Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

2

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network (OSTI)

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

3

Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States  

SciTech Connect

As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

2011-10-01T23:59:59.000Z

4

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Status of PC When Not in Use Left On..............................................................

5

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 10.2 0.6 0.3 1.1 1.1 Table HC2.10 Home Appliances Usage Indicators by Type of Housing Unit, 2005 Housing Units (millions) Single-Family Units...

6

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

Single-Family Units Apartments in Buildings With-- Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

7

Million U.S. Housing Units Total...............................  

Annual Energy Outlook 2012 (EIA)

Single-Family Units Apartments in Buildings With-- Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

8

Million U.S. Housing Units Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.... .... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use it........................ 1.9 Q 0.4 0.4 0.6 0.3 Type of Air-Conditioning Equipment 2, 3 Central System..................................................... 65.9 4.8 12.3 15.1 14.9 18.7 Without a Heat Pump......................................... 53.5 4.7 11.5 11.6 12.3 13.6 With a Heat Pump.............................................. 12.3 Q 0.9 3.5 2.7 5.2 Window/Wall Units.............................................. 28.9 3.1 9.3 8.8 4.0 3.7 1 Unit.................................................................

9

Million U.S. Housing Units Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment........................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment........................................ 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment......................................... 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it........................ 1.9 1.1 0.8 Q N Q Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump......................................... 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump.............................................. 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units................................................. 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.................................................................

10

Million U.S. Housing Units Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment........................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment........................................ 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment......................................... 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it........................ 1.9 0.8 Q Q 0.2 0.3 Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump......................................... 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump.............................................. 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units................................................. 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.................................................................

11

Million U.S. Housing Units Total.....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment....................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................... 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment..................................... 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Air-Conditioning Equipment 1, 2 Central System................................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................... 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump......................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units............................................ 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit.............................................................

12

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

2. Number of uranium mills and plants producing uranium concentrate in the United States 2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium Concentrate Processing Facilities End of 1996 End of 1997 End of 1998 End of 1999 End of 2000 End of 2001 End of 2002 End of 2003 End of 2004 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 Mills - conventional milling1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operators2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6

13

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

14

Analysis of radiation exposure for naval units of Operation Crossroads. Volume 2. (Appendix A) target ships. Technical report  

SciTech Connect

External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

Weitz, R.; Thomas, C.; Klemm, J.; Stuart, J.; Knowles, M.

1982-03-03T23:59:59.000Z

15

Analysis of radiation exposure for naval units of Operation Crossroads. Volume 3. (Appendix B) support ships. Technical report  

SciTech Connect

External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

Weitz, R.; Thomas, C.; Klemm, J.; Stuart, J.; Knowles, M.

1982-03-03T23:59:59.000Z

16

The development of short sea shipping in the United States : a dynamic alternative  

E-Print Network (OSTI)

Current projections show that U.S. international trade is expected to reach nearly two billion tons by 2020, approximately double today's level. With such a large forecasted growth in trade coming through the United States ...

Connor, Peter H. (Peter Harold)

2004-01-01T23:59:59.000Z

17

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

18

A design for the interface between a battery storage and charging unit, and a medium voltage DC (MVDC) bus, as part of an integrated propulsion system (IPS) in the all electric ship (AES)  

Science Journals Connector (OSTI)

In this paper we present the design of a rechargeable battery storage device for use in an all-electric ship. The purpose of this device is to provide power of predictable quality to selected equipment. In addition a recharging unit is proposed for recharging ... Keywords: electric ship, energy storage, medium voltage DC (MVDC), pulse load

T. A. Trapp; P. Prempraneerach; C. Chryssostomidis; J. L. Kirtley, Jr.; G. E. Karniadakis

2011-06-01T23:59:59.000Z

19

Shipping - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Shipping Shipping To ship equipment to the BASE Facility, send it to the following address: To: Mike Johnson (3rd Party / No PO) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, Bldg 88 Berkeley, CA 94720 A few notes about our shipping process: -All equipment shipped to or from Berkeley Lab goes through our shipping and receiving facility, located in a different building. To ensure your equipment arrives in time for your run, plan on having delivered to the Lab two business days prior to when you actually need it. -All radioactive material MUST go through our rad shipping process. No radioactive material is permitted to enter or leave Berkeley Lab by any other means. We can not ship radioactive material to you unless you have a valid radioactive material license.

20

I want to construct a train of total length 12 units using cars which are either 1 unit long or 2 units long. The question is,  

E-Print Network (OSTI)

Trains I want to construct a train of total length 12 units using cars which are either 1 unit long or 2 units long. The question is, how many different trains are there? For example, here is one in trains of length 12 as in trains of any length n. That is we want to discover the relationship be- tween

McCann, Robert J.

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

22

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

23

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

24

Million U.S. Housing Units Total U.S. Housing Units........................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units........................................ Housing Units........................................ 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Heating Equipment........................... 1.2 Q Q N 0.3 0.8 Have Space Heating Equipment............................. 109.8 10.9 26.0 27.3 23.7 22.0 Use Space Heating Equipment.............................. 109.1 10.9 26.0 27.3 23.2 21.7 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.5 Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None.................................................................. 3.6 Q 0.5 Q 1.4 1.4 1 to 499............................................................. 6.1 0.2 1.2 1.5 1.9 1.2 500 to 999.......................................................... 27.7 2.3 6.9 6.5 6.5 5.6 1,000 to 1,499....................................................

25

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

26

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

27

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

28

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

29

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

30

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

31

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

32

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

33

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

34

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

35

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

36

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

37

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

38

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

39

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

40

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

42

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

43

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

44

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

45

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

46

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

47

NOAA's Ship Tracker | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA's Ship Tracker NOAA's Ship Tracker Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data NOAA's Ship Tracker Dataset Summary Description NOAA's Ship Tracker is a viewer tool developed by the NOS Special Projects Office (SPO) for the Office of Marine and Aviation Operations (NOAA OMAO) which shows information about the location, present and past, of NOAA's ships. Ship location and the conditions where the ship was located are maintained on this site for one year. The NOAA fleet ranges from large oceanographic research vessels capable of exploring the world's deepest ocean, to smaller ships responsible for charting the shallow bays and inlets of the United States. The fleet supports a wide range of marine activities including fisheries research, nautical charting, and ocean and climate studies.

48

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

49

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

50

Digital Ship Digital Ship Ship September 2008 page 45  

E-Print Network (OSTI)

Digital Ship Digital Ship Ship September 2008 page 45 TT he European Maritime Data Man- agement how best to improve on VDR equipment for the next generation of the technology. The ship VDR community can take steps to avoid a repetition. Moreover, the UK Marine Accident Investigation Board (MAIB

51

Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters  

SciTech Connect

Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R. [Sandia National Laboratory, Albuquerque, NM (United States); Johnson, J.D. [GRAM Inc., Albuquerque, NM (United States); Reardon, P.C. [PCRT Technologies, Albuquerque, NM (United States); Ebert, M.W.; Gallagher D.W. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

52

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

53

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

54

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

55

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

56

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

57

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

58

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

59

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

60

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

62

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

63

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

64

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

65

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

66

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

67

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

68

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

69

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

70

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

71

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

72

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

73

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

74

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

75

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

76

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

77

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

78

A compact XRF unit for determining total sulphur content in coals  

SciTech Connect

A microcomputer based x-ray fluorescence (XRF) unit was developed for off-line determination of total sulphur content in coal samples. The unit consisted of the x-ray exciting/measuring set and the microcomputer with a plug-in interface card, An Fe-55 radioisotope was used as the exciting source while a krypton-filled proportional counter was used to measure x-rays from the samples. The x-ray spectrum was simultaneously displayed on the microcomputer screen. For quantitative determination of sulphur, the intensities of sulphur K x-rays as well as calcium K x-rays and scattered x-rays were taken into account. The unit was tested with finely-ground, dried and compressed lignite, subbituminous and bituminous samples. It was found that for low-calcium coals the results were in good agreement with those obtained from the standard chemical analysis method within {+-}0.2 %S and within {+-}0.5 %S for high-calcium coals.

Sumitra, T.; Chankow, N.; Punnachaiya, S.; Srisatit, S. [Chulalongkorn Univ., Bangkok (Thailand)

1994-12-31T23:59:59.000Z

79

Ships After Oil  

Science Journals Connector (OSTI)

Ships After Oil ... Special self-propelled tenders planned for offshore drilling operations in Gulf ...

1956-07-02T23:59:59.000Z

80

Ship-pack optimization in a two-echelon distribution system  

Science Journals Connector (OSTI)

In large distribution systems, distribution centers (DC) deliver some merchandize to their retail stores in size-specific packages, also called ship-packs. These ship-packs include cases (e.g., cartons containing 24 or 48units), inners (packages of 6 or 8units) or eaches (individual units). For each Stock Keeping Unit (SKU), a retailer can decide which of these ship-pack options to use when replenishing its retail stores. Working with a major US retailer, we have developed a cost model that balances DC handling costs, store handling costs and inventory-related costs at both the DC and the stores, and therefore can help to determine the optimum warehouse ship-pack for each SKU. We implement our model for a sample of 529 SKUs, and show that by changing ship-pack size for about 30 SKUs, the retailer can reduce its total cost by 0.3% - 0.4%. Interestingly, we find that most of the cost savings occurs at the DC level.

Naijun Wen; Stephen C. Graves; Z. Justin Ren

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Toward the development of an integrated electric ship evaluation tool  

Science Journals Connector (OSTI)

With the advent of energy-intensive weapons and sensor systems visualized for future United States Navy surface combatants, the design of Navy ships is turning to the all-electric ship as a potential solution that enables power sharing between propulsion ... Keywords: electric-drive ship, fuel consumption, hydrodynamic performance, life-cycle cost

Julie S. Chalfant; Chryssostomos Chryssostomidis

2009-07-01T23:59:59.000Z

82

Shipping and Receiving  

NLE Websites -- All DOE Office Websites (Extended Search)

Shipping and Receiving Print Shipping and Receiving Print On this page: Transport Policy Shipping to the ALS Shipping from the ALS Shipping Hazardous Materials Contacts: ALS Shipping & Receiving (small packages) LBNL Shipping & Receiving (large packages requiring forklift truck) Building 7 Hours: M-F, 7:30 am-4:30 pm Telephone: 510 486 4494 Building 69 Hours: M-F, 7:00 am-3:30 pm Telephone: 510 486 4935 Fax: 510 486 5668 Transport Policy - Getting Your Samples and Equipment to and from the ALS All Lab personnel, including ALS staff and users, must follow the procedures detailed below for packing, labeling, and sending shipments to or from the ALS. These shipping procedures are required for: all materials and equipment brought to the ALS; items that are being returned for repairs or refunds to

83

Global Volunteer Observing Ship (VOS) Program Data  

DOE Data Explorer (OSTI)

CDIAC provides data management support for the Global Volunteer Observing Ship (VOS) Program. The VOS project is coordinated by the UNESCO International Ocean Carbon Coordination Project (IOCCP). The international groups from 14 countries have been outfitting research ships and commercial vessels with automated CO2 sampling equipment to analyze the carbon exchange between the ocean and atmosphere. [copied from http://cdiac.ornl.gov/oceans/genInfo.html] CDIAC provides a map interface with the shipping routes of the 14 countries involved marked in different colors. Clicking on the ship's name on that route brings up information about the vessel, the kinds of measurements collected and the timeframe, links to project pages, and, most important, the links to the data files themselves. The 14 countries are: United States, United Kingdom, Japan, France, Germany, Australia, Canada, Spain, Norway, New Zealand, China (including Taiwan), Iceland, and the Netherlands. Both archived and current, underway data can be accessed from the CDIAC VOS page.

84

TMI-2 core shipping preparations  

SciTech Connect

Shipping the damaged core from the Unit 2 reactor of Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID, required development and implementation of a completely new spent fuel transportation system. This paper describes the equipment developed, the planning and activities used to implement the hardware systems into the facilities, and the planning involved in making the rail shipments. It also includes a summary of recommendations resulting from this experience.

Ball, L.J.; (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Barkanic, R.J. (Bechtel North American Power Corporation (United States)); Conaway, W.T. II (GPU Nuclear Corporation, Three Mile Island, Middletown, PA (United States)); Schmoker, D.S. (Nuclear Packaging, Inc., Federal Way, WA (United States))

1988-01-01T23:59:59.000Z

85

Cooperative Extension Instruction Public Service Research Total Type Major Unit Department CNT Amount CNT Amount CNT Amount CNT Amount CNT Amount  

E-Print Network (OSTI)

Cooperative Extension Instruction Public Service Research Total Type Major Unit Department CNT Service Research Total Type Major Unit Department CNT Amount CNT Amount CNT Amount CNT Amount CNT Amount $16,000 2 $37,966 CENTER APPLIED GENETIC TECH- RI 1 $158,070 1 $158,070 CENTER FOR FOOD SAFETY

Arnold, Jonathan

86

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

87

Optimal ship routing  

E-Print Network (OSTI)

Fuel savings in ship navigation has always been a popular subject in the maritime industry as well as the world's largest Navies. Oil prices and environmental considerations drive the effort for more fuel-efficient navigation. ...

Avgouleas, Kyriakos

2008-01-01T23:59:59.000Z

88

Shipping - 88-Inch Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

To ship equipment to the BASE Facility, send it to the following address: To: Mike Johnson (3rd Party No PO) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, Bldg 88...

89

Ancient ships of Japan  

E-Print Network (OSTI)

Ancient ships of Japan, which are little known outside of Japan, are presented based on the studies of past researchers, as well as a comprehensive analysis of archaeological remains. The process of development from logboats to extended logboats...

Miyashita, Hiroaki

2006-10-30T23:59:59.000Z

90

Computation and Minimisation of Ship  

E-Print Network (OSTI)

sea. The effect of (small to moderate) ambient waves can be added later if required. Ships and other if required. Indeed this additive characteristic of viscous and wave effects on ships was the main thrustComputation and Minimisation of Ship Waves E.O. Tuck 1 Introduction Ships make waves. Sometimes

Stokes, Yvonne

91

On Understanding Ship Resistance Mathematically  

Science Journals Connector (OSTI)

......potential theory to, in effect, deduce these velocities...sufficiently far behind the ship may be regarded as...first order or "thin ship" distribution of...hull, where local effects are important and...ON UNDERSTANDING SHIP RESISTANCE MATHEMATICALLY...Even if this viscous effect could be removed......

G. E. GADD

1968-03-01T23:59:59.000Z

92

STAT 3540: Assignment 2 -Due Friday February 24 1. The data file retail lists total U.K. (United Kingdom) retail sales (in billions of pounds)  

E-Print Network (OSTI)

STAT 3540: Assignment 2 - Due Friday February 24 1. The data file retail lists total U.K. (United Kingdom) retail sales (in billions of pounds) from January 1986 through March 2007. a) Display to determine the month with highest and lowest retail sales. iii. Construct a graph of the seasonally adjusted

Oyet, Alwell

93

Analysis of a ship-to-ship collision  

SciTech Connect

Sandia National Laboratories is involved in a safety assessment for the shipment of radioactive material by sea. One part of this study is investigation of the consequences of ship-to-ship collisions. This paper describes two sets of finite element analyses performed to assess the structural response of a small freighter and the loading imparted to radioactive material (RAM) packages during several postulated collision scenarios with another ship. The first series of analyses was performed to evaluate the amount of penetration of the freighter hull by a striking ship of various masses and initial velocities. Although these analyses included a representation of a single RAM package, the package was not impacted during the collision so forces on the package could not be computed. Therefore, a second series of analyses incorporating a representation of a row of seven packages was performed to ensure direct package impact by the striking ship. Average forces on a package were evaluated for several initial velocities and masses of the striking ship. In addition to. providing insight to ship and package response during a few postulated ship collisions scenarios, these analyses will be used to benchmark simpler ship collision models used in probabilistic risk assessment analyses.

Porter, V.L.; Ammerman, D.J.

1996-02-01T23:59:59.000Z

94

Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,  

E-Print Network (OSTI)

95-35 Methods applied to investigate the major ?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ünit at La Mede, France sources: control room hard copy and electronically stored records: no deviation of process operating

Paris-Sud XI, Université de

95

Progress Update: TRU Waste Shipping  

SciTech Connect

A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

Cody, Tom

2010-01-01T23:59:59.000Z

96

A comparative analysis of total lightning observations and cloud-to-ground lightning observations in the Southeastern United States region  

E-Print Network (OSTI)

A comparison was performed employing lightning data aphics. collected by the Optical Transient Detector (OTD) satellite and the National Lightning Detection Network (NLDN). The feasibility of using total lightning flash data, both intracloud (IC...

Hugo, Keith Michael

2012-06-07T23:59:59.000Z

97

NOAA Ship Oregon II NOAA Ship Oregon II supports the  

E-Print Network (OSTI)

was the first U.S. Government fisheries research vessel permitted to enter the port of Havana, Cuba, since the Castro regime came to power in the late 1950's. The ship was in Cuban waters to conduct a cooperative of exploring the world's deepest ocean, to smaller ships responsible for charting the shallow bays and inlets

98

Computational Ship Hydrodynamics MOERI Propeller  

E-Print Network (OSTI)

Computational Ship Hydrodynamics MOERI Propeller This area of research is coordinated by the ship 5415 #12;Fluid-Structure Interaction MOERI Propeller 22 Associate force fluid to structure Associate hydrodynamics problems, like slamming and whipping. The code has recently been applied to wind turbine flows

Kusiak, Andrew

99

Slamming of ships: where are we now?  

Science Journals Connector (OSTI)

...conditions or adapting the ship speed and course has a large effect on the actual extremes. Research...multi-hulls (surface-effect ships and conventional catamarans...F. 1963Compressibility effects in ship slammingSchiffstechnik 10...

2011-01-01T23:59:59.000Z

100

Containerized compressed natural gas shipping  

E-Print Network (OSTI)

In the last decades, the demand for energy is increasing. It is necessary to develop new ways to distribute the energy using economically feasible solutions. In this project an Ultra Large Container Ship is used that can ...

Skarvelis, Georgios V

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

COGAS propulsion for LNG ships  

Science Journals Connector (OSTI)

Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed di...

Edwin G. Wiggins

2011-06-01T23:59:59.000Z

102

2, 525575, 2002 Modeling of ship  

E-Print Network (OSTI)

effects of ship exhaust in the cloud-free marine boundary layer R. von Glasow 1,3 , M. G. Lawrence 1 , R effect on gas phase chem- istry in the ship plume, while partly soluble ship-produced aerosols are computed to only have a very small effect. Soot particles emitted by ships showed no effect on gas phase

Paris-Sud XI, Université de

103

Applying lean manufacturing initiatives to naval ship repair centers : implementation and lessons learned  

E-Print Network (OSTI)

The United States Navy is under pressure to reduce the cost of fleet maintenance in order to redirect funds for the construction of new ships and submarines. The Navy looks to private industry for process improvement ideas ...

Murphy, Brian P. (Brian Patrick), 1963-

2004-01-01T23:59:59.000Z

104

Disturbance Cancellation by State Derivative Feedback with Application to Ramp-Connected Surface Effect Ships  

E-Print Network (OSTI)

Surface Effect Ship . . . . . . . . . . . . . . . . . . .Effect Ship . . . . . . . . . . . . . . . . . . . . . . . .Actuated Surface Effect Ships . . . . . 4.1 Mathematical

Basturk, Halil I.

105

DEVELOPMENT OF THE H1700 SHIPPING PACKAGE  

SciTech Connect

The H1700 Package is based on the DOE-EM Certified 9977 Packaging. The H1700 will be certified by the Packaging Certification Division of the National Nuclear Security Administration for the shipment of plutonium by air by the United Stated Military both within the United States and internationally. The H1700 is designed to ship radioactive contents in assemblies of Radioisotope Thermoelectric Generators (RTGs) or arrangements of nested food-pack cans. The RTG containers are designed and tested to remain leaktight during transport, handling, and storage; however, their ability to remain leaktight during transport in the H1700 is not credited. This paper discusses the design and special operation of the H1700.

Abramczyk, G.; Loftin, B.; Mann, P.

2009-06-05T23:59:59.000Z

106

Smart Gator : an analysis of the impact of reduced manning on the mission readiness of U.S. Naval Amphibious Ships ; NA .  

E-Print Network (OSTI)

??The increasing cost of manpower in the United States Navy and the decline of the defense budget generated a new initiative called the Smart Ship (more)

Pringle, Cedric E.

1998-01-01T23:59:59.000Z

107

Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge  

Science Journals Connector (OSTI)

......should be added to the ship gravity anomalies to account for the atmospheric effect before comparison with...satellite gravity and ship gravity anomalies resulting...was subtracted from the ship gravity. Table 3 lists...represent the total effect of the different error......

Cheinway Hwang; Barry Parsons

1995-09-01T23:59:59.000Z

108

Blue whale response to underwater noise from commercial ships  

E-Print Network (OSTI)

to investigate the effect of ship traffic on ambient noiseThis study investigates the effect of ship noise on signalmaneuvering effects on a surface ship underwater acoustic

McKenna, Megan Frances

2011-01-01T23:59:59.000Z

109

Analysis of various all-electric-ship electrical distribution system topologies  

E-Print Network (OSTI)

As advances in technology mature, the need is evident for a coherent simulation of the total electric-drive ship to model the effect of new systems on the overall performance of the vessel. Our laboratory has been developing ...

Chalfant, Julie

110

Shipping container for fissile material  

DOE Patents (OSTI)

The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

Crowder, H.E.

1984-12-17T23:59:59.000Z

111

Motions Effect for Crowd Modeling Aboard Ships  

Science Journals Connector (OSTI)

Pre-computed ship-motion history has been used in the...inclination...steering behavior as simple means for considering the effects of ship motion on simulated passengers movement. This ... of the phenomenon, th...

K. V. Kostas; A.-A. I. Ginnis; C. G. Politis

2014-01-01T23:59:59.000Z

112

Effective Ship Ballast Water Treatment System Management  

Science Journals Connector (OSTI)

Besides its great effect on ship stability, ballast water causes an important problem. While a ship loads ballast water from any sea, it ... species. These species may have a great effect on the local ecological ...

Levent Bilgili; Kaan nlgeno?lu

2013-01-01T23:59:59.000Z

113

JOIDES Resolution Ship Security Plan The JOIDES Resolution is operating under the International Ship &  

E-Print Network (OSTI)

JOIDES Resolution Ship Security Plan The JOIDES Resolution is operating under the International or the Ship Security Plan is not followed. The JOIDES Resolution's Ship Security Plan has been approved by its and personnel will be searched as required in accordance with the ISPS code, the Ship Security Plan

114

The effect of hydroelasticity on ship slamming  

Science Journals Connector (OSTI)

...and D. W. Moore The effect of hydroelasticity on ship slamming O. M. Faltinsen...bending stresses. The effect of hydroelasticity on ship slamming B y O. M...Lond. A (1997) The effect of hydroelasticity on ship slamming 577 U xI z...

1997-01-01T23:59:59.000Z

115

ON THE OPTIMUM CONTROL OF SHIPS' STABILIZERS  

Science Journals Connector (OSTI)

......magnitude as the ship's natural frequency...probably enhance this effect, for stabilization...of Fig. 1, the effect of an isolated large...I) Sea (li) Ship FIG. 2. A sketch...and (b) that the ship has reacted to this...sufficiently long for the effects of all initial disturbances......

BRYAN THWAITERS

1961-08-01T23:59:59.000Z

116

Ship Patrol: Multiagent Patrol in Complex  

E-Print Network (OSTI)

point to another. For example, in marine environments, the travel time of ships depends on parameters) in marine environments. When designing algorithms for ships in such environments, it is critical to considerShip Patrol: Multiagent Patrol in Complex Environmental Conditions Noa Agmon1 , Daniel Urieli2

Stone, Peter

117

Investigation of propulsion system for large LNG ships  

Science Journals Connector (OSTI)

Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

R P Sinha; Wan Mohd Norsani Wan Nik

2012-01-01T23:59:59.000Z

118

Gamma motes for detection of radioactive materials in shipping containers  

SciTech Connect

Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks.

Harold McHugh; William Quam; Stephan Weeks; Brendan Sever

2007-04-13T23:59:59.000Z

119

A study on bunker fuel management for the shipping liner services  

Science Journals Connector (OSTI)

In this paper, we consider a bunker fuel management strategy study for a single shipping liner service. The bunker fuel management strategy includes three components: bunkering ports selection (where to bunker), bunkering amounts determination (how much to bunker) and ship speeds adjustment (how to adjust the ship speeds along the service route). As these three components are interrelated, it is necessary to optimize them jointly in order to obtain an optimal bunker fuel management strategy for a single shipping liner service. As an appropriate model representing the relationship between bunker fuel consumption rate and ship speed is important in the bunker fuel management strategy, we first study in detail this empirical relationship. We find that the relationship can be different for different sizes of containerships and provide an empirical model to express this relationship for different sizes of containerships based on real data obtained from a shipping company. We further highlight the importance of using the appropriate consumption rate model in the bunker fuel management strategy as using a wrong or aggregated model can result in inferior or suboptimal strategies. We then develop a planning level model to determine the optimal bunker fuel management strategy, i.e. optimal bunkering ports, bunkering amounts and ship speeds, so as to minimize total bunker fuel related cost for a single shipping liner service. Based on the optimization model, we study the effects of port arrival time windows, bunker fuel prices, ship bunker fuel capacity and skipping port options on the bunker fuel management strategy of a single shipping liner service. We finally provide some insights obtained from two case studies.

Zhishuang Yao; Szu Hui Ng; Loo Hay Lee

2012-01-01T23:59:59.000Z

120

Airship Measurements of Ships Exhaust Plumes and Their Effect on Marine Boundary Layer Clouds  

Science Journals Connector (OSTI)

High-resolution aerosol, trace gas, and cloud microphysical measurements were made from an airship during transects across ships exhaust plumes advecting downwind of ships in the marine boundary layer (MBL). This study was part of the Office of ...

G. M. Frick; W. A. Hoppel

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Canonical correlation of shipping forward curves  

E-Print Network (OSTI)

The behavior and interrelations between the main shipping forward curves are analyzed using multivariate statistics after removing the volatility distortions dictated by the Samuelson hypothesis. Principal Components ...

Hadjiyiannis, Nicholas

2010-01-01T23:59:59.000Z

122

Ship-Track Clouds, Aerosol, and Ship Dynamic Effects; A Climate Perspective from Ship-Based Measurements  

SciTech Connect

Ship-track clouds are marine boundary layer clouds that form behind ocean ships and are observed from satellites in the visible and near infrared. Ship-track clouds provide a rare opportunity to connect aerosol cloud condensation nuclei (CCN) emissions and observable changes in marine stratiform clouds. A very small change in the reflectivity of these eastern Pacific and Atlantic clouds (about 4%) provides a climate feedback of similar magnitude to doubling CO{sub 2} (increasing cloud reflectivity corresponds to global cooling). The Department of Energy sponsored research from 1991 to 1995 to study ship-track clouds including two ocean-based experiments in the summers of 1991 and 1994. These experiments showed that ship-track cloud properties were often more complex those related to a reduction of droplet size with an increase in number associated with increasing CCN from the ship's plume. The clouds showed evidence of morphological changes more likely to be associated with cloud dynamic effects either initiated by the increased CCN or directly by the ship's heat output or turbulent air wake. The fact that marine stratiform clouds, that are susceptible to ship track formation, are starved for both CCN and convective turbulence complicates the separation of the two effects.

Porch, W.M.

1998-10-13T23:59:59.000Z

123

SAFETY MANAGEMENT MANUAL OSU SHIP OPERATIONS  

E-Print Network (OSTI)

The operation of the A-frame and Hydro Boom in the conduct of ship's work and training other personnelSAFETY MANAGEMENT MANUAL OSU SHIP OPERATIONS 6.5 A-FRAME AND BOOM OPERATIONS Originator: Approved Boom operations and the qualification for training operators on the R/V Oceanus. 6.5.2 Responsibility

Kurapov, Alexander

124

Effect of Fluctuation of Wind on Ship Motions  

Science Journals Connector (OSTI)

This paper describes the effect of fluctuation of wind on ship motions examined by means of the numerical simulation method. Ship sizes 258,000 dwt and 237,000 dwt oil tankers. Ships are moored to fixed deep wate...

S. Ueda

1988-01-01T23:59:59.000Z

125

Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule June 2, 2011 - 12:00pm Addthis Media Contact Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011. The milestone for shipping waste was met in May 2011. Since the shipments began in 2000, 620 shipments have left the Hanford Site, a total of 4,137 cubic meters of transuranic waste. Milestones for

126

Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule June 2, 2011 - 12:00pm Addthis Media Contact Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011. The milestone for shipping waste was met in May 2011. Since the shipments began in 2000, 620 shipments have left the Hanford Site, a total of 4,137 cubic meters of transuranic waste. Milestones for

127

Transporting & Shipping Hazardous Materials at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EHSS EHSS Industrial Hygiene Group HazMat Transport/Shipping Home Biological & Infectious Substances Chemicals Compressed Gas Cryogens Dry Ice Engineered Nanomaterials Gasoline Lithium Betteries Radioactive Materials Waste: Hazardous, Biohazardous, Medical or Radioactive Mixed Hazardous Materials Personal/Rental Vehicles HazMat Transport/Shipping Transporting and shipping hazardous materials can be dangerous, but both activities can be done safely - much of it by the researchers themselves. Each of the items below is subject to some transportation or shipping restrictions. Click on the applicable hazardous material icon below to learn how you can safely (and legally) transport that hazardous material and to learn what laboratory resources are available to you for your shipping needs.

128

LANL shatters records in first year of accelerated shipping effort  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL shatters records in first year of accelerated shipping effort LANL shatters records in first year of accelerated shipping effort LANL set a record for transuranic waste...

129

PWR Fuel Shipping Limits & RNP Core Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Transportation Experience Steven Edwards, Progress Energy September 21, 2005 2 Discussion Topics Progress Energy Transportation History Success Factors Shipment Security Dedicated Trains Emergency Response Public Communication/Participation Summary 3 Brunswick Harris Crystal River Robinson Progress Energy Nuclear Plants 4 Spent Fuel Management Strategy Maintain operating reserve at all nuclear units Spent fuel shipping program to reduce inventories at Brunswick and Robinson Maximize use of Harris spent fuel pools 5 Transportation Experience 191 shipments 1,000 MTU transported 4,541 spent fuel assemblies transported 6 Transportation Experience First Shipment - 1977 Active spent fuel transportation program since 1989 12 to 15 shipments per year

130

Pollution control: A Houston Ship Channel issue.  

E-Print Network (OSTI)

. B Ibid. , p. 161. 17 following the Japanese attack on Pearl Harbor. The immediate effect on the Houston Ship Channel was a reduction in its normal maritime activity as shipping was diverted to East and West coast ports. This diversion was only... since 1951, but the study did express "some concern" with the Houston Ship Channel which it zeported was " . . . showing effects of water discharges". 5 Another point of view was expressed by Dr. Walter A. Quebedeaux. In 195/4 Dr. Quebedeaux became...

Williams, Edward Barney

2012-06-07T23:59:59.000Z

131

Limits to the Aerosol Indirect Radiative Effect Derived from Observations of Ship Tracks  

Science Journals Connector (OSTI)

One-kilometer Advanced Very High Resolution Radiometer (AVHRR) observations of the effects of ships on low-level clouds off the west coast of the United States are used to derive limits for the degree to which clouds might be altered by increases ...

James A. Coakley Jr.; Christopher D. Walsh

2002-02-01T23:59:59.000Z

132

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

133

Los Alamos exceeds waste shipping goal  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. Contact Fred deSousa Communications Office (505) 665-3430 Email "We've made significant progress removing waste stored above ground at Area G, and we made this progress while maintaining an excellent safety record," said Jeff Mousseau, associate director of Environmental Programs

134

Los Alamos exceeds waste shipping goal  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. Contact Fred deSousa Communications Office (505) 665-3430 Email "We've made significant progress removing waste stored above ground at Area G, and we made this progress while maintaining an excellent safety record," said Jeff Mousseau, associate director of Environmental Programs

135

Ship hull resistance calculations using CFD methods  

E-Print Network (OSTI)

In past years, the computational power and run-time required by Computational Fluid Dynamics (CFD) codes restricted their use in ship design space exploration. Increases in computational power available to designers, in ...

Voxakis, Petros

2012-01-01T23:59:59.000Z

136

What's right SHIP & Healthcare Reform Forum  

E-Print Network (OSTI)

&Health Reform What's right for you SHIP & Healthcare Reform Forum: What's Right for You This session will help you: * demystify the healthcare reform changes * explore your options * learn how

Walker, Matthew P.

137

Ship dynamics for maritime ISAR imaging.  

SciTech Connect

Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inverse Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.

Doerry, Armin Walter

2008-02-01T23:59:59.000Z

138

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents (OSTI)

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

139

The complex network of global cargo ship movements  

Science Journals Connector (OSTI)

...transitive interactions in the ship networks indicates that...also has an unwanted side effect: in general, the more...characteristics per individual ship (table-1). The average...2007 Analysis of network effect in port and shipping system...network of global cargo ship movements. | Transportation...

2010-01-01T23:59:59.000Z

140

Thermo NESLAB Shipping Check List  

E-Print Network (OSTI)

1/2" BOM: 263112040000 Qty UOM Stock 1 EA MRFIN 2 EA 07124 2 EA 0713C This unit packaged with pride applicable) lowing items should be included with this unit. Item Inspection card (if applicable) Item is at the rear board. Short-circuiting the pin 2 and pin 3 will keep die laser on. 1 2 3 4 For TTL option laser

Kleinfeld, David

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Extracting Cultural Information from Ship Timber  

E-Print Network (OSTI)

Committee Members, Diana Burton Deborah Carlson Suzanne Eckert Samuel Mark Head of Department, Donny L. Hamilton December 2010 Major Subject: Anthropology iii ABSTRACT Extracting Cultural Information from Ship Timber. (December 2010... shipbuilding tool kit effectively reconstructed.11 Similarly, the management of ship timber stands can be reconstructed by looking at the arcs of futtocks, relative age of common timber pieces, percentage of wood wasted, and the identification of ?waney...

Creasman, Pearce

2012-02-14T23:59:59.000Z

142

Analysis of ship maneuvering data from simulators  

Science Journals Connector (OSTI)

We analyze complex manuevering histories of ships obtained from training sessions on bridge simulators. Advanced ships are used in fields like offshore oil exploration: dive support vessels supply vessels anchor handling vessels tugs cable layers and multi?purpose vessels. Due to high demands from the operations carried out these ships need to have very high maneuverability. This is achieved through a propulsion system with several thrusters water jets and rudders in addition to standard propellers. For some operations like subsea maintenance it is crucial that the ship accurately keeps a fixed position. Therefore bridge systems usually incorporate equipment for Dynamic Positioning (DP). DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined route. Like an autopilot on an airplane DP may operate without human involvement. The method relies on accurate determination of position from external reference systems like GPS as well as a continuously adjusted mathematical model of the ship and external forces from wind waves and currents. In a specific simulator exercise for offshore crews a ship is to be taken up to an installation consisting of three nearby oil platforms connected by bridges (Frigg field North Sea) where a subsea inspection is to be carried out. Due to the many degrees of freedom during maneuvering including partly or full use of DP the chosen routes vary significantly. In this poster we report preliminary results on representations of the complex maneuvering histories; representations that allow comparison between crew groups and possibly sorting of the different strategic choices behind.

V. Frette; G. Kleppe; K. Christensen

2011-01-01T23:59:59.000Z

143

NOAA Ship OSCAR DYSON The ship is named after the Alaskan  

E-Print Network (OSTI)

designed to conduct both fisheries and oceanographic research. Fishing operations and capabilities match those of the commercial trawler fleet. The ship is capable of conducting trawling operations to depths-of-the art research ship capable of conducting a wide variety of fisheries and oceanographic research

144

An assessment of simplified methods to determine damage from ship-to-ship collisions  

SciTech Connect

Sandia National Laboratories (SNL) is studying the safety of shipping, radioactive materials (RAM) by sea, the SeaRAM project (McConnell, et al. 1995), which is sponsored by the US Department of Energy (DOE). The project is concerned with the potential effects of ship collisions and fires on onboard RAM packages. Existing methodologies are being assessed to determine their adequacy to predict the effect of ship collisions and fires on RAM packages and to estimate whether or not a given accident might lead to a release of radioactivity. The eventual goal is to develop a set of validated methods, which have been checked by comparison with test data and/or detailed finite element analyses, for predicting the consequences of ship collisions and fires. These methods could then be used to provide input for overall risk assessments of RAM sea transport. The emphasis of this paper is on methods for predicting- effects of ship collisions.

Parks, M.B.; Ammerman, D.J.

1996-02-01T23:59:59.000Z

145

Shipping and Receiving | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Employee Services » Facility Operations » Shipping Services » Employee Services » Facility Operations » Shipping and Receiving Shipping and Receiving Headquarters Receiving Services Information It is our responsibility to get your package to you as quickly as possibly. In order to accomplish this, we must first receive it. However, it is difficult to receive your package if it arrives without being properly addressed. When placing orders with commercial vendors, it is imperative that you let them know the addressees name, mail stop code, room number, location (Forrestal or Germantown) and the address. This information will allow us to receive your order and not reject it. It will also help if you would provide our office with a copy of your purchase order which will assist us in efficiently receiving your order and getting it to you.

146

USPS mailing and shipping prices increase effective January 26, 2014 The Postal Regulatory Commission (PRC) approved the Consumer Price Index (CPI) Rate Case for  

E-Print Network (OSTI)

USPS mailing and shipping prices increase effective January 26, 2014 The Postal Regulatory, the PRC approved the Exigency case by an additional 4.3% for a total increase of 5.9% and will take effect

Hemmers, Oliver

147

A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance  

E-Print Network (OSTI)

We determine the parametric hull of a given volume which minimizes the total water resistance for a given speed of the ship. The total resistance is the sum of Michell's wave resistance and of the viscous resistance, approximated by assuming a constant viscous drag coefficient. We prove that the optimized hull exists, is unique, symmetric, smooth and that it depends continuously on the speed. Numerical simulations show the efficiency of the approach, and complete the theoretical results.

Dambrine, Julien; Rousseaux, Germain

2014-01-01T23:59:59.000Z

148

Emissions from Ships with respect to Their Effects on Clouds  

Science Journals Connector (OSTI)

Emissions of particles, gases, heat, and water vapor from ships are discussed with respect to their potential for changing the microstructure of marine stratiform clouds and producing the phenomenon known as ship tracks. Airborne measurements ...

Peter V. Hobbs; Timothy J. Garrett; Ronald J. Ferek; Scott R. Strader; Dean A. Hegg; Glendon M. Frick; William A. Hoppel; Richard F. Gasparovic; Lynn M. Russell; Douglas W. Johnson; Colin ODowd; Philip A. Durkee; Kurt E. Nielsen; George Innis

2000-08-01T23:59:59.000Z

149

Optimal control theory applied to ship maneuvering in restricted waters  

E-Print Network (OSTI)

Ship drivers have long understood that powerful interaction forces exist when ships operate in close proximity to rigid boundaries or other vessels. Controlling the effects of these forces has been traditionally handled ...

Thomas, Brian S., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

150

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF)  

E-Print Network (OSTI)

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF) Oak Ridge National Laboratory approved ORNL's plan to conduct a Phase II Pilot Test titled Safeguarding Truck-Shipped Wholesale

151

Shipping : is it a high risk low return business?  

E-Print Network (OSTI)

The purpose of this thesis is to investigate the risk and return characteristics of the shipping business. Shipping profitability and returns are evaluated and an analysis is performed to examine whether the returns are ...

Patitsas, Leon S

2004-01-01T23:59:59.000Z

152

Atmospheric emissions of European SECA shipping: long-term projections  

Science Journals Connector (OSTI)

Speed is the key parameter with respect to fuel consumption of a ship and therefore to its...2009...) for four ship types: tankers, general cargo, container, and bulk vessels (Fig.1). Efficiency rates used in th...

Juha Kalli; Jukka-Pekka Jalkanen; Lasse Johansson

2013-10-01T23:59:59.000Z

153

The bunkering industry and its effect on shipping tanker operations  

E-Print Network (OSTI)

The bunkering industry provides the shipping industry with the fuel oil that the vessels consume. The quality of the fuel oil provided will ensure the safe operation of vessels. Shipping companies under their fuel oil ...

Boutsikas, Angelos

2004-01-01T23:59:59.000Z

154

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

155

Baby Birds for Sale Bird Shipping  

E-Print Network (OSTI)

Home My ACCOUNT Nursery Baby Birds for Sale Bird Shipping Health Guarantee Reserve Deposits & Pymts of the journal Biology Letters. Animals, like birds and fishes, commonly use biochromes like carotenoids. But those colors may mean more to parrots than what meets the eye. Green-winged macaws Military macaws 2

McGraw, Kevin J.

156

NOAA Ship JOHN N. COBB John N. Cobb, a distinguished  

E-Print Network (OSTI)

Valdez, Persian Gulf War and New Carissa. NOAA's fleet of research and survey ships is the largest fleet

157

A comprehensive methodology for the design of ships (and other complex systems)  

Science Journals Connector (OSTI)

...which go to make a naval ship's nature are: (1...wind and ice, impacts and effects of motion and flexure...the individual naval ship is an entity, which may...technology US navy surface effect ship conventional ship technology...

1998-01-01T23:59:59.000Z

158

ON THE WAVES DUE TO THE ROLLING OF A SHIP  

Science Journals Connector (OSTI)

......THE ROLLING OF A SHIP 247 (3) The effects of viscosity and...assumed that the effect of the beam can...that is, the ship is here replaced...experiments were made on ship-forms lacking...moreover, the effect of the finite cross-section......

F. URSELL

1948-01-01T23:59:59.000Z

159

Ship-owners' decisions to outsource vessel management  

E-Print Network (OSTI)

of domiciliation, number of vessels). In addition, a specific country effect is identified for Greek shipEA 4272 Ship-owners' decisions to outsource vessel management Pierre Cariou* Francois-Charles Wolff,version1-17May2011 #12;Ship-owners' decisions to outsource vessel management Pierre CARIOU Corresponding

Paris-Sud XI, Université de

160

Crystalline structure and physical properties of ship superstructure spray ice  

Science Journals Connector (OSTI)

...ice accretion on a ship, and the properties...result of the integrated effects of spray frequency...seaworthiness by its effects on ship centre of gravity and...various locations on the ship. It also has a large effect upon the ultimate strength...

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Killing Effects of Hydroxyl Radical on Algae and Bacteria in Ships Ballast Water and on Their Cell Morphology  

Science Journals Connector (OSTI)

With the method of strong electric-field discharge, the treatments of ships ballast water [13, 14] and red tide in ocean [5...] using OH radicals were performed in our laboratory. Based on the D-2 ballast water...

Mindong Bai; Zhitao Zhang; Xiaohong Xue

2010-12-01T23:59:59.000Z

162

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

163

A fully nonlinear, dynamically consistent numerical model for solid-body ship motion. I. Ship motion with fixed heading  

Science Journals Connector (OSTI)

...surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference...strongly nonlinear effects in ship motion; and (iii...Kuang2007Modeling the effects of ship appendages on the six-degree...

2011-01-01T23:59:59.000Z

164

Total U.S. Housing Units........................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Heating Equipment........................... 1.2 Q Q Q 0.7 Have Space Heating Equipment............................ 109.8 20.5 25.6 40.3 23.4 Use Space Heating Equipment............................. 109.1 20.5 25.6 40.1 22.9 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.6 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 Q 0.5 0.8 2.1 1 to 499............................................................. 6.1 1.3 0.9 1.9 2.1 500 to 999......................................................... 27.7 5.6 5.7 10.5 6.0 1,000 to 1,499................................................... 26.0 4.3 5.2 11.3 5.2 1,500 to 1,999...................................................

165

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer......................... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer...................................... 75.6 7.8 17.8 18.4 16.3 15.3 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 6.2 14.3 14.2 12.1 11.9 Laptop Model.................................................... 16.9 1.6 3.5 4.3 4.2 3.4 Hours Turned on Per Week Less than 2 Hours............................................. 13.6 1.3 3.6 3.0 3.1 2.6 2 to 15 Hours.................................................... 29.1 3.2 6.8 7.1 6.0 6.0 16 to 40 Hours................................................... 13.5 1.6 3.3 3.6 2.5 2.5 41 to 167 Hours................................................. 6.3 0.6 1.2 1.4 1.8 1.3 On All the Time.................................................

166

Total U.S. Housing Units........................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Heating Equipment........................... 1.2 Q Q Q Have Space Heating Equipment............................ 109.8 20.5 15.1 5.4 Use Space Heating Equipment............................. 109.1 20.5 15.1 5.4 Have But Do Not Use Equipment.......................... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 Q Q Q 1 to 499............................................................. 6.1 1.3 0.9 0.4 500 to 999......................................................... 27.7 5.6 4.2 1.4 1,000 to 1,499................................................... 26.0 4.3 3.3 1.1 1,500 to 1,999................................................... 17.6 3.0 2.3 0.7 2,000 to 2,499...................................................

167

Million U.S. Housing Units Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.......................................... 8.2 1.0 0.8 1.0 1.2 1.4 1.2 1.0 0.6 2 Times A Day....................................................... 24.6 3.6 1.7 2.3 2.9 4.6 3.8 3.9 1.9 Once a Day............................................................ 42.3 5.4 2.5 4.7 4.5 7.0 7.9 6.6 3.8 A Few Times Each Week...................................... 27.2 3.6 1.6 3.4 2.8 4.7 4.5 4.4 2.3 About Once a Week............................................... 3.9 0.4 0.3 0.5 0.6 0.6 0.6 0.7 Q Less Than Once a Week....................................... 4.1 0.4 0.4 0.7 0.5 0.5 0.6 0.7 Q No Hot Meals Cooked............................................ 0.9 0.2 Q Q Q Q Q Q Q Conventional Oven Use an Oven..........................................................

168

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 0.4 1.7 2.1 2.2 1.7 2 Times A Day...................................................... 24.6 2.3 6.0 5.9 5.5 5.0 Once a Day........................................................... 42.3 5.6 10.3 9.7 8.1 8.7 A Few Times Each Week..................................... 27.2 2.1 6.1 7.2 6.0 5.7 About Once a Week.............................................. 3.9 0.3 0.7 1.0 1.1 0.8 Less Than Once a Week...................................... 4.1 Q 0.9 1.1 1.0 0.8 No Hot Meals Cooked........................................... 0.9 Q 0.4 Q Q Q Conventional Oven Use an Oven......................................................... 109.6 10.9 25.7 27.1 23.4 22.4 More Than Once a Day.....................................

169

Total U.S. Housing Units........................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Heating Equipment........................... 1.2 Q Q N Have Space Heating Equipment............................ 109.8 25.6 17.7 7.9 Use Space Heating Equipment............................. 109.1 25.6 17.7 7.9 Have But Do Not Use Equipment.......................... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 0.5 Q Q 1 to 499............................................................. 6.1 0.9 0.6 0.2 500 to 999......................................................... 27.7 5.7 3.6 2.1 1,000 to 1,499................................................... 26.0 5.2 3.9 1.3 1,500 to 1,999................................................... 17.6 3.9 2.7 1.2 2,000 to 2,499...................................................

170

Total U.S. Housing Units..................................  

U.S. Energy Information Administration (EIA) Indexed Site

Equipment..................... Equipment..................... 1.2 0.4 Q Q 0.4 Q Have Space Heating Equipment...................... 109.8 71.7 7.5 7.6 16.3 6.8 Use Space Heating Equipment....................... 109.1 71.5 7.4 7.4 16.0 6.7 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.1 Q 0.5 1.3 0.4 1 to 499....................................................... 6.1 2.0 0.4 1.1 2.1 0.6 500 to 999................................................... 27.7 9.8 2.0 3.7 9.0 3.3 1,000 to 1,499............................................. 26.0 16.4 2.1 1.8 3.6 2.1 1,500 to 1,999............................................. 17.6 15.2 1.1 0.4 0.5 0.4 2,000 to 2,499.............................................

171

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer......................... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer...................................... 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 12.8 4.0 1.1 2.0 5.4 0.3 Laptop Model.................................................... 16.9 4.9 1.0 0.4 0.8 2.6 Q Hours Turned on Per Week Less than 2 Hours............................................. 13.6 3.3 0.8 0.3 0.7 1.3 Q 2 to 15 Hours.................................................... 29.1 6.6 1.9 0.6 0.9 3.1 Q 16 to 40 Hours................................................... 13.5 3.3 1.2 0.2 0.6 1.3 Q 41 to 167 Hours................................................. 6.3 1.4

172

Total U.S. Housing Units.......................................  

Annual Energy Outlook 2012 (EIA)

12.0 Have But Do Not Use Equipment... 0.8 Q Q N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

173

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

1.5 2.5 2.3 2.4 0.9 1950 to 1959 1960 to 1969 1970 to 1979 Table HC5.10 Home Appliances Usage Indicators by Year of Construction, 2005 Year of Construction 1980 to 1989 1990 to...

174

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Have But Do Not Use Equipment... 0.8 N Q N 0.5 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

175

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.9 Have But Do Not Use Equipment... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

176

Total U.S. Housing Units.................................  

U.S. Energy Information Administration (EIA) Indexed Site

Have But Do Not Use Equipment... 0.8 Q Q Q Q 0.3 Q N Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

177

Total U.S. Housing Units.......................................  

Gasoline and Diesel Fuel Update (EIA)

Have But Do Not Use Equipment... 0.8 N N Q 0.6 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

178

Total U.S. Housing Units.......................................  

NLE Websites -- All DOE Office Websites (Extended Search)

5.4 Have But Do Not Use Equipment... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

179

Million U.S. Housing Units Total...............................  

U.S. Energy Information Administration (EIA) Indexed Site

CDD or More and Less than 4,000 HDD Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

180

Million U.S. Housing Units Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Personal Computers Do Not Use a Personal Computer ............... 35.5 20.3 14.8 1.2 0.6 0.9 2.8 Use a Personal Computer............................. 75.6 57.8 49.2 2.9 1.2 1.4 3.0 Number of Desktop PCs 1.............................................................. 50.3 37.0 30.5 2.2 0.8 1.1 2.4 2.............................................................. 16.2 13.1 11.6 0.6 0.2 Q 0.4 3 or More................................................. 9.0 7.7 7.2 Q Q Q Q Number of Laptop PCs 1.............................................................. 22.5 17.0 14.7 1.0 0.4 0.4 0.5 2.............................................................. 4.0 3.3 3.0 Q Q Q Q 3 or More................................................. 0.7 0.5 0.5 Q N N Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor).......................

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Million U.S. Housing Units Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 4.7 3.8 Q Q Q 0.6 2 Times A Day.............................................................. 24.6 16.0 13.3 0.8 0.4 Q 1.3 Once a Day.................................................................. 42.3 32.1 26.5 1.6 0.7 1.1 2.2 A Few Times Each Week............................................. 27.2 19.3 15.8 1.3 0.4 0.6 1.3 About Once a Week..................................................... 3.9 2.8 2.2 Q N Q 0.3 Less Than Once a Week.............................................. 4.1 2.7 2.3 Q Q Q Q No Hot Meals Cooked.................................................. 0.9 0.4 Q Q Q Q N Conventional Oven Use an Oven................................................................

182

Total U.S. Housing Units.............................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Heating Equipment................ 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Space Heating Equipment................. 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Space Heating Equipment.................. 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have But Do Not Use Equipment............... 0.8 0.3 0.3 Q Q N 0.4 0.6 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None...................................................... 3.6 1.2 1.2 0.4 0.3 0.5 0.9 1.9 1 to 499.................................................. 6.1 2.9 1.7 0.8 0.3 0.5 1.7 3.5 500 to 999.............................................. 27.7 11.7 8.5 4.1 1.7 1.6 7.2 14.4 1,000 to 1,499........................................ 26.0 6.3 7.8 5.7 2.8 3.4 4.0 9.4 1,500 to 1,999........................................

183

Million U.S. Housing Units Total......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Personal Computers Do Not Use a Personal Computer.................... 35.5 5.7 3.3 4.6 4.7 5.8 5.7 4.0 1.7 Use a Personal Computer................................ 75.6 9.0 4.1 7.9 7.8 13.1 12.9 13.3 7.5 Most-Used Personal Computer Type of PC Desk-top Model........................................... 58.6 6.7 3.5 6.3 6.2 10.3 9.9 10.2 5.6 Laptop Model............................................... 16.9 2.3 0.7 1.7 1.5 2.8 2.9 3.1 1.9 Hours Turned on Per Week Less than 2 Hours....................................... 13.6 1.6 0.6 1.8 1.8 2.5 2.0 2.2 1.1 2 to 15 Hours............................................... 29.1 3.0 1.6 3.3 3.0 5.6 5.0 5.0 2.7 16 to 40 Hours............................................. 13.5 1.9 0.9 1.4 1.4 1.9 2.2 2.2 1.5 41 to 167 Hours...........................................

184

Total U.S. Housing Units............................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 7.1 7.0 8.0 12.1 Do Not Have Heating Equipment............................... 1.2 Q Q Q 0.2 Have Space Heating Equipment................................ 109.8 7.1 6.8 7.9 11.9 Use Space Heating Equipment................................. 109.1 7.1 6.6 7.9 11.4 Have But Do Not Use Equipment.............................. 0.8 N Q N 0.5 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None...................................................................... 3.6 Q 0.7 Q 1.3 1 to 499................................................................. 6.1 0.5 0.4 0.5 1.4 500 to 999............................................................. 27.7 2.7 1.4 2.4 3.4 1,000 to 1,499....................................................... 26.0 1.4 2.2 1.6 2.5 1,500 to 1,999.......................................................

185

Total U.S. Housing Units...................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 33.0 8.0 3.4 5.9 14.4 Do Not Have Heating Equipment...................... 1.2 0.6 Q Q Q 0.3 Have Space Heating Equipment....................... 109.8 32.3 8.0 3.3 5.8 14.1 Use Space Heating Equipment........................ 109.1 31.8 8.0 3.2 5.6 13.9 Have But Do Not Use Equipment..................... 0.8 0.5 N Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................. 3.6 2.1 Q Q 0.4 1.1 1 to 499........................................................ 6.1 3.3 0.4 Q 0.8 1.8 500 to 999.................................................... 27.7 15.9 2.1 1.4 3.4 8.2 1,000 to 1,499.............................................. 26.0 7.6 2.5 1.0 1.1 2.9 1,500 to 1,999.............................................. 17.6 2.3 1.5 0.3 0.2 0.3

186

Million U.S. Housing Units Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.4 1.0 0.4 0.6 1.2 Q 2 Times A Day.............................................................. 24.6 8.6 2.3 1.0 1.6 3.5 0.2 Once a Day.................................................................. 42.3 10.1 2.3 1.1 2.1 4.3 0.4 A Few Times Each Week............................................. 27.2 7.8 2.0 0.7 1.3 3.6 Q About Once a Week..................................................... 3.9 1.1 Q Q Q 0.6 Q Less Than Once a Week.............................................. 4.1 1.4 Q Q Q 1.0 N No Hot Meals Cooked.................................................. 0.9 0.4 Q N Q 0.3 Q Conventional Oven Use an Oven................................................................

187

Million U.S. Housing Units Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer ............... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer............................. 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Number of Desktop PCs 1.............................................................. 50.3 13.3 3.4 0.9 2.2 6.5 0.3 2.............................................................. 16.2 3.1 1.1 0.3 0.5 1.2 Q 3 or More................................................. 9.0 1.3 0.5 0.3 Q 0.3 N Number of Laptop PCs 1.............................................................. 22.5 5.5 1.3 0.4 0.9 2.7 Q 2.............................................................. 4.0 0.8 Q Q Q 0.3 N 3 or More................................................. 0.7 Q N Q Q Q N Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor).......................

188

Total U.S. Housing Units........................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Heating Equipment........................... 1.2 0.7 Q 0.2 Q Have Space Heating Equipment............................ 109.8 46.3 18.9 22.5 22.1 Use Space Heating Equipment............................. 109.1 45.6 18.8 22.5 22.1 Have But Do Not Use Equipment.......................... 0.8 0.7 Q N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 2.4 0.3 0.4 0.4 1 to 499............................................................. 6.1 3.9 0.9 0.5 0.8 500 to 999......................................................... 27.7 14.3 5.0 4.1 4.4 1,000 to 1,499................................................... 26.0 11.8 4.5 4.5 5.2 1,500 to 1,999...................................................

189

Technique for ship/wake detection  

DOE Patents (OSTI)

An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

Roskovensky, John K. (Albuquerque, NM)

2012-05-01T23:59:59.000Z

190

DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE  

SciTech Connect

A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

Blanton, P.

2013-10-10T23:59:59.000Z

191

Eighteenth-century merchant ship interiors  

E-Print Network (OSTI)

) are indicative of the furnishings on board the vessel, but no actual structural features survived. Sunk in the Scilly Isles in 1743, remains of the ~(idio extend over one ? third kilometer (Cowan, 1982: 288). These scattered remains have revealed numerous... ships were either sunk during the battle or scuttled 20 by Cornwallis prior to his capitulation (for a complete history of the naval aspects of the Battle of Yorktown, see Sands, 1983). After the battle, the French were given title to all British...

Renner, Mary Anne

1987-01-01T23:59:59.000Z

192

WORLD SURFACE CURRENTS FROM SHIP'S DRIFT OBSERVATIONS  

SciTech Connect

Over 4 million observations of ship's drift are on file at the U.S. National Oceanographic Data Centre, in Washington, D. C., representing a vast amount of information on ocean surface currents. The observed drift speeds are dependent on the frequency of occurence of the particular current speeds and the frequency of observation. By comparing frequency of observation with the drift speeds observed it is possible to confirm known current patterns and detect singularities in surface currents.

Duncan, C.P.; Schladow, S.G.

1980-11-01T23:59:59.000Z

193

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

194

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

195

ARM - Evaluation Product - KAZR and MWACR Ship Motion Corrections  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsKAZR and MWACR Ship Motion Corrections ProductsKAZR and MWACR Ship Motion Corrections Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : KAZR and MWACR Ship Motion Corrections 2012.09.22 - 2013.01.08 Site(s) MAG General Description The second ARM mobile facility has been configured to take advantage of ship-board deployments. At issue is how the motion at sea during these deployments affects the vertically-pointing cloud radars. Two radars of this type - the Ka-band ARM Zenith Radar (KAZR) and the Marine W-band ARM Cloud Radar (MWACR) - are instruments used in ARM's first ship-based field campaign. Each of these radars requires post-processing to account for the ship's motion across the open ocean. The primary adjustments that must be

196

Bacteria in Ballast Water: The Shipping Industry's Contributions to the Transport and Distribution of Microbial Species in Texas  

E-Print Network (OSTI)

of the ballast tank bacterial community has not been examined. This study is the first to characterize the total bacterial community within a ballast tank by constructing a clone library from a ballast water sample from a cargo ship in the Port of Houston...

Neyland, Elizabeth B.

2010-10-12T23:59:59.000Z

197

Estimates of the radiological dose to people living on Bikini Island for two weeks while diving in and around the sunken ships in Bikini Lagoon  

SciTech Connect

Bikini Island and Bikini Lagoon were contaminated by fallout from nuclear weapons tests conducted at the atoll by the United States from 1946 to 1958. The second test, Baker, of the Crossroads series was an underwater detonation in 1946 that sank several ships in the lagoon, including the USS Saratoga and the Japanese battleship Nagato. The ships received high-intensity gamma-ray and neutron bombardment from the Baker test, which induced radioactivity in the metal structures. Some of the tests conducted after the Baker shot (there were 21 tests in all) injected contaminated carbonate particles into the air, some of which were deposited across the lagoon surface. Most of this contaminated soil then settled onto the ships' decks and other structures and on the lagoon bottom. These sunken ships provide an interesting location for divers. Recreational diving and swimming in and around the ships raises the question of the potential radiological dose from the radionuclides present in or on the ships and in the lagoon sediments. The purpose of this paper, therefore, is to present an analysis of the potential radiological dose to persons who would dive near the sunken ships and live on Bikini Island for a short period of time.

Robison, W.L.

1990-09-01T23:59:59.000Z

198

Estimates of the radiological dose to people living on Bikini Island for two weeks while diving in and around the sunken ships in Bikini Lagoon  

SciTech Connect

Bikini Island and Bikini Lagoon were contaminated by fallout from nuclear weapons tests conducted at the atoll by the United States from 1946 to 1958. The second test, Baker, of the Crossroads series was an underwater detonation in 1946 that sank several ships in the lagoon, including the USS Saratoga and the Japanese battleship Nagato. The ships received high-intensity gamma-ray and neutron bombardment from the Baker test, which induced radioactivity in the metal structures. Some of the tests conducted after the Baker shot (there were 21 tests in all) injected contaminated carbonate particles into the air, some of which were deposited across the lagoon surface. Most of this contaminated soil then settled onto the ships` decks and other structures and on the lagoon bottom. These sunken ships provide an interesting location for divers. Recreational diving and swimming in and around the ships raises the question of the potential radiological dose from the radionuclides present in or on the ships and in the lagoon sediments. The purpose of this paper, therefore, is to present an analysis of the potential radiological dose to persons who would dive near the sunken ships and live on Bikini Island for a short period of time.

Robison, W.L.

1990-09-01T23:59:59.000Z

199

Steady-state estuarine modeling of the Brownsville ship channel  

E-Print Network (OSTI)

. Inflow Quantity/Quality, Brownsville Ship Channel 10. Wind Occurrences, Brownsville Ship Channel Location: CMD Platform . 11. Salinity Measurements, San Martin Lake Discharge Ditch, July 1975 . 12. Characteristic Non-Point Source Parameters 13. Waste... Lake System Brownsville Ship Channel Physical Profile Hydraulic Characteristics Point Source Waste Loads Evaluation Hydrology CHAPTER II I. MATHEMATICAL MODEL SIMULATION Introduction Description of Mathematical Model "ESTPOL VERSION II" Basin...

Maldonado, Roberto Jaime

2012-06-07T23:59:59.000Z

200

Optimization Online - Ship Traffic Optimization for the Kiel Canal  

E-Print Network (OSTI)

Dec 1, 2014 ... ... optimization problem which we call the ship traffic control problem (STCP). ... We offer a unified view of routing and scheduling which blends...

Elisabeth Lbbecke

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wing in surface effect ship with canard configuration  

Science Journals Connector (OSTI)

Wing in surface effect ship (WISES) is a high-speed ship which supports its weight with an aerodynamic wing in very low altitude flight. The ship utilises the enhanced performance of wing in proximity to the water, according to the same mechanism as ground effect. The authors propose a canard-type WISES as a suitable concept for commercialisation. This concept has many advantages for conventional airplane-like configurations, especially for taking off and alighting on water. This paper describes the canard concept, its self-propulsion model tests and the preliminary designs for actual ships.

Hiromichi Akimoto; Syozo Kubo; Makoto Kanehira

2010-01-01T23:59:59.000Z

202

Simulation of vertical ship responses in high seas.  

E-Print Network (OSTI)

??This research was done to study the effect of sea severity on the vertical ship responses like heave and pitch. Model testing of a 175m (more)

Rajendran, Suresh

2009-01-01T23:59:59.000Z

203

LANSCE | Lujan Center | Sample and Equipment Shipping Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Shipping Hazardous Nanoparticles Radioactive, Nuclear, Special Nuclear Materials Contacts Lujan Center Leader (Acting) Mark Bourke 505.667.6069 Deputy Leader (Acting) Anna...

204

ANNUAL MAINTENANCE AND LEAK TESTING FOR THE 9975 SHIPPING PACKAGE  

SciTech Connect

The purpose of this document is to provide step-by-step instructions for the annual helium leak test certification and maintenance of the 9975 Shipping Package.

Trapp, D.

2014-08-25T23:59:59.000Z

205

Shipping Information and Display Setup Prior to the Career Fair  

E-Print Network (OSTI)

be shipped to the following address: LANL Bikini Atoll Road, SM-30 Mary Anne With, MS-M719 TA-00, 199, Drop

206

Dynamic simulation on collision between ship and offshore wind turbine  

Science Journals Connector (OSTI)

By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT...

Hongyan Ding ???; Qi Zhu ? ?; Puyang Zhang ???

2014-02-01T23:59:59.000Z

207

A modelling approach for the overall ship propulsion plant simulation  

Science Journals Connector (OSTI)

In the present paper, a modelling approach for the simulation of the overall ship propulsion plant is presented. A cycle mean value model with differential equations for the calculation of the engine crankshaft and turbocharger shaft speeds is used for ... Keywords: MATLAB Simulink, marine diesel engine, ship propulsion plant, simulation

G. P. Theotokatos

2007-11-01T23:59:59.000Z

208

Plastic bottles recycled into sails for tall ship  

Science Journals Connector (OSTI)

Plastic bottles recycled into sails for tall ship ... Using new and conventional plastics recycling technology, Du Pont has converted plastic soda bottles (right) and plastic car fenders into 13,000 sq ft of sail for the tall ship HMS Rose (left). ...

LOIS EMBER

1992-07-06T23:59:59.000Z

209

Kelvin's method of stationary phase and the ship wave pattern  

E-Print Network (OSTI)

the waves produced by an object moving at a constant speed across deep water (e.g., a ship). Figure: Images are isotropic. Deep-water gravity waves (kh 1, k g T ): = gk, cp = g k , cg = 1 2 g k = 1 2 cp. #12;3. Ship. Participation in the telegraph cable project led to a large personal fortune. (Images from http

Khusnutdinova, Karima

210

Outsourcing ship management: Implications for the logistics chain  

E-Print Network (OSTI)

EA 4272 Outsourcing ship management: Implications for the logistics chain Pierre Cariou* Francois,version1-17May2011 #12;Outsourcing ship management: Implications for the logistics chain Pierre Cariou implications for the logistics chain. Data on 39,925 vessels are used to investigate to the extent to which 4

Paris-Sud XI, Université de

211

Hydrogen fuel cells could power ships at port  

SciTech Connect

Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

Pratt, Joe

2013-06-27T23:59:59.000Z

212

The Cable Repair Ship H.M.T.S. Monarch  

Science Journals Connector (OSTI)

... -6), members of the general public had an opportunity of inspecting the Post Office cable repair ship Monarch, which was lying in the Thames off the Tower. This ship ... fitted out with the special gear necessary for carrying out all the operations required in cable laying and repair, on which service she is at sea for most of the ...

1934-10-06T23:59:59.000Z

213

Application of the Grey topological method to predict the effects of ship pitching  

Science Journals Connector (OSTI)

Ship motion, with six degrees of freedom, is a complex stochastic process. Sea wind and waves are the primary influencing factors. Prediction of ship motion is significant for ship navigation. To eliminate err...

Li-hong Sun ???; Ji-hong Shen ???

2008-12-01T23:59:59.000Z

214

Ship-based measurement of air-sea CO 2 exchange by eddy covariance  

E-Print Network (OSTI)

al. , 2004]. 2.4.2. Ship Heave Effects on CO 2 Measurement [the effect of heave-induced pressure fluctuations on ship-effect of pressure on air density, the accelerations caused by ship

Miller, Scott D; Marandino, Christa A; Saltzman, Eric S

2010-01-01T23:59:59.000Z

215

Ship Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ship Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 100.0 Beam(m) 3.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mapping Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 75.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.0 Maximum Wave Length(m) 6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable using LabView for regular or irregular waves

216

First Wartsila 200 diesel generator set shipped  

SciTech Connect

In early June, Wartsila SACM Diesel shipped its first Wartsila 200 diesel generator set from Mulhouse, France. This 12-cylinder generator set, rated 1870 kW at 1500 r/min, is being installed in India for base-load power generation service on a floating crane. The Cummins Wartsila Engine Company will have the responsibility to continue the development and production of the 200 series engine and a new 170 mm bore series that will be launched in 1996. Marine applications include diesel-electric propulsion, because of high specific output, relatively low cost and compact size of the gen-sets. Other applications include main propulsion for fishing boats, fast ferries and various coastal and inland waterways commercial vessels such as tugs and push boats. 2 figs.

Wadman, B.

1995-09-01T23:59:59.000Z

217

LNG demand, shipping will expand through 2010  

SciTech Connect

The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

True, W.R.

1998-02-09T23:59:59.000Z

218

Modeling and control for the reduction of wave induced motion of ramp-connected ships  

E-Print Network (OSTI)

Craft is a surface effect ship (SES) capable of functioningCraft is a surface effect ship (SES), which can alternately

Doblack, Joseph L.

2011-01-01T23:59:59.000Z

219

Effect of dynamic bending of level ice on ship's continuous-mode icebreaking  

Science Journals Connector (OSTI)

Abstract This paper focuses on the influences of the dynamic effects of shipicewater interaction on ship performance, ship motions, and ice resistance. The effects of the dynamic bending of ice wedges and ship speeds are especially investigated. The study is carried out using a numerical procedure simulating ship operations in level ice with ship motions in six degrees of freedom (DOFs). A case study is conducted with the Swedish icebreaker Tor Viking II. The 3-D hull geometry of the ship is modeled based on the lines drawing. The predicted performance of the ship is compared with data from full-scale ice trials.

Xiang Tan; Kaj Riska; Torgeir Moan

2014-01-01T23:59:59.000Z

220

Crane Double Cycling in Container Ports: Affect on Ship Dwell Time  

E-Print Network (OSTI)

in Container Ports: Effect on Ship Dwell Time Anne V.in Container Ports: Effect on Ship Dwell Time Anne V.

Goodchild, Anne V.; Daganzo, Carlos F.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Study of Stranding of Juvenile Salmon by Ship Wakes Along the Lower Columbia River Using a Before-and-After Design: Before-Phase Results  

SciTech Connect

Ship wakes produced by deep-draft vessels transiting the lower Columbia River have been observed to cause stranding of juvenile salmon. Proposed deepening of the Columbia River navigation channel has raised concerns about the potential impact of the deepening project on juvenile salmon stranding. The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory design and conduct a study to assess stranding impacts that may be associated with channel deepening. The basic study design was a multivariate analysis of covariance of field observations and measurements under a statistical design for a before and after impact comparison. We have summarized field activities and statistical analyses for the ?before? component of the study here. Stranding occurred at all three sampling sites and during all three sampling seasons (Summer 2004, Winter 2005, and Spring 2005), for a total of 46 stranding events during 126 observed vessel passages. The highest occurrence of stranding occurred at Barlow Point, WA, where 53% of the observed events resulted in stranding. Other sites included Sauvie Island, OR (37%) and County Line Park, WA (15%). To develop an appropriate impact assessment model that accounted for relevant covariates, regression analyses were conducted to determine the relationships between stranding probability and other factors. Nineteen independent variables were considered as potential factors affecting the incidence of juvenile salmon stranding, including tidal stage, tidal height, river flow, current velocity, ship type, ship direction, ship condition (loaded/unloaded), ship speed, ship size, and a proxy variable for ship kinetic energy. In addition to the ambient and ship characteristics listed above, site, season, and fish density were also considered. Although no single factor appears as the primary factor for stranding, statistical analyses of the covariates resulted in the following equations: (1) Stranding Probability {approx} Location + Kinetic Energy Proxy + Tidal Height + Salmonid Density + Kinetic energy proxy ? Tidal Height + Tidal Height x Salmonid Density. (2) Stranding Probability {approx} Location + Total Wave Distance + Salmonid Density Index. (3) Log(Total Wave Height) {approx} Ship Block + Tidal Height + Location + Ship Speed. (4) Log(Total Wave Excursion Across the Beach) {approx} Location + Kinetic Energy Proxy + Tidal Height The above equations form the basis for a conceptual model of the factors leading to salmon stranding. The equations also form the basis for an approach for assessing impacts of dredging under the before/after study design.

Pearson, Walter H.; Skalski, J R.; Sobocinski, Kathryn L.; Miller, Martin C.; Johnson, Gary E.; Williams, Greg D.; Southard, John A.; Buchanan, Rebecca A.

2006-02-01T23:59:59.000Z

222

Wind-energy assessment for the western Pacific based on ship reports  

SciTech Connect

Over 468,000 wind reports from ships traversing the Pacific Islands (Micronesia) affiliated with the United States have been examined. From these data, maps were prepared of annual and seasonal average wind speed and wind energy density and wind rose summaries for 100 2/sup 0/ by 5/sup 0/ (latitude by longitude) boxes. The Northern Marshall Islands possess the best wind energy resource in the region, the Northern Marianas the next best. Tropical storms exert a limited influence on the wind statistics. Future research should first concentrate on evaluating wind characteristics on one atoll, and then on one high island.

Schroeder, T.A.; Hori, A.M.

1982-11-01T23:59:59.000Z

223

High-speed quantum networking by ship  

E-Print Network (OSTI)

Quantum communication will improve the security of cryptographic systems and decision-making algorithms, support secure client-server computation, and improve the sensitivity of scientific instruments. As these applications consume quantum entanglement, a method for replenishing networked entanglement is essential. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem. This has motivated the development of quantum repeaters, which are designed to purify entanglement and extend its range. Quantum repeaters have been demonstrated over short distances, but an error-corrected repeater network with sufficient bandwidth over global distances will require new technology. In particular, no proposed hardware appears suitable for deployment along undersea cables, leaving the prospect of isolated metropolitan networks. Here we show that error-corrected quantum memories installed in cargo containers and carried by ship could provide a flexible and scalable connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances. With recent demonstrations of quantum technology with sufficient fidelity to enable topological error correction, implementation of the necessary quantum memories is within reach, and effective bandwidth will increase with improvements in fabrication. Thus, our architecture provides a new approach to quantum networking that avoids many of the technological requirements of undersea quantum repeaters, providing an alternate path to a worldwide Quantum Internet.

Simon J. Devitt; Andrew D. Greentree; Ashley M. Stephens; Rodney Van Meter

2014-10-13T23:59:59.000Z

224

Using Transportation Technology to Increase Efficiencies in Shipping: Real  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using Transportation Technology to Increase Efficiencies in Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge RFITS has enabled DOE ORO to establish a complex-wide initiative, supporting on-site electronic shipping and transportation of waste while utilizing industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge More Documents & Publications Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

225

Using Transportation Technology to Increase Efficiencies in Shipping: Real  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using Transportation Technology to Increase Efficiencies in Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge RFITS has enabled DOE ORO to establish a complex-wide initiative, supporting on-site electronic shipping and transportation of waste while utilizing industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge More Documents & Publications Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

226

Sea State Determination from Ship-Based Geodetic GPS  

Science Journals Connector (OSTI)

Ocean waves have a profound impact on navigation, offshore operations, recreation, safety, and the economic vitality of a nations maritime and coastal communities. This study demonstrates that ships equipped with geodetic GPS and a radar gauge ...

James Foster; Ning Li; Kwok Fai Cheung

2014-11-01T23:59:59.000Z

227

Shipping-Related Accidental and Deliberate Release into the Environment  

Science Journals Connector (OSTI)

These oils used for propulsion are one of the main sources of oil pollution in shipping: they can get spilled during refuelling (bunkering), during maintenance work and in case of a grounding or accident (Hampt...

C. Gertler; M. M. Yakimov; M. C. Malpass

2010-01-01T23:59:59.000Z

228

Wave generation of a compartmented surface-effect ship  

Science Journals Connector (OSTI)

A series of carefully controlled experiments on the wave-generation characteristics of a model of a compartmented surface-effect ship has been conducted in a towing tank....

Lawrence J. Doctors; Alexander H. Day

2010-12-01T23:59:59.000Z

229

Simulation of Wave Effect on Ship Hydrodynamics by RANSE  

Science Journals Connector (OSTI)

The application of advanced numerical methods based on the solution of RANSE and VOF equations on the prediction of ship hydrodynamics is presented. The test cases selected ... restrained and free oblique motions...

Qiuxin Gao; Dracos Vassalos

2011-01-01T23:59:59.000Z

230

Design space exploration and optimization using modern ship design tools  

E-Print Network (OSTI)

Modern Naval Architects use a variety of computer design tools to explore feasible options for clean sheet ship designs. Under the Naval Sea Systems Command (NAVSEA), the Naval Surface Warfare Center, Carderock Division ...

Jones, Adam T. (Adam Thomas)

2014-01-01T23:59:59.000Z

231

DETERMINATION OF SHIP SQUAT AND UKC USING GPS-OTF  

E-Print Network (OSTI)

· Economical fuel consumption · Protection of the ship's hull · Protection of the waterway · Protection of the environment · Adequate accounting of vessel pitch, roll and squat NETWORK OF CENTRES OF EXCELLENCE

Santerre, Rock

232

Market-based approach for improving ship air emissions  

E-Print Network (OSTI)

This study considered how appropriate different market-based approaches are for the reduction of ship air emissions, particularly CO2. Furthermore, the study also considered which types of market-based tools may be available ...

Donatelli, Matthew (Matthew Alfred)

2009-01-01T23:59:59.000Z

233

MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS  

SciTech Connect

The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells us there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages.

May, C; Allen Smith, A

2008-05-07T23:59:59.000Z

234

Fact-based communication: the Shale Gas Information Platform SHIP  

Science Journals Connector (OSTI)

In response to an increasingly expressed need for factual information, a science-based information web portal, the Shale Gas Information Platform SHIP, was developed. At the core of the project i...

Andreas Hbner; Brian Horsfield; Ingo Kapp

2013-12-01T23:59:59.000Z

235

Ship Rolling Motion Subjected to Colored Noise Excitation  

E-Print Network (OSTI)

In this research the stochastic nonlinear dynamic behaviors and probability density function of ship rolling are studied by nonlinear dynamic method and probability theory. The probability density function of rolling response is evaluated through...

Jamnongpipatkul, Arada

2012-02-14T23:59:59.000Z

236

A decision making framework for cruise ship design  

E-Print Network (OSTI)

This thesis develops a new decision making framework for initial cruise ship design. Through review of effectiveness analysis and multi-criteria decision making, a uniform philosophy is created to articulate a framework ...

Katsoufis, George P. (George Paraskevas)

2006-01-01T23:59:59.000Z

237

Premature cleavage of ship plating under reversed bending  

E-Print Network (OSTI)

The objective of the thesis is to develop and apply testing methodology for fracture initiation of actual components of a ship's hull and to provide engineering design data to be used by the industry in predicting the ...

Muragishi, Osamu, 1961-

2001-01-01T23:59:59.000Z

238

Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics  

E-Print Network (OSTI)

Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics problems, particularly for high-speed Surface Effect Ships (SES) such as the recently proposed Harley FastShip and/or a surface-piercing body (ship), within the framework of potential flow theory. The three

Grilli, Stéphan T.

239

Advanced Perception, Navigation and Planning for Autonomous In-Water Ship Hull Inspection  

E-Print Network (OSTI)

. Leonard Abstract Inspection of ship hulls and marine structures using autonomous underwater vehicles has operations on naval ships. 1 Introduction Security of ship hulls and marine structures is a major concernAdvanced Perception, Navigation and Planning for Autonomous In-Water Ship Hull Inspection Franz S

Kaess, Michael

240

Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times  

Science Journals Connector (OSTI)

We consider the problem of designing an optimal vessel schedule in the liner shipping route to minimize the total expected fuel consumption (and emissions) considering uncertain port times and frequency requirements on the liner schedule. The general optimal scheduling problem is formulated and tackled by simulation-based stochastic approximation methods. For special cases subject to the constraint of 100% service level, we prove the convexity and continuous differentiability of the objective function. Structural properties of the optimal schedule under certain conditions are obtained with useful managerial insights regarding the impact of port uncertainties. Case studies are given to illustrate the results.

Xiangtong Qi; Dong-Ping Song

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A quantitative and qualitative survey of benthal deposits contained in the Houston Ship Channel  

E-Print Network (OSTI)

123 Table D-I B-2 C-l C-3 Sedimentation Rate Data, Cycle I Sedimentation Rate Data, Cycle I I Average HDD5 Loadings Average Volatile Suspended Solids Loadings Av rage Tote I Suspt nded Solids I oad ings Average Flow ~pa e 131 149 167 I...!aulic Characteristics on Sedi- mentation Rates in the Houston Ship Channe I System 84 . 24 Assumed BOD 'Haste Loads Resulting From Urban Runoif and Industrial and Dcmcstic Haste Discharges 88 25 Total Suspended Solids and Average Sedimentation Rate Profiles 9o...

Hutton, Welford Samuel

1970-01-01T23:59:59.000Z

242

Investigation into the feasibility of alternative plutonium shipping forms  

SciTech Connect

Pacific Northwest Laboratory (PNL), operated for the Department of Energy by the Battelle Memorial Institute, is conducting a study for the Nuclear Regulatory Commission on the feasibility of altering current plutonium shipping forms to reduce or eliminate the airborne dispersibility of PuO/sub 2/ which might occur during a shipping accident. Plutonium used for fuel fabrication is currently shipped as a PuO/sub 2/ powder with a significant fraction in the respirable size range. If the high-strength container is breached due to stresses imposed during a transportation accident, the PuO/sub 2/ powder could be subject to airborne dispersion. The available information indicated that a potential accident involving fire accompanied by crush/impact forces would lead to failure of current surface shipping containers (no assumptions were made on the possibility of such a severe accident). Criteria were defined for an alternate shipping form to mitigate the effects of such an accident. Candidate techniques and materials were evaluated as alternate shipping forms by a task team consisting of personnel from PNL and Rockwell Hanford Operations (RHO). At this time, the most promising candidate for an alternate plutonium shipping form appears to be pressing PuO/sub 2/ into unsintered (green) pellets. These green pellets satisfy the criteria for a less dispersible form without requiring significant process changes. Discussions of all candidates considered are contained in a series of appendices. Recommendations for further investigations of the applicability of green pellets as an alternate shipping form are given, including the need for a cost-benefit study.

Mishima, J.; Lindsey, C.G.

1983-06-01T23:59:59.000Z

243

On field studies of suspended matter that forms in a ship canal under the effect of moving ships  

Science Journals Connector (OSTI)

The results of studies of particulate matter in a navigable channel are given. For the first time, field data on suspension concentration were collected immediately after the passage of ships with different dr...

V. A. Chechko; B. V. Chubarenko; V. Yu. Kurchenko

2011-05-01T23:59:59.000Z

244

The impact of low sulphur fuel requirements in shipping on the competitiveness of roro shipping in Northern Europe  

Science Journals Connector (OSTI)

Overall, the effect of the new Annex VI agreement may ... in the shipping industry. Based on historical price differences, the use of MGO (0. ... imply a cost increase per ton of bunker fuel of on average 80% to ...

Theo Notteboom

2011-04-01T23:59:59.000Z

245

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Demographics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

246

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

247

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Fuels Used and End Uses in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2"...

248

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space...

249

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

250

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

251

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

252

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

253

Radiated noise characteristics of a modern cargo ship  

Science Journals Connector (OSTI)

Extensive measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE a bulk cargo ship (length 173 m displacement 25?515 tons) powered by a direct-drive low-speed diesel enginea design representative of many modern merchant ships. The radiated noise data show high-level tonal frequencies from the ships service diesel generator main engine firing rate and blade rate harmonics due to propeller cavitation. Radiated noise directionality measurements indicate that the radiation is generally dipole in form at lower frequencies as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate source level (174 dB re 1 ?Pa/m at 9 Hz 16 knots) agrees reasonably well with a model of fundamental blade rate radiation previously reported by Gray and Greeley but agreement for blade rate harmonics is not as good. Noise from merchant ships elevates the natural ambient by 2030 dB in many areas; the effects of this noise on the biological environment have not been widely investigated.

Paul T. Arveson; David J. Vendittis

2000-01-01T23:59:59.000Z

254

Estimated United States Transportation Energy Use 2005  

SciTech Connect

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

255

Provides Total Tuition Charge to Source Contribution  

E-Print Network (OSTI)

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

256

LANL sets waste shipping record for fourth consecutive year  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Sets Waste Shipping Record LANL Sets Waste Shipping Record Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit LANL sets waste shipping record for fourth consecutive year The Laboratory has transported more than 1,000 shipments to WIPP since that facility opened in 1999. September 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Our goal this fiscal year is 184 shipments, and we are on track to surpass that by a substantial margin. For the fourth consecutive year, Los Alamos National Laboratory's Transuranic (TRU) Waste Program sent a record number of shipments to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M. for permanent storage. The Laboratory's 172nd shipment of TRU waste this year left Los Alamos

257

New facility boosts Lab's ability to ship transuranic waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab's ability to ship transuranic waste Lab's ability to ship transuranic waste New facility boosts Lab's ability to ship transuranic waste Construction has begun on a new facility that will help Los Alamos accelerate the shipment of transuranic waste stored in large boxes at Technical Area 54. February 9, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email "375 Box Line" facility to allow workers to repackage radioactive items stored in large boxes LOS ALAMOS, New Mexico, February 9, 2012-Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. The new "375 Box Line" facility will allow the Laboratory to repackage

258

Paducah Demolition Debris Shipped for Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition Debris Shipped for Disposition Demolition Debris Shipped for Disposition Paducah Demolition Debris Shipped for Disposition August 27, 2013 - 12:00pm Addthis The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow.

259

Ship Effect Measurements With Fiber Optic Neutron Detector  

SciTech Connect

The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

2010-08-10T23:59:59.000Z

260

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Manoeuvring characteristics of twin-rudder systems: rudder-hull interaction effect on the manoeuvrability of twin-rudder ships  

Science Journals Connector (OSTI)

With a recent increase in ship capacity and propulsion performance, a wide-beam ship fitted with a twin-rudder system has ... adopted in many cases. However, to improve ship manoeuvring, it is still necessary to ...

Sahbi Khanfir; Kazuhiko Hasegawa

2011-12-01T23:59:59.000Z

262

API unit  

Science Journals Connector (OSTI)

API unit [An arbitrary unit of the American Petroleum Institute for measuring natural radioactivity; used in certain well logging methods] ? API-Einheit f

2014-08-01T23:59:59.000Z

263

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network (OSTI)

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

264

The effects of stochastic characteristics of materials on the reliability of a composite ship hull  

Science Journals Connector (OSTI)

The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal ... using reliability and sensitivity calculations of a composite ship hull w...

Wei Zhang; Wenyong Tang; Nianzhong Chen

2011-03-01T23:59:59.000Z

265

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material  

E-Print Network (OSTI)

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material Suitable for Ship by their requirement for If one Si atom causes pyramidalization, two of them should enhance the effect. We have

Li, Jing

266

Shipping and nitrogen toning effects on postharvest shelf life of vegetative annuals  

E-Print Network (OSTI)

using 1- methylcyclopropene (1-MCP) an ethylene inhibitor. The effects of shipping duration and temperature were investigated. 1-MCP was found to hold flowers on treated plants longer postharvest than those not treated. Plants shipped for one day had...

Beach, Shannon Elizabeth

2006-10-30T23:59:59.000Z

267

Effects of Future Ship Emissions in the North Sea on Air Quality  

Science Journals Connector (OSTI)

By means of model simulations with the chemistry transport model CMAQ the influence of ship emissions in the North Sea on concentrations ... and nitrogen oxides over Europe was investigated. Ship emissions for th...

Armin Aulinger; Volker Matthias

2014-01-01T23:59:59.000Z

268

The surface roughness effects in computation of the turbulent boundary layer on slender ship-hull  

Science Journals Connector (OSTI)

An improved version of an integral method for computing turbulent boundary layers on a slender ship-hull with auxiliary shape parameter and lag- ... modifying an approximate technique of scaling model-to-ship rou...

Si-Young Kim; A. K. Lewkowicz

1991-09-01T23:59:59.000Z

269

DC to DC power conversion module for the all-electric ship  

E-Print Network (OSTI)

The MIT end to end electric ship model is being developed to study competing electric ship designs. This project produced a model of a Power Conversion Module (PCM)- 4, DC-to-DC converter which interfaces with the MIT ...

Gray, Weston L

2011-01-01T23:59:59.000Z

270

E-Print Network 3.0 - air pollution ship Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

ship Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution ship Page: << < 1 2 3 4 5 > >> 1 Pacific Institute 654 13th Street, Oakland, CA...

271

VOLUNTARY OBSERVING SHIPS (VOS) CLIMATE SUBSET PROJECT (VOSCLIM) PROJECT DOCUMENT  

E-Print Network (OSTI)

. Data management procedures 8. Project management 9. Information exchange Attachment 1: ScientificWMO IOC JCOMM VOLUNTARY OBSERVING SHIPS (VOS) CLIMATE SUBSET PROJECT (VOSCLIM) PROJECT DOCUMENT #12 Attachment 5: List of focal points Attachment 7: Preliminary action plan #12;PROJECT DOCUMENT

272

Reducing Power Load Fluctuations on Ships Using Power Redistribution Control  

E-Print Network (OSTI)

is supplied from generators driven by diesel en- gines, gas engines, and/or gas/steam turbines. In a powerReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J generated by consumers operating in marine power systems is proposed. The controller redistributes the power

Johansen, Tor Arne

273

Access to and Usage of Offshore Liberty Ship  

E-Print Network (OSTI)

Access to and Usage of Offshore Liberty Ship Reefs in Texas ROBERT B. DITTON, ALAN R. GRAEFE to establish cover and habitat for fisheries. Offshore artificial reef con- struction began in 1935 led many other states to become interested in deploying offshore artificial reefs. The first reef

274

Navigocorpus: A Database for Shipping Information A Methodological and  

E-Print Network (OSTI)

of Maritime History XXIII, 2 (2011) 241-262" #12;Jean-Pierre Dedieu, et al. the database on-line beginningNavigocorpus: A Database for Shipping Information ­ A Methodological and Technical Introduction and stored them in databases which are generally organized according to the nature of the sources used

Paris-Sud XI, Université de

275

THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR GTRI EXPERIMENTS  

SciTech Connect

The Global Threat Reduction Initiative (GTRI) has many experiments yet to be irradiated in support of the High Performance Research Reactor fuels development program. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for post irradiation examination. To date, the General Electric (GE)-2000 cask has been used to transport GTRI experiments between these facilities. However, the availability of the GE-2000 cask to support future GTRI experiments is at risk. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger GTRI experiments. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled experiments. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask.

Donna Post Guillen

2014-06-01T23:59:59.000Z

276

Structural analysis for horizontal storage of 9975 shipping packages  

SciTech Connect

This paper presents a nonlinear dynamic analysis for a 9975 shipping package to evaluate its structural response while stored in a horizontal assembly of packages. The structural response of the 9975 shipping package stored on a 24-inch-wide bottom rack while the upper two tiers of 9975 shipping packages are being loaded on top of it is analyzed. The upper two tiers of the packages are lifted by a forklift truck and then loaded onto the bottom tier of the packages. A nonlinear finite-element dynamic analysis with explicit time integration was performed for a 9975 shipping package to evaluate the consequence of the loading process described above. The effect of the impact load generated by the sudden release of the upper two tiers of the packages to the deformation of the bottom package is accounted for. The ABAQUS/Explicit computer code (Reference 1) was used to perform the computations. The time histories of the deflections and stresses were generated.

Wu, T.

2000-03-16T23:59:59.000Z

277

Ship-produced cloud line of 13 July 1991  

SciTech Connect

Steaming ships can produce long linear cloud lines in regions of fog and broken stratus as well as in marine stratus layers. The lines are not always detected in 0.63 {mu}m satellite images, but are often detected in the corresponding 3.7 {mu}m images because the lines contain smaller and more numerous droplets than the stratus in which they are embedded as deduced by Coakley, et al. and measured by Radke, et al. They postulate cloud condensation nuclei (CCN) from steaming ships produced the more numerous and, hence, smaller cloud droplets. The ship-produced clouds are not always detected in 0.63 {mu}m images because this wavelength is not as sensitive to changes in droplet size as is 3.7 {mu}m. On 13 July 1991 a dramatic, ship-produced cloud line formed offshore of Baja California. The authors present satellite images of the line and corresponding photographs from the R/V EGABRAG III which passed under the line. The images and photos reveal the structure of the line. The EGABRAG was a source of CCN but did not produce a cloud line; they attempt to explain this important finding.

Hindman, E.E. [City Coll. of New York, NY (US); Porch, W.M. [Los Alamos National Lab., NM (US); Hudson, J.G. [Desert Research Inst., Reno, NV (US); Durkee, P.A. [Navel Postgraduate School, Monterey, CA (US)

1992-12-31T23:59:59.000Z

278

Ship-produced cloud line of 13 July 1991  

SciTech Connect

Steaming ships can produce long linear cloud lines in regions of fog and broken stratus as well as in marine stratus layers. The lines are not always detected in 0.63 [mu]m satellite images, but are often detected in the corresponding 3.7 [mu]m images because the lines contain smaller and more numerous droplets than the stratus in which they are embedded as deduced by Coakley, et al. and measured by Radke, et al. They postulate cloud condensation nuclei (CCN) from steaming ships produced the more numerous and, hence, smaller cloud droplets. The ship-produced clouds are not always detected in 0.63 [mu]m images because this wavelength is not as sensitive to changes in droplet size as is 3.7 [mu]m. On 13 July 1991 a dramatic, ship-produced cloud line formed offshore of Baja California. The authors present satellite images of the line and corresponding photographs from the R/V EGABRAG III which passed under the line. The images and photos reveal the structure of the line. The EGABRAG was a source of CCN but did not produce a cloud line; they attempt to explain this important finding.

Hindman, E.E. (City Coll. of New York, NY (United States)); Porch, W.M. (Los Alamos National Lab., NM (United States)); Hudson, J.G. (Desert Research Inst., Reno, NV (United States)); Durkee, P.A. (Navel Postgraduate School, Monterey, CA (United States))

1992-01-01T23:59:59.000Z

279

Pre-Ship Review November 13 &14, 2001  

E-Print Network (OSTI)

) 10. Documentation (David C) 11. Shipping and handling (David C) 12. Integration and commissioning and overall requirements (Sandy) b. Image quality (Sandy) c. Flexure control system (Sandy) d. Testing. Software (Bob K) 4. Instrument demonstration (Drew P) 5. Physical instrument interfaces (David C) 6

280

Motion Compensation System for a free floating Surface Effect Ship  

E-Print Network (OSTI)

, and the pressurized air can carry the majority of the vessel weight. Fig. 1. SES hull, bag and bow seal (photo: Umoe Compensation System (MCS) works by varying the air cushion pressure of a Surface Effect Ship (SES) to minimize states com- pared to conventional catamarans. The SES rides on an air cushion which is enclosed by to two

Gravdahl, Jan Tommy

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Response of a vessel to waves at zero ship speed  

E-Print Network (OSTI)

Response of a vessel to waves at zero ship speed: preliminary full scale experiments By: Kim Klaka of experiment were conducted ­ free roll decay tests and irregular wave tests. An inclining test was also with and without the mainsail hoisted, in very light winds. The irregular wave tests were conducted again in very

282

Der Blick in die Patente zeitreihenanalytische Prfung des Sailing?Ship?Effect  

Science Journals Connector (OSTI)

Aufbauend auf den theoretischen Erwgungen zum Sailing?Ship?Effect und der vorausgegangenen Untersuchung auf Basis von...

Bernd Liesenktter; Gerhard Schewe

2014-01-01T23:59:59.000Z

283

Probabilistic assessment of spent fuel shipping cask response to severe transportation accident conditions. Report summary  

SciTech Connect

The licensing of commercial nuclear spent shipping casks in the United States is regulated by 10CFR71. In order to be licensed, casks must be designed not to fail under hypothetical test conditions specified in Appendix B of this regulation. Questions have been raised about the suitability of these tests in simulating actual transportation accident conditions. Our study addresses the adequacy of current regulations by comparing real-world accident conditions with regulatory test specifications using more complete accident statistics and more sophisticated structural analyses than have been used in studies to date. Our objective is to evaluate the protection provided by current regulations against severe accident conditions for commercial spent nuclear fuel casks that are transported by truck or rail. The complete spectrum of truck and rail accidents will be reviewed in order to determine the frequency (or infrequency) of cask failures during transportation accidents. 3 references, 1 figure.

Fischer, L.E.; Kimura, C.Y.; Witte, M.C.

1985-01-01T23:59:59.000Z

284

Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challengeto develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

Marsha Keister; Kathryn McBride

2006-08-01T23:59:59.000Z

285

Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships  

E-Print Network (OSTI)

1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

Johansen, Tor Arne

286

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis  

E-Print Network (OSTI)

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence in the LNG shipping industry. KEYWORDS: Sloshing, multivariate heavy-tail distribution, asymptotic depen

287

MOVEMENT AND SPEED OF DOLPHIN SCHOOLS RESPONDING TO AN APPROACHING SHIP  

E-Print Network (OSTI)

the ship. The effect of this behavior on shipboard censusing of dolphins is discussed. In the eastern trajectories around an approaching ship and to evaluate the effect on shipboard censusing of dolphinsMOVEMENT AND SPEED OF DOLPHIN SCHOOLS RESPONDING TO AN APPROACHING SHIP D. Au AND W. PERRYMANl

288

Fully-Coupled Simulations of the Rotorcraft / Ship Dynamic Interface Emre Alpman  

E-Print Network (OSTI)

representation of the effect of ship deck on the rotor wake (simplified ground effectFully-Coupled Simulations of the Rotorcraft / Ship Dynamic Interface Emre Alpman exa152@psu A fully- coupled simulation tool has been developed to analyze the rotorcraft/ship dynamic interface

289

Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise  

Science Journals Connector (OSTI)

...increase in response to ship-noise playback...predicted that the effect might be size-dependent...six (ambient and ship noise from each of...potential carry-over effects. In the repeated-exposure...and F Ladich. 2007 Effects of ship noise on the detectability...

2013-01-01T23:59:59.000Z

290

POLYNOMIAL REPRESENTATION OF SOME SHIP SECTION AREA CURVES AND THE CALCULATION OF THE ASSOCIATED WAVE RESISTANCE  

Science Journals Connector (OSTI)

......the mean draught of the ship, and g is the acceleration...but only the com- bined effects of wave resistance and...POLYNOMIAL REPRESENTATION OF SHIP SECTION AREA CURVES 61...POLYNOMIAL REPRESENTATION OF SHIP SECTION AREA CURVES 53...xm, so that the effect of passing from yn(x......

D. W. MARTIN

1961-02-01T23:59:59.000Z

291

Non-standard stochastic averaging of large-amplitude ship rolling in random seas  

Science Journals Connector (OSTI)

...calculated as The effect of speed U and effective...supplementary material. 3. Ship motion model The motion...depth. Higher-order effects owing to ship generated waves are...Roberts, J. B. 1982 a Effect of parametric excitation on ship rolling motion in...

2012-01-01T23:59:59.000Z

292

Atmospheric Environment 42 (2008) 37513764 Modeling the effects of ship emissions on coastal air quality  

E-Print Network (OSTI)

Atmospheric Environment 42 (2008) 3751­3764 Modeling the effects of ship emissions on coastal air emissions, they could have important environmental effects on coastal areas near ports with heavy ship-going ships on ozone and particulate matter concentrations is quantified using UCI- CIT model for the South

Dabdub, Donald

293

Mathematical Note on the Fundamental Solution (Kelvin Source) in Ship Hydrodynamics  

Science Journals Connector (OSTI)

......simplifying assumption that the ship is thin. The velocity potential...over the mid-plane of the ship. The potential of a Kelvin...as known from the form of the ship the linearized problem can therefore...distribution of sources is the effect of interference. The present......

F. URSELL

1984-01-01T23:59:59.000Z

294

Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus  

E-Print Network (OSTI)

be related to the ship tracks, which is mainly coming from the cloud cover effect, may exceed ?100 Wm?2Satellite observations of ship emission induced transitions from broken to closed cell marine; accepted 3 August 2012; published 12 September 2012. [1] Documentation of the evolution of ship tracks

Daniel, Rosenfeld

295

Numerical simulation of ice-induced loads on ships and comparison with field measurements  

E-Print Network (OSTI)

Department of Marine Technology, NTNU May 28, 2013 #12;Motivation Local ice load Global ice load ShipNumerical simulation of ice-induced loads on ships and comparison with field measurements Biao Su's performance · Ice-hull interaction · Local ice load · Global ice load · Ship's performance #12;Outline

Nørvåg, Kjetil

296

Maneuverability of ships in ice: numerical simulation and comparison with field measurements  

E-Print Network (OSTI)

Maneuverability of ships in ice: numerical simulation and comparison with field measurements Biao Su Department of Marine Technology, NTNU May 28, 2013 #12;Motivation Local ice load Global ice load Ship's performance · Ice-hull interaction · Local ice load · Global ice load · Ship's performance #12

Nørvåg, Kjetil

297

Investigation of Ship Tracks in ATSR-2 Satellite Imagery Hisashi Arakawa  

E-Print Network (OSTI)

cccccccccccccccccccccccccccccccccccccccccccccccccc ABSTRACT Aerosols in emissions from ships perturb the marine boundary layer and form regions the radiative forcing. This is due to their large spatial and temporal Figure 1: Ship tracks in the PacificInvestigation of Ship Tracks in ATSR-2 Satellite Imagery Hisashi Arakawa extra line

Oxford, University of

298

Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices  

Science Journals Connector (OSTI)

A methodology is proposed to design a controller that forces position and orientation of underactuated ships to globally track a reference trajectory. The ships under consideration are not actuated in the sway direction, and the mass and damping matrices ... Keywords: Global tracking control, Nonzero off-diagonal terms, System matrices, Underactuated ships

K. D. Do; J. Pan

2005-01-01T23:59:59.000Z

299

International Conference on Machine Control & Guidance 2008 1 The Kinematic Potential of Modern Tracking Total Stations  

E-Print Network (OSTI)

1st International Conference on Machine Control & Guidance 2008 1 The Kinematic Potential of Modern millimetres to be measured. Keywords Tracking Total Stations, GNSS, Telescope, new Platform, ATR, EDM, Leica the 3D movement traces of construction machines, ships or individual uses occurred. The kinematic manner

300

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microsoft Word - SSRL_LCLS_User_Shipping_Request_Form_nonhaz_1-25-2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Hazardous Material) Non-Hazardous Material) Will this be shipped to a location outside of the U.S.? No ___ Yes ___ If yes, user must complete Power of Attorney and certify concurrence with terms and conditions. Confirm with Cathy Knotts or Lisa Dunn that this has been completed. _______ * It can take several days to process shipping requests through SLAC. Missing or insufficient information will delay shipments further. * Hazardous Materials Shipments must be declared on the Hazardous Material Shipping Form and must be approved by ES&H representative. Your Name: _____________________________ Phone: __________Email: _______________ Date:_______ Proposal #: ________ Spokesperson/PI: _______________________________________________________ Ship to (If being shipped to an intermediary, list all recipients):

302

Technical and management considerations in conducting type B shipping container tests  

SciTech Connect

The Code of Federal Regulations (CFR) mandate that type B shipping containers are capable of surviving specific drop tests. One approach for demonstrating compliance to the CFRs is to drop test a shipping container. This paper will discuss the technical and management considerations in conducting such drop tests on the 9975 family of shipping containers. For both technical and management considerations this paper will comment on loading the shipping container, dropping the shopping container, and examination of the shipping container after the drop tests.

Whitney, M.A.; Leader, D.R.; Phipps, D.P.

1994-04-01T23:59:59.000Z

303

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

304

Ship trail/cloud dynamic effects from Apollo-Soyuz photograph July 16, 1975  

SciTech Connect

We describe in this paper the results of a preliminary analysis of a ship trail photograph taken by the Apollo-Soyuz crew at 22:21 GMT on 16 July 1975. The photograph was taken from an altitude of 174 km and shows three separate ship trails with two of the trails intersecting. Because these photographs were taken from a non-geosynchronous satellite with a high-resolution camera, the quality of the photograph provides more detail than is usually obtained from meteorological satellites (minimum spatial resolution 14 m compared to 57 m from Landsat). The photograph not only shows enhanced detail of the ship trails themselves, but also cloud free bands generated by the ship trails. The ship trails have maximum photographed widths of 3--6 km. These cloud free bands are an obvious indication of the importance of ship trail cloud dynamics to ship trial development. These cloud dynamical effects are driven both by the initial energy release of the ship's power plant and by latent heat release from the aerosol nucleation process. Since the aerosol nucleation process is the key to understanding ocean aerosol/cloud interactions, it is important to partition these two processes in the ship trial development. We will describe in this paper preliminary numerical modeling efforts to simulate the ship trails using only the energy release from the ship and thereby give an indication of how much more energy input may be required from the nucleation process. 12 refs., 6 figs.

Porch, W.M.; Kao, Chih-yue J.; Kyle, T.G.; Kelley, R.G. Jr.

1988-01-01T23:59:59.000Z

305

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

306

Modeling of shippingModeling of shipping NONOxx emissions in globalemissions in global GeertGeert VinkenVinken11,, FolkertFolkert BoersmaBoersma22, and Daniel J. Jacob, and Daniel J. Jacob33  

E-Print Network (OSTI)

Modeling of shippingModeling of shipping NONOxx emissions in globalemissions in global CTMs) emissions 5-7% of global sulfur dioxide (SO2) emissions 3-4% of global carbon dioxide (CO2) emissions Ship 70% of the ship emissions occur within 400 km of land Only industrial sector not regulated under

Haak, Hein

307

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

308

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

309

TRI State Motor Transit to Resume Shipping Waste to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-State Motor Transit to Resume Tri-State Motor Transit to Resume Shipping Transuranic Waste to WIPP CARLSBAD, N.M., January 19, 2001 - Tri-State Motor Transit will resume shipping waste to the Waste Isolation Pilot Plant (WIPP) January 22, transporting transuranic waste from the Idaho National Engineering and Environmental Laboratory (INEEL) to WIPP. This will be the first shipment by Tri-State Motor Transit (TSMT) to WIPP since the November 21 incident in which drivers hauling waste from INEEL to WIPP failed to make the turn off from I-25 onto U.S. 285, deviating from the designated transportation route by 27 miles. The New Mexico State Police noticed the route deviation and contacted the TRANSCOM Control Center (TCC) in Albuquerque to verify that the shipment was off course. The TCC confirmed the route deviation using their tracking system and notified the drivers, via

310

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

311

Ship Bottom, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ship Bottom, New Jersey: Energy Resources Ship Bottom, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.642897°, -74.1804159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.642897,"lon":-74.1804159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

The Terminal-Oriented Ship Stowage Planning Problem  

Science Journals Connector (OSTI)

Abstract The Ship Stowage Planning Problem is the problem of determining the optimal position of containers to be stowed in a containership. In this paper we address the problem considering the objectives of the terminal management that are mainly related to the yard and transport operations. We propose a Binary Integer Program and a two-step heuristic algorithm. An extensive computational experience shows the efficiency and effectiveness of our approach. A classification scheme for stowage planning problems is also provided.

Maria Flavia Monaco; Marcello Sammarra; Gregorio Sorrentino

2014-01-01T23:59:59.000Z

313

FACSIM/MRS-2: Storage and shipping performance assessment.  

SciTech Connect

This report provides a performance assessment of the designs for the storage and shipping operations of the MRS facility. These activities, referred to as back-end operations, including handling canistered spent fuel and secondary waste in the shielded canyon cell, in onsite yard storage, and in repository shipping cask loading areas. This analysis verified that the MRS facility back-end operations as designed are capable of handling 3600 metric tons of uranium (MTU) per year if the facility operates seven days per week (24-hour days). The cask cart utilization rate is highest, in use about 50% of the operating year. Cask cart utilization refers to the utilization of the shielded canyon cell repository shipping cask loadout port (also referred to as the exit port) and the cask cart that serves that port. The receiving and handling facility design specifies two loadout ports, one for each side of the facility. This analysis also determined that a throughput rate of 3000 MTU per year could be achieved with five-day week facility operation.

Hostick, C.J.; Otis, P.T.; Chockie, A.D.; Sovers, R.A; Huber, H.D.

1987-06-01T23:59:59.000Z

314

Chemical evaluations of John F. Baldwin Ship Channel sediment  

SciTech Connect

In October 1989, the Battelle/Marine Sciences Laboratory (MSL) conducted sampling, geological characterization, and chemical evaluation studies on sediment from a proposed ship channel in San Francisco Bay, California. This channel extends from the San Francisco Bar, through San Pablo Bay, into Carquinez Strait, and on to Sacramento. The 1989 study area included a 28-mile-long portion of the John F. Baldwin Ship Channel that extended from West Richmond to and including Carquinez Strait. The objective of our study was to determine physical characteristics and chemical contaminant levels in sediment to the proposed project depth of {minus}45 ft mean lower low water (MLLW) (plus 2 ft of overdepth). Sediment core samples were collected at 47 locations throughout the John F. Baldwin Ship Channel using a vibratory hammer core sampler. Ten of these locations were from West Richmond, 29 from San Pablo Bay, and 8 from Carquinez Strait. The geological properties of sediment core samples were described, the sediment from the cores was composited into 72 separate samples based on those descriptions, and chemical analyses were conducted of 13 metals, 16 polynuclear aromatic hydrocarbons (PAH), 18 pesticides, 7 PCBs, 3 butyltins, and 4 conventional sediment chaacteristics. These data were then compared with sediment values from Oakland and Richmond harbors, reference values from Point Reyes fine- and coarse-grained sediments, and from typical shale sediment. 22 refs., 23 figs., 10 tabs.

Word, J.Q.; Kohn, N.P.

1990-09-01T23:59:59.000Z

315

9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY  

SciTech Connect

Results from the 9975 shipping package Storage and Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Complex (KAC). This justification is established with the stipulation that surveillance activities will continue throughout the extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The 10 year storage life justification was developed prior to storage. A subsequent report was later used to validate the qualification of the 9975 shipping packages for 10 years in storage. However the qualification for the storage period was provided by the monitoring requirements of the 9975 Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the 9975 Storage and Surveillance Program began. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. The primary emphasis of the on-going 9975 Storage and Surveillance Program is an aging study of the 9975 Viton{reg_sign} containment vessel O-rings and the Celotex{reg_sign} fiberboard thermal insulation at bounding conditions of radiation, elevated temperatures and/or elevated humidity.

Dunn, K.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.

2011-05-27T23:59:59.000Z

316

EFFECTS OF MOISTURE IN THE 9975 SHIPPING PACKAGE FIBERBOARD ASSEMBLY  

SciTech Connect

The fiberboard assembly used in 9975 shipping packages as an impact-absorption and insulation component has the capacity to absorb moisture, with an accompanying change to its properties. While package fabrication requirements generally maintain the fiberboard moisture content within manufacturing range, there is the potential during use or storage for atypical handling or storage practices which result in the absorption of additional moisture. In addition to performing a transportation function, the 9975 shipping packages are used as a facility storage system for special nuclear materials at the Savannah River Site. A small number of packages after extended storage have been found to contain elevated moisture levels. Typically, this condition is accompanied by an axial compaction of the bottom fiberboard layers, and the growth of mold. In addition to potential atypical practices, fiberboard can exchange moisture with the surrounding air, depending on the ambient humidity. Laboratory data have been generated to correlate the equilibrium moisture content of cane fiberboard with the humidity of the surrounding air. These data are compared to measurements taken within shipping packages. With a reasonable measurement of the fiberboard moisture content, an estimate of the fiberboard properties can be made. Over time, elevated moisture levels will negatively impact performance properties, and promote fiberboard mold growth and resultant degradation.

Daugherty, W.; Dunn, K.; Murphy, J.; Hackney, B.

2010-02-11T23:59:59.000Z

317

On the Corrosion of Copper Sheeting by Sea Water, and on Methods of Preventing This Effect; And on Their Application to Ships of War and Other Ships  

Science Journals Connector (OSTI)

...research-article On the Corrosion of Copper Sheeting by Sea Water, and on Methods of Preventing This Effect; And on Their Application to Ships of War and Other Ships Humphry Davy The Royal Society is collaborating with JSTOR to digitize, preserve, and extend...

1824-01-01T23:59:59.000Z

318

Overview of Integrated Waste Treatment Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Waste Treatment Unit Overview Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety  performance  cleanup  closure M E Environmental Management Environmental Management 2 2 Integrated Waste Treatment Unit Mission * Mission - Project mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). - Per the Idaho Cleanup Project contract, the resident Integrated Waste Treatment Unit (IWTU) facility, shall have the capability for future packaging and shipping of the existing high level waste (HLW) calcine to the geologic

319

Factors affecting stranding of juvenile salmonids by wakes from ship passage in the Lower Columbia River  

SciTech Connect

The effects of deep-draft vessel traffic in confined riverine channels on shorelines and fish are of widespread concern. In the Pacific Northwest of the United States, wakes and subsequent beach run-up from ships transiting the Lower Columbia River have been observed to strand juvenile salmon and other fish. As part of a before-and-after study to assess stranding effects that may be associated with channel deepening, we measured 19 co-variables from observations of 126 vessel passages at three low-slope beaches and used multiple logistic regression to discern the significant factors influencing the frequency of stranding. Subyearling Chinook salmon were 82% of the fish stranded over all sites and seasons. Given a low-slope beach, stranding frequencies for juvenile salmon were significantly related to river location, salmon density in the shallows, a proxy for ship kinetic energy, tidal height, and two interactions. The beach types selected for our study do not include all the beach types along the Lower Columbia River so that the stranding probabilities described here cannot be extrapolated river-wide. A more sophisticated modeling effort, informed by additional field data, is needed to assess salmon losses by stranding for the entire lower river. Such modeling needs to include river-scale factors such as beach type, berms, proximity to navigation channel, and perhaps, proximity to tributaries that act as sources of out-migrating juvenile salmon. At both river and beach scales, no one factor produces stranding; rather interactions among several conditions produce a stranding event and give stranding its episodic nature.

Pearson, Walter H.; Skalski, John R.

2011-09-01T23:59:59.000Z

320

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

174 10 12 92 UNIT NAME: C-745-K Low Level Storage Area REGULATORY STAU: -AOC LOCATION: Inside Security Fence , South of C-333 Cascade Building. APPROXIMATE...

322

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

323

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

7 KOW Toluene SDill Area UNIT NAME: REGULATORY STATUS: AOC LOCATION: Southwest of plant site APPROXIMATE DIMENSIONS: 200 feet wide by 800 feet ong FUNCTION: Storage of Toluene...

324

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

9 UNIT NAME C-746-Al REGULATORY STATUS: AOC LOCATION: Northwest corner of C-746-A APPROXIMATE DIMENSIONS: 4000 gallons FUNCTION: Underground storage tanks OPERATIONAL STATUS:...

325

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

1 UNIT NAME C-611 Underaround Gasoline Tank REGULATORY STATUS: AOC LOCATION: Immediately east of C-61l APPROXIMATE DIMENSIONS: 50 ga on FUNCTION: Gasoline storage OPERATIONAL...

326

Radiated noise characteristics of M/V OVERSEAS HARRIETTE, a modern cargo ship  

Science Journals Connector (OSTI)

Low?frequency ambient noise in the ocean is often influenced by radiated noise from merchant shipping. In an effort to quantify this noise a series of extensive and carefully planned measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE a 25 525?deadweight ton 567?ft cargo ship powered by a direct?drive low?speed diesel engine. This ship and its power plant are typical of many modern merchant ships. The radiated noise data show high?level tonal frequencies from the ship's service diesel generator main engine firing rate and blade rate harmonics due to propeller cavitation. Directivity measurements taken at many angles under the ship indicate that the radiation is generally dipole in form at lower frequencies as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate fundamental levels show good agreement with predicted levels. [Work supported by NRL.

Paul T. Arveson; David J. Vendittis

1991-01-01T23:59:59.000Z

327

Million U.S. Housing Units Total U.S.............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.... .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Conventional Ovens Use an Oven................................................. 109.6 14.4 7.2 12.4 12.4 18.6 18.3 17.2 9.1 1................................................................ 103.3 13.5 6.8 11.8 11.5 17.7 17.5 16.1 8.4 2 or More................................................... 6.2 1.0 0.4 0.6 0.8 0.9 0.8 1.1 0.7 Do Not Use an Oven..................................... 1.5 0.3 Q Q Q 0.3 0.3 Q Q Most-Used Oven Fuel Electric...................................................... 67.9 6.5 2.9 6.7 7.3 12.8 12.8 12.5 6.4 Natural Gas............................................... 36.4 7.0 4.0 5.3 4.4 5.1 4.8 3.6 2.1 Propane/LPG............................................ 5.2 0.9 0.3 0.4 0.6 0.8 0.7 1.0 0.5 Self-Cleaning Oven Use a Self-Cleaning Oven.........................

328

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status 3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating Status at the End of Owner Mill and Heap Leach1 Facility Name County, State (existing and planned locations) Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted and Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped

329

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating Status at the End of In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

330

Million U.S. Housing Units Total U.S.........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 32.3 7.9 3.3 5.9 14.1 1.1 1............................................................ 103.3 31.4 7.6 3.3 5.7 13.7 1.1 2 or More............................................... 6.2 0.9 0.3 Q Q 0.4 Q Do Not Use an Oven................................. 1.5 0.7 Q Q Q 0.3 Q Most-Used Oven Fuel Electric.................................................. 67.9 19.4 4.5 2.0 3.0 9.2 0.7 Natural Gas........................................... 36.4 12.3 3.0 1.3 2.8 4.8 0.3 Propane/LPG........................................ 5.2 0.6 0.4 Q Q Q Q Self-Cleaning Oven Use a Self-Cleaning Oven..................... 62.9 10.1 3.6 1.1 1.4 3.6 0.2 Continuous........................................ 9.3 1.6 0.5 Q Q

331

9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY  

SciTech Connect

Results from the 9975 Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Materials Storage (KAMS) facility from 10 years to 15 years. This justification is established with the stipulation that surveillance activities will continue throughout this extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The current 10 year storage life was developed prior to storage. A subsequent report was later used to extend the qualification of the 9975 shipping packages for 2 years for shipping plus 10 years for storage. However the qualification for the storage period was provided by the monitoring requirements of the Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the surveillance program began. KAMS is a zero-release facility that depends upon containment by the 9975 to meet design basis storage requirements. Therefore, to confirm the continued integrity of the 9975 packages while stored in KAMS, a 9975 Storage and Surveillance Program was implemented alongside the DOE required Integrated Surveillance Program (ISP) for 3013 plutonium-bearing containers. The 9975 Storage and Surveillance Program performs field surveillance as well as accelerated aging tests to ensure any degradation due to aging, to the extent that could affect packaging performance, is detected in advance of such degradation occurring in the field. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. As such the primary emphasis of the on-going 9975 Surveillance Program is an aging study of the 9975 Viton(reg.sign) GLT containment vessel O-rings and the Celotex(reg.sign) fiberboard thermal insulation at bounding conditions of radiation and elevated temperatures. Other materials of construction, however, are also discussed.

Daugherty, W.; Dunn, K.; Hackney, B.; Hoffman, E.; Skidmore, E.

2011-01-06T23:59:59.000Z

332

Posters Ship-Based Measurements of Cloud Optical Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Ship-Based Measurements of Cloud Optical Properties During the Atlantic Stratocumulus Transition Experiment A. B. White Cooperative Institute for Research in Environmental Sciences University of Colorado at Boulder National Oceanic and Atmospheric Administration Boulder, Colorado C. W. Fairall National Oceanic and Atmospheric Administration Environmental Research Laboratories Environmental Technology Laboratory Boulder, Colorado Introduction The Atlantic Stratocumulus Transition Experiment (ASTEX), conducted in June 1992, was designed with the broad goal of improving the dynamical, radiative, and microphysical models of marine boundary layer (MBL) clouds. This goal was pursued by combining measurements from a number of different platforms including aircraft,

333

Design and Criticality Considerations for 9977 and 9978 Shipping Packages  

SciTech Connect

Savannah River National Laboratory (SRNL) has developed two new, Type B, state-of-the-art, general purpose, fissile material Shipping Packages, designated 9977 and 9978, as replacements for the U.S. DOT specification 6M container, phased out in September 30, 2008 due to non-compliance with current requirements 10CFR71 regulation. The packages accommodate plutonium, uranium and other special nuclear materials in bulk quantities and in many forms with capabilities exceeding those of the 6M. These packages provide a high degree of single containment and comply with 10CFR71, Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10CFR20 (As Low As Reasonably Achievable (ALARA)). Allowed package contents were determined accounting for nuclear criticality, radiation shielding, and decay heat rate. The Criticality Safety Index (CSI) for the package is 1.0. The package utilizes passive cooling to maintain internal temperatures within limits. Radiation shielding analyses have established the contents for which the packages can be shipped under non-exclusive use in the Safe-Secure Trailer or under exclusive use. The packages are designed to ship radioactive contents in several configurations; Radioisotope Thermoelectric Generators (RTGs), nested food-pack cans, site specific containers, and DOE-STD-3013 containers. Each shipping package includes a 35-gallon stainless steel outer drum, insulation, a drum liner, and a single containment vessel (CV). The 9977 includes a 6-inch ID CV while the 9978 includes a 5-inch ID CV. One inch of Fiberfrax{reg_sign} insulation is wrapped around and attached to the sides and bottom of the liner. The volume between the Fiberfrax{reg_sign} and the drum wall is filled with polyurethane foam. Top and bottom aluminum Load Distribution Fixtures (LDFs) within the drum liner cavity, above and below the CV, center the CV in the liner, stiffen the package radially, and distribute loads away from the CV. The 6CV fits directly into the LDFs while honeycomb spacers position the 5CV in the LDFs.

Reed, R; Biswas, D; Abramczyk, G

2008-11-25T23:59:59.000Z

334

E-Print Network 3.0 - annual shipping review Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood- Summary: projects chosen during an annual competitive peer-reviewed grant proposal process. Exploration missions... , Illinois. The team won NOAA's nationwide ship-naming...

335

Final load of debris shipped from K-25 Building demolition project  

Energy.gov (U.S. Department of Energy (DOE))

On March 11, The final truckload of debris from the K-25 Building demolition project was shipped from East Tennessee Technology Park (ETTP).

336

Exporting, Importing, and Shipping Biological Research Materials Regulatory Review Checklist and Record  

E-Print Network (OSTI)

Exporting, Importing, and Shipping Biological Research Materials Regulatory Review Checklist and obtain the necessary government approvals. Plan ahead; government permits or special packaging may take

California at Irvine, University of

337

Ship Model for Parametric Roll Incorporating the Effects of Time-Varying Speed  

Science Journals Connector (OSTI)

The model is capable of handling complex sea states with nonsteady ship motion, and wave-induced effects enter as first-order forces via the...

Dominik A. Breu; Christian Holden

2012-01-01T23:59:59.000Z

338

Effect of stress raisers on the working characteristics of ship-propeller shafts  

Science Journals Connector (OSTI)

The effect of stress raisers on the fatigue and ... strength of steels used in the fabrication of ship-propeller shafts was studied. It was shown...

G. N. Filimonov; R. G. Pogoretskii

339

Seakeeping response of a Surface Effect Ship in near-shore transforming seas.  

E-Print Network (OSTI)

??Scale model tests are conducted of a Surface Effect Ship in a near-shore developing sea. A beach is built and installed in a wave tank, (more)

Kindel, Michael.

2012-01-01T23:59:59.000Z

340

Aspects of the surface currents in the South Indian and South Atlantic oceans from ships' drift .  

E-Print Network (OSTI)

??The main aim of this study was to analyse ships' drift data for the South West Indian and South East Atlantic Oceans in order to (more)

Wedepohl, Pierre Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The relative importance of wind and ship waves in the littoral zone of ...  

Science Journals Connector (OSTI)

In Lake Constance, ship-generated waves are as important as wind-generated waves and contribute about 41% of the annual mean wave energy flux to shore.

342

Welding Hot Cracking of Side Shell of Drilling-Well Oil Storage Ship  

Science Journals Connector (OSTI)

...Cracks were found in the weld metal (WM) of weld-section of side shell of drilling-well oil storage ship when performing post weld radiographic...

Zhi-wei Yu; Xiao-lei Xu

2014-11-01T23:59:59.000Z

343

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" 2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Appliances",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Cooking Appliances" "Stoves (Units With Both"

344

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

345

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

346

Chapter 14 - Ship Trials: Endurance and fuel consumption  

Science Journals Connector (OSTI)

Publisher Summary This chapter is designed to discuss endurance and fuel consumption. In endurance and fuel consumption trials, the vessel is run at Maximum Continuous Rating (MCR) power for a fixed duration, say 6-24 hours. During this period of time, the following information is measured and recorded: fuel consumption in kg/kW hour, propeller and engine rpm, indicated power (Pi) within the engine room, feed water used, and engine oil pressures and temperatures. There are certain factors that the engine room staff need to take care of. On making a group of runs at a given speed, the original engine settings used when first approaching the measured distance should be rigorously maintained throughout the group. When a controllable-pitch propeller is fitted, the pitch settings used when first approaching the measured mile should be left unaltered throughout the group of runs. By fitting diesel machinery in a ship of similar power, displacement, and speed, a saving of about 10% in the daily fuel consumption can be achieved. The differences in the cost of fuel/tonne must be taken into account plus the size of the machinery arrangement installed in the ship.

C.B. Barrass

2004-01-01T23:59:59.000Z

347

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

348

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

5 UNIT NAME C-333 North Side PCB Soil Contamination REGULATORY STATUS: AOC LOCATION: North side of C-333 Building APPROXIMATE OIMENSIONS: 150 ft by 100 ft FUNCTION: Dust Palliative...

349

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

4 KPDES Outfall Ditch 017 Flume- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: South of plant on the west side of the access road APPROXIMATE DIMENSIONS: 30 feet wide...

350

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 C-617-A Sanitarv Waterline- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: Between southeast corner of C-531 Switchyard and C-617-A Water Treatment Facility. 4 feet...

351

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

1 UNIT NAME C-720 Inactive TCE Oegreaser REGULATORY STATUS: AOC LOCATION: C-720 Building APPROXIMATE DIMENSIONS: Approx. 10 ft by 10 ft by 20 f1: deep FUNCTION: Used for cleaning...

352

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

2 UNIT NAME Rubble Dile 46 REGULATORY STATUS: AOC LOCATION: 2000 ft southwest of curve on Kentucky Highway 473- near east end of Mitchell Lake APPROXIMATE DIMENSIONS: About 100 ft...

353

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

1 UNIT NAME Rubble oile 45 REGULATORY STATUS AOC LOCATION: West end of Mitche Lake APPROXIMATE DIMENSIONS: 2000 ft long, ft thick 4 ft wide FUNCTION: Control erosion on face of dam...

354

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

9 UNIT NAME Rubble Dile 43 REGULATORY STATUS: AOC LOCATION: West end of Happy Ho ow Lake APPROXIMATE DIMENSIONS: 200 ft long by 4 ft wide -concrete 4-6 in thickness FUNCTION:...

355

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

6 UNIT NAME C-740 TCE Soill Site REGULATORY STATUS: AOC LOCATION: Northwest corner C-740 concrete pad area) APPROXIMATE DIMENSIONS: 5 ft by 5 ft spill FUNCTION: Drum storage area...

356

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

8 C-I00 South Side Berms UNIT NAME REGULATORY STATUS: AOC LOCATION: South Side C-IOO APPROXIMATE DIMENSIONS: 2 berms approximately 200 ft long by SO ft wide eac FUNCTION:...

357

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 UNIT NAME: C-331 PCB Soil Contamination -West Side REGULATORY STATUS: AOC LOCATION: West side C-331 building APPROXIMATE DIMENSIONS: 100 feet wide by 420 feet long FUNCTION: Dust...

358

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

359

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

5 UNIT NAME C-633 PCB So111 Site REGULATORY STATUS CERCLA LOCATION C-633 Transformer area (Mac location 75) APPROXIMATE DIMENSIONS I Unknown FUNCTION Soill site OPERATIONAL STATUS...

360

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

www.cesos.ntnu.no Yihan Xing Centre for Ships and Ocean Structures Integrated analysis of  

E-Print Network (OSTI)

1 www.cesos.ntnu.no Yihan Xing ­ Centre for Ships and Ocean Structures Integrated analysis of wind results · Integrated analysis in combination with aero-elastic simulations. · Example of application.cesos.ntnu.no Yihan Xing ­ Centre for Ships and Ocean Structures Wind turbine drivetrain concepts · Three main groups

Nørvåg, Kjetil

362

Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian port hierarchy  

E-Print Network (OSTI)

1 Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian port@parisgeo.cnrs.fr Sung-Woo LEE Korea Maritime Institute Shipping, Port & Logistics Research Department KBS media Center: revisiting the Northeast Asian port hierarchy Abstract This paper is essentially an empirical investigation

Paris-Sud XI, Université de

363

Directional Stability Analysis of a Ship Allowing for Time History Effects of the Flow  

Science Journals Connector (OSTI)

...research-article Directional Stability Analysis of a Ship Allowing for Time History Effects of the Flow R. E. D. Bishop R. K. Burcher W...determine the directional stability and control of a ship. A method of analysis is presented which indicates...

1973-01-01T23:59:59.000Z

364

Synchronous effect of slipping heavy loads on ro-ro ship rolling in waves  

Science Journals Connector (OSTI)

Common effect of wave and slip of internal vehicles will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibody system with a floating base is co...

Yin-long Zhang Doctor ???; Qing Shen ??

2006-07-01T23:59:59.000Z

365

Direct radiative effect of aerosols emitted by transport from road, shipping and  

E-Print Network (OSTI)

Direct radiative effect of aerosols emitted by transport from road, shipping and aviation 1234567.0 License. Atmospheric Chemistry and Physics Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation Y. Balkanski1, G. Myhre2,3, M. Gauss2,*, G. R�adel4, E. J. Highwood4, and K

Wirosoetisno, Djoko

366

Accuracy of Humidity Measurement on Ships: Consideration of Solar Radiation Effects  

Science Journals Connector (OSTI)

The effect of heating due to solar radiation on measurements of humidity obtained from ships is examined. Variations in wet- and dry-bulb temperature measured on each side of a research ship are shown to correlate with solar radiation. However, ...

Elizabeth C. Kent; Peter K. Taylor

1996-12-01T23:59:59.000Z

367

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera  

E-Print Network (OSTI)

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

Jüttler, Bert

368

Final Independent External Peer Review Report Sacramento River Deep Water Ship Channel,  

E-Print Network (OSTI)

Environmental Impact Statement EXECUTIVE SUMMARY Project Background and Purpose The Sacramento River Deep WaterFinal Independent External Peer Review Report Sacramento River Deep Water Ship Channel, California Peer Review Report of the Sacramento River Deep Water Ship Channel, California Limited Reevaluation

US Army Corps of Engineers

369

Mixed Sediment Modeling for Matagorda Ship Channel, Texas , M. Ferro1  

E-Print Network (OSTI)

Mixed Sediment Modeling for Matagorda Ship Channel, Texas L. Lin1 , H. Li1 , M. Ferro1 , and C shoaling in the Ship channel is complicated as it involves the mixed sediment in the surrounding area. The US Army Engineer Regional Sediment Management Program and Coastal Inlets Research Program have teamed

US Army Corps of Engineers

370

After 130 years of mystery, one of the most famous ships in the history of sci-  

E-Print Network (OSTI)

that detects the ancient contours under thick layers of modern marine sediments. Engineers have producedAfter 130 years of mystery, one of the most famous ships in the history of sci- ence may have been of a ship at one of the Beagle's likely final rest- ing places: a remote backwater in coastal Essex some 90

Alvarez, Nadir

371

BEHAVIOR OF BOTTLENOSE DOLPHINS (Tursiops truncatus) RELATIVE TO BOAT TRAFFIC IN THE GALVESTON SHIP CHANNEL, TEXAS  

E-Print Network (OSTI)

truncatus) in the Galveston Ship Channel, near the entrance to the second busiest port in the USA, as a 5.2 billion dollar expansion of the Panama Canal is to be completed in 2015 that will bring more and larger ships to Galveston Bay. Hour-long surveys were...

Pennacchi, Anna Marie

2013-02-04T23:59:59.000Z

372

Formation control of underactuated ships with elliptical shape approximation and limited communication ranges  

Science Journals Connector (OSTI)

Based on the recent theoretical development for formation control of multiple fully actuated agents with an elliptical shape in Do (2012), this paper develops distributed controllers that force a group of N underactuated ships with limited communication ... Keywords: Collision avoidance, Elliptical disks, Formation control, Potential functions, Underactuated ships

K. D. Do

2012-07-01T23:59:59.000Z

373

On the parametric rolling of ships in a following sea under simultaneous nonlinear periodic surging  

Science Journals Connector (OSTI)

...1995 Analyses on low cycle resonance of ships in astern seas. J. Soc. Naval Architects Japan 177, 197{206. IMO 1991 SLF 36/INF4, submitted by Japan, London. Kan, M. 1990 Surging of large amplitude and surf-riding of ships in following seas...

2000-01-01T23:59:59.000Z

374

Ship Detection in Satellite Imagery Using Rank-Order Grayscale Hit-or-Miss Transforms  

E-Print Network (OSTI)

Ship Detection in Satellite Imagery Using Rank-Order Grayscale Hit-or-Miss Transforms Neal R. Harvey*, Reid Porter, James Theiler Space & Remote Sensing Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ABSTRACT Ship detection from satellite imagery is something that has great

Theiler, James

375

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

376

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

377

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

378

Transporting & Shipping Hazardous Materials at LBNL: Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemicals Chemicals Hand-Carry Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Hand-Carry Employees may hand-carry small quantities of hazardous materials between adjacent buildings and in connecting spaces (i.e., hallways, stairs, etc.) within buildings, provided it can be done safely and without spilling the materials. Staff must use hand carts, drip trays, or another type of secondary container to contain any spills should they occur during self-transport. Hazardous materials hand-carried between non-adjacent buildings should be packaged to a higher level of integrity. As a best practice, package these substances following the General Requirements listed under the Self-Transport by Vehicle. As with any work involving chemicals, staff must also have completed

379

Transporting & Shipping Hazardous Materials at LBNL: Compressed Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gases Compressed Gases Self-Transport by Hand & Foot Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Return Cylinders Self-Transport by Hand & Foot Staff may personally move (self-transport) compressed gas cylinders by hand & foot between buildings and in connecting spaces (i.e., hallways, elevators, etc.) within buildings provided it can be done safely. The following safety precautions apply: Use standard cylinder dollies to transport compressed gas cylinders. While dollies are preferred, cylinders weighing 11 Kg (25 lbs) or less may be hand-carried. Never move a cylinder with a regulator connected to it. Cylinder valve-protection caps and valve-opening caps must be in place when moving cylinders. Lecture bottles and other cylinders that are

380

Microsoft Word - ShippingInstructionsRev3.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7/8/2013 Rev3 7/8/2013 Rev3 BROOKHAVEN SCIENCE ASSOCIATES, LLC SHIPPING AND LABELING INSTRUCTIONS FOR ALL DELIVERIES TO BROOKHAVEN NATIONAL LABORATORY 1. Delivery Location Unless otherwise noted on the Purchase Order/Contract, all deliveries shall be addressed to 98 Rochester Street, Upton, New York 11973. 2. Delivery Hours All deliveries must arrive at Brookhaven National Laboratory (BNL)between the hours of 8:00 am and 11:30 am or from 12:30 pm to 4:00 pm EST, Monday through Friday. Exceptions must contact the Traffic Office (see contact information below). 3. Special Notification of Delivery Due to weight, size, and/or volume parameters of the end item(s) requiring special material handling/rigging by BSA personnel; advanced notice of delivery of 3 business days minimum

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE  

SciTech Connect

The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

Jordan, J.

2010-06-02T23:59:59.000Z

382

Functions and requirements for K Basin SNF characterization shipping  

SciTech Connect

This document details the plan for the shipping of fuel samples from the K Basins to the 300 Area for characterization. The fuel characterization project will evaluate the Hanford defense production fuel (N-Reactor and Single Pass Reactor) to support interim storage, transportation and final disposition. A limited number of fuel samples will be transported to a laboratory for analysis. It is currently estimated that 20 shipments of fuel per year for approximately 3 years (could be as long as 5 years) will be transported to the laboratory for analysis. Based on the NRC certificate of compliance each shipment is limited to 500 equivalent grams of {sup 235}U. In practical terms this will limit shipments to three outer elements or two assemblies of any type of N-Reactor or SPR fuel. Case by case determination of broken fuel will be made based on the type of fuel and maximum potential fissile content.

Bergmann, D.W.

1994-11-10T23:59:59.000Z

383

Alcohol effects on navigational ability using ship handling simulator  

Science Journals Connector (OSTI)

In this paper, to examine the drinking status of officers on board multiple choice questionnaires were circularized under instruction and surveyed for 118 officers. Also, with a ship handling simulator, the effect of alcohol on maritime navigational performance is studied for the three blood alcohol concentrations (BACs) levels (0.0%, 0.05% and 0.08%). The eight participants were volunteer deck officer cadets in their senior year, at least 22 years of age, with previous experience on a bridge simulator. Additional experiments were done on maritime pilots. For baseline and performance trials, participants were randomized to one of four bridge simulator scenarios according to the current and the direction of the wind. In order to study the effects of alcohol on maritime navigational ability, (1) bio-signals using electrocardiogram (ECG), (2) performance using a simulator, and (3) mental workload using NASA-TLX were measured. As a result, this study found that alcohol intake significantly impairs the physical and mental ability of the ship operator. In particular, alcohol intake was found to have a direct correlation with changes in bio-signals such as heart rate not to mention simulator performance. In addition, alcohol intake increased mental workload according to the subjective mental workload evaluation undertaken by the test subject. The result of the analysis in this study includes the limited quantitative measure of the effects of alcohol, which is a major cause of operator fatigue. Relevance to Industry The alcohol effects on navigational ability and the frequency of drunken navigation are one of important interests in the maritime industry.

Hongtae Kim; Chan-Su Yang; Bong-Wang Lee; Young-Hoon Yang; Seoungkweon Hong

2007-01-01T23:59:59.000Z

384

DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-00600  

SciTech Connect

The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the K-Area Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) [1] credits the Model 9975 package to perform several safety functions, including criticality, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program [2-3], destructive examination of package 9975-00600 was performed following field surveillance in accordance with Reference [4]. Field surveillance of the Model 9975 package in KAC included nondestructive examination of the drum, fiberboard, lead shield and containment vessels [5]. Results of the field surveillance are provided in Attachment 1. Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-00600. For those attributes that were also measured during the field surveillance, no significant changes were observed. Three conditions were identified that do not meet inspection criteria. These conditions are subject to additional investigation and disposition by the Surveillance Program Authority. The conditions include: (1) The lead shield was covered with a white corrosion layer; (2) The lead shield height dimension exceeded drawing requirements; and (3) Fiberboard thermal conductivity in the axial direction exceeded the specified range. The Surveillance Program Authority was notified of these conditions. All other observations and test results met identified criteria, or were collected for information and trending purposes.

Daugherty, W

2007-10-29T23:59:59.000Z

385

Liquefaction of natural gas to methanol for shipping and storage  

SciTech Connect

The penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development at the Brookhaven National Laboratory. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. The new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. As a result of process design factors made possible by the BNL catalyst, the plant required to convert natural gas to methanol is very simple. Conversion of natural gas to methanol requires two chemical reactions, both of which are exothermic, and thus represent a loss of heating value in the feed natural gas. This loss is about 20% of the feed gas energy, and is, therefore, higher than the 10% loss in energy in natural gas liquefaction, which is a simpler physical - not a chemical - change. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of the capital needed for the LNG plant and LNG tanker fleet. This large reduction in capital requirements is expected to make liquefaction to methanol attractive in many cases where the LNG capital needs are prohibitive. 3 tabs.

O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

1986-07-01T23:59:59.000Z

386

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

387

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

388

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" 2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Household Demographics",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Number of Household Members"

389

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" 2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Televisions" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Televisions" "Number of Televisions"

390

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" 2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air Conditioning",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Air Conditioning Equipment"

391

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" 2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Space Heating" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Space Heating Equipment"

392

La Belle: rigging in the days of the spritsail topmast, a reconstruction of a seventeenth-century ship's rig  

E-Print Network (OSTI)

LA BELLE: RIGGING IN THE DAYS OF THE SPRITSAIL TOPMAST, A RECONSTRUCTION OF A SEVENTEENTH-CENTURY SHIPS RIG A Thesis by CATHARINE LEIGH INBODY CORDER Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF ARTS December 2007 Major Subject: Anthropology LA BELLE: RIGGING IN THE DAYS OF THE SPRITSAIL TOPMAST, A RECONSTRUCTION OF A SEVENTEENTH-CENTURY SHIPS RIG A...

Corder, Catharine Leigh Inbody

2008-10-10T23:59:59.000Z

393

Effects of the ship motion on gassolid flow and heat transfer in a circulating fluidized bed  

Science Journals Connector (OSTI)

A series of experiments on a circulating fluidized bed (CFB) was performed to investigate the effects of ship motion on gassolid flow and heat transfer in the CFB. Rolling period, rolling amplitude, inclination angle, superficial velocity, particle diameter range, and solid circulation flux were varied in the experiments. The following results were obtained: (1) When the CFB undergoes rolling motion, the downflow of particles changes periodically and the solid volume fraction increases at the riser bottom. As a result, the time-averaged total pressure drop of the CFB in rolling motion becomes larger than that at the upright attitude. Similarly, the total pressure drop of the CFB at an inclined attitude is larger than that at the upright attitude. (2) The total pressure drop of the CFB in rolling motion is hardly affected by rolling period. As rolling amplitude increases, on the other hand, the effects of rolling motion become more remarkable. From these results, it is concluded that gravity dominantly affects gassolid flow in the system. (3) At an inclined attitude, the symmetry of the flow field with respect to the riser center plane breaks, and heat transfer at the lower wall of the riser is promoted. As inclination angle increases, heat transfer augmentation becomes more remarkable. Similarly, the heat transfer coefficient in rolling motion is larger than that at the upright attitude. (4) Heat transfer augmentation by ship motion is concluded to be caused by the direct contact between solid particles and the heater surface owing to the vertical component of gravity to the surface.

Hiroyuki Murata; Hideyuki Oka; Masaki Adachi; Kazuyoshi Harumi

2012-01-01T23:59:59.000Z

394

5? Phospholipid Phosphatase SHIP-2 Causes Protein Kinase B Inactivation and Cell Cycle Arrest in Glioblastoma Cells  

Science Journals Connector (OSTI)

...activity (). C689A had little effect on SHIP-2 activity, and R691A was also...cause inhibition of PKB activity. Effect of SHIP-2 on PKB activity. (A) Schematic...five times with similar results. Effect of SHIP-2 mutations on phosphatase activity...

Vanessa Taylor; Michelle Wong; Christian Brandts; Linda Reilly; Nicholas M. Dean; Lex M. Cowsert; Shonna Moodie; David Stokoe

2000-09-01T23:59:59.000Z

395

Essential Role for the C-Terminal Noncatalytic Region of SHIP in Fc?RIIB1-Mediated Inhibitory Signaling  

Science Journals Connector (OSTI)

...the SH2 domain of SHIP (construct 166-1190) had no detectable effect on the IPase activity...by FcR. Since the SHIP SH2 is required for...to examine the effect of the IPase domain...rate of the Fc-SHIP protein may have also contributed to this effect. Protein secondary-structure...

M. Javad Aman; Scott F. Walk; Michael E. March; Hua-Poo Su; D. Jeannean Carver; Kodimangalam S. Ravichandran

2000-05-01T23:59:59.000Z

396

Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control  

E-Print Network (OSTI)

of estimating and controlling air pollution from ocean-going ships carrying international cargo is particularly1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

Brown, Alan

397

Spent Nuclear Fuel Trasportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge--to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned. The objective of this lessons learned study was to identify successful, best-in-class trends and commonalities from past shipping campaigns, which OCRWM could consider when planning for the development and operation of a repository transportation system. Note: this paper is for analytical and discussion purposes only, and is not an endorsement of, or commitment by, OCRWM to follow any of the comments or trends. If OCRWM elects to make such commitments at a future time, they will be appropriately documented in formal programmatic policy statements, plans and procedures. Reviewers examined an extensive study completed in 2003 by DOE's National Transportation Program (NTP), Office of Environmental Management (EM), as well as plans and documents related to SNF shipments since issuance of the NTP report. OCRWM examined specific planning, business, institutional and operating practices that have been identified by DOE, its transportation contractors, and stakeholders as important issues that arise repeatedly. In addition, the review identifies lessons learned or activities/actions which were found not to be productive to the planning and conduct of SNF shipments (i.e., negative impacts). This paper is a 'looking back' summary of lessons learned across multiple transportation campaigns. Not all lessons learned are captured here, and participants in some of the campaigns have divergent opinions and perspectives about which lessons are most critical. This analysis is part of a larger OCRWM benchmarking effort to identify best practices to consider in future transportation of radioactive materials ('looking forward'). Initial findings from this comprehensive benchmarking analysis are expected to be available in late fall 2006.

M. Keister; K, McBride

2006-08-28T23:59:59.000Z

398

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Appliances in U.S. Homes, by Housing Unit Type, 2009" Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,62.3,6.4,8.7,18.3,6.5 "1.",100.8,61,6.4,8.6,18.3,6.5 "2 or More",1.5,1.3,0.1,"Q","Q","Q" "Do Not Use a Stove",11.3,9.5,0.3,0.3,0.8,0.4

399

The effect of cargo on the crush loading of RAM transportation packages in ship collisions  

SciTech Connect

Recent intercontinental radioactive material shipping campaigns have focused public and regulatory attention on the safety of transport of this material by ocean-going vessels. One major concern is the response of the vessel and onboard radioactive material (RAM) packages during a severe ship-to-ship collision. These collisions occur at velocities less than the velocity obtained in the Type B package regulatory impact event and the bow of the striking ship is less rigid than the unyielding target used in those tests (Ammerman and Daidola, 1996). This implies that ship impact is not a credible scenario for damaging the radioactive material packages during ship collisions. It is possible, however, for these collisions to generate significant amounts of crush force by the bow of the impacting ship overrunning the package. It is the aim of this paper to determine an upper bound on the magnitude of this crush force taking into account the strength of the radioactive material carrying vessel and any other cargo that may be stowed in the same hold as the radioactive material.

Radloff, H.D.; Ammerman, D.J.

1998-03-01T23:59:59.000Z

400

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

402

Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856  

SciTech Connect

This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the units individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

McDonald, Dale Edward

2013-02-12T23:59:59.000Z

403

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" 9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Appliances",,,,"IL","MI","WI",,,"MO",,"KS, NE" "Total Homes",113.6,25.9,17.9,4.8,3.8,2.3,7,8.1,2.3,3.9,1.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

404

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

405

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

406

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

407

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

408

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

409

b) Economic i) Total damage estimates: From Pimentel et al. (2000)  

E-Print Network (OSTI)

4) Impacts b) Economic i) Total damage estimates: From Pimentel et al. (2000) · United States #12;4) Impacts b) Economic i) Total damage estimates: From Pimentel et al. (2000) · United States Economic impacts from losses/damage #12;4) Impacts b) Economic i) Total damage estimates: From Pimentel et al

Nowak, Robert S.

410

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Televisions in Homes in West Region, Divisions, and States, 2009" 1 Televisions in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT, WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Televisions",,,,,"CO",,,"AZ","NM, NV",,"CA" "Total Homes",113.6,24.8,7.9,3.9,1.9,2,4,2.3,1.7,16.9,12.2,4.7

411

l UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

UNITED STATES GOVERNMENT UNITED STATES GOVERNMENT lb 15 SUBJECT: THORFJM PROCURENENT PMF'N:TBU Jesse C. Johnson, Gtnager of IRaw Materials Operations3s.Office 3 R. W. Cook, Director of Production ~',LL:::+ I--- DATE: MAR ! 9 1951 The following list of suppliers of thorium and the amounts of materials procured from them by the Mew York Operations Office during calendar year 1950 is being supplied in accordance with Mr. Spelmanls telephone request of March 19. Thorium Lannett Bleachery iinde Air Products Co. Lindsey Light & Chemical Co. lliscellaneous NY0 Liscensing Division Rare Earths, Inc. Wolff-Alport Total - (kilograms) 179 38,2;2 -3 4,210 /vyeoi 4 -q- 2 : i ' \ iti 1 i 0 ;;\I:' --' I F 10 i;;;?/ \ --' L & ;:I :,- :,j( EZi 5 1 :' -I I ri _ I ' R i; .- . )- .i

412

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

413

Results from the Solar Hidden Photon Search (SHIPS)  

E-Print Network (OSTI)

We present the results of a search for transversely polarised hidden photons (HPs) with $\\sim 3$ eV energies emitted from the Sun. These hypothetical particles, known also as paraphotons or dark sector photons, are theoretically well motivated for example by string theory inspired extensions of the Standard Model. Solar HPs of sub-eV mass can convert into photons of the same energy (photon$\\leftrightarrow$HP oscillations are similar to neutrino flavour oscillations). At SHIPS this would take place inside a long light-tight high-vacuum tube, which tracks the Sun. The generated photons would then be focused into a low-noise photomultiplier at the far end of the tube. Our analysis of 330 h of data (and {330 h} of background characterisation) reveals no signal of photons from solar hidden photon conversion. We estimate the rate of newly generated photons due to this conversion to be smaller than 25 mHz/m$^2$ at the 95$%$ C.L. Using this and a recent model of solar HP emission, we set stringent constraints on $\\ch...

Schwarz, Matthias; Lindner, Axel; Redondo, Javier; Ringwald, Andreas; Schneide, Magnus; Susol, Jaroslaw; Wiedemann, Gnter

2015-01-01T23:59:59.000Z

414

DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-06100  

SciTech Connect

Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-06100. This package was selected for examination based on several characteristics: - This was the first destructively examined package in which the fiberboard assembly was fabricated from softwood fiberboard. - The package contained a relatively high heat load to contribute to internal temperature, which is a key environmental factor for fiberboard degradation. - The package has been stored in the middle or top of a storage array since its receipt in K- Area, positions that would contribute to increased service temperatures. No significant changes were observed for attributes that were measured during both field surveillance and destructive examination. Except for the axial gap, all observations and test results met identified criteria, or were collected for information and trending purposes. The axial gap met the 1 inch maximum criterion during field surveillance, but was just over the criterion during SRNL measurements. When re-measured at a later date, it again met the criterion. The bottom of the lower fiberboard assembly and the drum interior had two small stains at matching locations, suggestive of water intrusion. However, the fiberboard assembly did not contain any current evidence of excess moisture. No evidence of a degraded condition was found in this package. Despite exposure to the elevated temperatures of this higher-then-average wattage package, properties of the fiberboard and O-rings are consistent with those of new packages.

Daugherty, W.

2014-11-07T23:59:59.000Z

415

Air spring vibration isolation technology for ship propulsion engine  

Science Journals Connector (OSTI)

Propulsion engine (PE) is one of the most dominant noise sources of ship. Due to the imposed requirement of keeping alignment with propulsion shaft during operation the effective vibration isolation of PE using low frequency mount is difficult to implement as is often adopted by other onboard machinery. In this paper a low frequency air spring vibration isolation system (ASVIS) with alignment control strategy for PE is conceived and introduced. The application of ASVIS to PE presents both advantages and challenges which are discussed detailedly in the paper as well as the feasibility of the ASVIS concept. A systematic design method of ASVIS for PE is established with focus on the system mechanical behavior optimization and automatic alignment control algorithm development. An ASVIS prototype is designed and manufactured using the proposed method. The performance of the prototype is tested by a series of experiments including alignment control precision and isolation efficiency. Experimental results show that using ASVIS the vibration of PE can be attenuated to a satisfactory level with the alignment between PE and shaft being maintained in the safe range.

He Lin; Xu Wei; Shuai Changgeng

2012-01-01T23:59:59.000Z

416

Idaho Site Completes Cleanup with Help from Workers who Shipped Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Completes Cleanup with Help from Workers who Shipped Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of radioactive and hazardous waste to the Idaho National Laboratory (INL) for disposal both above and below ground. Now, some of those who sent the Cold War weapons waste to Idaho are helping identify the waste in pits dug up for the first time in more than 40 years. Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago More Documents & Publications Sound Project Management, Safe and Efficient Work Lead to Savings for More Recovery Act Cleanup

417

Idaho Site Completes Cleanup with Help from Workers who Shipped Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Completes Cleanup with Help from Workers who Shipped Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of radioactive and hazardous waste to the Idaho National Laboratory (INL) for disposal both above and below ground. Now, some of those who sent the Cold War weapons waste to Idaho are helping identify the waste in pits dug up for the first time in more than 40 years. Idaho Site Completes Cleanup with Help from Workers who Shipped Waste Decades Ago More Documents & Publications Sound Project Management, Safe and Efficient Work Lead to Savings for More Recovery Act Cleanup

418

Advanced perception, navigation and planning for autonomous in-water ship hull inspection  

E-Print Network (OSTI)

Inspection of ship hulls and marine structures using autonomous underwater vehicles has emerged as a unique and challenging application of robotics. The problem poses rich questions in physical design and operation, ...

Hover, Franz S.

2013-04-24T23:59:59.000Z

419

Increasing intermodal transportation in Europe through realizing the value of short sea shipping  

E-Print Network (OSTI)

This thesis describes the role of short sea shipping within the transportation network in the European Union. It examines the existence of externalities relating to congestion, infrastructure, air pollution, noise, and ...

Tenekecioglu, Goksel

2005-01-01T23:59:59.000Z

420

Projection of fractures in ships for the evaluation of fatigue resistant designs  

E-Print Network (OSTI)

Cracks in ships have been of great concern to the maritime industry for a very long time. The problem is controlled by improving design, minimizing operating stresses and through regular inspections and repairs. The big ...

Hadjiyiannis, Nicholas

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ship Design its Effects on the Seafarers Physical and Mental Health  

Science Journals Connector (OSTI)

Perhaps one of the worst of all working environments is that on board ship. Accident rates, sickness rates and death rates of seamen are several times higher than those among the equivalent age groups on land....

T. Ivergrd

1984-01-01T23:59:59.000Z

422

Effect of Ship Frontal Variation on the Flow Field in the Flight-Deck Region  

Science Journals Connector (OSTI)

Pilot workload and helicopter flight dynamic characteristics are influenced by the airwake in the flight deck region of a ship. Determination and inclusion of this complex flow ... results of the research conduct...

R. Toffoletto; K. R. Reddy; J. Lewis

2003-01-01T23:59:59.000Z

423

Reducing Freight Greenhouse Gas Emissions in the California Corridor: The potential of short sea shipping  

E-Print Network (OSTI)

is observed that the effect of increasing ship size on totaleffects is expected to be offset considering traditional larger shipsship sizes, holding speed at the highest level. Compared to vessel size, vessel speed exhibits more effect

Zou, Bo; Smirti, Megan; Hansen, Mark

2008-01-01T23:59:59.000Z

424

UNIVERSITY HEALTH SERVICES UC BERKELEY University of California Student Health Insurance Plan (BERKELEY SHIP)  

E-Print Network (OSTI)

(BERKELEY SHIP) APPEAL OF WAIVER DENIAL INSTRUCTIONS: Please read this material below before filing guidelines in effect at the time of the original waiver application. SECTION A: Student Information (please

Kammen, Daniel M.

425

Effect of whipping stresses on the fatigue damage of ship structures  

Science Journals Connector (OSTI)

Fatigue failures in ships are mainly caused by waves. Higher frequent ... if this approach and the neglect of sequence effects of stress cycles are justified for these ... of the whipping stresses in fatigue anal...

Wolfgang Fricke; Hans Paetzold

2014-03-01T23:59:59.000Z

426

regulation. Buoys and ship-based sensors are normally used to measure the amount of  

E-Print Network (OSTI)

regulation. Buoys and ship-based sensors are normally used to measure the amount of water the concept by building electronic components such as field-effect transistors. MATERIALS SCIENCE Bettercoats

Heller, Eric

427

Parallel computing of the underwater explosion cavitation effects on full-scale ship structures  

Science Journals Connector (OSTI)

As well as shock wave and bubble pulse loading, cavitation also has very significant influences on the dynamic response of surface ships and other near-surface marine structures to ... single computation and para...

Zhi Zong; Yanjie Zhao; Fan Ye; Haitao Li

2012-12-01T23:59:59.000Z

428

Effects of visual and motion cues in flight simulation of ship-borne helicopter operations  

Science Journals Connector (OSTI)

Good visual cues are necessary in the flight simulation of ship-borne helicopter operations. Operating in a degraded ... a preliminary piloted flight simulation study into the effects of visual and motion cues on...

Yaxing Wang; Mark White; Ieuan Owen; Steven Hodge

2013-12-01T23:59:59.000Z

429

Modeling the Ship Degaussing Coils Effect Based on Magnetization Method  

Science Journals Connector (OSTI)

Before the warship building, it needs to calculation the degaussing coils effect to design the degaussing coil arrangement. The paper proposed the method of modeling ship degaussing coils effect based on magnet...

Cunlong Xiao; Changhan Xiao; Guanglei Li

2012-01-01T23:59:59.000Z

430

Simulation of parametric ship rolling: Effects of hull bending and torsional elasticity  

Science Journals Connector (OSTI)

An enhanced mechanical model for simulating ship body oscillations and both the induced fluxural ... coupled heave-pitch-roll motions, and the effects of bending and torsional elasticity of the...

R. Nabergoj; A. Tondl

1994-10-01T23:59:59.000Z

431

Modeling and simulation of an all electric ship in random seas  

E-Print Network (OSTI)

This Masters thesis, conducted in support of the All Electric Ship (AES) early design effort, presents two computational programs for analysis and simulation: a full-scale, end-to-end AES simulator and an analytical ...

Schmitt, Kyle (Kyle P.)

2010-01-01T23:59:59.000Z

432

Research on propeller dynamic load simulation system of electric propulsion ship  

Science Journals Connector (OSTI)

A dynamic marine propeller simulation system was developed, which is ... requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter...J? ? K ...

Hui Huang ? ?; Ai-di Shen ???; Jian-xin Chu ???

2013-04-01T23:59:59.000Z

433

Dynamic Analysis of 9975 Shipping Package without Overpack Subjected to 55-Foot Drop  

SciTech Connect

This paper discusses the evaluation of the dynamic response of a 9975 shipping package subjected to a load of 55-foot lateral drop without its overpack structure (fiberboard and drum).

Wu, T.

2001-05-30T23:59:59.000Z

434

Diversity and distribution of bacterial communities in dioxin-contaminated sediments from the Houston ship channel  

E-Print Network (OSTI)

The Port of Houston and the Houston Ship Channel (HSC) are highly industrialized areas along Galveston Bay, Texas. The HSC is highly polluted with a host of persistent organic pollutants, including dioxins. The main objective of this study...

Hieke, Anne-Sophie Charlotte

2009-05-15T23:59:59.000Z

435

More than a Hull: Religious Ritual and Sacred Space on Board the Ancient Ship  

E-Print Network (OSTI)

Greco-Roman religion in the ancient Mediterranean permeated aspects of everyday life, including seafaring. Besides cargo, ships transported mariners' religious beliefs from port to port, thus disseminating religious culture. Shipboard ritual...

Atkins, Carrie E.

2010-07-14T23:59:59.000Z

436

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils  

Science Journals Connector (OSTI)

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils ... Vermeire, M. B. Everything You Need to Know About Marine Fuels; Chevron Global Marine Products: Ghent, Belgium, 2007. ...

Morten K. Srensen; Mads S. Vinding; Oleg N. Bakharev; Tomas Nesgaard; Ole Jensen; Niels Chr. Nielsen

2014-07-02T23:59:59.000Z

437

Tracking and fleet optimization of Reusable Transport Items in the shipping industry  

E-Print Network (OSTI)

This thesis explores the strategies, methodologies and tools for an optimal management of Reusable Transport Items, such as containers or chassis, in an extensive multi-depots network. We use an ocean shipping company ...

Lefebvre, Jean-Marie, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

438

Knowledge sharing within strategic alliance networks and its influence on firm performance: the liner shipping industry  

Science Journals Connector (OSTI)

With increasing ubiquity of globalisation and the knowledge-based economy, the significance of knowledge as a critical firm resource is widely acknowledged, whilst strategic alliances are increasingly employed as instruments for knowledge sharing. The progressive formation of prominent alliance networks has also spurred much research on the effects of alliance networks on firm performance. With scant maritime-related research on such areas and strategic alliances being rampant in liner shipping, it is important to understand the knowledge dynamics within liner shipping alliance networks and examine their impact on firm performance. An exploratory approach, via face-to-face interviews with liner shipping executives, was adopted to obtain detailed insights and understanding for all research objectives. The findings of this study revealed existing mechanisms of knowledge sharing within liner shipping alliance networks, illustrate how information sharing amongst partners enhances firm performance, and demonstrate the positive yet limited moderating effects of geographical proximity on the former relationship.

Beverly S.Y. Tan; Vinh V. Thai

2014-01-01T23:59:59.000Z

439

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to ... electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathem...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

440

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

442

Venetian ships and seafaring up to the nautical revolution: a study based on artistic representations of ships and boats before ca. 1450  

E-Print Network (OSTI)

in its entirety. " This study does just that for the medieval maritime art of Venice. It surveys the medieval art of the Veneto region in northeast Italy, and presents a catalog and analysis of the ship and boat representations from that region dating... the availability and type of ship and boat depictions found in Venetian art are addressed. History of Venice The lagoons of Venice were first settled by refugees fleeing from a series of barbarian invasions that devastated the cities of northeast Italy...

Ray, Lillian Elizabeth

1992-01-01T23:59:59.000Z

443

Non-linear rolling of ships in large sea waves  

E-Print Network (OSTI)

The United States Navy has taken a new interest in tumblehome hulls. While the stealth characteristics of these hull forms make them attractive to the Navy, their sea keeping characteristics have proven to be problematic. ...

Vanden Berg, Scott M

2007-01-01T23:59:59.000Z

444

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

445

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment" "Use Air Conditioning Equipment",94,61.1,5.6,6.3,15.2,5.8 "Have Air Conditioning Equipment But" "Do Not Use It",4.9,2.6,0.2,0.7,0.9,0.4 "Do Not Have Air Conditioning Equipment",14.7,8.1,0.9,2.1,3,0.7 "Type of Air Conditioning Equipment "

446

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Household Demographics of U.S. Homes, by Housing Unit Type, 2009" Household Demographics of U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Household Demographics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Household Members" "1 Person",31.3,14.4,2.1,3.4,9.6,1.9 "2 Persons",35.8,24.2,1.9,2.5,5,2.1 "3 Persons",18.1,12.1,1.2,1.3,2.2,1.2 "4 Persons",15.7,11.5,1,1,1.5,0.8 "5 Persons",7.7,5.8,0.3,0.5,0.6,0.5

447

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any Use" "Electricity",113.6,71.8,6.7,9,19.1,6.9 "Natural Gas",69.2,45.6,4.7,6.1,11,1.8 "Propane/LPG",48.9,39.6,2.4,1.7,2,3.2 "Wood",13.1,11.4,0.3,0.2,0.5,0.7 "Fuel Oil",7.7,5.1,0.4,0.7,1.3,0.1

448

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Water Heating in U.S. Homes, by Housing Unit Type, 2009" Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters" 0,2.9,1.8,0.1,0.2,0.6,0.1 1,108.1,67.5,6.5,8.8,18.5,6.8 "2 or More",2.7,2.5,0.1,"Q","Q","Q" "Number of Tankless Water Heaters2" 0,110.4,69.5,6.5,8.9,18.6,6.8 1,3.1,2.2,0.2,0.2,0.5,"Q"

449

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Space Heating in U.S. Homes, by Housing Unit Type, 2009" Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Space Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Space Heating Equipment" "Use Space Heating Equipment",110.1,70.5,6.5,8.7,17.7,6.7 "Have Space Heating Equipment But Do " "Not Use It",2.4,0.8,0.2,0.2,1,0.1 "Do Not Have Space Heating Equipment",1.2,0.6,"Q",0.1,0.4,"Q"

450

LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE  

SciTech Connect

Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

451

Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container  

SciTech Connect

A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study.

Nathan, S.J.

2002-02-04T23:59:59.000Z

452

The history and development of ships' bilge pumps, 1500-1840  

E-Print Network (OSTI)

, 1984 Major Subject: Anthropology THE HISTORY AND DEVELOPMENT OF SHIPS' BILGE PUMPS, 1500-1840 A Thesis by THOMAS JAMES OERTLING Approved as to style and content by: Richard Steffy (Chairman) George . Bass (Member) D. L. Hamilton (Member...) Henr C. Schmidt Member) Vaughn . Bryant (Head of Department) May, 1984 ABSTRACT The History and Development of Ships' Bilge Pumps, 1500-1840 (May, 1984) Thomas James Oertling, B. S. , Tulane University Chairman of Advisory Committee: Mr. J...

Oertling, Thomas J

1984-01-01T23:59:59.000Z

453

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

454

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

455

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

456

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

457

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for small scale combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include residential use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

458

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

459

Life cycle assessment of ship-generated waste management of Luka Koper  

SciTech Connect

Sea ports and the related maritime activities (e.g. shipping, shipbuilding, etc.) are one of the main driver of Europe's growth, jobs, competitiveness and prosperity. The continuously growth of shipping sectors has however introduced some environmental concerns, particularly with respect to ship-generated waste management. The port of Koper, one of the major ports on the northern Adriatic Coast, is the focus of this study. In this paper, a life cycle assessment was performed to identify and quantify the environmental impacts caused by the ship-generated waste management of port of Koper. Carcinogens substance (e.g. dioxins) and inorganic emissions, especially heavy metals, resulted to be the most critical environmental issues, while the fossil fuels consumption is reduced by recovery of ship-generated oils. Moreover, the final treatment of ship waste was found to be critical phase of the management, and the landfill have a significant contribute to the overall environmental load. These results can be useful in the identification of the best practices and in the implementation of waste management plans in ports.

Zuin, Stefano, E-mail: sz.cvr@vegapark.ve.i [Consorzio Venezia Ricerche, Via della Liberta 12, c/o PST VEGA, 30175 Venice (Italy); Belac, Elvis; Marzi, Boris [Luka Koper d.d., Vojkovo nabrezje 38, SI - 6501 Koper (Slovenia)

2009-12-15T23:59:59.000Z

460

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

462

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

463

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

464

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

465

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

466

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

467

EIA cites importance of key world shipping routes  

SciTech Connect

A disruption of crude oil or products shipments through any of six world chokepoints would cause a spike in oil prices, the US Energy Information Administration (EIA) warns. The strategic importance of each major shipping lane varies because of differing oil volumes and access to other transportation routes. But nearly half of the 66 million b/d of oil consumed worldwide flows through one or more of these key tanker routes, involving: 14 million b/d through the Strait of Hormuz from the Persian Gulf to the Gulf of Oman and Arabian Sea; 7 million b/d through the Strait of Malacca from the northern Indian Ocean into the South China Sea and Pacific Ocean; 1.6 million b/d through the Bosporus from the Black Sea to the Mediterranean Sea; 900,000 b/d through the Suez Canal from the Red Sea to the Mediterranean Sea; 600,000 b/d through Rotterdam Harbor from the North Sea to Dutch and German refineries on or near the Rhine River; and 500,000 b/d through the Panama Canal from the Pacific Ocean to the Caribbean Sea. In today's highly interdependent oil markets, the mere perception of less secure oil supplies is enough to boost oil prices, EIA said. Growing oil and product tanker traffic is increasing the likelihood of supply disruptions through oil arteries because of bad weather, tanker collisions, or acts of piracy, terrorism, or war. What's more, the increasing age of the world tanker fleet and dependability of navigational equipment could increase chances of accidents and, therefore, oil supply disruptions.

Not Available

1994-03-07T23:59:59.000Z

468

Awardee AwardeeHeadquarters RecoveryFunding TotalValue Denmark  

Open Energy Info (EERE)

TotalValue Denmark Catalonia Spain Tech Inc Pittsburgh Pennsylvania Madrid Spain Germany Italy Belgium Czech Republic France Germany Ireland Norway United Kingdom Minnesota...

469

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

470

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

471

n Recommendations of the United  

E-Print Network (OSTI)

Mail Manual n IATA: International Air Transport Association n ICAO: International Civil Aviation Container n Positive seal n Absorbent material Shipping Biological Specimens Infectious Substance 2.9 #12 Primary receptacle n Positive seal n Biohazard label n Absorbent material Shipping Biological Specimens

Collins, Gary S.

472

United States Department of  

E-Print Network (OSTI)

activities in rural areas can result in sudden and severe changes in every facet of community life, or power, water, and sewage districts become either heavily overloaded or overbuilt. Public leaders find changes in leader- ship. Federal land managers find themselves caught up in con- troversy and facing

Standiford, Richard B.

473

Termination unit  

DOE Patents (OSTI)

This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

2014-01-07T23:59:59.000Z

474

Von Schiffen und Pfaden: Wie der Sailing?Ship?Effect und die Pfadabhngigkeit erklren, warum alte Technologien bestehen bleiben  

Science Journals Connector (OSTI)

Das Ziel des Kapitels ist eine Systematisierung der existierenden Forschungsanstze zum Sailing?Ship?Effect. Daher werden zunchst die konkreten Forschungszweige vorgestellt ... Literatur artikulierten Zweifel an...

Bernd Liesenktter; Gerhard Schewe

2014-01-01T23:59:59.000Z

475

Carbon capture and storageSolidification and storage of carbon dioxide captured on ships  

Science Journals Connector (OSTI)

Abstract To meet the International Maritime Organization (IMO) target of 20% reduction of CO2 emissions from marine activities by 2020, application of Carbon Capture and Storage (CCS) on ships is considered as an effective way to mitigate CO2 emissions while other low carbon shipping technologies are being developed. Literature reviews on CCS methods for onshore applications indicate that the current CCS technologies could not be implemented on boards directly due to various limitations on ships. A novel chemical CO2 absorption and solidification method for CO2 storage on-board is proposed, presented and analyzed. Technical feasibility with explanation of principles and cost assessment are carried out for a case ship with a comparison to a conventional CCS method. The paper also presents results obtained from laboratory experiment including factors that affect the absorption. Theoretical study and laboratory experiment illustrate the proposed CO2 solidification method is a promising, cost effective and feasible method for CO2 emissions reduction on ships.

Peilin Zhou; Haibin Wang

2014-01-01T23:59:59.000Z

476

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

477

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

478

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

479

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

480

Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Ships Remote-Handled Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important for our national cleanup mission, but this event is especially important for New Mexicans," said DOE Carlsbad Field Office Manager Dave Moody. "It's great to see progress being made right here in our own state." WIPP's mission includes the safe disposal of two types of defense-related

Note: This page contains sample records for the topic "total units shipped" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Los Alamos National Laboratory ships last of high-activity drums to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

ships last ff high-activity drums to WIPP ships last ff high-activity drums to WIPP Los Alamos National Laboratory ships last of high-activity drums to WIPP The November shipment was the final delivery this year to the Carlsbad plant, which is scheduled to undergo facility maintenance through mid-January. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

482

Team China Transforms Shipping Containers into a Solar-Powered House |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Team China Transforms Shipping Containers into a Solar-Powered Team China Transforms Shipping Containers into a Solar-Powered House Team China Transforms Shipping Containers into a Solar-Powered House June 16, 2011 - 3:31pm Addthis Team China's Y Container design model | Courtesy of the Solar Decathlon's Flickr photostream Team China's Y Container design model | Courtesy of the Solar Decathlon's Flickr photostream Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs In honor of the U.S. Department of Energy Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive -- we are profiling each of the 20 teams participating in the competition. Design aesthetics, engineering, marketing appeal -- these are just a few of

483

LANL Sets Waste Shipping Record for Fourth Consecutive Year: Lab has sent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sets Waste Shipping Record for Fourth Consecutive Year: Lab Sets Waste Shipping Record for Fourth Consecutive Year: Lab has sent 172 shipments so far this year; aiming for 200 by September 30 LANL Sets Waste Shipping Record for Fourth Consecutive Year: Lab has sent 172 shipments so far this year; aiming for 200 by September 30 August 14, 2012 - 12:00pm Addthis Los Alamos National Laboratory has set another record for shipments of transuranic waste in a single fiscal year. Here, the Lab’s 172nd shipment leaves the Lab on Aug. 2, headed for the Waste Isolation Pilot Plant. Los Alamos National Laboratory has set another record for shipments of transuranic waste in a single fiscal year. Here, the Lab's 172nd shipment leaves the Lab on Aug. 2, headed for the Waste Isolation Pilot Plant. LOS ALAMOS, N.M. - For the fourth consecutive year, Los Alamos National

484

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

485

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

486

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

487

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

488

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

489

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

490

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

491

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

492

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

493

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

494

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

495

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

496

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

497

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

498

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

499

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

500

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...