these pretreated oils were thermally (no added catalyst) coprocessed with an Illinois No. 6 coal, about 90 wt% of the coal (maf) was converted to soluble products. This high coal conversion was realized even at a high coal loading of 50 wt%. The products from coprocessing coal and oil were equally split between high boiling material, mostly asphaltenes, and distillate. Distillate yields appeared to be affected by the concentration of coal in the feed, with maximum yields at coal loadings below 50 wt%.

Hajdu, P.E.; Tierney, J.W.; Wender, I.

1995-05-01T23:59:59.000Z

466

Abstract B46: Isolation, identification, and sensitivity pattern on fatty acid composition of edible oil in Bangladesh: From preclinical studies to international clinical trials.  

Science Journals Connector (OSTI)

...16 versus 39% energy from fat) diet composed...oil or n-6 PUFA corn oil. All diets were...low or high total energy level, had significantly...exposed to high-fat corn oil diet F (2...16 versus 39% energy from fat) diet composed...oil or n-6 PUFA corn oil. All diets were...

Md. Ariful Haque Mollik

2012-10-01T23:59:59.000Z

467

1 - Mapping virtual worlds  

Science Journals Connector (OSTI)

Abstract Virtual worlds are many and varied. In investigating the scope of virtual communities, it is important to understand social and theoretical issues that impact online participants. Such issues as gender, ontology, socio-technological integration, and corporeal interface all impact exploration of virtual worlds.

Woody Evans

2011-01-01T23:59:59.000Z

468

World Power Conference  

Science Journals Connector (OSTI)

... A TWO-DAY meeting of the International Executive Council of the World Power Conference has been held at Stockholm. Nineteen countries were represented : Australia, Austria, Belgium, ... of the International Executive Council and of the British National Committee of the World Power Conference, who presided ; Mr. Harold Hobson, vice-chairman of the British National Committee ...

1948-06-26T23:59:59.000Z

469

World Power Conference  

Science Journals Connector (OSTI)

... THE theme of the Canadian Sectional Meeting of the World Power Conference, to be held in Montreal during September 7-11, 1958, will be "Economic ... other application forms, can be obtained from the Secretary, British National Committee, World Power Conference, 201 Grand Buildings, Trafalgar Square, London, W.C.2. At the meeting ...

1958-05-03T23:59:59.000Z

470

Importance of algae oil as a source of biodiesel  

Science Journals Connector (OSTI)

Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7–31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

Ayhan Demirbas; M. Fatih Demirbas

2011-01-01T23:59:59.000Z

471

Ships After Oil  

Science Journals Connector (OSTI)

Ships After Oil ... Special self-propelled tenders planned for offshore drilling operations in Gulf ...

1956-07-02T23:59:59.000Z

472

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

473

The role of non conventional oil in the attenuation of peak oil  

Science Journals Connector (OSTI)

In this paper, the possible substitution of conventional with non conventional oil is studied using system dynamics models. The model proposed in this paper is based on geological, economic and technological aspects, and it fits approximately the behaviour observed by Hubbert. A first validation of the model has been made with the USA oil production data. These USA data show that there is a good coincidence between our model and the reality. This model has been expanded in order to include the substitution of the conventional oil with the non conventional one for the World. Two models with different ways to treat the contribution of non conventional oil have been developed and tested: a base model (business as usual), which extrapolates the last two decades’ growth of this type of oil into the future, and a model that explores how much non conventional oil would be needed in order to avoid a peak and decrease in the global non renewable fuel production. The results show that, even under some hypotheses that we consider optimistic, the attenuation of the peak oil decline requires more than 10% of sustained growth of non conventional oil production over at least the next two decades.

Carlos de Castro; Luis Javier Miguel; Margarita Mediavilla

2009-01-01T23:59:59.000Z

474

Oil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

475

Oil and the world economy: some possible futures  

Science Journals Connector (OSTI)

...therefore whether other energy sources can technically...scale, and whether such energy sources have their own...limitations The renewables solar and wind exhibit limited...Another problem with solar and wind is that their energy return on energy invested...

2014-01-01T23:59:59.000Z

476

Oil and the world economy: some possible futures  

Science Journals Connector (OSTI)

...be an issue altogether. Furthermore, solar and wind cannot be operated without a...no wind or sun. Another problem with solar and wind is that their energy return...results. Report no. 71. Cambridge, MA: Massachusetts Institute of Technology, Joint Program...

2014-01-01T23:59:59.000Z

477

World Oils`s 1995 coiled tubing tables  

SciTech Connect (OSTI)

Increasingly in demand in almost every aspect of today`s E and P market because of flexibility, versatility and economy, coiled tubing is being used for a variety of drilling, completion and production operations that previously required conventional jointed pipe, workover and snubbing units, or rotary drilling rigs. For 1995 the popular coiled tubing tables have been reformatted, expanded and improved to give industry engineering and field personnel additional, more specific selection, operational and installation information. Traditional specifications and dimensions have been augmented by addition of calculated performance properties for downhole workover and well servicing applications. For the first time the authors are presenting this information as a stand-alone feature, separate from conventional jointed tubing connection design tables, which are published annually in the January issue. With almost seven times as much usable data as previous listings, the authors hope that their new coiled tubing tables are even more practical and useful to their readers.

NONE

1995-03-01T23:59:59.000Z

478

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

479

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

480

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"

Note: This page contains sample records for the topic "total world oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

482

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

483

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

484

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

485

Diesel fuel oils, 1980  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

486

Heating oils, 1983  

SciTech Connect (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

487

NETL: News Release - DOE Oil Recovery Project Extends Success through  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 , 2007 5 , 2007 DOE Oil Recovery Project Extends Success through Technology Transfer New Technologies & Techniques Boost U.S. Proved Oil Reserves, Travel the Globe WASHINGTON, DC - A groundbreaking oil-recovery project funded by the U.S. Department of Energy (DOE) is coming to a close, but its success will continue to be felt throughout the United States and the world. MORE INFO Read 03.10.06 Techline: DOE-Funded Project Revives Aging California Oilfield The project, titled "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterizations and Thermal Production Technologies," began in 1995 with the goal of increasing recoverable heavy oil reserves in those sections of the Wilmington oilfield operated by Long

488

BP Statistical Review of World Energy | Open Energy Information  

Open Energy Info (EERE)

Review of World Energy Review of World Energy Jump to: navigation, search Name BP Statistical Review of World Energy Data Format Excel Spreadsheet Geographic Scope Earth TODO: Import actual dataset contents into OpenEI The BP Statistical Review of World Energy is an Excel spreadsheet which contains consumption and production data for Coal, Natural Gas, Nuclear, Oil, and Hydroelectric energy. It is produced annually by British Petroleum.[1] Data from the BP Statistical Review is used in various tools, including the Energy Export Databrowser.[1] External links 2009 Data 2008 Data 2007 Data 2006 Data 2005 Data 2004 Data 2003 Data 2002 Data References ↑ 1.0 1.1 "Sources of data used in the Energy Export Databrowser" Retrieved from "http://en.openei.org/w/index.php?title=BP_Statistical_Review_of_World_Energy&oldid=272979"

489

OPEC agrees to lower oil prices, production  

Science Journals Connector (OSTI)

OPEC agrees to lower oil prices, production ... The attempt to stabilize prices and salvage some of OPEC's eroding control of the world oil market forced the cartel to make the first price cut in its history. ... U.S. government officials, predicting that the price ultimately would fall to between $25 and $27 per barrel from the new benchmark level of $29, said the new price would increase domestic production of goods and services 0.4% and cut consumer prices in the U.S. nearly 1.0%. ...

1983-03-21T23:59:59.000Z

490

Historical changes in US dollar exchange rate and real value of oil  

SciTech Connect (OSTI)

Oil prices relative to world currencies are now at unprecedented lows, as shown by a price analysis that incorporates the effect of US dollar exchange rates on the value of oil. A commodity-based analysis corroborates this exchange-rate analysis. The value of oil today on world markets is even below its 1969 level (the nadir of the previous oil bust). The inflation-corrected price of oil (using the producer price index) in the US has increased 130% since 1969. However, the US dollar has lost over 40% of its value relative to G-7 currencies since abandonment of the Bretton Woods agreement in 1971. Therefore, the real value of oil an international markets is 20% below its 1969 level. Since 1988 alone, the dollar has lost 16% relative to the G-7 currencies. Oil producing countries are taking extreme revenue cuts caused by the eroding US dollar.

DeMis, W.D. (Marathon Oil Co., Midland, TX (United States))

1996-01-01T23:59:59.000Z

491

Historical changes in US dollar exchange rate and real value of oil  

SciTech Connect (OSTI)

Oil prices relative to world currencies are now at unprecedented lows, as shown by a price analysis that incorporates the effect of US dollar exchange rates on the value of oil. A commodity-based analysis corroborates this exchange-rate analysis. The value of oil today on world markets is even below its 1969 level (the nadir of the previous oil bust). The inflation-corrected price of oil (using the producer price index) in the US has increased 130% since 1969. However, the US dollar has lost over 40% of its value relative to G-7 currencies since abandonment of the Bretton Woods agreement in 1971. Therefore, the real value of oil an international markets is 20% below its 1969 level. Since 1988 alone, the dollar has lost 16% relative to the G-7 currencies. Oil producing countries are taking extreme revenue cuts caused by the eroding US dollar.

DeMis, W.D. [Marathon Oil Co., Midland, TX (United States)

1996-12-31T23:59:59.000Z

492

The world energy supply  

Science Journals Connector (OSTI)

The pattern of the world's energy supply has undergone dramatic changes over the last century, and particularly over the last twenty years. The growth in the world's population and the ever-greater demand for energy will lead to the global environment being subjected to considerable strain. The world will require a new type of energy system, one that is technically feasible, but which will face many difficulties in gaining social and economic acceptance. The world's future energy supply will depend upon the rational exploitation of resources and the development of high technical standards in the fields of reliability and safety. The required social changes will include a change to more energy-conserving life styles and a strengthening of international co-operation in long-term energy and environmental research and development.

L.H.Th. Rietjens

1991-01-01T23:59:59.000Z

493

the World Wide Web  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical report has been made electronically available on the World Wide Web through a contribution from Walter L. Warnick In honor of Enrico Fermi Leader of the first nuclear...

494

Pleonastic possible worlds  

Science Journals Connector (OSTI)

The role of possible worlds in philosophy is hard to overestimate. Nevertheless, their nature and existence is very controversial. This is particularly serious, since their standard applications depend on ther...

Alexander Steinberg

2013-07-01T23:59:59.000Z

495

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

496

On the shortterm influence of oil price changes on stock markets in GCC countries: linear and nonlinear analyses  

E-Print Network [OSTI]

1 On the shortterm influence of oil price changes on stock markets in GCC countries the short-run relationships between oil prices and GCC stock markets. Since GCC countries are major world energy market players, their stock markets may be susceptible to oil price shocks. To account

Paris-Sud XI, Université de

497

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

498

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

499

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

500

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network [OSTI]

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z