National Library of Energy BETA

Sample records for total windy land

  1. Windy Flats | Open Energy Information

    Open Energy Info (EERE)

    Flats Jump to: navigation, search Name Windy Flats Facility Windy Flats Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon Power Group...

  2. Windy Dog I | Open Energy Information

    Open Energy Info (EERE)

    Dog I Jump to: navigation, search Name Windy Dog I Facility Windy Dog I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Windy Dog I LLC...

  3. Windy Flats IIa extension | Open Energy Information

    Open Energy Info (EERE)

    IIa extension Jump to: navigation, search Name Windy Flats IIa extension Facility Windy Flats IIa extension Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  4. Windy Flats Phase III | Open Energy Information

    Open Energy Info (EERE)

    Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed...

  5. Windy City Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Windy City Renewable Energy LLC Jump to: navigation, search Logo: Windy City Renewable Energy LLC Name: Windy City Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector:...

  6. Windy Point (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    (08) Wind Farm Jump to: navigation, search Name Windy Point (08) Wind Farm Facility Windy Point (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Windy Point - Siemens Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Siemens Wind Farm Jump to: navigation, search Name Windy Point - Siemens Wind Farm Facility Windy Point - Siemens Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Windy Point - REpower (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    REpower (09) Wind Farm Jump to: navigation, search Name Windy Point - REpower (09) Wind Farm Facility Windy Point - REpower (09) Sector Wind energy Facility Type Commercial Scale...

  9. Windy Flats(3Q09 portion) | Open Energy Information

    Open Energy Info (EERE)

    Flats(3Q09 portion) Jump to: navigation, search Name Windy Flats(3Q09 portion) Facility Windy Flats(3Q09 portion) Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  11. AmeriFlux US-SuW Maui Sugarcane Windy

    SciTech Connect (OSTI)

    Anderson, Ray; Wang, Dong

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SuW Maui Sugarcane Windy. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. Site differs from Sugarcane Lee/Sheltered and Sugarcane Middle in soil type and site meteorology.

  12. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  13. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  14. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  18. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  20. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  1. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  2. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  5. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  8. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  9. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Broader source: Energy.gov [DOE]

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  10. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  11. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  12. Land Use and Land Cover Change

    SciTech Connect (OSTI)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  13. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  14. EIS-0370: Windy Gap Firming Project, Colorado

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Reclamation, Great Plains Region), with DOE's Western Area Power Administration as a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if the proposed action is implemented and would market additional power that may be generated as a result of the project.

  15. Land Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...

  16. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  17. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  18. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Do Until pInFeat Is Nothing Dim dTotalFedLand As Double dTotalFedLand 0 Dim l As Long Dim lLayersIntersected As Long lLayersIntersected 0 For l 0 To pFedGroupLayer.Count - 1 ...

  19. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  20. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeology on Lab Land Archaeology on Lab Land People have lived in this area for more than 5,000 years. Lab archaeologists are studying and preserving the ancient human occupation of the Pajarito Plateau. Archaeology on Lab Land exhibit Environmental Research & Monitoring Visit our exhibit and find out how Los Alamos researchers are studying our rich cultural diversity. READ MORE Nake'muu archaeological site Unique Archaeology The thousands of Ancestral Pueblo sites identified on Lab land

  1. Proposed Conveyance of Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental effects of conveying approximately 1,641 acres of Hanford Site land to a local economic development organization (https:federalregister.gova2012-23099). The...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  3. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  7. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  11. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  12. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  13. how much land | OpenEI Community

    Open Energy Info (EERE)

    how much land Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  14. csp land use | OpenEI Community

    Open Energy Info (EERE)

    csp land use Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  15. Bureau of Land Management - Land Use Planning Handbook | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Bureau of Land Management - Land Use Planning HandbookPermittingRegulatory GuidanceGuideHandbook Abstract...

  16. Colorado State Land Board Land Survey Requirements | Open Energy...

    Open Energy Info (EERE)

    Colorado State Land Board Land Survey Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado...

  17. Hawaii Land Study Bureau's Land Classification Finder | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Land Study Bureau's Land Classification Finder Citation Hawaii State...

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  19. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  20. Uni Land | Open Energy Information

    Open Energy Info (EERE)

    search Name: Uni Land Place: Bologna, Italy Zip: 40063 Sector: Solar Product: Italian property company, which buys land without permits and develops it for residential and...

  1. Rich land Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rich land Operations Office P.O. Box 550 July 10, 2009 CERTIFIED MAIL Mr. Ryan Jarvis Heart of America Northwest 1314 N.E. 56h" Street Suite 100 Seattle, Washington 98105 Dear Mr....

  2. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  3. Land Management Practices More Critical as Biofuels Use Grows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Management Practices More Critical as Biofuels Use Grows Land Management Practices More Critical as Biofuels Use Grows Climate Simulations Run at NERSC Show Cultivation Causes Carbon Loss in Soil August 3, 2015 Angela Hardin, (630) 252-5501, media@anl.gov LandManagement (a) Total SOC simulated by CLM-Crop over the contiguous United States. (b) Total SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) and (b). The handling of agricultural crop residues

  4. Career Map: Land Acquisition Specialist

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Land Acquisition Specialist positions.

  5. Coastal land loss in Texas - An overview

    SciTech Connect (OSTI)

    Morton, R.A.; Paine, J.G. )

    1990-09-01

    Each year in Texas more than 1,500 acres of prime real estate and productive wetlands are destroyed along the Gulf shoreline and near the bay margins primarily as a result of coastal erosion and submergence. Wetland losses constitute about half of the total land losses. Historical analyses of maps and aerial photographs since the mid-1800s indicate that land losses are accelerating and that human activities are either directly or indirectly responsible for the increased losses, Natural decreases in sediment supply since the modern sea-level stillstand have been exacerbated by (1) river basin projects that reduce the volume of sediment transported to the coast and (2) coastal structures and navigation projects that prevent redistribution of littoral sediments along the coast. Erosion is primarily caused by high wave and current energy combined with an inadequate supply of sediment. Erosion is responsible for higher local rates of land loss than submergence, and the erosion losses are more perceptible, especially after major storms when the greatest losses occur. The principal components of submergence are subsidence and the eustatic rise in sea level. Together these components are recorded by tide gauges as a relative rise in sea level. Submergence converts uplands to wetlands and wetlands to open water. These surficial changes occur mostly on the coastal plain but are also observed on barrier islands and bayhead deltas and within entrenched valleys. Although compactional subsidence is a natural process operating in the Gulf Coast basin, most of the accelerated land-surface subsidence in Texas is attributed to extraction of shallow ground water or production of hydrocarbons at moderate depths. Faults activated by the withdrawal of these fluids concentrate the subsidence near the fault planes. Coastal land losses caused by dredging are less than those caused by erosion and submergence, but they constitute a growing percentage of total land losses.

  6. Future land use plan

    SciTech Connect (OSTI)

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  7. Land-use Leakage

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International offsets are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  8. Energy and land use

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  9. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  10. land requirements | OpenEI Community

    Open Energy Info (EERE)

    land requirements Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv...

  11. The Land | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Land The Land April 12, 2016 Over the past nearly two years, there has been enormous activity, a burst of construction, close to the laboratory. For example we see the opening of the retail center dubbed Market Place@Tech Center and a flurry of other building very close to the laboratory. What is going on? What does this mean for the lab? What does this mean for the electron-ion collider? These are a few of the questions that I am sure you have been asking yourselves, and they are certainly

  12. Navajo-Hopi Land Commission

    Energy Savers [EERE]

    Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO May 7, 2015   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside lands for the benefit of relocates  Proceeds from RE development for Relocatee Project Background   Paragon-Bisti Ranch is selected lands :  Located in northwestern New Mexico.  22,000 acres of land

  13. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  14. Bureau of Land Management - Land Use Planning | Open Energy Informatio...

    Open Energy Info (EERE)

    Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Land Use Planning Abstract The BLM's Resource Management Plans...

  15. California State Lands Commission | Open Energy Information

    Open Energy Info (EERE)

    Lands Commission Jump to: navigation, search Logo: California State Lands Commission Name: California State Lands Commission Abbreviation: CSLC Address: 100 Howe Ave., Suite 100...

  16. Texas General Land Office | Open Energy Information

    Open Energy Info (EERE)

    Land Office Jump to: navigation, search Logo: Texas General Land Office Name: Texas General Land Office Address: 1700 Congress Ave Place: Austin, Texas Zip: 78701 Website:...

  17. IDRISI Land Change Modeler | Open Energy Information

    Open Energy Info (EERE)

    IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler AgencyCompany Organization: Clark Labs Sector: Land Focus Area:...

  18. LANL Land Transfers 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)’s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these tracts must undergo soil surveys/sampling and analysis by Los Alamos National Security (LANS) using the MARSSIM-style process as required by DOE-O-458.1 to obtain technically defensible data for determining the disposition of this property.

  19. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  20. Big Windy (Great Escape Restaurant Turbine) | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  1. EIS-0370: Windy Gap Firming Project, Colorado | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction...

  2. Big Windy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  3. EIS-0370: Windy Gap Firming Project; North Central Colorado

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Reclamation, Great Plains Region), with DOE's Western Area Power Administration as a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if the proposed action is implemented and would market additional power that may be generated as a result of the project.

  4. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  5. Land Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Land Energy Place: North Yorkshire, United Kingdom Zip: YO62 5DQ Sector: Biomass, Renewable Energy Product: A renewable-energy company...

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  8. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  9. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  10. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  11. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  12. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  13. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  14. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  15. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  16. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  17. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  20. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  1. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  2. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  3. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  4. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  5. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  6. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  7. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  8. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  9. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  10. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  12. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  13. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  14. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  15. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  16. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  17. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  18. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  19. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  4. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  5. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  6. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  7. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  8. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  15. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  16. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  17. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  8. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect (OSTI)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  9. Land reclamation beautifies coal mines

    SciTech Connect (OSTI)

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  10. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  11. File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open...

    Open Energy Info (EERE)

    03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of...

  12. File:03-CO-b - ROW Process for State Land Board Land.pdf | Open...

    Open Energy Info (EERE)

    CO-b - ROW Process for State Land Board Land.pdf Jump to: navigation, search File File history File usage Metadata File:03-CO-b - ROW Process for State Land Board Land.pdf Size of...

  13. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  14. AG Land 5 | Open Energy Information

    Open Energy Info (EERE)

    5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer...

  15. Montana State Land Board | Open Energy Information

    Open Energy Info (EERE)

    Land Board Jump to: navigation, search Name: Montana State Land Board Place: Helena, Montana Website: dnrc.mt.govLandBoardStaff.as References: Webpage1 This article is a stub....

  16. Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLand Use < Geothermal(Redirected from Land Use) Redirect page Jump to: navigation, search REDIRECT GeothermalLand Use Planning Retrieved from "http:en.openei.orgw...

  17. LDK Uni Land JV | Open Energy Information

    Open Energy Info (EERE)

    Uni Land JV Jump to: navigation, search Name: LDK & Uni Land JV Place: Italy Product: Italy-based JV to develop and construct PV projects. References: LDK & Uni Land JV1 This...

  18. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    SciTech Connect (OSTI)

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-08-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  19. EA-365 Centre Land Trading Limited | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centre Land Trading Limited EA-365 Centre Land Trading Limited Order Authorizing Centre Land Trading Limited to export electric energy to Canada PDF icon EA-365 Centre Land ...

  20. Colorado State Board of Land Commissioners Strategic Plan | Open...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Land Use Plan: Colorado State Board of Land Commissioners Strategic Plan Abstract The Colorado State Board of Land Commissioners (State Land Board)...

  1. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  2. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  3. Ewing Land Development Services | Open Energy Information

    Open Energy Info (EERE)

    Ewing Land Development Services Jump to: navigation, search Name: Ewing Land Development & Services Place: Pella, Iowa Zip: 50219 Product: Real estate development company...

  4. Elektra Basel Land EBL | Open Energy Information

    Open Energy Info (EERE)

    Basel Land EBL Jump to: navigation, search Name: Elektra Basel Land (EBL) Place: Liestal, Switzerland Zip: 4410 Product: Swiss utility with a possible investment interest in...

  5. State Land Commission FAQ | Open Energy Information

    Open Energy Info (EERE)

    Land Commission FAQ Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: State Land Commission FAQ Abstract Frequently Asked Questions, California State...

  6. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  7. Energy Corridors on Federal Lands

    Office of Energy Efficiency and Renewable Energy (EERE)

    To improve energy delivery and enhance the electric transmission grid for the future, several government agencies currently are working together to establish a coordinated network of Federal energy corridors on Federal lands throughout the United States.

  8. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  9. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  10. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  11. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  12. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  13. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  14. Tribal Lands Student Internship Program

    Energy Savers [EERE]

    Lands Student Internship Program Sandia National Laboratories National Renewable Energy Laboratories Department of Energy The Navajo Tribal Utility Authority 2003 Tribal Lands Program Interns * Shaun Tsabetsaye - Zuni - University of New Mexico - Electrical Engineering * Velissa Sandoval - Navajo/Zuni - University of Denver - Electrical Engineering * Keith Candelaria - Jemez/San Felipe - Dartmouth College - Environmental/Earth Science Several research methods used to understanding NTUA's O&M

  15. Land-Use Requirements for Solar Power Plants in the United States

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  16. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  17. Bureau of Land Management - Table 1.4-1 - Land Use Planning Process...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Bureau of Land Management - Table 1.4-1 - Land Use Planning Process StepsPermittingRegulatory...

  18. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Energy Savers [EERE]

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  19. Land Use Planning Handbook | Open Energy Information

    Open Energy Info (EERE)

    Handbook H-1601-1 released by the United States Department of the Interior Bureau of Land Management (BLM). "This Handbook provides supplemental guidance to the Bureau of Land...

  20. Solar Land Use | Open Energy Information

    Open Energy Info (EERE)

    Solar Land Use Jump to: navigation, search (The following text is derived from a National Renewable Energy Laboratory report on solar land use in the United States.)1 One concern...

  1. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  2. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. Total 7,281 4,217 5,941 6,842 9,010 5,030 1936-2016 PAD District 1 4,571 2,206 2,952 3,174 3,127 2,664 1981-2016 Connecticut 1995-2015 Delaware 678 85 1995-2015 Florida 351 299 932 836 858 649 1995-2016 Georgia 120 295 210 262 1995-2016 Maine 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,575 400 1,131 1,712 1,283 843 1995-2016 New York 1,475 998 350 322 234 824 1995-2016 North Carolina

  3. Marine One Landing Exercise at Argonne

    SciTech Connect (OSTI)

    2013-03-20

    Marine One and its support helicopters conduct a landing exercise at Argonne prior to the President's visit.

  4. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN

    Office of Scientific and Technical Information (OSTI)

    CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN (Technical Report) | SciTech Connect LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Citation Details In-Document Search Title: LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND

  5. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN

    Office of Scientific and Technical Information (OSTI)

    CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN (Technical Report) | SciTech Connect LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Citation Details In-Document Search Title: LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND

  6. Hawaii State Land Use Commission | Open Energy Information

    Open Energy Info (EERE)

    Hawaii State Land Use Commission Jump to: navigation, search Name: State Land Use Commission Abbreviation: LUC Place: Honolulu, Hawaii References: State Land Use Commission -...

  7. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...

    Office of Environmental Management (EM)

    Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

  8. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    Land Use Planning < Geothermal(Redirected from GeothermalLand Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field...

  9. RCW 79.13 Land Leases | Open Energy Information

    Open Energy Info (EERE)

    RCW 79.13 Land LeasesLegal Abstract Washington statute governing the administration of land leases for state trust lands. Published NA Year Signed or Took Effect...

  10. Webtrends Archives by Fiscal Year - Topic Landing Pages | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Landing Pages Webtrends Archives by Fiscal Year - Topic Landing Pages From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the topic landing pages by ...

  11. Land-Use Change and Bioenergy

    SciTech Connect (OSTI)

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  12. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  13. Bioenergy and the importance of land use policy in a carbon-constrained world

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Institute’s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  14. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  15. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  16. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  17. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  2. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  3. Impacts of Array Configuration on Land-Use Requirements for Large-Scale Photovoltaic Deployment in the United States: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R. M.

    2008-05-01

    Land use is often cited as an important issue for renewable energy technologies. In this paper we examine the relationship between land-use requirements for large-scale photovoltaic (PV) deployment in the U.S. and PV-array configuration. We estimate the per capita land requirements for solar PV and find that array configuration is a stronger driver of energy density than regional variations in solar insolation. When deployed horizontally, the PV land area needed to meet 100% of an average U.S. citizen's electricity demand is about 100 m2. This requirement roughly doubles to about 200 m2 when using 1-axis tracking arrays. By comparing these total land-use requirements with other current per capita land uses, we find that land-use requirements of solar photovoltaics are modest, especially when considering the availability of zero impact 'land' on rooftops. Additional work is need to examine the tradeoffs between array spacing, self-shading losses, and land use, along with possible techniques to mitigate land-use impacts of large-scale PV deployment.

  4. Bureau of Land Management - Final Programmatic Environmental...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Bureau of Land Management - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the...

  5. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GCAM Bioenergy and Land Use Modeling March 25, 2015 Analysis and Sustainability PI: Marshall Wise Pacific Northwest National Laboratory This presentation does not contain any ...

  6. Renewable Energy Development on Tribal Lands

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  7. Renewable Energy Development on Tribal Lands (Brochure)

    SciTech Connect (OSTI)

    2009-01-18

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  8. Land-Use Change Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objective Develop innovative and science-based approaches to estimate changes in land use pattern using data mining and machine learning techniques on satellite data. History- Two ...

  9. Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth

    SciTech Connect (OSTI)

    Atul Jain, University of Illinois, Urbana-Champaign, IL Brian O'Neill, NCAR, Boulder, CO

    2009-10-14

    The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.

  10. From land use to land cover: Restoring the afforestation signal in a

    Office of Scientific and Technical Information (OSTI)

    coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations (Journal Article) | SciTech Connect From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations Citation Details In-Document Search Title: From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5

  11. Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Broader source: Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  12. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  18. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  19. Oak Ridge reservation land-use plan

    SciTech Connect (OSTI)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  20. Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Trillion Btu Percent

  1. Land use and environmental impacts of decentralized solar energy use

    SciTech Connect (OSTI)

    Twiss, R.H.; Smith, P.L.; Gatzke, A.E.; McCreary, S.T.

    1980-01-01

    The physical, spatial and land-use impacts of decentralized solar technologies applied at the community level by the year 2000 are examined. The results of the study are intended to provide a basis for evaluating the way in which a shift toward reliance on decentralized energy technologies may eventually alter community form. Six land-use types representative of those found in most US cities are analyzed according to solar penetration levels identified in the maximum solar scenario for the year 2000. The scenario is translated into shares of end use demand in the residential, commercial and industrial sectors. These proportions become the scenario goals to be met by the use of decentralized solar energy systems. The percentage of total energy demand is assumed to be 36.5 percent, 18.8 percent and 22.6 percent in the residential, commercial and industrial sectors respectively. The community level scenario stipulated that a certain percentage of the total demand be met by on-site solar collection, i.e. photovoltaic and thermal collectors, and by passive design. This on-site solar goal is 31.9 percent (residential), 16.8 percent (commercial) and 13.1 percent (industrial).

  2. Idaho State Board of Land Commissioners | Open Energy Information

    Open Energy Info (EERE)

    Board of Land Commissioners Jump to: navigation, search Logo: Idaho State Board of Land Commissioners Name: Idaho State Board of Land Commissioners Address: 300 N. 6th St, Suite...

  3. Nevada Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name: Nevada Division of State Lands Address: 901 S. Stewart St., Suite 5003 Place: Carson City, Nevada...

  4. Sustainable Land Lab Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Land Lab Tour Sustainable Land Lab Tour PARC researchers and guests were taken on a tour of the new Sustainable land lab and shown the rennovations going on in North...

  5. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  6. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Movements: - Industrial: Dry Production: Vehicle ... due to independent rounding. Prices are in nominal dollars. ... Annual Consumption per Consumer (thousand cubic feet) ...

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    from Electric Power to Industrial for years 2002 through ... Totals may not add due to independent rounding. Prices are ... Annual Consumption per Consumer (thousand cubic feet) ...

  18. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  19. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  20. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  1. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  2. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,351479...

  3. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  4. RAPID/Geothermal/Land Access/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    Mexico State Land Office Competitive Land Leasing: Yes, New Mexico State Land Office issues geothermal leases through competitive auction. Noncompetitive Land Leasing: No Royalty...

  5. Webtrends Archives by Fiscal Year - Topic Landing Pages | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Topic Landing Pages Webtrends Archives by Fiscal Year - Topic Landing Pages From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the topic landing pages by fiscal year. Microsoft Office document icon Topic Landing Pages FY10 Microsoft Office document icon Topic Landing Pages FY11 PDF icon Topic Landing Pages FY12-FY13 More Documents & Publications Webtrends Archives by Fiscal Year - Commercialization Webtrends Archives by Fiscal Year - Social Media Site

  6. EA-1856: Conveyance of Land and Facilities at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    56: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio EA-1856: Conveyance of Land and Facilities at the...

  7. Title 16 USC 818 Public Lands Included in Project - Reservation...

    Open Energy Info (EERE)

    Entry (1996). Retrieved from "http:en.openei.orgwindex.php?titleTitle16USC818PublicLandsIncludedinProject-ReservationofLandsFromEntry&oldid722800" ...

  8. Vectorizing the Community Land Model (CLM) (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Vectorizing the Community Land Model (CLM) Citation Details In-Document Search Title: Vectorizing the Community Land Model (CLM) In this paper we describe our...

  9. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  10. ORS Chapter 273 State Lands Generally | Open Energy Information

    Open Energy Info (EERE)

    ORS Chapter 273 State Lands GenerallyLegal Abstract Oregon statute setting forth rules and procedures related to state land. Published NA Year Signed or Took Effect...

  11. Utah Public Lands Policy Coordination Office | Open Energy Information

    Open Energy Info (EERE)

    Lands Policy Coordination Office Jump to: navigation, search Name: Governor's Public Lands Policy Coordination Office Address: 5110 State Office Building Place: Salt Lake City,...

  12. CleanEnergyProjectsonTribalLands_Project_Descriptions_072011...

    Broader source: Energy.gov (indexed) [DOE]

    CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf More Documents & Publications CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf...

  13. Idaho - Idaho Dept. of Lands - Application for Easement | Open...

    Open Energy Info (EERE)

    Easement. Boise, Idaho. Idaho Department of Lands. Easement Application Instructions; 4p. Retrieved from "http:en.openei.orgwindex.php?titleIdaho-IdahoDept.ofLands-A...

  14. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand UseFederal < RAPID | Geothermal | Land Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessColorado < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  16. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessAlaska < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  18. Approaches used for Clearance of Lands from Nuclear Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input Approaches used for Clearance of Lands from Nuclear ...

  19. Coordination of Federal Transmission Permitting on Federal Lands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, ...

  20. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  1. ORS 197 - Comprehensive Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    197 - Comprehensive Land Use Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 197 - Comprehensive Land Use...

  2. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  3. Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...

    Open Energy Info (EERE)

    Rainforest Crunch: Land, People, and Geothermal Development Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Hawaii's Rainforest Crunch: Land, People,...

  4. California Land Use Planning Information Network | Open Energy...

    Open Energy Info (EERE)

    Land Use Planning Information Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Land Use Planning Information...

  5. Beijing Ideal land Technology Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Ideal land Technology Development Co Ltd Jump to: navigation, search Name: Beijing Ideal-land Technology Development Co Ltd Place: China Sector: Biofuels Product: Biofuels (...

  6. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLand Use Planning < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  7. Hawaii Department of Land and Natural Resources | Open Energy...

    Open Energy Info (EERE)

    Logo: Hawaii Department of Land and Natural Resources Name: Hawaii Department of Land and Natural Resources Address: 1151 Punchbowl St Place: Honolulu, Hawaii Zip: 96813 Website:...

  8. RAPID/Geothermal/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessNevada < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. Montana - Land Use License Application | Open Energy Information

    Open Energy Info (EERE)

    Land Use License Application Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Land Use License Application Author Montana Department of Natural...

  10. RAPID/Solar/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDSolarLand AccessNevada < RAPID | Solar | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  11. Mozambique-Biofuels, Land Access and Rural Livelihoods | Open...

    Open Energy Info (EERE)

    Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Mozambique-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization International...

  12. Tanzania-Biofuels, Land Access and Rural Livelihoods | Open Energy...

    Open Energy Info (EERE)

    Tanzania-Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Tanzania-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization...

  13. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; ...

  14. Mays Landing, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Project Registered Energy Companies in Mays Landing, New Jersey Energy Enterprises Utility Companies in Mays Landing, New Jersey Atlantic City Electric Co References...

  15. Vermont State Lands Administration: Application Page | Open Energy...

    Open Energy Info (EERE)

    State Lands Administration: Application Page Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont State Lands Administration: Application Page...

  16. Utah School and Institutional Trust Lands Administration | Open...

    Open Energy Info (EERE)

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  17. Oregon Land Management Division - Easements | Open Energy Information

    Open Energy Info (EERE)

    Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management...

  18. Hawaii Department of Land and Natural Resources Office of Conservation...

    Open Energy Info (EERE)

    to: navigation, search Name: Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy Information Address: P.O. Box 261 Place:...

  19. Soil carbon sequestration and land use change associated with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil carbon sequestration and land use change associated with biofuel production: empirical evidence Title Soil carbon sequestration and land use change associated with biofuel...

  20. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  1. RAPID/Geothermal/Land Access/Montana | Open Energy Information

    Open Energy Info (EERE)

    Way Easement for Utilities Through State Lands. Local Land Access Process not available Policies & Regulations An Introduction to Electric Power Transmission Environmental...

  2. Assessment of Biomass Resources from Marginal Lands in APEC Countries...

    Open Energy Info (EERE)

    Biomass Resources from Marginal Lands in APEC Countries Jump to: navigation, search Logo: Assessment of Biomass Resources from Marginal Lands in APEC Countries Name Assessment of...

  3. Oregon Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    Lands. The agency is comprised of four divisions: Director's Office, Land Management, Wetlands and Waterways Conservation, and Finance and Administration, and the South Slough...

  4. Land O Lakes Inc | Open Energy Information

    Open Energy Info (EERE)

    O Lakes Inc Jump to: navigation, search Name: Land O'Lakes Inc Place: Saint Paul, Minnesota Zip: 55164-0101 Product: Farmer-owned cooperative, marketer of dairy-based products for...

  5. AG Land 1 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531, -93.432161 Show Map Loading map... "minzoom":false,"mappings...

  6. AG Land 4 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397, -93.325714 Show Map Loading map... "minzoom":false,"mappings...

  7. AG Land 2 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231, -93.354864 Show Map Loading map... "minzoom":false,"mappings...

  8. AG Land 3 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061, -93.428028 Show Map Loading map... "minzoom":false,"mappings...

  9. solar land use | OpenEI Community

    Open Energy Info (EERE)

    solar land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport...

  10. 2015 Tribal Lands and Environment Forum

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout...

  11. Renewable Energy Development on Tribal Lands Conference

    Broader source: Energy.gov [DOE]

    The Electric Utility Consultants, Inc. (EUCI) is hosting a conference to examine key considerations when designing tribal projects to improve feasibility, assess risks and opportunities of active vs. passive tribal participation, and building a project on tribal lands.

  12. 2015 Tribal Lands and Environment Forum

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout sessions focused on tribal water programs.

  13. Land Use License | Open Energy Information

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Land Use LicenseLegal Published NA Year Signed or Took Effect 2013 Legal Citation Not...

  14. pv land use | OpenEI Community

    Open Energy Info (EERE)

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  15. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Arctic and Antarctica are covered with large, heavy sheets of ice. Other islands like New Zealand have ice masses in the form of glaciers on them. When land-based ice melts, ...

  16. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  17. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  18. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals may not add due to independent rounding. Prices are ... 250,994 253,127 Industrial 9,332 9,088 8,833 8,497 8,156 Average Annual Consumption per Consumer (thousand cubic ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not add due to independent rounding. Prices ... 34,078 34,283 34,339 Industrial 102 94 97 95 92 Average Annual Consumption per Consumer (thousand cubic feet) ...

  1. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  2. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  3. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  4. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004629.1...

  5. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. ... 2,314 764 719 180 4,046 Supplemental Gas Supplies 732 701 660 642 635 Balancing Item ...

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. ... 3,762 7,315 10,303 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 65,897 -19,970 ...

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. ... 473 526 484 626 1,359 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -6,645 3,976 ...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. ... 35 108 71 124 185 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,393 -3,726 ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. ... 92 87 100 89 138 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -2,885 -12,890 ...

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. ... 76 96 66 131 128 Supplemental Gas Supplies 1 0 * * 6 Balancing Item 3,249 7,362 ...

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. ... 1,844 980 2,403 2,701 Supplemental Gas Supplies 2 1 0 0 1 Balancing Item -1,989 -7,914 ...

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. ... 4,404 3,278 5,208 6,218 Supplemental Gas Supplies 457 392 139 255 530 Balancing Item ...

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. ... 698 436 457 645 879 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,269 1,045 ...

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. ... 0 LNG Storage 0 0 0 0 0 Supplemental Gas Supplies 1 2 3 3 5 Balancing Item -453 -1,711 ...

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. ... 195 154 146 210 211 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 17,590 4,622 ...

  17. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  18. Land Record System PIA, Bonneville Power Administration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration PDF icon Land Record System PIA, Bonneville Power Administration More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  19. PIA - Land Record System (SWPA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Land Record System (SWPA) PIA - Land Record System (SWPA) PIA - Land Record System (SWPA) PDF icon PIA - Land Record System (SWPA) More Documents & Publications PIA - INL PeopleSoft - Human Resource System PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - INL Education Programs Business Enclave

  20. Reinventing the Bureau of Land Management

    SciTech Connect (OSTI)

    Yager, J.O.; Muller, K.

    1995-12-01

    The Bureau of Land Management (BLM) has developed a {open_quotes}Blueprint for the Future{close_quotes} changing its organizational structure to better manage nearly 270 million acres of public lands and 540 million acres of subsurface mineral resources. Both efforts focus on ecosystem management and better business practices. The mission identified in the {open_quotes}Blueprint{close_quotes} is {open_quotes}to sustain the health, diversity and productivity of the public lands for the use and enjoyment of present and future generations.{close_quotes} Within this mission goals include maintaining healthy ecosystems and improving customer service and business practices. In conjunction with the Blueprint, the BLM developed strategies to streamline its headquarters and field organizational structures and to accommodate an ecosystem management approach. The new headquarters structure uses flexible interdisciplinary work teams in place of the programmatic hierarchical approach. These teams may be established on either a permanent or temporary basis. For example, one team is responsible for reporting on the condition of the public lands as an essential part of maintaining healthy ecosystems. Although it is too early to judge the success of the BLM`s reinvention efforts, insights can be gained from a review of these efforts. One insight is that most people are so used to thinking about the public lands on a statute by statute, resource by resource, project by project basis, that is difficult for them to adjust to the ecosystem management or streamlining paradigms.

  1. 7Be Solar Neutrino Measurement with KamLAND

    SciTech Connect (OSTI)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2014-05-26

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV {sup 7}Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582{+-}90 (kton#1;day){sup -1}, which corresponds to a 862 keV {sup 7}Be solar neutrino flux of (3.26{+-}0.50) #2;x 10{sup 9} cm{sup -2}s{sup -1}, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a #23;e survival probability of 0.66{+-}0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total {sup 7}Be solar neutrino flux of (5.82{+-}0.98) x 10{sup 9} cm{sup -2}s{sup -1}, which is consistent with the standard solar model predictions.

  2. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  3. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2. Fossil fuel sales of production from Indian lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 10 59 0.5% 2 6 0.3% 283 291 1.5% 30 616 2.8% 972 1.7% 2004 10 58

  4. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2014-09-22

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  5. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2015-04-09

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  6. Results from KamLAND-Zen

    SciTech Connect (OSTI)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshido, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0??? decay half-life of T0?1/2 > 2.61025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are also presented.

  7. Results from KamLAND-Zen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; et al

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T0ν1/2 > 2.6×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are alsomore » presented.« less

  8. A framework for benchmarking land models

    SciTech Connect (OSTI)

    Luo, Yiqi; Randerson, J.; Abramowitz, G.; Bacour, C.; Blyth, E.; Carvalhais, N.; Ciais, Philippe; Dalmonech, D.; Fisher, J.B.; Fisher, R.; Friedlingstein, P.; Hibbard, Kathleen A.; Hoffman, F. M.; Huntzinger, Deborah; Jones, C.; Koven, C.; Lawrence, David M.; Li, D.J.; Mahecha, M.; Niu, S.L.; Norby, Richard J.; Piao, S.L.; Qi, X.; Peylin, P.; Prentice, I.C.; Riley, William; Reichstein, M.; Schwalm, C.; Wang, Y.; Xia, J. Y.; Zaehle, S.; Zhou, X. H.

    2012-10-09

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine datamodel mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models to improve their prediction performance skills.

  9. A framework for benchmarking land models

    SciTech Connect (OSTI)

    Luo, Yiqi; Randerson, James T.; Hoffman, Forrest; Norby, Richard J

    2012-01-01

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine data model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models to improve their prediction performance skills.

  10. Land use and value after reclamation

    SciTech Connect (OSTI)

    Phelps, W.R.

    1998-12-31

    This presentation discusses the process of analyzing the size and condition of producing land parcels concerning management and income relationships, tract location, and soil and water conservation structures. It reviews production schemes for crops such as corn, soybeans, wheat, alfalfa hay, and warm season grasses, as well as use for recreation. Management of tenants and leases is discussed concerning evaluation of crop share leases, cash renting, custom farming, and tenant selection. Factors involving subsidence due to underground mining by longwall or room and pillar extraction are discussed. Issues related to planning for and management of taxes, long-term improvements, and other land costs are presented.

  11. Economic consequences of land surface subsidence

    SciTech Connect (OSTI)

    Fowler, L.C.

    1981-06-01

    Overdraft in the Santa Clara Valley, Calif., groundwater basin caused land surface subsidence over an area of 63,000 ha with a maximum depression of 3.6 m from 1912-67. Since cessation of overdraft and replenishment of groundwater levels in 1969, there has been no significant land surface subsidence. During the period of active subsidence, water well casings buckled, sewers lost capacity as a result of changes in slope, and roads and railroads had to be raised. These damages are estimated at over $130 million. (1 graph, 1 map, 6 photos, 2 references, 1 table)

  12. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    SciTech Connect (OSTI)

    Hinds, N R; Rogers, L E

    1991-07-01

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on the landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.

  13. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  14. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  15. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  16. Arid Lands Ecology Facility management plan

    SciTech Connect (OSTI)

    None

    1993-02-01

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  17. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  18. Waste Isolation Pilot Plant land management plan

    SciTech Connect (OSTI)

    1996-05-01

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  19. Optimizing the Use of Federal Lands Through Disposition | Department of

    Energy Savers [EERE]

    Energy Optimizing the Use of Federal Lands Through Disposition Optimizing the Use of Federal Lands Through Disposition July 14, 2014 - 1:20pm Addthis What does this project do? Goal 4. Optimize the use of land and assets. The foundation of the U.S. Department of Energy (DOE) Office of Legacy Management's (LM) Goal 4, "Optimize the use of land and assets," is to establish environmentally sound and protective land uses on LM sites. LM believes there can be beneficial uses of land

  20. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  1. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  2. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  3. Vermont Land Use: Essentials of Local Land Use Planning and Regulation...

    Open Energy Info (EERE)

    Use: Essentials of Local Land Use Planning and Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  4. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

    2014-06-27

    Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmoreC storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.less

  5. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect (OSTI)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  6. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect (OSTI)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  7. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  8. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  9. Oregon Department of State Lands | Open Energy Information

    Open Energy Info (EERE)

    of State Lands Name: Oregon Department of State Lands Address: 775 Summer Street, Suite 100 Place: Salem, Oregon Zip: 97301-1279 Phone Number: 503-986-5200 Website:...

  10. File:03FDBTribalLandLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    03FDBTribalLandLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03FDBTribalLandLeasing.pdf Size of this preview: 463 599 pixels. Other...

  11. File:03NVBStateLandAccess.pdf | Open Energy Information

    Open Energy Info (EERE)

    NVBStateLandAccess.pdf Jump to: navigation, search File File history File usage Metadata File:03NVBStateLandAccess.pdf Size of this preview: 463 599 pixels. Other resolution:...

  12. File:03FDAFederalLandLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    03FDAFederalLandLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03FDAFederalLandLeasing.pdf Size of this preview: 463 599 pixels. Other...

  13. File:01LandUseOverview.pdf | Open Energy Information

    Open Energy Info (EERE)

    1LandUseOverview.pdf Jump to: navigation, search File File history File usage Metadata File:01LandUseOverview.pdf Size of this preview: 463 599 pixels. Other resolution: 464 ...

  14. Geothermal Power Plants — Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  15. Leasing State Trust Lands in Washington | Open Energy Information

    Open Energy Info (EERE)

    Leasing State Trust Lands in Washington Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Leasing State Trust Lands in WashingtonLegal...

  16. H.R.S. 205 - Land Use | Open Energy Information

    Open Energy Info (EERE)

    5 - Land Use Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: H.R.S. 205 - Land UseLegal Published NA Year Signed or Took Effect...

  17. 31 TAC, Part 4, School Land Board | Open Energy Information

    Open Energy Info (EERE)

    School Land Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 31 TAC, Part 4, School Land BoardLegal Abstract Texas...

  18. Montana Natural Streambed and Land Preservation Act Webpage ...

    Open Energy Info (EERE)

    Streambed and Land Preservation Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Streambed and Land Preservation Act Webpage...

  19. Title 36 CFR 251 Land Uses | Open Energy Information

    Open Energy Info (EERE)

    51 Land Uses Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 36 CFR 251 Land UsesLegal Abstract...

  20. Alaska Division of Mining Land and Water | Open Energy Information

    Open Energy Info (EERE)

    Mining Land and Water Jump to: navigation, search Name: Alaska Division of Mining Land and Water Address: 550 W. 7th Ave., Suite 1260 Place: Anchorage, Alaska Zip: 99501-3557 Phone...

  1. TNRC 51 - Land, Timber and Surface Resources | Open Energy Information

    Open Energy Info (EERE)

    51 - Land, Timber and Surface Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: TNRC 51 - Land, Timber and Surface...

  2. Alaska Department of Natural Resources Land Use Planning Webpage...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Use Planning Webpage Abstract This webpage provides an overview of Alaska's land use...

  3. Title 50 CFR 29 Land Use Management | Open Energy Information

    Open Energy Info (EERE)

    9 Land Use Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 50 CFR 29 Land Use ManagementLegal Abstract...

  4. Texas General Land Office - Rights of Way and Miscellaneous Easements...

    Open Energy Info (EERE)

    General Land Office - Rights of Way and Miscellaneous Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas General Land Office - Rights of...

  5. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  6. NRS 322 - Use of State Lands | Open Energy Information

    Open Energy Info (EERE)

    2 - Use of State Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 322 - Use of State LandsLegal Abstract This chapter...

  7. Thermal performance simulation of a solar cavity receiver under windy conditions

    SciTech Connect (OSTI)

    Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S.

    2011-01-15

    Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

  8. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.

  9. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  10. Sustainable Land Management Through Market-Oriented Commodity...

    Open Energy Info (EERE)

    Commodity Development: Case studies from Ethiopia AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  11. Solar Energy on Public Lands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Public Lands Solar Energy on Public Lands This website describes federal policy for deploying utility scale solar on public lands. It includes a roadmap for deployment, a general overview of the status of the Bureau of Land Management's efforts in the utility solar sector, and a history of deployment in the Southwest United States. The site also links to other relevant agencies and resources. Partner Agency: U.S. Department of Interior Resource Type: Webpage Stakeholder Group(s): Rural

  12. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  13. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  14. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  15. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  16. Reforesting Appalachia`s coal lands

    SciTech Connect (OSTI)

    Hopps, M.

    1994-11-01

    Currently, in those four states` primary coal counties, some 5,000 to 6,000 acres are surface-mined each year. Since 1977, when Congress passed the landmark Surface Mining Control and Reclamation Act (SMCRA), coal-mining companies have been required to refill the cuts they make and return the earth`s surface to approximately its original contours. Reclamation here means to aggressively-and literally-lay the groundwork for future cultivation of these lands. SMCRA calls for detailed reclamation plans before mining takes place, backed later by evaluations of how vegatation progresses up until the time of bond release-five years after mining ends. And though SMCRA has succeeded in improving the aesthetic appeal of post-mined sites, it does nothing to ensure that the most appropriate land use will be implemented for the long run.

  17. Land and Asset Transfer for Beneficial Reuse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Land and Asset Transfer for Beneficial Reuse Land and Asset Transfer for Beneficial Reuse PDF icon Land and Asset Transfer for Beneficial Reuse More Documents & Publications EA-0531: Final Environmental Assessment EIS-0068: Final Environmental Impact Statement EA-1008: Final Environmental Assessment

  18. Mined land reclamation in Wisconsin since 1973

    SciTech Connect (OSTI)

    Hunt, T.C.

    1989-01-01

    Reclamation has long been recognized as an essential action necessary to mitigate the degradation of land caused by mining activities. But, it is only within the past several decades that reclamation has become an integral component of the mineral extraction process. While the Metallic Mining Reclamation Act (MMRA) was passed in 1973, Wisconsin is yet to enact comprehensive state-wide reclamation requirements for mining other than metallic minerals and the code for metallic mining has yet to establish procedures and standards for reclamation success, specifically revegetation and postmining land use. This study integrates several interdisciplinary methodologies including a history of reclamation; an inventory and status report of mined lands; a critique and comparison of existing reclamation policy with previous state and current federal reclamation policies; in-field case studies of revegetation parameters, procedures, and performance standards; and an economic analysis of reclamation technology. This study makes three major recommendations: (1) The metallic mining code should be amended to establish vegetation parameters, measuring methods, and performance standards for revegetation success similar to those contained in the federal Surface Mining Control and Reclamation Act (SMCRA); (2) The metallic mining code should be amended to resolve semantic loopholes by clearly defining the endpoints of terms such as restoration, reclamation, and rehabilitation and by utilizing the reclamation continuum as a planning tool for determining acceptable postmining land use alternatives; and (3) Mandatory statewide nonmetallic legislation should be enacted to strengthen the mineral resource management program in Wisconsin by systematically and uniformly regulating the mining and reclamation of nonmetallic minerals, the state's most important mineral resource.

  19. Land Disposal Restrictions (LDR) program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) enacted in 1984 required the Environmental Protection Agency (EPA) to evaluate all listed and characteristic hazardous wastes according to a strict schedule and to develop requirements by which disposal of these wastes would be protective of human health and the environment. The implementing regulations for accomplishing this statutory requirement are established within the Land Disposal Restrictions (LDR) program. The LDR regulations (40 CFR Part 268) impose significant requirements on waste management operations and environmental restoration activities at DOE sites. For hazardous wastes restricted by statute from land disposal, EPA is required to set levels or methods of treatment that substantially reduce the waste`s toxicity or the likelihood that the waste`s hazardous constituents will migrate. Upon the specified LDR effective dates, restricted wastes that do not meet treatment standards are prohibited from land disposal unless they qualify for certain variances or exemptions. This document provides an overview of the LDR Program.

  20. Paddy field, groundwater and land subsidence

    SciTech Connect (OSTI)

    Wen, L.J.

    1995-12-31

    Through many years of research and technical interchange both at home and abroad, it is commonly recognized that paddy fields possess the functions of micro-climate adjustment, flood detection and prevention, soil and water conservation, river-flow stabilization, soil salinization prevention, water purification, groundwater recharge, rural area beautification and environmental protection which are all beneficial to the public. In recent years, the global environmental problems have become a series concern throughout the world. These include the broken ozone layer, green house effects, acid rain, land desertion, tropical rain forest disappearing etc. Among them, rain forest disappearing draws great attention. Both rain forests and paddy fields are in tropical areas. They have similar functions and are disappearing because of economic pressure. This paper describes the special functions of paddy fields on water purification, ground water recharge and prevention of land subsidence, and reiterates groundwater utilization and land subsidence prevention measures. In view of the importance of groundwater resources, paddy fields, which can not be replaced by any other artificial groundwater recharge facilities, should not be reduced in acreage, nor can they be left idle. Paddy fields shall be properly maintained and managed in order to strengthen their special functions in the years to come even under heavy pressure from foreign countries.

  1. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

  2. Project Reports for Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  3. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    SciTech Connect (OSTI)

    Zvolanek, E.; Kuiper, J.; Carr, A.; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands were found potentially suitable for CSP development, potentially yielding as much as 13,603 megawatts (MW) of electricity, assuming 10 acres per MW. For photovoltaic solar power (PV), the top NFS units were more widely distributed than CSP. Notably, more than 150,000 acres in Comanche National Grassland in Colorado were found to be potentially suitable for PV development, accounting for more than 25% of the potentially suitable NFS lands combined. In total, about 564,698 acres of NFS lands were found potentially suitable for PV development, potentially yielding as much as 56,469 MW of electricity, assuming 10 acres per MW. NFS units most suitable for wind power are concentrated in the northern Great Plains. In total, about 3,357,792 acres of NFS lands were found potentially suitable for wind development, potentially yielding as much as 67,156 MW of electricity, assuming 50 acres per MW. Of that area, 571,431 acres (11,429 MW) are located within the Bankhead-Jones Farm Tenant Act Land in Montana. NFS lands in Alaska have considerable wind resources, but other siting factors eliminated almost the entire area. The southwest coast of Chugach National Forest, near Seward, Alaska, maintains the majority of the remaining acreage. NFS units with highly suitable biomass resources are located from Idaho to Louisiana. In total, about 13,967,077 acres of NFS lands are potentially highly suitable for biomass from logging and thinning residue development. Of that, 1,542,247 acres is located in Fremont-Winema National Forest in Oregon. Not surprisingly, most NFS units have at least some level of potentially suitable biomass resources. In general, biomass resources such as these could significantly offset consumption of coal and petroleum-based fuels. NFS units deemed potentially highly suitable for enhanced geothermal system (EGS) development were distributed widely from California to Virginia, accounting for some 6,475,459 acres. Mark Twain National Forest in Missouri has the largest area of all the NFS units, with 900,637 acres. While more rigorous studies are needed for siting geothermal plants, especially those regarding the geological characteristics of specific sites, current results suggest a significant potential for geothermal power generation within many NFS units. The first phase of analysis for solar and wind resources sought to replicate the 2005 NREL methodology using updated source data.1 The total acres meeting the criteria for all NFS lands were lower in the updated assessment compared to the 2005 NREL analysis because the earlier assessment included all land that fell within NFS administrative boundaries rather than only NFS-managed land within them. Acreages were again lower when refined screening factors were added, as would be expected. These remaining areas are of greater interest because they adhere to a broader set of criteria. As this study illustrates, GIS data availability for renewable energy resources and major screening factors has reached a point where national screening level studies can effectively assess the levels and spatial distributions for potentially renewable energy technology development. More detailed siting studies, land use planning, and environmental compliance assessments are essential before individual projects can be permitted and built. However, this study can serve to inform resource managers and planners of where these technologies are most likely to be investigated and proposed; help prioritize efforts to continue informed and sustainable development of renewable power generation within the United States; and help characterize the role of the USFS in this arena. The authors caution against using the areas reported in the results as a final and definitive estimate of suitability for these technologies. The analysis is most useful for determining locations that should be examined more fully, and for identifying regional and national trends.

  4. EIS-0222: Hanford Comprehensive Land-Use Plan

    Broader source: Energy.gov [DOE]

    DOE has prepared the EIS to evaluate the potential environmental impacts associated with implementing a comprehensive land-use plan (CLUP) for the Hanford Site for at least the next 50 years. DOE is expected to use this land-use plan in its decision-making process to establish what is the “highest and best use” of the land (41 Code of Federal Regulations [CFR] 101-47, “Federal Property Management Regulations”). The final selection of a land-use map, land-use policies, and implementing procedures would create the working CLUP when they are adopted through the ROD for the EIS.

  5. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  6. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  7. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  8. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  9. Radionuclide concentrations in elk that winter on Los Alamos National Laboratory lands. Revision

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.A.; Salazar, J.G.

    1994-07-01

    Elk spend the winter in areas at Los Alamos National Laboratory (LANL) that may contain radioactivity above natural and/or worldwide fallout levels. This study was initiated to determine the levels of {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium in various tissues (brain, hair, heart, jawbone, kidneys, leg bone, liver, and muscle) of adult cow elk that use LANL lands during the fall/winter months. No significant differences in radionuclide contents were detected in any of the tissue samples collected from elk on LANL lands as compared with elk collected from off-site locations. The total effective (radiation) dose equivalent a person would receive from consuming 3.2 lb of heart, 5.6 lb of liver, and 226 lb of muscle from elk that winter on LANL lands, after natural background has been subtracted, was 0.00008, 0.0001, and 0.008 mrem/yr, respectively. The highest dose was less than 0.01% of the International Commission on Radiological Protection permissible dose limit for protecting the public.

  10. Solar Land Use Data on OpenEI | OpenEI Community

    Open Energy Info (EERE)

    Solar Land Use Data on OpenEI Home > Groups > OpenEI Community Central Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 acres csp land use how much land land...

  11. Green Lands Blue Water 2014 Fall Conference

    Broader source: Energy.gov [DOE]

    The Green Lands Blue Water 2014 Fall Conference will be held from November 19–20, 2014, at the Richland Community College in Decatur, Illinois. The event will focus on bioenergy and sustainable agriculture and explore topics ranging from logistics, energy conversion technologies, and markets for grass biomass. BETO Sustainability Program Technology Manager Kristen Johnson will be speaking about the Energy Department’s perspective on sustainable bioenergy landscapes and will focus on BETO’s recent work with landscape design. The conference will be November 19–20 only. On November 18, participants may choose to participate in a pre-conference field tour.

  12. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  13. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  14. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  15. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  16. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  17. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  18. Total Crude Oil and Petroleum Products Imports by Processing...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum ...

  19. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  20. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  1. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  4. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  5. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  6. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  7. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  8. LandScan 2013 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  9. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  10. Coordination of Federal Transmission Permitting on Federal Lands (216(h)) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Planning » Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, the Department of Energy and eight other Federal agencies entered into a Memorandum of Understanding (MOU) to improve coordination among project applicants, federal agencies, states and tribes involved in the siting and permitting process for electric transmission facilities on Federal land.

  11. Bayesian Calibration of the Community Land Model using Surrogates (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Bayesian Calibration of the Community Land Model using Surrogates Citation Details In-Document Search Title: Bayesian Calibration of the Community Land Model using Surrogates We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditioned on observations of

  12. LandScan 2000 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2001-12-31

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  13. LandScan 2004 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  14. LandScan 2008 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2009-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  15. LandScan 2003 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  16. LandScan 2010 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2010-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  17. LandScan 2002 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2003-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  18. LandScan 2007 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2008-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  19. LandScan 2009 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2009-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  20. LandScan 2006 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  1. LandScan 2011 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2012-11-19

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  2. LandScan 2005 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (OSTI)

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  3. Mineral Leasing Act for Acquired Lands of 1947 | Open Energy...

    Open Energy Info (EERE)

    of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." References Mineral Leasing Act for...

  4. INL Comprehensive Land Use and Environmental Stewardship Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL Land Use Committees. For more details, go to: https:inlportal.inl.govportalserver.ptcommunityhome 255cluesreport. Editorial Date September 1, 2011 By Brad Bugger...

  5. Oregon Land Conservation and Development Commission | Open Energy...

    Open Energy Info (EERE)

    Commission Abbreviation: LCDC Place: Portland, Oregon Website: www.oregon.govLCDpageslcdc. References: Oregon Department of Land Conservation and Development1 This...

  6. Bureau of Land Management - NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Bureau of Land Management - NEPA HandbookPermittingRegulatory GuidanceGuideHandbook Abstract The purpose of...

  7. Bureau of Land Management - WO-210 - Contact Information | Open...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - WO-210 - Contact Information Abstract This page provides contact information for...

  8. Bureau of Land Management - Notice of Intent to Conduct Geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Notice of Intent to Conduct Geothermal Resource Exploration Operations Abstract...

  9. Bureau of Land Management - Washington Office Directories | Open...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library General: Bureau of Land Management - Washington Office Directories Abstract This page links to a directory for state...

  10. Federal Land Policy and Management Act of 1976 (FLPMA) | Open...

    Open Energy Info (EERE)

    Legal Document- Federal RegulationFederal Regulation: Federal Land Policy and Management Act of 1976 (FLPMA)Legal Abstract FLPMA, also called the BLM Organic Act,...

  11. Bureau of Land Management - Examples of Scoping Reports | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - Supplemental Material: Bureau of Land Management - Examples of Scoping ReportsPermittingRegulatory GuidanceSupplemental Material...

  12. Bureau of Land Management, Colorado collaborate to advance efficient...

    Open Energy Info (EERE)

    Management, Colorado collaborate to advance efficient geothermal development Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Bureau of Land...

  13. Alaska Department of Natural Resources Land Search Records Webpage...

    Open Energy Info (EERE)

    Records Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Search Records Webpage Abstract This...

  14. Wyoming Office of State Lands and Investments | Open Energy Informatio...

    Open Energy Info (EERE)

    Investments Jump to: navigation, search Name: Wyoming Office of State Lands and Investments Abbreviation: OSLI Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82001...

  15. 2 CCR State Lands Commission Article 1, General Provisions |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 2 CCR State Lands Commission Article 1, General ProvisionsLegal Abstract California...

  16. Analysis of Impacts on Prime or Unique Agricultural Lands in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    previous memorandum on this subject of August 1976. PDF icon AnalysisAgriculturalLands.pdf More Documents & Publications Mini-Guidance Articles from Lessons Learned Quarterly...

  17. USGS-Land Cover Institute (LCI) | Open Energy Information

    Open Energy Info (EERE)

    USGS currently houses the institute at the Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota. The LCI will address land cover topics from...

  18. RAPID/Geothermal/Land Access/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Basis: Royalty Distribution: ContactsAgencies: Hawaii Department of Land and Natural Resources, Hawaii Department of Transportation Highways Division, Hawaii Department...

  19. RAPID/Geothermal/Land Access/Washington | Open Energy Information

    Open Energy Info (EERE)

    Basis: Royalty Distribution: ContactsAgencies: Washington State Department of Natural Resources, Washington State Department of Transportation State Land Access Process In...

  20. RAPID/Geothermal/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Access < RAPID | Geothermal(Redirected from RAPIDGeothermalLeasing) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop...

  1. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science ... Current convective cloud parameterizations contain uncertainties resulting in part from ...

  2. Geothermal Regulations in Colorado - Land Ownership is the Key...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Regulations in Colorado - Land Ownership is the Key Abstract Geothermal resources in...

  3. Hawaii Department of Land and Natural Resources Engineering Division...

    Open Energy Info (EERE)

    Land Leasing Contact Contacts.png Morriss Atta Chief Engineer Contacts.png Carty Chang http:hawaii.govdlnreng Retrieved from "http:en.openei.orgw...

  4. Colorado - Rights of Way on State Trust Lands - General Information...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Colorado - Rights of Way on State Trust Lands - General InformationPermitting...

  5. Atmosphere-Land-Surface Interaction over the Southern Great Plains...

    Office of Scientific and Technical Information (OSTI)

    Plains: Diagnosis of Mechanisms from SGP ARM Data Citation Details In-Document Search Title: Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of ...

  6. Geothermal Leasing 101: Federal, State and Private Lands | Open...

    Open Energy Info (EERE)

    and Private LandsLegal Abstract Comprehensive guide to geothermal leasing, prepared by a law firm. Published NA Year Signed or Took Effect 2009 Legal Citation Geothermal Leasing...

  7. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  8. RAPID/Solar/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDSolarLand Access < RAPID | Solar(Redirected from RAPIDSolarLeasing) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  9. Developing Clean Energy Projects on Tribal Lands: Data and Resources...

    Office of Scientific and Technical Information (OSTI)

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential ...

  10. Microsoft Word - FY15 Land Stewardship Report.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... environmental laws, regulations, and other requirements. ... existing uses of the land; and natural hazards) wildland fires, ... in 1959 to house the Army Gas-Cooled Reactor Experiment ...

  11. Oregon Land Use Compatibility Statement for Onsite Wastewater...

    Open Energy Info (EERE)

    Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Land Use Compatibility Statement for Onsite Wastewater Treatment System Permits Abstract...

  12. Hawaii Department of Land and Natural Resources Historic Preservation...

    Open Energy Info (EERE)

    Historic Preservation Division Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Historic Preservation Division Address: Kakuhihewa Building601...

  13. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    of Forestry and Wildlife Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building...

  14. Hawaii Department of Land and Natural Resources Commission on...

    Open Energy Info (EERE)

    on Water Resource Management Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address: Kalanimoku...

  15. ARM - Cloud and Land Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land Experiment Plan (pdf) Sponsors Science Team News Fact Sheets News & Press Mission...

  16. Arizona State Land Department Applications and Permits Website...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Applications and Permits Website Abstract This website contains supplemental...

  17. Colorado State Board of Land Commissioners: Temporary Access...

    Open Energy Info (EERE)

    Colorado State Board of Land Commissioners: Temporary Access Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit...

  18. Lake Encroachment Permit Application, Abutting Land Owner Addendum...

    Open Energy Info (EERE)

    Lake Encroachment Permit Application, Abutting Land Owner Addendum Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit...

  19. Texas General Land Office Construction Certificate and Dune Protection...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Checklist: Texas General Land Office Construction Certificate and Dune Protection Permit Requirements...

  20. Sugar Land, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Land, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6196787, -95.6349463 Show Map Loading map... "minzoom":false,"mappingservice":"...

  1. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  2. land art generator initiative | OpenEI Community

    Open Energy Info (EERE)

    land art generator initiative Home Dc's picture Submitted by Dc(266) Contributor 20 March, 2015 - 11:22 Public Art Generates Renewable Energy Beautifully biofuel art clean energy...

  3. Texas General Land Office Leasing and Easement Guidelines | Open...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Reference: Texas General Land Office Leasing and Easement Guidelines Published Publisher Not Provided, Date Not...

  4. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  5. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  6. RAPID/Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Use < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  7. Accuracy Assessment for Forest and Land Use Maps (English version...

    Open Energy Info (EERE)

    www.leafasia.orglibraryusaid-leaf-accuracy-assessment-forest-and-lan Cost: Free Language: English Accuracy Assessment for Forest and Land Use Maps (English version)...

  8. Vermont FPR: Land and Water Conservation Fund | Open Energy Informatio...

    Open Energy Info (EERE)

    provides information on the Vermont Department of Forest, Parks and Recreation's administration of the Land and Water Conservation Fund. Published Publisher Not Provided, Date...

  9. Bureau of Land Management - Resource Advisory Councils | Open...

    Open Energy Info (EERE)

    Advisory Councils Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Resource Advisory Councils Abstract The BLM formed...

  10. Title 40 CFR 268 Land Disposal Restrictions | Open Energy Information

    Open Energy Info (EERE)

    disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. Except as specifically provided otherwise in this...

  11. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Wind Energy Community Citation Details In-Document Search Title: Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy ...

  12. Geothermal Direct-Use — Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

  13. Office of State Lands and Investments - Easements | Open Energy...

    Open Energy Info (EERE)

    - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Office of State Lands and Investments - Easements Abstract This web page contains...

  14. Oregon Land Use Compatibility Statements Website | Open Energy...

    Open Energy Info (EERE)

    Statements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Use Compatibility Statements Website Author Oregon Department of...

  15. Analysis of Impacts on Prime or Unique Agricultural Lands in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing the National Environmental Policy Act was developed in cooperation with the Department of Agriculture. ...

  16. Administration of State Lands Interagency MOA July 2012 | Open...

    Open Energy Info (EERE)

    Parks and Recreation; Department of Environmental Conservation; and Department of Fish and Wildlife, with respect to agency administration of State lands. Authors FPR, DEC...

  17. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Gasoline and Diesel Fuel Update (EIA)

    maplayers.html?openChapterschpboundchpbound Four agencies-the National Park Service, Fish and Wildlife Service, and Bureau of Land Management (BLM), in the Department of the...

  18. Low-Carbon Land Transport Policy Handbook | Open Energy Information

    Open Energy Info (EERE)

    Policy Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Carbon Land Transport Policy Handbook AgencyCompany Organization: Routledge ComplexityEase...

  19. Land and Facility Use Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Each comprehensive plan will consider the site's larger regional context and be developed with stakeholder participation. This policy will result in land and facility uses which ...

  20. Alaska Department of Natural Resources Land Records Search Portal...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Alaska Department of Natural Resources Land Records Search Portal Citation...

  1. Bureau of Land Management - Examples of Decision Records | Open...

    Open Energy Info (EERE)

    BLM, 2011 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Bureau of Land Management - Examples of Decision Records Citation BLM....

  2. Texas General Land Office Local Permitting Authorities Webpage...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Texas General Land Office Local Permitting Authorities Webpage Citation...

  3. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy Community Citation Details In-Document Search Title: Assessment of ...

  4. Assessing the Potential for Renewable Energy on Public Lands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Potential For Renewable Energy On Public Lands February 2003 U.S. Department of the Interior Bureau of Land Management U.S. Department of Energy Energy Efficiency and Renewable Energy Download CD ZIP File (248 MB) Download CD-Lite ZIP File with no GIS Data or Acrobat Reader Installers (43 MB) CD-Lite Version Assessing The Potential For Renewable Energy On Public Lands U.S. Department of the Interior Bureau of Land Management U.S. Department of Energy Energy Efficiency and Renewable Energy

  5. Land Ice Verification and Validation Kit

    Energy Science and Technology Software Center (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&Vmore » involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  6. Land Ice Verification and Validation Kit

    SciTech Connect (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.

  7. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    SciTech Connect (OSTI)

    KamLAND,; O'Donnell, Thomas

    2011-12-12

    This dissertation describes a measurement of the neutrino oscillation parameters #1;{Delta}m{sup 2}{sub 21}, θ{sub 12} and constraints on θ{sub 13} based on a study of reactor antineutrinos at a baseline of ∼ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ? 0.07 ? 10{sup 32} proton-years. For this exposure we expect 2140 ? 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350?88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (N{sub Obs} − N{sub Bkg})/N{sub Exp} = 0.59 ? 0.02(stat) ? 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.19}?10{sup −5}eV{sup 2}, θ{sub 12} = 32.5 ? 2.9 degrees and sin{sup 2} θ{sub 13} = 0.025{sup +0.035}{sub −0.035}, the 95% confidence-level upper limit on sin{sup 2} θ{sub 13} is sin{sup 2} θ{sub 13} < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.20} ? 10{sup −5}eV{sup 2}, θ{sub 12} = 33.5{sup +1.0}{sub −1.1} degrees, and sin{sup 2} θ{sub 13} = 0.013 ? 0.028 or sin{sup 2} θ{sub 13} < 0.06 at the 95% confidence level.

  8. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    SciTech Connect (OSTI)

    Arnott, James

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  9. Assessment of Biomass Resources from Marginal Lands in APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2009-08-01

    The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

  10. Hillslope stability and land use (1985). Volume II

    SciTech Connect (OSTI)

    Sidle, R.C.; Pearce, A.J.; O'Loughlin, C.L.

    1985-01-01

    This book emphasizes the natural factors affecting slope stability, including soils and geomorphic, hydrologic, vegetative, and seismic factors and provides information on landslide classification, global damage, and analytical methods. The effects of various extensive and intensive land management practices on slope stability are discussed together with methods for prediction, avoidance, and control. Examples of terrain evaluation procedures and land management practices are presented.

  11. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  12. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect (OSTI)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  13. Savannah River Site Land Use Plan - May, 2013 i SRNS-RP-2013-00162

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Site Land Use Plan - May, 2013 i SRNS-RP-2013-00162 Savannah River Site Land Use Plan - May, 2013 i Table of Contents 1.0 - Purpose p1 2.0 - Executive Summary p1 3.0 - SRS Land Use Overview p5 Assumptions Current Land Use Leases, Transfers and Other Land Use Actions Future Land Use Land Use Issues 4.0 - Land Use Planning and Control for Existing Missions p13 Cleanup, Production and Support Missions Natural and Cultural Resource Management 5.0 - Process for Future Land Use Changes

  14. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  15. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  18. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  19. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).