Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

2

Improved Economic Performance Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control #12;#12;Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based-of-the-art and challenges in the operation of MSWC plants . . . 1 1.1.1 The aims of municipal solid waste combustion

Van den Hof, Paul

3

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

4

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste combus- tion Abstract : Combustion of municipal solid waste (MSW; = household waste) is used to reduce

Van den Hof, Paul

5

Combustible radioactive waste treatment by incineration and chemical digestion  

SciTech Connect (OSTI)

A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L.A.; Crippen, M.D.; Allen, C.R.

1980-05-28T23:59:59.000Z

6

Organic and inorganic hazardous waste stabilization using combusted oil shale  

SciTech Connect (OSTI)

A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

Sorini, S.S.; Lane, D.C.

1991-04-01T23:59:59.000Z

7

Municipal solid waste combustion: Fuel testing and characterization  

SciTech Connect (OSTI)

The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

1990-10-01T23:59:59.000Z

8

Fluid Bed Combustion Applied to Industrial Waste  

E-Print Network [OSTI]

of its relatively recent application to coal fired steam production, fluid beds have been uti lized in industry for over 60 years. Beginning in Germany in the twenties for coal gasification, the technology was applied to catalytic cracking of heavy... system cost), use of minimum excess air required, and maintaining the min"imum reactor temperature neces sary to sustain combustion. For superautogenous fuels, where incineration. only is desired, minimum capital cost is achieved by using direct bed...

Mullen, J. F.; Sneyd, R. J.

9

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents [OSTI]

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

Burnet, G.; Gokhale, A.J.

1990-07-10T23:59:59.000Z

10

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents [OSTI]

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

1990-07-10T23:59:59.000Z

11

Municipal Waste Combustion (New Mexico) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotionMunicipal Waste

12

Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators  

E-Print Network [OSTI]

-furnace destruction of pollutants are stated as: good combustion is achieved when 2-second gas residence time at 850 C1 Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators waste incinerators, good combustion practices(GCP or GOP) have been established. These operating (and

Kim, Yong Jung

13

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery… (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

14

INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected in  

E-Print Network [OSTI]

INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected: Collect representative and typical yard trash samples throughout Florida; Characterize the wastes these wastes. WORK ACCOMPLISHED Visited two compost and mulch processing facilities in Gainesville on 10

Ma, Lena

15

Standard test method for carbon (total) in uranium oxide powders and pellets by direct combustion-infrared detection method  

E-Print Network [OSTI]

Standard test method for carbon (total) in uranium oxide powders and pellets by direct combustion-infrared detection method

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

16

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

17

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

18

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network [OSTI]

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

19

Coal combustion waste management at landfills and surface impoundments 1994-2004.  

SciTech Connect (OSTI)

On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

Elcock, D.; Ranek, N. L.; Environmental Science Division

2006-09-08T23:59:59.000Z

20

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Simultaneous combustion of waste plastics with coal for pulverized coal injection application  

SciTech Connect (OSTI)

A bench-scale study was conducted to investigate the effect of simultaneous cofiring of waste plastic with coal on the combustion behavior of coals for PCI (pulverized coal injection) application in a blast furnace. Two Australian coals, premixed with low- and high-density polyethylene, were combusted in a drop tube furnace at 1473 K under a range of combustion conditions. In all the tested conditions, most of the coal blends including up to 30% plastic indicated similar or marginally higher combustion efficiency compared to those of the constituent coals even though plastics were not completely combusted. In a size range up to 600 {mu}m, the combustion efficiency of coal and polyethylene blends was found be independent of the particle size of plastic used. Both linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are shown to display similar influence on the combustion efficiency of coal blends. The effect of plastic appeared to display greater improvement on the combustion efficiency of low volatile coal compared to that of a high volatile coal blend. The study further suggested that the effect of oxygen levels of the injected air in improving the combustion efficiency of a coal-plastic blend could be more effective under fuel rich conditions. The study demonstrates that waste plastic can be successfully coinjected with PCI without having any adverse effect on the combustion efficiency particularly under the tested conditions. 22 refs., 12 figs., 2 tabs.

Sushil Gupta; Veena Sahajwalla; Jacob Wood [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, School of Materials Science and Engineering

2006-12-15T23:59:59.000Z

22

Design and performance of a fluidized-bed incinerator for TRU combustible wastes  

SciTech Connect (OSTI)

Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

Meile, L.J.; Meyer, F.G.

1982-01-01T23:59:59.000Z

23

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste  

E-Print Network [OSTI]

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare

Hopkins, William A.

24

Advanced combustion zone retrofitting Lidkoeping BFB establishes a state-of-the-art design for waste firing  

SciTech Connect (OSTI)

The oil crisis in 1973 gave an impetus to the development of the fluidized bed combustion technology for power and heat generation with local, often low quality, fuels. Kvaerner delivered the first Bubbling Fluidized Bed (BFB) for Municipal Solid Waste (MSW) firing in 1979 and the first waste fired Circulating Fluidized Bed (CFB) in 1984. Since this introduction Kvaerner has delivered 13 fluidized beds based on MSW out of a total of over 60 BFB and CFB delivers (in the range 5--165 MW{sub ht}). The ever more stringent demands on emissions performance, efficiency and availability have induced a continuous series of design enhancements culminating in the state-of-the-art BFB boilers at Lidkoeping BFB (in operation since 1985 on shredded MSW) was induced by new emission standards and need for increased output. The modified design was based on learning experience from Kvaerner Waste To Energy (WTE) BFB installations and an extensive R and D program. The design has fulfilled all expectations and established a third generation design for MSW fueled BFB-boilers. The green field installation at BCH Energy will commence operation in 1995. Design features include the Advanced Combustion Zone with an air swept fuel inlet spout, an asymmetrical overfire air (OFA) system installed in a double arch arrangement and directional bottom air nozzles. Also included are an integrated ash classifier, an improved back pass surface arrangement and a SNCR-system based on NH{sub 3}.

Tellgren, E.; Hagman, U.; Victoren, A.

1995-12-31T23:59:59.000Z

25

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

26

Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility  

SciTech Connect (OSTI)

At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: (1) The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. (2) Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 200 grams (g). (3) The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. (4) PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 g/cc. (5) PDP Plutonium source weights ranged from 0.030 g to 318 g, in both empty and combustibles matrix drums. (6) The GEA system design density correction mass absorption coefficient table (MAC) is Lucite, a material representative of combustible waste. (7) Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

CANTALOUB, M.G.

2000-10-20T23:59:59.000Z

27

Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility  

SciTech Connect (OSTI)

At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 160 grams (8). The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 gkc. PDP Plutonium source weights ranged from 0.030 g to 3 18 g, in both empty and combustibles matrix drums. The GEA system design density correction macroscopic absorption cross section table (MAC) is Lucite, a material representative of combustible waste. Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

CANTALOUB, M.G.

2000-05-22T23:59:59.000Z

28

Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

none,

1992-10-01T23:59:59.000Z

29

Hazardous-waste combustion in industrial processes: cement and lime kilns  

SciTech Connect (OSTI)

This report summarizes the results of several studies relating to hazardous-waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two Canadian tests, and one Swedish test. The predominant types of wastes tested included chlorinated organic compounds, aromatic compounds, and metal-contaminated waste oil. The kiln types include lime kilns and cement kilns, which included the dry, wet, and preheated processes. Fabric filters and electrostatic precipitators (ESPs) were the pollution-control devices used in these processes, and the primary fuels included coal, coke, coal/coke, fuel oil, and natural gas/coke. The parameters examined in the report were Destruction and Removal Efficiency (DRE) of the Principal Organic Hazardous Constitutents, particulate and HCl emissions, metals, and the effect of burning hazardous waste on SO/sub 2/, NOx, and CO emissions. The primary conclusion of the study is that DRE's of 99.99% or greater can be obtained in properly-operated calcining kilns. Particulate matter can increase when chlorinated wastes are burned in a kiln equipped with an electrostatic precipitator. Those kilns equipped with fabric filters showed no change in emissions.

Mournighan, R.E.; Branscome, M.

1987-11-01T23:59:59.000Z

30

Synthesis, droplet combustion, and sooting characteristics of biodiesel produced from waste vegetable oils  

SciTech Connect (OSTI)

In light of the potential of fatty acid methyl ester (FAME, i.e. biodiesel) as a renewable energy source, an innovative acid catalyzed process was developed for the synthesis of biodiesel from waste vegetable oils. The synthesized biodiesels were analytically characterized for their major components, molar fraction and molecular weight of each component, the average molecular weight, and the heat of combustion. Their droplet combustion characteristics in terms of the burning rate, flame size, and sooting tendency were subsequently determined in a high-temperature, freely-falling droplet apparatus. Results show that the biodiesel droplet has higher burning rate, and that biodiesel in general has a lower propensity to soot because its molecular oxygen content promotes the oxidation of the soot precursors.

Li, T. X.; Zhu, D. L.; Akafuah, N.; Saito, K.; Law, C. K.

2011-01-01T23:59:59.000Z

31

Soil attenuation of leachates from low-rank coal combustion wastes: a literature survey. [116 references  

SciTech Connect (OSTI)

In parallel with pursuing the goal of increased utilization of low-rank solid fuels, the US Department of Energy is investigating various aspects associated with the disposal of coal-combustion solid wastes. Concern has been expressed relative to the potential hazards presented by leachates from fly ash, bottom ash and scrubber wastes. This is of particular interest in some regions where disposal areas overlap aquifer recharge regions. The western regions of the United States are characterized by relatively dry alkaline soils which may effect substantial attenuation of contaminants in the leachates thereby reducing the pollution potential. A project has been initiated to study the contaminant uptake of western soils. This effort consists of two phases: (1) preparation of a state-of-the-art document on soil attenuation; and (2) laboratory experimental studies to characterize attenuation of a western soil. The state-of-the-art document, represented herein, presents the results of studies on the characteristics of selected wastes, reviews the suggested models which account for the uptake, discusses the specialized columnar laboratory studies on the interaction of leachates and soils, and gives an overview of characteristics of Texas and Wyoming soils. 116 references, 10 figures, 29 tables.

Gauntt, R. O.; DeOtte, R. E.; Slowey, J. F.; McFarland, A. R.

1984-01-01T23:59:59.000Z

32

Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.  

SciTech Connect (OSTI)

The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

1990-10-01T23:59:59.000Z

33

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Strategy for hazardous waste minimization and combustion, updated as of July 1995  

SciTech Connect (OSTI)

The module presents a general overview of the issues EPA has addressed in the hazardous waste minization and combustion strategy. It provides a detailed description of the history and goals of the strategy. It presents an in-depth discussion of hazardous waste minimization and combustion issues and includes a section on environmental justice.

NONE

1995-11-01T23:59:59.000Z

34

Determination of total cyanide in Hanford Site high-level wastes  

SciTech Connect (OSTI)

Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

1994-05-01T23:59:59.000Z

35

Combustion of sludge waste in FBC. Distribution of metals and particle sizes  

SciTech Connect (OSTI)

Due to the increases in the amounts of sludge generated and increasingly stringent regulations regarding its disposal, alternative methods to landfilling are becoming more important. Fluidized bed combustion is one such alternative, providing permanent disposal of the sludge. In this research, metal-solid particle characteristics during combustion of a sludge waste were studied. The sludge was a result of de-inking process. Experiments were carried out using a pilot-scale circulating fluidized bed combustion facility (CFB). The fluidized bed was operated in the bubbling mode. The sludge was separately burned with silica sand particles, ultrasorb particles, and alumina particles as bed materials. Major flue gas components (CO{sub 2}, CO, O{sub 2}, NO, NO{sub 2}) were measured continuously. Gas temperature profiles were determined using a water-cooled suction pyrometer. Solid particle samples were collected at multiple locations using a dilution tunnel sampling system. The solid samples were analyzed to determine ash structure, size and composition distributions. Metal analyses were performed using a computer-controlled Electron Probe Microanalyzer (EPMA) equipped with four Wavelength-Dispersive Spectrometers. Analyses of individual fly ash particles indicated that heavy metal elements (Pb, Cd, Cr, Cu, Ni) were generally located in regions near the particle`s core. Lighter metals (Si, Al, Ca, Na, K) were present across the entire cross-section of a particle, with the highest concentrations at the particle surface. These distributions were found to be similar regardless of the type of bed material. This suggests that the light metal layers are formed because of the internal rearrangements of a chemical nature as opposed to physical deposition of light metal fragments on particle surfaces.

Kozinski, J.A. [McGill Univ., Montreal, Quebec (Canada); Rink, K.K.; Lighty, J.S. [Univ. of Utah, Salt Lake City, UT (United States)

1995-12-31T23:59:59.000Z

36

Combustion of high-sulfur coal and anthracite wastes in a rotary kiln combustor with an advanced internal air distributor  

SciTech Connect (OSTI)

Fluid bed combustors have received extensive testing with both high-sulfur coal and anthracite wastes. Rotary kilns are effective and popular devices for waste combustion. The Angelo Rotary Furnace{trademark} has been developed to improve the operation of rotary pyrolyzer/combustor systems through enhanced air distribution, which in this process is defined as staged, swirled combustion air injection. Fourteen of these new furnaces have been installed worldwide. Two units in Thailand, designed for rice hull feed with occasional lignite feed, have been recently started up. An older unit in Pennsylvania is being upgraded with a new, more advanced air distribution system for a series of tests this fall in which inexpensive high-sulfur coal and anthracite wastes will be fired with limestone. The purposes of these tests are to determine the burning characteristics of these two fuels in this system, to discover the Ca/S ratios necessary for operation of a rotary kiln combusting these fuels, and to observe the gas-borne emissions from the furnace. An extensive preliminary design study will be performed on a commercial installation for combustion of anthracite wastes. 14 refs., 5 figs., 1 tab.

Cobb, J.T. Jr. (Pittsburgh Univ., PA (USA)); Ahn, Y.K. (Gilbert/Commonwealth, Inc., Reading, PA (USA)); Angelo, J.F. (Universal Energy International, Inc., Little Rock, AR (USA))

1990-01-01T23:59:59.000Z

37

Table A22. Total First Use (formerly Primary Consumption) of Combustible Ener  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total PAD1.First

38

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1. Total

39

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

40

Evaluating new waste form impacts on repository capacity from a total system perspective  

SciTech Connect (OSTI)

This paper summarizes the steps that need to be taken to develop a long-term performance assessment of a repository and discusses the potential impacts on the existing performance assessment model that could result from a national decision to dispose of wastes from an advanced fuel cycle, such as that envisioned under the Global Nuclear Energy Partnership (GNEP). The objective is to establish a common understanding of what activities would potentially need to be conducted, and why, to support the disposal of high level wastes from an advanced nuclear fuel cycle. The long-term performance of the proposed repository at Yucca Mountain is currently evaluated using a methodology called Total System Performance Assessment (TSPA). The TSPA methodology can be applied to evaluate the safety of the disposal of nuclear wastes arising from GNEP technologies. The entire TSPA would need to be updated in accordance with U.S. Nuclear Regulatory Commission (NRC) requirements for a license to accommodate GNEP wastes. The revised TSPA would have to reflect the entire repository system as configured to dispose of these wastes. Major changes in the TSPA expected from introduction of GNEP wastes would be in two areas. First, the features, events and processes (FEPs) that might affect performance of the geologic system would have to be re-evaluated considering the GNEP wastes and any corresponding changes to the repository design. The modeling hierarchy used in the TSPA would then be modified to reflect any revised FEPs and scenarios. Secondly, the input and boundary conditions of some models used in the TSPA would have to be revised based on characteristics of the GNEP nuclear wastes and any associated change to the repository design. Some new models would likely have to be developed, for example due to new waste form types. These model revisions would likely require additional data such as characteristics of new waste forms. Post-closure performance assessment should be an integral part of the GNEP program with models developing in an iterative and integrated manner. Testing, analyses, and modeling of nuclear wastes supported by GNEP should strive to meet the requirements for data and processes established by NRC regulations and the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM). This rigor will assure that a revision to the post-closure safety analysis is technically defensible in a regulatory environment. Qualifying data to describe changes introduced by GNEP wastes would have to undergo the same rigor and compliance with procedures as the data collection and modeling that supports the original license application. (authors)

Kim, D.K. [Office of Radioactive Waste Management, U.S. Dept. of Energy, S.W., Washington DC (United States); Nutt, W.M. [Golder Associates Inc., Las Vegas NV (United States); Dravo, A.N.; Seitz, M.G. [Booz Allen Hamilton, Washington DC (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61Quantity ofNonfuel

42

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61Quantity

43

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect (OSTI)

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

44

Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility  

SciTech Connect (OSTI)

The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of Hanford's transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization (Reference 1). Various programs exist to ensure the validity of waste characterization data; all of these cite the need for clearly defined knowledge of uncertainty, associated with any measurements taken. All measurements have an inherent uncertainty associated with them. The combined effect of all uncertainties associated with a measurement is referred to as the Total Measurement Uncertainty (TMU). The NDA measurement uncertainties can be numerous and complex. In addition to system-induced measurement uncertainty, other factors contribute to the TMU, each associated with a particular measurement. The NDA measurements at WRAP are based on processes (radioactive decay and induced fission) which are statistical in nature. As a result, the proper statistical summation of the various uncertainty components is essential. This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary. This report also includes the data flow paths for the analytical process in the radiometric determinations.

WILLS, C.E.

2000-02-24T23:59:59.000Z

45

Maintain Combustion Systems  

E-Print Network [OSTI]

Energy is consumed, and wasted, in liberal amounts in the combustion processes which supply heat energy to boilers and process heaters. Close attention to combustion systems can be extremely beneficial: Optimum air to fuel ratios, i.e., maintaining...

Fletcher, R. J.

1979-01-01T23:59:59.000Z

46

Total..............................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1

47

Total................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

48

Total........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

49

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

50

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q Table

51

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q TableQ

52

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q

53

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q26.7

54

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

55

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

56

Total.............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8 20.6

57

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8

58

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8,171

59

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7

60

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7 21.7

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7

62

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1

63

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

64

Total................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

65

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6

66

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5 12.5

67

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5

68

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.578.1

69

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4

70

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1 14.7

71

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1

72

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.115.2

73

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4.

74

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7

75

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,618

76

Total....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,61814.7

77

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033

78

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.7

79

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.74.2

80

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1 5.5

82

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1

83

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.10.7

84

Solidification/stabilization of toxic metal wastes using coke and coal combustion by-products  

SciTech Connect (OSTI)

A study has been conducted to evaluate the potential of a special rubber waste, NISCO Cyclone Ash (NCA), which contains substantial calcium oxide and calcium sulfites/sulfates for solidification/stabilization (S/S) of toxic metal wastes. The mineralogical compositions of the NCA and a class ``C`` fly ash have been characterized by X-ray diffraction (XRD). Hydrated mixtures of these wastes have been examined by XRD and found to form ettringite. Low concentrations of As (15 {micro}g ml{sup {minus}1}), Ba (500 {micro}g ml{sup {minus}1}), Pb (15 {micro}g ml{sup {minus}1}), and Zn (1,000 {micro}g ml{sup {minus}1}) were added to these hydrated mixtures and found to be successfully immobilized and solidified, as determined by the Toxicity Characteristic Leaching Procedure (TCLP). In addition, the mineralogy, chemistry and leaching characteristics of these combined waste products and their interactions with toxic metals are discussed.

Vempati, R.K.; Mollah, M.Y.A.; Chinthala, A.K.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States); Beeghly, J.H. [Dravo Lime, Pittsburgh, PA (United States)] [Dravo Lime, Pittsburgh, PA (United States)

1995-12-31T23:59:59.000Z

85

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)  

SciTech Connect (OSTI)

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S&GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S&GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 g/L potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent column breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. (3) Improper sample preservation: ion-chromatographic analysis of several samples wit

DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

2008-09-30T23:59:59.000Z

86

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING AND CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated-carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 giL potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent adsorption tube breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. Linear response was checked using both non-volatile TOX species (trichlorophenol) an

JG DOUGLAS; HK MEZNARICH, PHD; JR OLSEN; GA ROSS PHD; M STAUFFER

2009-02-13T23:59:59.000Z

87

UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS  

SciTech Connect (OSTI)

This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to minimize surface deformations. Freeman United Coal Company performed engineering economic evaluation studies for commercialization. They found that the costs for underground management at the Crown III mine would be slightly higher than surface management at this time. The developed technologies have commercial potential but each site must be analyzed on its merit. The Company maintains significant interest in commercializing the technology.

Y.P. Chugh; D. Biswas; D. Deb

2002-06-01T23:59:59.000Z

88

E-Print Network 3.0 - advanced combustion technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Animal Waste Combustion Energy Engine Emission Fuel Cells... Gasification Internal Combustion Engine Performance Pollutants Formation (NOx, Hg) and...

89

Turbulent combustion  

SciTech Connect (OSTI)

Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

90

Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization: Final report, July 1, 1985-February 28, 1986  

SciTech Connect (OSTI)

This study program, funded by the US Department of Energy through the Southern Illinois University Coal Research Center's Coal Technology Laboratory, was conducted during the period from July 1984 through February 1986. Two lines of testing were carried out simultaneously. One consisted of using a laboratory-scale atmospheric fluidized bed combustor (AFBC) to acquire thermodynamic data and operating characteristics for Illinois coal combustion. The other included acquisition, installation, shakedown, and operation of a large one million Btu/h pilot-scale AFBC (plus boiler and associated instrumentation). Both programs were to study Illinois reference and gob (waste) type coals.

Hesketh, H.E.; Rajan, S.

1986-05-01T23:59:59.000Z

91

asme internal combustion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference on Fluidised Bed Combustion Fossil Fuels Websites Summary: COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven*...

92

Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion  

SciTech Connect (OSTI)

This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-09-01T23:59:59.000Z

93

Experimental investigation of wood combustion in a fixed bed with hot air  

SciTech Connect (OSTI)

Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.

Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

2014-01-15T23:59:59.000Z

94

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

95

IFRF Combustion Journal Article Number 200303, July 2003  

E-Print Network [OSTI]

IFRF Combustion Journal Article Number 200303, July 2003 ISSN 1562-479X Waste Incineration European-mail: klaus.goerner@uni-essen.den URL: http://www.luat.uni-essen.de #12;IFRF Combustion Journal - 2 - Goerner the lower calorific value of normal municipal waste increased with the consequence of increasing combustion

Columbia University

96

Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-01-01T23:59:59.000Z

97

Advanced Combustion  

SciTech Connect (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

98

Particulate Waste Product Combustion System  

E-Print Network [OSTI]

. The introduction of fuels with high ash or silica content into burn.ers have produced problems of fly ash in the exhaust stream causing extensive darrage to boilers f1red by th gasification process. For exanple, the contlus ioo of the rice hull pre sents a..., with the rerraining 20% being silica. '!'he silica, When exposed to incineration in fluidized or sus pen .

King, D. R.; Chastain, C. E.

1984-01-01T23:59:59.000Z

99

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

100

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect (OSTI)

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion  

E-Print Network [OSTI]

CombustionCombustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Coupled Droplet Combustion . . . . . . . . . . . . Burning

Sevilla Esparza, Cristhian Israel

2013-01-01T23:59:59.000Z

102

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

deposition due to the heat of combustion. The problem wedimensionless heat of combustion, QpYoxoolhw t transferredfraction of specie i heat of combustion per gram of fuel

,

2012-01-01T23:59:59.000Z

103

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

,

2012-01-01T23:59:59.000Z

104

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

105

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

106

Combustion Control  

E-Print Network [OSTI]

using a liquid fuel. The air and fuel valve designs are vastly different, with different flow characteristics. These factors make the initial adjustment of the system difficult, and proper maintenance of ratio accuracy unlikely. Linked valves... casing of the fuel control regulator with the combustion air piping. The upstream pressure on the burner air orifice is applied to the main diaphragm of the pressure balanced regulator. Assuming sufficient gas pressure at the regulator inlet...

Riccardi, R. C.

1984-01-01T23:59:59.000Z

107

Combustion Group Group members  

E-Print Network [OSTI]

Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

Wang, Wei

108

Energy from Waste November 4, 2011  

E-Print Network [OSTI]

· Generation of renewable electrical power and/or steam U.S. EPA has stated that Energy from Waste is one Waste Combustion (MWC) · Power plant that combusts MSW and other non-hazardous wastes as fuel/Covanta JV · Own / operate 4 EfW facilities 5 #12;6 A typical Contains enough energy to power a 50 watt light

Columbia University

109

Regenerative combustion device  

DOE Patents [OSTI]

A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

West, Phillip B.

2004-03-16T23:59:59.000Z

110

Combustion chemistry  

SciTech Connect (OSTI)

This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

111

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2012 DOE Hydrogen and Fuel...

112

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Broader source: Energy.gov (indexed) [DOE]

for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2013 DOE Hydrogen and Fuel Cells Program and...

113

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

114

Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor  

DOE Patents [OSTI]

A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

Janikowski, Stuart K. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

115

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1  

SciTech Connect (OSTI)

This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

NONE

1995-02-01T23:59:59.000Z

116

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

XBL 803-181) product combustion gas mixtures is in samplethrough reaction in the post-combustion gases. The selectiveaddition to the post-combustion gases have been investigated

,

2012-01-01T23:59:59.000Z

117

Combustion 2000  

SciTech Connect (OSTI)

This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

2001-06-30T23:59:59.000Z

118

High-Temperature Components for Rankine-Cycle-Based Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

119

Staged fluidized-bed combustion and filter system  

DOE Patents [OSTI]

A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

Mei, Joseph S. (Morgantown, WV); Halow, John S. (Waynesburg, PA)

1994-01-01T23:59:59.000Z

120

Simulation of lean premixed turbulent combustion  

E-Print Network [OSTI]

turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network [OSTI]

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

122

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

2008-08-31T23:59:59.000Z

123

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

124

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

125

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

126

Nuclear waste incineration technology status  

SciTech Connect (OSTI)

The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

1981-07-15T23:59:59.000Z

127

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines:...

128

A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479  

SciTech Connect (OSTI)

The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)] [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

2013-07-01T23:59:59.000Z

129

1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion  

E-Print Network [OSTI]

18-21, 2003, Jacksonville (FL) USA 87 AN EXPERIMENTAL ASSESSMENT OF TWO-STAGE FLUIDISED BED COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

Zevenhoven, Ron

130

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

131

Transport Properties for Combustion Modeling  

E-Print Network [OSTI]

a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

Brown, N.J.

2010-01-01T23:59:59.000Z

132

Rotary internal combustion engine  

SciTech Connect (OSTI)

This patent describes an improved rotary internal combustion engine comprising: (a) a combustion chamber which is generally circular in cross-section and which has a ring-like peripheral wall; (b) a driven shaft member journaled for rotation and disposed to pass eccentrically through the combustion chamber; (c) a compression chamber which is generally circular in cross-section positioned with a ring-like wall is adjacent to and spatially offset with the combustion chamber such that the driven shaft passes centrally therethrough; and (d) a circular combustion rotor fixed concentrically to the shaft member for rotation eccentrically within the combustion chamber. The combustion rotor is positioned such that the space between the periphery of the rotor and the periphery of the combustion chamber results in a crescent shape.

Crittenden, W.

1987-01-27T23:59:59.000Z

133

Waste wood processing and combustion for energy  

SciTech Connect (OSTI)

This volume contains the proceedings of the Fifth Annual National Biofuels Conference and Exhibition held October 19--22, 1992 in Newton, Massachusetts. Individual papers have been abstracted and indexed for the database.

Not Available

1992-12-31T23:59:59.000Z

134

Turbulent Combustion Luc Vervisch  

E-Print Network [OSTI]

;19 "Perfect" combustion modes: Fuel + Oxidizer () Products Engines, gas turbines... Laboratory experiment1 Turbulent Combustion Modeling Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Quelques problèmes rencontrés en chimie numérique : Hydrologie - Combustion - Atmosphère 16 décembre, INRIA Rocquencourt #12

Kern, Michel

135

Resonance ionization detection of combustion radicals  

SciTech Connect (OSTI)

Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

1993-12-01T23:59:59.000Z

136

Gas turbine alternative fuels combustion characteristics  

SciTech Connect (OSTI)

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

137

Generating Steam by Waste Incineration  

E-Print Network [OSTI]

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

138

Coal combustion by wet oxidation  

SciTech Connect (OSTI)

The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

1980-11-15T23:59:59.000Z

139

Incineration of radioactive waste in shaft furnace  

SciTech Connect (OSTI)

Development of nuclear technology depends greatly on solving the problems, concerning the treatment of waste, arising from power station activity. A great deal of waste will arise in the process of atomic power station decommissioning. One of the methods for radioactive waste treatment is a method of combustion. The volume reduction factor of the final product is 60--100. In the process of combustion, the organic radwaste is transported into gaseous wastes and ash. For better environmental protection, one must achieve the minimal release of nuclides from partially burned products in the gaseous phase, and maximize the waste in ash form suitable for final disposal.

Dmitriev, S.A.; Knyasev, I.A.; Kobelev, A.P. [Moscow SIA Radon, Sergiev Posad (Russian Federation). Dept. of Engineering Supply

1993-12-31T23:59:59.000Z

140

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ISWA Study Tour WASTE-TO-ENERGY  

E-Print Network [OSTI]

for Waste Treatment and Energy Recovery" Fundamentals of drying, pyrolysis, gasification, and combustionISWA Study Tour WASTE-TO-ENERGY Programme, June 22-27, 2014 Czech Republic Austria Seminar;Practice Seminar on Sustainable Waste Management in Europe based on Prevention, Recycling, Recovery

142

DETECTION OF ALUMINUM WASTE REACTIONS AND WASTE FIRES Jeffrey W. Martin, M.S., P.G., R.S.  

E-Print Network [OSTI]

-review and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste October 24, 2011 #12;[i combustion of the surrounding solid waste. The landfill liner and explosive gas extraction and leachate

143

Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-10 0.00 0.00 0.00 15.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.50 0.00 15.50 100.0%  

E-Print Network [OSTI]

) Diversion Diversion Rate (Recycled / Total) SS Secure Shredding Scrap Scrap Metals (All) CG&MP Cans, GlassMonth HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-09 0.00 0.00 0.00 0

Waterloo, University of

144

Coal-water slurry fuel internal combustion engine and method for operating same  

DOE Patents [OSTI]

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

145

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

146

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

147

Advanced Combustion and Fuels  

Broader source: Energy.gov (indexed) [DOE]

DOEVTO 2011 - 2015 Multi- Year Program Plan * Inadequate data and predictive tools for fuel property effects on combustion and engine efficiency optimization (Fuels & Lubricants...

148

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

149

A coal-fired combustion system for industrial process heating applications  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

150

Summary Max Total Units  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/BuySummary Max Total Units *If All

151

Fifteenth combustion research conference  

SciTech Connect (OSTI)

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

152

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

153

The Control of NOx Emissions from Combustion and Incinerators  

E-Print Network [OSTI]

of combustion modifications, including staged combustion and reburning, for the control of nitrogen oxide emissions from coal fired combustors is most often limited by problems due to carbon burnout or flame impingement. This paper presents new data... emissions from waste incineration facilities. The major focus has been on minimizing emissions of potentially toxic organics and trace metals. There is growing concern over emissions of NO x from these facilities as well. However, traditional NO x...

Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

154

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

155

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network [OSTI]

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

156

Fluidized bed combustion of alternate fuels. Final report  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) technology offers the opportunity combust a broader range of fuels than previously possible with other technologies. FBC boilers are currently being used throughout the world to dispose of a wide range of solid and semi-solid waste fuels, including municipal and industrial solid wastes and sludges, agricultural wastes, and coal mining or cleaning wastes. FBCs can also accommodate cofiring waste fuels in units designed for coal or other solid fuels with relative ease compared to conventional technology. The capacity and experience base for coal-fired FBCs has increased in recent years so that utility-scale reheat units of 200-300 MWe in size are now commercially available, and larger units are now being considered. As utilities install fluidized bed boilers to generate power, it is anticipated that many will at some point consider cofiring one or more waste fuels either together or with coal to reduce the quantity and cost of the primary fuel, and in many cases, help offset the environmental impact of other disposal options such as landfills. In order to assist the industry in their evaluations, this report summarizes the fuel characteristics, experience base, and technical issues associated with burning selected fuels using FBC technology, including: Municipal Solid Wastes; Biomass; Sewage Sludge; Paper Manufacturing and Recycling Wastes; Scrap Tires; and Automobile Wastes.

Howe, W.C.; Divilio, R.J. [Combustion Systems, Inc., Aptos, CA (United States)

1993-12-01T23:59:59.000Z

157

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

158

Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications.  

E-Print Network [OSTI]

phenomenon (heat and mass transfers, pyrolysis, combustion) in a cooling channel surrounding a SCRamjet regeneratively cooled SCRamjet is provided to get a large vision of the fuel nature impact on the system of supersonic combustion ramjet (SCRamjet) [1]. For such high velocity, the total temperature of external air

Boyer, Edmond

159

Introduction Fossil fuel combustion by aviation, shipping and road  

E-Print Network [OSTI]

fifth of the total global anthropogenic emissions of CO2. These emissions are growing more rapidly than to global CO emissions are estimated to be much smaller, likely due to more efficient fuel combustion. Road96 Introduction Fossil fuel combustion by aviation, shipping and road traffic contributes about one

Haak, Hein

160

Optimized Algorithms Boost Combustion Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25,...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process...

162

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

163

Mitigating the effect of siloxanes on internal combustion engines using landfill gasses  

DOE Patents [OSTI]

A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

Besmann, Theodore M

2014-01-21T23:59:59.000Z

164

Consider Compressed Combustion  

E-Print Network [OSTI]

, and costs. In addition, overall advantages for applications involving energy sharing, such as cogeneration are even greater. Thus, compressed combustion should be considered seriously as an economical alternative to conventional heaters, especially in energy...

Crowther, R. H.

1982-01-01T23:59:59.000Z

165

Combustion Air Control  

E-Print Network [OSTI]

calibration and tune-up: ? A measure of combustion efficiency must be selected as a target operating goal for the combustion control system. Possible measures and typical targets include: Stack Gas Excess Air, 15% Stack Gas Opacity, 0.3 RN Stack Gas CO... Fuel Flows ? Preheater Inlet Temperature ? Btu Flow (Fuel Flow ? Preheater Outlet Temperature Controller Measurement) ? Ambient Temperature ? Oxygen in the Stack ? Boiler Master Controller Output ? Opac i ty Normalize the steam, air and fuel flow...

Hughart, C. L.

1979-01-01T23:59:59.000Z

166

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network [OSTI]

Craig emissions from confirmed a coal fired a power Theycoal and oil fired power plants. estimate that combustion sources account total amine emissions.1800 K. Emissions of N o from coal~fired power plants were

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

167

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

168

Sandia Combustion Research Program  

SciTech Connect (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

1988-01-01T23:59:59.000Z

169

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network [OSTI]

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

170

Method and apparatus for advanced staged combustion utilizing forced internal recirculation  

DOE Patents [OSTI]

A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

2003-12-16T23:59:59.000Z

171

Dry low combustion system with means for eliminating combustion noise  

DOE Patents [OSTI]

A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

2004-02-17T23:59:59.000Z

172

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

173

Sandia Combustion Research: Technical review  

SciTech Connect (OSTI)

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

174

Four Lectures on Turbulent Combustion  

E-Print Network [OSTI]

Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

Peters, Norbert

175

Internal combustion engine system  

SciTech Connect (OSTI)

This patent describes an internal combustion engine system comprising: an engine body including a main combustion engine for transmitting the power generated by explosion pressure to a pumping piston and a power transmission apparatus for transmitting to a power crank shaft power that is increased by the ratio of the cross-sectional area of a combustion chamber piston to a power piston. The stroke distance of the combustion chamber piston is equal to that of the power piston; a swash plate-type stirling engine coupled to an exhaust gas outlet of the main combustion engine to be driven by exhaust heat therefrom; a one-stage screw-type compressor coupled by a driving shaft to the swash plate-type stirling engine, thereby generating a great amount of compressed air; a turbo-charger mounted adjacent to a gas outlet of the stirling engine to force a supply of fresh air into the combustion chamber of the main combustion engine; a booster being mounted between a compressed air source and the power transmission apparatus to amplify the air pressure derived from the compressed air source and then provide the amplified air pressure to the power transmission apparatus by operation of a cam in accordance with the rotation of the first crankshaft; compressed air sources being mounted between the compressor and the booster for storing a great amount of compressed air from the compressor; and an accumulator in communication with the power transmission apparatus through a fluid oil pipe, thereby maintaining constant control of the oil pressure in the power transmission apparatus.

Nam, C.W.

1987-01-27T23:59:59.000Z

176

Hydrocarbon/Total Combustibles Sensor - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easterStatistical Self-Similarity

177

Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy  

SciTech Connect (OSTI)

Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

2013-07-15T23:59:59.000Z

178

Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered Landfilled Total Diversion Jan-09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0%  

E-Print Network [OSTI]

) Diversion Diversion Rate (Recycled / Total) SS Secure Shredding Scrap Scrap Metals (All) CG&MP Cans, GlassMonth HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc: Month HT OCC O. Paper OPF SS CG&MP SW/MP Reused Organics Hazardous E-waste Scrap Skids Misc Recovered

Waterloo, University of

179

Internal combustion engine  

DOE Patents [OSTI]

An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O'Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

1991-01-01T23:59:59.000Z

180

EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - art municipal waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion of Municipal Solid Waste," Second Conference... on Municipal, Hazardous and Coal ... Source: Columbia University, Department of Earth and Environmental Engineering,...

182

Studies in combustion dynamics  

SciTech Connect (OSTI)

The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

183

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

184

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting10-006 Advance

185

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

186

Total Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216 9,178

187

Denitrification of combustion gases. [Patent application  

DOE Patents [OSTI]

A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

Yang, R.T.

1980-10-09T23:59:59.000Z

188

Waste segregation procedures and benefits  

SciTech Connect (OSTI)

Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

Fish, J.D.; Massey, C.D.; Ward, S.J.

1990-01-01T23:59:59.000Z

189

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

2013-04-02T23:59:59.000Z

190

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

191

Theoretical studies on hydrogen ignition and droplet combustion  

E-Print Network [OSTI]

1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

Del Álamo, Gonzalo

2006-01-01T23:59:59.000Z

192

Project Sponsors: UCI Combustion  

E-Print Network [OSTI]

that fuel dilution with CO2 hinders all the NOx routes but has a more significant effect on the thermal mechanisms that lead the formation and emission of NOx in specific applications. · Test the effect of fuel. Combustion System divided into several chemical reactors. Chemical reactor networks to predict NOx emissions

Mease, Kenneth D.

193

Combustion of black liquor  

SciTech Connect (OSTI)

This patent describes an improvement in the combustion of black liquor in an existing Tomlison recovery boiler unit in which black liquor is sprayed into a furnace in which it is successively dried, pyrolyzed and converted to a bed of solid carbonaceous residue, using a primary air stream and a secondary air stream and the residue is subsequently converted to a smelt. The improvement comprises: the addition of between an effective amount up to 5% oxygen by volume to the primary air stream directed at the bed of solid carbonaceous residue, the amount of oxygen added being sufficient to increase the adiabatic flame temperature, the combustion rate of the solid carbonaceous material, the rate of pyrolysis, the temperature in the lower portion of the furnace, the the drying rate of black liquor droplets, and to decrease the temperature of the gases entering the heat transfer surfaces in the upper portion of the furnace and the rate of deposit formation on the surfaces and wherein the amount of black liquor combusted is increased as compared with the amount combusted in the same furnace operated without the addition of oxygen to the primary air.

Mullen, W.T.

1989-08-15T23:59:59.000Z

194

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

195

Fragments, Combustion and Earthquakes  

E-Print Network [OSTI]

This paper is devoted to show the advantages of introducing a geometric viewpoint and a non extensive formulation in the description of apparently unrelated phenomena: combustion and earthquakes. Here, it is shown how the introduction of a fragmentation analysis based on that formulation leads to find a common point for description of these phenomena

Oscar Sotolongo-Costa; Antonio Posadas

2005-03-16T23:59:59.000Z

196

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel  

E-Print Network [OSTI]

Systems ·Not suitable for nano-material synthesis Reactive Sample Volume Combustion Product Heaters Self-Propagating High-Temperature Synthesis (SHS) Volume Combustion Synthesis (VCS) Example: TiC #12;· Molecular level;Conventional Combustion System: Characteristics: · Exothermic nature of reaction · High temperature (2000 °C

Mukasyan, Alexander

197

Development of Advanced Combustion Technologies for Increased...  

Broader source: Energy.gov (indexed) [DOE]

Investigation of fuel effects on low-temperature combustion, particularly HCCI PCCI combustion deer09gehrke.pdf More Documents & Publications The Role of Advanced Combustion in...

198

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network [OSTI]

Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

Hollowell, C.D.

2011-01-01T23:59:59.000Z

199

Waste to energy: The case of the Bolzano solid urban waste incineration plant  

SciTech Connect (OSTI)

One of the most demanding problems of waste management was that of finding the means and the technology for converting, neutralizing and disposing of the refuse, without disturbing the delicate ecological equilibrium of the soil, water and air. Today, this problem is handled with the latest refuse incineration and Snamprogetti's combustion residue purification technologies, which in addition to substantial energy returns, also provide sufficient assurance of efficiency as well as health and environmental safety. In the present state of the art, these technologies make it possible to cut down on the use of dumps and landfills. In fact, such technologies permit to obtain an extremely small volume of inert residues, as well as very low dust and hydrochloric acid levels, and an infinitesimal concentration of micropollutants in the atmospheric emissions. Experience has shown that non-polluting incineration of unrecoverable wastes is feasible and the electricity obtained from the combustion heat is more than enough to run the plant and can be sold making the operation advantageous in economic terms. On the basis of this philosophy Snamprogetti designed and built an incineration at Bolzano on 1994, which was expanded in 1996 with a second line, for a total operating potential of 400 t/d of wastes. The plant included a heat recovery line with a steam boiler and a turbogenerator for the production of electricity. The steam turbine driving the generator could operate partly in the condensation mode, and partly in the bleeding mode to produce both electricity and steam. Implementation of the integrated program made provision for employment of the bled off steam to produce superheated water to feed the city's district heating network. A detailed assessment of the characteristics of the plant and its environmental efficiency is presented.

Nicolai, H.G.

1998-07-01T23:59:59.000Z

200

Adsorption of pyridine by combusted oil shale  

SciTech Connect (OSTI)

Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg L{sup {minus}1} at an initial concentration of 100 mg L{sup {minus}1}. 31 refs., 3 figs., 3 tabs.

Essington, M.E.; Hart, B.K.

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

202

Combustion of textile residues in a packed bed  

SciTech Connect (OSTI)

Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)

Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.; Swithenbank, Jim [Sheffield University Waste Incineration Centre (SUWIC), Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-08-15T23:59:59.000Z

203

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

204

Waste Plastics as Fuel The concept of PlastofuelTM is the use of waste  

E-Print Network [OSTI]

Waste Plastics as Fuel The concept of PlastofuelTM is the use of waste agricultural plastic as a fuel source. The PlastofuelTM process creates a dense plastic nugget of compressed shredded plastic that can be burned cleanly in a high temperature combustion process. The shredded plastic is composed

Demirel, Melik C.

205

Fire protection guide for solid waste metal drum storage  

SciTech Connect (OSTI)

This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

Bucci, H.M.

1996-09-16T23:59:59.000Z

206

RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996  

SciTech Connect (OSTI)

The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

NONE

1996-07-01T23:59:59.000Z

207

Plasmatron Fuel Reformer Development and Internal Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications...

208

Transonic Combustion ? - Injection Strategy Development for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

209

Stretch Efficiency - Thermodynamic Analysis of New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037) Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037)...

210

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

211

Reversed flow fluidized-bed combustion apparatus  

DOE Patents [OSTI]

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

212

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

213

Internal combustion engine using premixed combustion of stratified charges  

DOE Patents [OSTI]

During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

2003-12-30T23:59:59.000Z

214

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy

215

WASTE INCINERATION wr090203 Activity 090203 SNAP CODE: 090203 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Oil Refinery NOSE CODE: 109.03.11 NFR CODE:  

E-Print Network [OSTI]

Flares are commonly used during petroleum refining for the safe disposal of waste gases during process upsets (e.g., start-up, shut-down, system blow-down) and emergencies to combust the organic content of waste emission streams without recovering/using the associated energy. 2 CONTRIBUTION TO TOTAL EMISSIONS Although flaring emission estimates are approximate, total hydrocarbon emissions from flaring at Canadian petroleum refineries during 1988 represented about 0.1 % of the refinery sector process and fugitive emissions that also included petroleum marketing emissions (CPPE, 1990). Thus the flaring operation at refineries is estimated to contribute a very small fraction of the total HC emissions in Canada. Emissions from flaring activities may also include: particulate, SOx, NOx, CO and other NMVOC. The CO2 contribution of both miscellaneous vent and flare emission sources represented approximately 9 % of the total petroleum refinery SO2 emission in Canada during 1988. Emissions estimates from flaring in petroleum refineries as reported in the CORINAIR90 inventory are summarised in Table 1. Table 1: Contribution to total emissions of the CORINAIR90 inventory (28 countries) Source-activity SNAP-code Contribution to total emissions [%

So Nox; Nmvoc Ch; Co Co; No Nh

216

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

217

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

218

Sandia National Laboratories: Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergyMappingCombustion Renewable Systems On

219

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

Not Available

1992-10-01T23:59:59.000Z

220

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network [OSTI]

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well materials and to produce a combustible product. This involves the removal of inert and compostable materials

Guillas, Serge

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Broader source: Energy.gov (indexed) [DOE]

II experiments address the main irreversibilities in unrestrained combustion * 'Internal' heat transfer - Products to reactants heat transfer over large Ts - dS Q Q(1T C -...

222

Total Energy Outcome City Pilot  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy Outcome

223

Fourteenth combustion research conference  

SciTech Connect (OSTI)

A total of 92 papers (arranged alphabetically by author) are included. Separate abstracts have been prepared for the data base. (DLC)

Not Available

1992-08-01T23:59:59.000Z

224

Combustion-thermoelectric tube  

SciTech Connect (OSTI)

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

225

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect (OSTI)

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

226

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

227

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

228

World's Largest Post-Combustion Carbon Capture Project Begins  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWindWood andEmploymentUs

229

Improve Your Boiler's Combustion Efficiency  

SciTech Connect (OSTI)

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

230

Numerical Modeling of HCCI Combustion  

Broader source: Energy.gov (indexed) [DOE]

Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

231

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

232

Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Position in Direct Numerical Simulations of Low-Dimensional Reacting Flows The Combustion EFRC seeks outstanding applicants for the position of post-doctoral research...

233

SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin  

E-Print Network [OSTI]

in operation. The investigation included both existing grate combustion plants and novel processes. The Energos grate gasification and combustion technology is currently in operation at six plants in Norway1 SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin Advisor: Prof. Nickolas J. Themelis

234

Utilization ROLE OF COAL COMBUSTION  

E-Print Network [OSTI]

, materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

Wisconsin-Milwaukee, University of

235

COMBUSTION AUTONOME DE SPHERES D'ALUMINIUM R. Bouriannes et N. Mnson  

E-Print Network [OSTI]

COMBUSTION AUTONOME DE SPHERES D'ALUMINIUM R. Bouriannes et N. Mànson Laboratoire dlEnergétiquede l dispositif pour l'étude de la combustion autonome d'une sphère d'alumi- nium. On définit une pression p", fonction du mélange comburant, au-dessus de laquel- le la combu�tion est totale. L'aspect de la combustion

Paris-Sud XI, Université de

236

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

237

Co-combustion feasibility study. Final report  

SciTech Connect (OSTI)

This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

Handcock, D.J. [Clough, Harbour and Associates, Albany, NY (United States)

1995-01-01T23:59:59.000Z

238

COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network [OSTI]

of Combustion in Internal Combustion Engines," Paper 750890,clean burning internal combustion engines. Another importantthat occur in an internal combustion engine. Our goal is the

Authors, Various

2011-01-01T23:59:59.000Z

239

US DRIVE Advanced Combustion and Emission Control Technical Team...  

Energy Savers [EERE]

for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acecroadmapjune2013.pdf More Documents...

240

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

242

Low-Temperature Combustion Demonstrator for High-Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

243

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

244

Combustion Catalysts in Industry- An Update  

E-Print Network [OSTI]

applications of combustion catalysts for coal are presented. Combustion efficiency and calculations are discussed, followed by an explanation of the theories of combustion catalysis and a review of three case histories....

Merrell, G. A.; Knight, R. S.

245

Space shuttle based microgravity smoldering combustion experiments  

E-Print Network [OSTI]

zone, and smolder heat of combustion (energy per unit massand Q is the smolder heat of combustion. The mass fluxes ofdata. The smolder heat of combustion is not well determined

Walther, David C; Fernandez-Pello, Carlos; Urban, David L

1999-01-01T23:59:59.000Z

246

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network [OSTI]

x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

Hollowell, C.D.

2010-01-01T23:59:59.000Z

247

Dilute Oxygen Combustion - Phase 3 Report  

SciTech Connect (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, Michael F.

2000-05-31T23:59:59.000Z

248

Dilute Oxygen Combustion Phase 3 Final Report  

SciTech Connect (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, M.F.; Ryan, H.M.

2000-05-31T23:59:59.000Z

249

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

250

Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams  

SciTech Connect (OSTI)

This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)] [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

251

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine * Integration of proposed air path and HCCI combustion control strategies into ECU software * Prototype level 2 updates and proof of combustion concept for vehicle readiness...

252

Progress of the Engine Combustion Network  

Broader source: Energy.gov (indexed) [DOE]

DOE Office of Vehicle Technologies Program Manager: Gurpreet Singh Introducing the Engine Combustion Network Introducing the Engine Combustion Network * Collaborative modeling...

253

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

combustion regimes Approach: Acquire high speed chemi- luminescence movies to understand spatial progression of combustion and the mode of reaction front propagation....

254

Hydrogen engine and combustion control process  

DOE Patents [OSTI]

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

255

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network [OSTI]

model. ?H c is the heat of combustion, and the ratio ?H c /?may have widely varying heats of combustion (CO vs. gaseous

Lautenberger, Chris

2007-01-01T23:59:59.000Z

256

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

257

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

258

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Broader source: Energy.gov (indexed) [DOE]

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary...

259

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

260

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Computational Methods for Turbulence and Combustion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

262

Improved Solvers for Advanced Engine Combustion Simulation  

Broader source: Energy.gov [DOE]

Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

263

Advanced Combustion and Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Fuels Advanced Combustion and Fuels 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

264

Combustion-gas recirculation system  

DOE Patents [OSTI]

A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

Baldwin, Darryl Dean (Lacon, IL)

2007-10-09T23:59:59.000Z

265

Solid waste retrieval. Phase 1, Operational basis  

SciTech Connect (OSTI)

This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

Johnson, D.M.

1994-09-30T23:59:59.000Z

266

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

267

Predictive modeling of combustion processes  

E-Print Network [OSTI]

Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

268

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

269

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

270

Project Sponsors:UCI Combustion Laboratory www.ucicl.uci.edu  

E-Print Network [OSTI]

on biogas in 0.4 MMBTU/hr boiler simulator 1. Lower emissions 2. Ensure safe operation of the burner based fuels such as those derived from waste processes. Anaerobic digestion of waste water and organic waste of carbon dioxide added to simulate biogas. The total fuel flow changes based on the higher heating value

Detwiler, Russell

271

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Tsien, Roger Y.

272

Modelling paradigms for MILD combustion  

E-Print Network [OSTI]

agreement because it does not include the effects of reaction zone interactions. Keywords: MILD combustion, Flameless combustion, Direct numerical simulation (DNS), Perfectly stirred reactor (PSR), presumed PDF, LES, RANS, Modelling 2 1 Introduction Moderate... ). In most RANS studies, the mean velocity and temperature fields show consistent trends with the experi- mental results. However, quantitative agreement of the calculated and measured tempera- ture values becomes unsatisfactory as the dilution level...

Minamoto, Y.; Swaminathan, N.

2014-04-26T23:59:59.000Z

273

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION  

E-Print Network [OSTI]

2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

Moses, Elisha

274

Piston ring design for reduced friction in modern internal combustion engines  

E-Print Network [OSTI]

Piston ring friction losses account for approximately 20% of the total mechanical losses in modern internal combustion engines. A reduction in piston ring friction would therefore result in higher efficiency, lower fuel ...

Smedley, Grant, 1978-

2004-01-01T23:59:59.000Z

275

Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report  

SciTech Connect (OSTI)

In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

1987-09-01T23:59:59.000Z

276

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters  

SciTech Connect (OSTI)

This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

Benson, Charles; Wilson, Robert

2014-04-30T23:59:59.000Z

277

FEMP Technology Brief: Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

There are more than 45,000 industrial and commercial boilers larger than 10 MMBtu/hr in the United States with a total fuel input capacity of 2.7 million MMBtu/hr. Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

278

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network [OSTI]

Gas-Phase Combustion .41 Gas-Phase combustionfor traditional gas- phase combustion modeling are presented

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

279

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine #12;11/17/2014 4 Combined Cycle Combustion Turbine Background Primary Components Gas-fired combustion

280

COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS  

E-Print Network [OSTI]

1 COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS Richard A. Yetter, Vigor Yang, Ming and the effects of downsizing on combustion performance. In particular, combustion of liquid nitromethane in a thruster combustion chamber with a volume of 108 mm3 and diameter of 5 mm was experimentally investigated

Yang, Vigor

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Residential Wood Residential wood combustion (RWC) is  

E-Print Network [OSTI]

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

282

The Combustion Institute 5001 Baum Boulevard  

E-Print Network [OSTI]

The Combustion Institute 5001 Baum Boulevard Pittsburgh, Pennsylvania, USA 15213-1851 CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE CALL FOR PAPERS TECHNICAL MEETING - SPRING 2002 COMBUSTION 7-9, 2002 #12;CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE www.cssci.org CALL FOR PAPERS

Tennessee, University of

283

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

284

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

285

Combustion & Fuels Waste Heat Recovery & Utilization Project | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment ofPressure Sampling for

286

Combustion 2000: Phase II  

SciTech Connect (OSTI)

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

Unknown

1999-11-01T23:59:59.000Z

287

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

288

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

289

Economic evaluation of volume reduction for Defense transuranic waste  

SciTech Connect (OSTI)

This study evaluates the economics of volume reduction of retrievably stored and newly generated DOE transuranic waste by comparing the costs of reduction of the waste with the savings possible in transportation and disposal of the waste. The report develops a general approach to the comparison of TRU waste volume reduction costs and cost savings, establishes an initial set of cost data, and develops conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled newly generated, and retrievably stored DOE transuranic waste. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal, and transportation savings with volume reduction and the volume reduction techniques and savings.

Brown, C.M.

1981-07-01T23:59:59.000Z

290

Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization  

SciTech Connect (OSTI)

A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

Cecilia R. Hoffman; Yale D. Harker

2006-03-01T23:59:59.000Z

291

HCCl Combustion: Analysis and Experiments  

SciTech Connect (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model has applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Aceves, S M; Flowers, D L; Martinez-Frias, J; Smith, J R; Dibble, R; Au, M; Girard, J

2001-05-04T23:59:59.000Z

292

HCCI Combustion: Analysis and Experiments  

SciTech Connect (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

2001-05-14T23:59:59.000Z

293

Turbulent Combustion in SDF Explosions  

SciTech Connect (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

Kuhl, A L; Bell, J B; Beckner, V E

2009-11-12T23:59:59.000Z

294

Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration  

SciTech Connect (OSTI)

Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

Damgaard, Anders, E-mail: and@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Riber, Christian [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Fruergaard, Thilde [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Hulgaard, Tore [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

295

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

296

Major research topics in combustion  

SciTech Connect (OSTI)

The Institute for Computer Applications in Science and Engineering (ICASE) and NASA Langley Research Center (LaRC) hosted a workshop on October 2--4, 1989 to discuss some combustion problems of technological interest to LaRC and to foster interaction with the academic community in these research areas. The topics chosen for this purpose were flame structure, flame holding/extinction, chemical kinetics, turbulence-kinetics interaction, transition to detonation, and reacting free shear layers. This document contains the papers and edited versions of general discussions on these topics. The lead paper set the stage for the meeting by discussing the status and issues of supersonic combustion relevant to the scramjet engine. Experts were then called upon to review the current knowledge in the aforementioned areas, to focus on how this knowledge can be extended and applied to high-speed combustion, and to suggest future directions of research in these areas.

Hussaini, M.Y.; Kumar, A.; Voigt, R.G. (eds.)

1992-01-01T23:59:59.000Z

297

Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion  

SciTech Connect (OSTI)

A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

Ho, Min-Da.

1993-05-25T23:59:59.000Z

298

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

299

Combustion synthesis method and products  

DOE Patents [OSTI]

Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

Holt, J.B.; Kelly, M.

1993-03-30T23:59:59.000Z

300

Combustion synthesis method and products  

DOE Patents [OSTI]

Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

Holt, J. Birch (San Jose, CA); Kelly, Michael (West Alexandria, OH)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Engine Combustion Network Experimental Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

302

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

303

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

304

Assessment of incineration and melting treatment technologies for RWMC buried waste  

SciTech Connect (OSTI)

This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

Geimer, R.; Hertzler, T.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-02-01T23:59:59.000Z

305

Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0  

SciTech Connect (OSTI)

This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

NONE

1996-01-16T23:59:59.000Z

306

An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland  

SciTech Connect (OSTI)

Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zürich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zürich, ERZ Entsorgung - Recycling Zürich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zürich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

2014-02-15T23:59:59.000Z

307

Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992  

SciTech Connect (OSTI)

This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

Not Available

1994-02-01T23:59:59.000Z

308

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network [OSTI]

of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

309

Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation  

E-Print Network [OSTI]

Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

Teshome, Sophonias

2012-01-01T23:59:59.000Z

310

Structural Analysis of Combustion Models  

E-Print Network [OSTI]

Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.

Tóth, J; Zsély, I

2013-01-01T23:59:59.000Z

311

Method for recovering metals from waste  

DOE Patents [OSTI]

A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

Wicks, George G. (North Augusta, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

2000-01-01T23:59:59.000Z

312

Method for recovering materials from waste  

DOE Patents [OSTI]

A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

Wicks, G.G.; Clark, D.E.; Schulz, R.L.

1994-01-01T23:59:59.000Z

313

Method for recovering metals from waste  

DOE Patents [OSTI]

A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

Wicks, G.G.; Clark, D.E.; Schulz, R.L.

1998-12-01T23:59:59.000Z

314

Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks  

SciTech Connect (OSTI)

This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

2004-08-31T23:59:59.000Z

315

LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow  

SciTech Connect (OSTI)

An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.

Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk [Environment Institute, University College London, Pearson Building, Gower Street, WC1E 6BT London (United Kingdom)

2011-03-15T23:59:59.000Z

316

Method and apparatus for detecting combustion instability in continuous combustion systems  

DOE Patents [OSTI]

An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

2006-08-29T23:59:59.000Z

317

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Introduction to Internal Combustion Engines (3rd Edition).Coefficient in the Internal Combustion Engine,” SAE Paper

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

318

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network [OSTI]

J. B. (1988) Internal Combustion Engine Fundamentals.novel microwave internal combustion engine ignition source,in the Internal Combustion Engine." SAE Technical Paper

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

319

Combustion Air Zone (CAZ) Best Practices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combustion Air Zone (CAZ) Best Practices Combustion Air Zone (CAZ) Best Practices Combustion Air Zone (CAZ) Best Practices Webinar. Presentation More Documents & Publications...

320

Oxy-Combustion CO2 Control | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Oxy-Combustion Chemical Looping Combustion Program Plan Project Portfolio Project Information POSTED January 27, 2015 - Funding Opportunity Announcement DE-FOA-...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Effects on Mixing-Controlled Combustion Strategies for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency...

322

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

323

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

324

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network [OSTI]

SAE Paper 750173, 1975. L. , Fifteenth Symposium Combustion,The Combustion Institute, International Pittsburgh, on 64.chemistry of products of combustion: nitrogenous The

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

325

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

Chin, W.K.

2010-01-01T23:59:59.000Z

326

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Simulation of Natural Gas HCCI Combustion: Gas Compositionfor heating the flowing gas. Combustion timing is consideredup. Exhaust gas samples were collected at varying combustion

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

327

Assessment of chemical vulnerabilities in the Hanford high-level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

Meacham, J.E. [and others

1996-02-15T23:59:59.000Z

328

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

329

Solid Waste as an Energy Source  

E-Print Network [OSTI]

. PROCESS The solLd waste energy conversion system bullt by Kelley Company consists of a combustion unit and an energy recovery boLler. The combustion unit uses a two stage process; the refuse is fLrst converted to gases by a pyrolysis process... wlll be conslderably lower than the temperature that woulq be achleved If stoichiometrlc air to fuel ratlo was malntained. The resulting temperatures In the pyrolysis chamber ranges from 1200 0 to 1500 o P. The low a lr lnput, as compared wlth...

Erlandsson, K. I.

1979-01-01T23:59:59.000Z

330

Free Energy and Internal Combustion Engine Cycles  

E-Print Network [OSTI]

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

Harris, William D

2012-01-01T23:59:59.000Z

331

Free Energy and Internal Combustion Engine Cycles  

E-Print Network [OSTI]

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

William D. Harris

2012-01-11T23:59:59.000Z

332

Formation mechanisms of combustion chamber deposits  

E-Print Network [OSTI]

Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture ...

O'Brien, Christopher J. (Christopher John)

2001-01-01T23:59:59.000Z

333

TURBULENT FRBRNNING MVK130 Turbulent Combustion  

E-Print Network [OSTI]

TURBULENT F�RBR�NNING MVK130 Turbulent Combustion Poäng: 3.0 Betygskala: TH Valfri för: M4 to combustion, McGraw-Hill 1996. #12;

334

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

335

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

336

Stretch Efficiency for Combustion Engines: Exploiting New Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization ofDepartmentRegimes | Department

337

Stretch Efficiency for Combustion Engines: Exploiting New Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization ofDepartmentRegimes |

338

Stretch Efficiency for Combustion Engines: Exploiting New Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization ofDepartmentRegimes |Regimes |

339

FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE  

E-Print Network [OSTI]

combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

340

Modeling of HCCI and PCCI Combustion Processes  

Broader source: Energy.gov (indexed) [DOE]

combustion timing control - Startup - Fuel air ratio measurement and control - Low Power Density - Hydrocarbon and CO emissions Approach: Fundamental and...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hanford Waste Transfer Planning and Control - 13465  

SciTech Connect (OSTI)

Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

2013-07-01T23:59:59.000Z

342

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

343

Separation of regenerated catalyst from combustion products  

SciTech Connect (OSTI)

A method and apparatus for separating regenerated catalyst from gaseous combustion products within a regenerator. The apparatus comprises a downcomer within the regenerator vessel through which the catalyst and gaseous combustion products flow. Means are provided at the lower end of the downcomer for utilizing the momentum of the catalyst particles to separate them from the gaseous combustion products.

Benslay, R. M.

1984-10-16T23:59:59.000Z

344

Combustion joining of refractory materials: Carboncarbon composites  

E-Print Network [OSTI]

Combustion joining of refractory materials: Carbon­carbon composites Jeremiah D.E. White Department­carbon composite is achieved by employing self-sustained, oxygen-free, high-temperature combustion reactions to a used "core" to produce a brake that meets the performance specifications. The combustion-joining (CJ

Mukasyan, Alexander

345

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network [OSTI]

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

346

Fifteen Lectures on Laminar and Turbulent Combustion  

E-Print Network [OSTI]

Fifteen Lectures on Laminar and Turbulent Combustion N. Peters RWTH Aachen Ercoftac Summer School in Combustion Systems 1 Lecture 2: Calculation of Adiabatic Flame Temperatures and Chemical Equilibria 20: Laminar Diffusion Flames: Different Flow Geometries 156 Lecture 11: Turbulent Combustion: Introduction

Peters, Norbert

347

Understanding Combustion Processes Through Microgravity Research  

E-Print Network [OSTI]

such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet. COMPARISON OF TIME SCALES FOR PREMIXED-GAS COMBUSTION To determine the conditions where gravity can affectUnderstanding Combustion Processes Through Microgravity Research Paul D. Ronney Department

348

Comparative environmental analysis of waste brominated plastic thermal treatments  

SciTech Connect (OSTI)

The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste.

Bientinesi, M. [Department of Chemical Engineering, Industrial Chemistry and Materials Science (DICCISM), University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)], E-mail: matteo.bientinesi@ing.unipi.it; Petarca, L. [Department of Chemical Engineering, Industrial Chemistry and Materials Science (DICCISM), University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

2009-03-15T23:59:59.000Z

349

ME 6990 -Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.).  

E-Print Network [OSTI]

ME 6990 - Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.). Physical and chemical aspects of basic combustion phenomena. Classification of flames. Measurement of laminar flame. Fuels. Atomization and evaporation of liquid fuels. Theories of ignition, stability and combustion

Panchagnula, Mahesh

350

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling  

E-Print Network [OSTI]

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling function (PDF) of thermochemical variables can be used for accurately computing the combustion source term of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

Raman, Venkat

351

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect (OSTI)

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

352

Chapter 19 - Nuclear Waste Fund  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8: Variable Frequency Drive Evaluation19.0

353

Swedish nuclear waste efforts  

SciTech Connect (OSTI)

After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

Rydberg, J.

1981-09-01T23:59:59.000Z

354

Wasted Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

355

Homogeneous catalysts in hypersonic combustion  

SciTech Connect (OSTI)

Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

1989-01-01T23:59:59.000Z

356

Tandem microwave waste remediation and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1999-01-01T23:59:59.000Z

357

Medical waste treatment and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

358

COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network [OSTI]

of Combustion in Internal Combustion Engines," Paper 750890,that occur in an internal combustion engine. Our goal is theLAG process in an internal combustion engine, con- ducted at

Authors, Various

2011-01-01T23:59:59.000Z

359

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

360

Modeling of Laser-Induced Metal Combustion  

SciTech Connect (OSTI)

Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

Boley, C D; Rubenchik, A M

2008-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

362

Total Sustainability Humber College  

E-Print Network [OSTI]

% reduction un effluent pipes Higher discounts from consolidated suppliers Dependence on solar energy 8 out they installed a solar roof for $1.2M thanks to their commitment to renewable energy Closed-Loop cycle for raw Food production and Waste Management Sustainable Food Farm at Clarkson University, Postdam, NY

Thompson, Michael

363

Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode  

SciTech Connect (OSTI)

This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

2008-10-07T23:59:59.000Z

364

Effects of Advanced Combustion Technologies on Particulate Matter...  

Broader source: Energy.gov (indexed) [DOE]

Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions...

365

Evaluation of industrial combustion control systems. Final report  

SciTech Connect (OSTI)

This study evaluated O/sub 2/ and CO monitoring systems used for combustion controls to provide reliable data on their performance, operating range and accuracy. The study concentrated on three in-situ O/sub 2/ and two in-situ CO monitoring systems which are applicable to furnace and boiler controls. The project provides technical information for cost/benefit analysis of combustion control systems and to help expedite implementation of combustion control technology by industry. The evaluation of the stack gas monitoring systems was carried out for ranges of furnace operating parameters such as fuel to air mixture ratio, burner firing rate, heat extraction rate, fuel type, combustion air preheat temperature, and cyclic operating conditions, which are based on information gathered from typical operational practices of representative industrial furnaces and boilers. The experiments were performed in the NBS experimental furnace under both natural gas and No. 2 fuel oil fired conditions. An on-line gas sampling/analysis system was used as a reference system for comparative evaluation of the stack gas monitors. The system is set up to determine the level of CO, CO/sub 2/, O/sub 2/, NO/NO/sub x/ and total hydrocarbons in the stack gases.

Presser, C.; Semerjian, H.G.

1984-10-01T23:59:59.000Z

366

Combustion diagnostic for active engine feedback control  

DOE Patents [OSTI]

This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

2007-10-02T23:59:59.000Z

367

Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal  

SciTech Connect (OSTI)

This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a verical furnace. The gas flow was laminar, the gas temperature was 1000{degrees}C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3-9 {mu}m, tire crumb was size-classified to be 180-212 {mu}m and the high volatile bituminous coal, used herein, was 63-75. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x} polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and, especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

Levendis, Y.A.; Atal, A. [Northeastern Univ., Boston, MA (United States); Carlson, J.B. [Army Natick R, Natick, MA (United States)

1998-04-01T23:59:59.000Z

368

QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE  

E-Print Network [OSTI]

QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE OF DIFFERENT ORIGINS I. ZDANEVITCH AND O countries. One of the outputs of this treatment is a compost prepared from the organic matter of the waste the total MSW in the plant. Unlike in Germany or Austria, where only the compost from selective collection

Paris-Sud XI, Université de

369

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

SciTech Connect (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

370

Submergible torch for treating waste solutions and method thereof  

DOE Patents [OSTI]

A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

Mattus, Alfred J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

371

Submergible torch for treating waste solutions and method thereof  

DOE Patents [OSTI]

A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

Mattus, Alfred J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

372

Submergible torch for treating waste solutions and method thereof  

DOE Patents [OSTI]

A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.

Mattus, A.J.

1994-12-06T23:59:59.000Z

373

TOXIC SUBSTANCES FROM COAL COMBUSTION  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

1998-12-08T23:59:59.000Z

374

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents [OSTI]

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

375

Stretch Efficiency for Combustion Engines: Exploiting New Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization ofDepartmentRegimes | Department of

376

Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

377

Influence of assumptions about household waste composition in waste management LCAs  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2013-01-15T23:59:59.000Z

378

Waste Handeling Building Conceptual Study  

SciTech Connect (OSTI)

The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

G.W. Rowe

2000-11-06T23:59:59.000Z

379

The Conversion of Waste to Energy  

E-Print Network [OSTI]

Technology Conference Houston, TX, April 13-16, 1980 and 10% combustibles (hydrogen and hydro carbons) is incinerated at 1400?F. ~ecause of the quantity of inerts, supplemental natural gas firing with a grid burner is required to maintain the required... thermocouples. A Wobbe index analyzer compensates fuel gas flow measure ment for changes in composition. A three element feedwater control system maintai~s water level. Modular, controlled air solid waste incinerators/heat recovery systems are now...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

380

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Light Management  

Broader source: Energy.gov [DOE]

Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

382

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

383

Theoretical studies of combustion dynamics  

SciTech Connect (OSTI)

The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

1993-12-01T23:59:59.000Z

384

Advanced Combustion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustion Advanced Combustion

385

Total Organic Carbon Analyzer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

386

Waste processing air cleaning  

SciTech Connect (OSTI)

Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

Kriskovich, J.R.

1998-07-27T23:59:59.000Z

387

Energy aspects of solid waste management: Proceedings  

SciTech Connect (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

388

Waste Pickup Form User's Guide  

E-Print Network [OSTI]

, plastic, metal) · Weight or Volume · Measurement Unit · # of Containers (i.e. amount of same containers, mercury thermometers 4. To request delivery of a chemical waste container(s) (i.e. container for used in terms of percentage of total weight/volume (i.e. Acetone 50%, Water 50%) · Container type (i.e. Glass

de Lijser, Peter

389

INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY  

E-Print Network [OSTI]

1600°C2000°C 1200°C Scrubber H2, CO, CO2, H2O #12;THERMOSELECTDESTRUCTION OF ORGANIC COMPOUNDS (DIOXINS/FURANS) 1200 °C 2000 °C 70 °C Quench Degassing channel Gasifier Waste carries dioxins, furans Total destruction

Columbia University

390

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

391

Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion  

SciTech Connect (OSTI)

The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

Bhavsar, Saurabh; Veser, Goetz

2013-11-06T23:59:59.000Z

392

Sandia Combustion Research Program: Annual report, 1986  

SciTech Connect (OSTI)

This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

Not Available

1986-01-01T23:59:59.000Z

393

Internal combustion engine intake valve  

SciTech Connect (OSTI)

In a inlet valve for use in an internal combustion engine in which the valve has a stem and a head, the head having, when seated, a first side positioned within a combustion chamber of an engine block and a second, opposite, side attached to the stem, the second side including that piston of the head forming the seat with the engine block when the valve is in a seated position, and first side including that portion of the head from the seat toward the chamber when the valve is in the seated position, and the engine including means for moving the valve from the closed position to an open position to allow a fuel mixture to enter the chamber, the improvement in the valve comprising: an extension ridge from the first side, positioned in alignment with the periphery of the valve head, the ridge forming with the seat a single, continuous, smooth outer surface along the periphery thereof for reducing the coefficient of drag of the fuel entering the chamber around the valve head when the valve is in the open position.

Mosler, W.B.

1988-10-25T23:59:59.000Z

394

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

395

Engine valve actuation for combustion enhancement  

DOE Patents [OSTI]

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2008-03-04T23:59:59.000Z

396

Engine Valve Actuation For Combustion Enhancement  

DOE Patents [OSTI]

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2004-05-18T23:59:59.000Z

397

Stretch Efficiency - Thermodynamic Analysis of New Combustion...  

Broader source: Energy.gov (indexed) [DOE]

6 Managed by UT-Battelle for the Department of Energy 1 2 Largest losses: wall heat transfer, unrecovered exhaust energy, and combustion irreversibility * Availability ...

398

Plasmatron Fuel Reformer Development and Internal Combustion...  

Broader source: Energy.gov (indexed) [DOE]

and Internal Combustion Engine Vehicle Applications* L. Bromberg MIT Plasma Science and Fusion Center Cambridge MA 02139 * Work supported by US Department of Energy, Office of...

399

Spray Combustion Cross-Cut Engine Research  

Broader source: Energy.gov (indexed) [DOE]

Understanding direct-injection sprays CFD model improvement for engine designoptimization 2 The role of spray combustion research for high- efficiency engines. Future...

400

Chemical Kinetic Models for Advanced Engine Combustion  

Broader source: Energy.gov (indexed) [DOE]

barriers to increased engine efficiency and decreased emissions by allowing optimization of fuels with advanced engine combustion 6 LLNL-PRES-652979 2014 DOE Merit Review...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: 2014 Advanced Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

402

Fuel Modification t Facilitate Future Combustion Regimes?  

Broader source: Energy.gov (indexed) [DOE]

University of Wisconsin -- Engine Research Center Fuel Modification to Facilitate Future Combustion Regimes? David E. Foster Phil and Jean Myers Professor Engine Research Center...

403

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

Fuel efficiency as key market driver Stringent emission requirements System cost of advanced combustion Targets 30% fuel efficiency improvement SULEV emissions...

404

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation Meeting ace066yilmaz2013o.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty...

405

Combustion with reduced carbon in the ash  

DOE Patents [OSTI]

Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

Kobayashi, Hisashi; Bool III, Lawrence E.

2005-12-27T23:59:59.000Z

406

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on...

407

Waste heat recovery in automobile engines : potential solutions and benefits  

E-Print Network [OSTI]

Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

Ruiz, Joaquin G., 1981-

2005-01-01T23:59:59.000Z

408

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

409

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

410

Development of a vortex combustor (VC) for space/water heating applications (combustion tests). Final report  

SciTech Connect (OSTI)

This is the final report for Interagency Agreement DE-AI22-87PC79660 on ``Combustion Test`` for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft{sup 3}), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

Fu, T.T. [Naval Civil Engineering Lab., Port Hueneme, CA (United States); Nieh, S. [Catholic Univ. of America, Washington, DC (United States). Combustion and Multiphase Flows Lab.

1990-11-01T23:59:59.000Z

411

Development of a vortex combustor (VC) for space/water heating applications (combustion tests)  

SciTech Connect (OSTI)

This is the final report for Interagency Agreement DE-AI22-87PC79660 on Combustion Test'' for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft[sup 3]), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

Fu, T.T. (Naval Civil Engineering Lab., Port Hueneme, CA (United States)); Nieh, S. (Catholic Univ. of America, Washington, DC (United States). Combustion and Multiphase Flows Lab.)

1990-11-01T23:59:59.000Z

412

Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall  

DOE Patents [OSTI]

The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

Roberts Jr., Charles E.; Chadwell, Christopher J.

2004-09-21T23:59:59.000Z

413

Soil stabilization using oil-shale solid waste  

SciTech Connect (OSTI)

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

414

Total Synthesis of (?)-Himandrine  

E-Print Network [OSTI]

We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

Movassaghi, Mohammad

415

Quantifying capital goods for waste incineration  

SciTech Connect (OSTI)

Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO{sub 2} per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO{sub 2} per tonne of waste combusted.

Brogaard, L.K., E-mail: lksb@env.dtu.dk [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Riber, C. [Ramboll, Consulting Engineers, Hannemanns Allé 53, DK-2300 Copenhagen S (Denmark); Christensen, T.H. [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

2013-06-15T23:59:59.000Z

416

Small boiler uses waste coal  

SciTech Connect (OSTI)

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

417

Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide  

E-Print Network [OSTI]

by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume of the SHS mode (Fig.1a) is that locally initiated, the self-sustained reaction rapidly propagatesCombustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S

Mukasyan, Alexander

418

Real-time combustion controller  

DOE Patents [OSTI]

A method and system are disclosed for regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO{sub 2}, and H{sub 2}O. The differences between the ratios of CO to CO{sub 2} and H{sub 2}O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO{sub 2} and H{sub 2}O to CO fall on a desired set point on the control curve. 20 figs.

Lindner, J.S.; Shepard, W.S.; Etheridge, J.A.; Jang, P.R.; Gresham, L.L.

1997-02-04T23:59:59.000Z

419

Combustion fume structure and dynamics  

SciTech Connect (OSTI)

The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, composition, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory. (VC)

Flagan, R.C.

1992-08-01T23:59:59.000Z

420

Axial cylinder internal combustion engine  

SciTech Connect (OSTI)

This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

Gonzalez, C.

1992-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

Columbia University

422

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

SciTech Connect (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

423

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

424

NISTIR 6458 Characterization of the Inlet Combustion Air in  

E-Print Network [OSTI]

NISTIR 6458 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion January 2000 #12;ii Contents page Introduction 1 Reference Spray Combustion Facility 3 Numerical;1 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion Facility: Effect of Vane Angle

Magee, Joseph W.

425

FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE  

E-Print Network [OSTI]

A fluidized bed combustion unit has been designed and installed to study the fluidized bed combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm inside diameter and 130 cm height fitted with a perforated plate air distributor of 611 holes, each of 1

M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

426

Coal slurry combustion and technology. Volume 2  

SciTech Connect (OSTI)

Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-01-01T23:59:59.000Z

427

Sensitivity Analysis of Combustion Timing of Homogeneous  

E-Print Network [OSTI]

to predict the start of combustion in a homogeneous charge compression ignition (HCCI) engine. Qualitative and quantitative information on the individual effects of fuel and exhaust gas recirculation on the HCCI combustion-injection gasoline HCCI engine, we find that temperature is the dominant factor in determining the start

Stefanopoulou, Anna

428

Redeeming features of in situ combustion  

SciTech Connect (OSTI)

In situ combustion remains the most tantalizing enhanced oil recovery method. It has been tested extensively - in over 150 field tests - in both heavy and light oil reservoirs. What we have learned from this experience is that in situ combustion works under most conditions, but the nature of the problems is such that it is seldom profitable. Also, looking at many previous in situ combustion tests, steam injection, and even waterflooding, would have been a better choice. Yet in situ combustion has unique features not found in any other EOR method. These must be weighed against its shortcomings to evaluate a potential application. This paper discusses the redeeming features of in situ combustion, in particular the reservoir conditions under which in situ combustion may be superior to other EOR methods are outlined. All variations of in situ combustion - forward, reverse, wet, dry - as well as combinations with other EOR methods are considered. The conclusions is that in situ combustion still has a place, and its future application would depend on research on certain crucial aspects of the process.

Farouq Ali, S.M. [Univ. of Alberta, Edmonton (Canada)

1995-02-01T23:59:59.000Z

429

NETL- High-Pressure Combustion Research Facility  

SciTech Connect (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08T23:59:59.000Z

430

NETL- High-Pressure Combustion Research Facility  

ScienceCinema (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26T23:59:59.000Z

431

Sandia combustion research program: Annual report, 1987  

SciTech Connect (OSTI)

More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

1988-01-01T23:59:59.000Z

432

Method and system for controlled combustion engines  

DOE Patents [OSTI]

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

433

TURBULENT FRBRNNING MVK 130 Turbulent Combustion  

E-Print Network [OSTI]

TURBULENT F�RBR�NNING MVK 130 Turbulent Combustion Antal poäng: 3.0. Valfri för: M4. Kursansvarig program med hänsyn till de modeller som används. Litteratur S.R. Turns: An introduction to combustion, Mc

434

Injector tip for an internal combustion engine  

DOE Patents [OSTI]

This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

Shyu, Tsu Pin; Ye, Wen

2003-05-20T23:59:59.000Z

435

Thermochemical conversion of waste materials to valuable products  

SciTech Connect (OSTI)

The potential offered by a large variety of solid and liquid wastes for generating value added products is widely recognized. Extensive research and development has focused on developing technologies to recover energy and valuable products from waste materials. These treatment technologies include use of waste materials for direct combustion, upgrading the waste materials into useful fuel such as fuel gas or fuel oil, and conversion of waste materials into higher value products for the chemical industry. Thermal treatment in aerobic (with oxygen) conditions or direct combustion of waste materials in most cases results in generating air pollution and thereby requiring installation of expensive control devices. Thermochemical conversion in aerobic (without oxygen) conditions, referred to as thermal decomposition (destructive distillation) results in formation of usable liquid, solid, and gaseous products. Thermochemical conversion includes gasification, liquefaction, and thermal decomposition (pyrolysis). Each thermochemical conversion process yields a different range of products and this paper will discuss thermal decomposition in detail. This paper will also present results of a case study for recovering value added products, in the form of a liquid, solid, and gas, from thermal decomposition of waste oil and scrap tires. The product has a high concentration of benzene, xylene, and toluene. The solid product has significant amounts of carbon black and can be used as an asphalt modifier for road construction. The gas product is primarily composed of methane and is used for heating the reactor.

Saraf, S. [Engineering Technologies, Lombard, IL (United States)

1997-12-31T23:59:59.000Z

436

2003 Laser Diagnostic in Combustion Conference  

SciTech Connect (OSTI)

The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.

Mark G. Allen

2004-09-10T23:59:59.000Z

437

COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Brinkman, K.; Gray, J.

2012-03-30T23:59:59.000Z

438

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

439

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

SciTech Connect (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

440

Energy Management by Recycling of Vehicle Waste Oil in Pakistan  

E-Print Network [OSTI]

Abstract: Pakistan has been suffering from an energy crisis for about half a decade now. The power crisis is proving to be unbearable, so importing huge amount of hydrocarbons from abroad to meet its energy needs. This study therefore focuses on the analysis of energy and environmental benefits for vehicle waste lubricant oil pertaining to its reuse by means of: (i) regain the heating value of used oils in a combustion process and (ii) recycling of waste oil to make fresh oil products. The waste oil samples were tested by ICP method and the test results were compared with standard requirements. It was found that the matter could effectively be solved by means of waste oil management practices together with collection centers, transports and processors by encouraging and financial help for the recycling industry. The importance and worth of this work concludes minor levels of hazardous elements when regained the heating value from the waste lubricating oil.

Hassan Ali Durrani

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste  

SciTech Connect (OSTI)

This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

442

COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980  

E-Print Network [OSTI]

Heat Transfer with Combustion R. Greif, H. Heperkan, J.H. Stewart . • . • • . COMBUSTION CHEMISTRY AND POLLUTANTInternational) on Combustion, The Combustion institute,

Authors, Various

2013-01-01T23:59:59.000Z

443

Coal Combustion Products Extension Program  

SciTech Connect (OSTI)

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

444

Fuel reforming for scramjet thermal management and combustion optimization  

E-Print Network [OSTI]

Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

Paris-Sud XI, Université de

445

GENERAL TECHNICAL REPORT PSW-GTR-245 Caracterizacin de Combustibles  

E-Print Network [OSTI]

información del inventario de combustibles leñosos registrando las intercepciones de estos combustibles de forestales, inventario de combustibles, incendios forestales. Introducción. Los incendios son uno de los

Standiford, Richard B.

446

NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL  

E-Print Network [OSTI]

1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium

Ghoniem, A.F.

2013-01-01T23:59:59.000Z

447

AN EXPERIMENTAL AND THEORETICAL STUDY OF HEAT TRANSFER WITH COMBUSTION  

E-Print Network [OSTI]

HDyna.mics of the Exothermic Process in Combustion,n 15thSymposium (International) on Combustion, Tokyo, 1974. H, S.Methods L Glassman, Combustion, Academic Press, 1977. D. J.

Heperkan, Hasan A.

2013-01-01T23:59:59.000Z

448

COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network [OSTI]

Applied to Turbulent Combustion Flows J. W. Daily and C.Metals from Pulverized Coal Combustion P. Sherman and F.Applied to Turbulent Combustion Flows J. W. Daily and C.

Authors, Various

2011-01-01T23:59:59.000Z

449

Sub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments  

E-Print Network [OSTI]

-dependent, sphero-symmetric droplet combustion simulation that includes detailed gas phase chemical kineticsSub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments and detailed 2012 Abstract Combustion characteristics of isolated sub-millimeter sized methyl butanoate (MB

Walter, M.Todd

450

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

451

Combustion kinetics and reaction pathways  

SciTech Connect (OSTI)

This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

452

Pressurized fluidized-bed combustion  

SciTech Connect (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

453

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

SciTech Connect (OSTI)

This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

Wishau, R.; Ramsey, K.B.; Montoya, A.

1998-12-31T23:59:59.000Z

454

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

455

Progress in Energy and Combustion Science 34 (2008) 377416 Discrete reaction waves: Gasless combustion of solid powder mixtures  

E-Print Network [OSTI]

; Self-propagating high-temperature synthesis; Combustion synthesis; Discrete and quasi, which have been observed in a variety of processes including combustion synthesis of materials, burning Elsevier Ltd. All rights reserved. Keywords: Heterogeneous combustion wave; Mechanisms of flame propagation

Mukasyan, Alexander

456

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

457

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

458

Low Temperature Combustion and Diesel Emission Reduction Research...  

Broader source: Energy.gov (indexed) [DOE]

Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

459

Fuel Formulation Effects on Diesel Fuel Injection, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

460

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

462

Idling Emissions Reduction Technology with Low Temperature Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

463

Vehicle Technologies Office Merit Review 2014: Internal Combustion...  

Broader source: Energy.gov (indexed) [DOE]

4: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Presentation given by...

464

AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion...  

Broader source: Energy.gov (indexed) [DOE]

AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion...

465

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

466

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Simulation of Natural Gas HCCI Combustion: Gas CompositionPeroxide (DTBP) Additive on HCCI Combustion of Fuel BlendsCharge Compression Ignition (HCCI) Engines: Key Research and

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

467

Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

468

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

469

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

470

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

471

Use of Low Cetane Fuel to Enable Low Temperature Combustion  

Broader source: Energy.gov [DOE]

Document:  ace011_ciatti_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Steve CiattiPresenting Organization: Argonne National Laboratory (ANL...

472

World's Largest Post-Combustion Carbon Capture Project Begins...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis...

473

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network [OSTI]

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

474

Vehicle Technologies Office: Materials for High-Efficiency Combustion...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

475

Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion  

E-Print Network [OSTI]

and volumetric heats of combustion in biofuels render themVaporization [kJ/kg] Heat of Combustion [kJ/kg] †Estimated

Sevilla Esparza, Cristhian Israel

2013-01-01T23:59:59.000Z

476

CRADA with Cummins on Characterization and Reduction of Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

477

alternative combustion regimes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a Novel Materials Science Websites Summary: Systems Not suitable for nano-material synthesis Reactive Sample Volume Combustion Product Heaters Self Combustion Product:...

478

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

479

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

480

Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines  

Broader source: Energy.gov [DOE]

Document:  ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

Note: This page contains sample records for the topic "total waste combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Factors Affecting HCCI Combustion Phasing for Fuels with Single...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004...

482

CFD Combustion Modeling with Conditional Moment Closure using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is...

483

Accurate Predictions of Fuel Effects on Combustion and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using...

484

Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents & Publications...

485

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

486

Evaluation of High Efficiency Clean Combustion (HECC) Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

487

2008 DOE Annual Merit Review Advanced Combustion Engines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview 2008 DOE Annual Merit Review Advanced Combustion Engines and Fuels R&DTechnology...

488

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

489

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

490

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

491

A University Consortium on Low Temperature Combustion (LTC) for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission...

492

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

493

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

494

Catalyst for Improving the Combustion Efficiency of Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

495

Improving Combustion Software to Solve Detailed Chemical Kinetics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

496

2008 Annual Merit Review Results Summary - 7. Combustion Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7. Combustion Research 2008 Annual Merit Review Results Summary - 7. Combustion Research DOE Vehicle Technologies Annual Merit Review 2008meritreview7.pdf More Documents &...

497

Advanced Post-Combustion CO2 Capture Prepared for the  

E-Print Network [OSTI]

Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

498

Enabling High Efficiency Clean Combustion with Micro-Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of variable orifice fuel injector are described that will extend the operation maps of early PCCI combustion and enable dual-mode combustion over full operating maps....

499

High-Efficiency Clean Combustion Engine Designs for Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Presentation from...

500

2013 Annual Merit Review Results Report - Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion Engine Technologies 2013 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11