Sample records for total underground surface

  1. Surface effects of underground nuclear explosions

    SciTech Connect (OSTI)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01T23:59:59.000Z

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  2. Bureau of mines cost estimating system handbook (in two parts). 1. Surface and underground mining

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The handbook provides a convenient costing procedure based on the summation of the costs for unit processes required in any particular mining or mineral processing operation. The costing handbook consists of a series of costing sections, each corresponding to a specific mining unit process. Contained within each section is the methodology to estimate either the capital or operating cost for that unit process. The unit process sections may be used to generate, in January 1984 dollars, costs through the use of either costing curves or formulae representing the prevailing technology. Coverage for surface mining includes dredging, quarrying, strip mining, and open pit mining. The underground mining includes individual development sections for drifting, raising, shaft sinking, stope development, various mining methods, underground mine haulage, general plant, and underground mine administrative cost.

  3. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect (OSTI)

    Foxall, W; Vincent, P; Walter, W

    1999-07-23T23:59:59.000Z

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  4. Correlation Of Surface Heat Loss And Total Energy Production...

    Open Energy Info (EERE)

    Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

  5. U.S. Natural Gas Salt Underground Storage - Total (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year Jan Feb Mar Apr May

  6. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023 291,003

  7. U.S. Total Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023 291,003Year Jan Feb

  8. U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023 291,003Year Jan

  9. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023 291,003Year

  10. U.S. Total Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet) Decade Year-0

  11. U.S. Total Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet) Decade

  12. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification. [STEALTH Codes

    SciTech Connect (OSTI)

    Langland, R.T.; Trent, B.C.

    1981-01-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  13. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification

    SciTech Connect (OSTI)

    Trent, B.C.; Langland, R.T.

    1981-08-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  14. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  15. Total effective dose equivalent associated with fixed uranium surface contamination

    SciTech Connect (OSTI)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01T23:59:59.000Z

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm{sup 2} and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels.

  16. Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming

    SciTech Connect (OSTI)

    Jones, V.T.; Thune, H.W.

    1982-01-01T23:59:59.000Z

    A near-surface soil-gas geochemical survey was executed at the North Knobs, Wyoming, GR and DC-DOE underground coal gasification (UCG) facility in 1981. The soil-gas detection method offers a new technique for locating potential gas leakage areas before any significant migration avenues can develop. The survey demonstrates that residual gases from the phase 1 burn are still present in the near surface, and product gases generated during the phase II burn clearly were evident. Casing leakage explains most anomalies located in the rock sequence stratigraphically below the coal. It is concluded that a properly designed and operated UCG facility would not experience adverse product gas leakage and would pose no hazard.

  17. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  18. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    SciTech Connect (OSTI)

    Pawloski, G A

    2011-01-03T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  19. Underground Exploration

    E-Print Network [OSTI]

    Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . 14 Use rail to support tunnel boring machine operation . . . . . . . . . 14 Excavate smaller diameter tunnels outside the portal-to-portal loop . 15 Use a tunnel boring machine to excavate the core test area

  20. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  1. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  2. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  3. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  4. Geotechnical and environmental impacts on the surface of the water rising in French Underground coal mines after closure.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of these gases in confined areas and premises that are not or poorly ventilated are far from being negligible of gas emissions to the surface or even accumulations in places not or badly ventilated. The various

  5. The production of acid mine drainage (AMD) from sur-face and underground coal mines in northern West Virginia

    E-Print Network [OSTI]

    Wilson, Thomas H.

    West Virginia is a major environmental problem and continues to receive much attention in affected (Figure 1) has produced some of the worst AMD problems in West Virginia surface mines due to low pH, high was successfully completed by Nobes and McCahon (1999). Data were collected over a mine spoil area in northern West

  6. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  7. Multinational underground nuclear parks

    SciTech Connect (OSTI)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01T23:59:59.000Z

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  8. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  9. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  10. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  11. Neck and face surface electromyography for prosthetic voice control after total laryngectomy

    E-Print Network [OSTI]

    Stepp, Cara E.

    The electrolarynx (EL) is a common rehabilitative speech aid for individuals who have undergone total laryngectomy, but they typically lack pitch control and require the exclusive use of one hand. The viability of using ...

  12. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  13. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Broader source: Energy.gov (indexed) [DOE]

    donning personal protective clothing or respirators. Workers are cleaning and performing preventive maintenance on equipment in the underground and on the surface impacted by the...

  14. Definition of Total Energy budget equation in terms of moist-air Enthalpy surface flux

    E-Print Network [OSTI]

    Marquet, Pascal

    2015-01-01T23:59:59.000Z

    Uncertainty exists concerning the proper formulation of surface heat fluxes, namely the sum of "sensible" and "latent" heat fluxes, and in fact concerning these two fluxes if they are considered as separate fluxes. In fact, eddy flux of moist-air energy must be defined as the eddy transfer of moist-air specific enthalpy ($\\overline{w' h'}$), where the specific enthalpy ($h$) is equal to the internal energy of moist air plus the pressure divided by the density (namely $h = e_{\\rm int} + p/\\rho$). The fundamental issue is to compute this local (specific) moist-air enthalpy ($h$), and in particular to determine absolute reference value of enthalpies for dry air and water vapour $(h_d)_{\\rm ref}$ and $(h_v)_{\\rm ref}$. New results shown in Marquet (QJRMS 2015, arXiv:1401.3125) are based on the Third-law of Thermodynamics and can allow these computations. In this note, this approach is taken to show that Third-law based values of moist-air enthalpy fluxes is the sum of two terms. These two terms are similar to wha...

  15. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  16. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  17. Underground and under scrutiny

    E-Print Network [OSTI]

    Lee, Leslie

    2014-01-01T23:59:59.000Z

    2 txH2O Summer 2014 Story by Leslie Lee The Frio River, located in the Texas Hill Country, is spring-fed and therefore affected by groundwater pumping. Photo from istock.com. Underground and under scrutiny A changing state increasingly... their geological features is more multifaceted. Consider that each aquifer in Texas has different geological and hydrological character- istics, and therefore varying recharge rates, water quality and regional needs, and the complexity heightens. From a legal...

  18. Climatological data for clouds over the globe from surface observations, 1982--1991: The total cloud edition

    SciTech Connect (OSTI)

    Hahn, C.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences] [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences; Warren, S.G. [Washington Univ., Seattle, WA (United States). Dept. of Atmospheric Sciences] [Washington Univ., Seattle, WA (United States). Dept. of Atmospheric Sciences; London, J. [Colorado Univ., Boulder, CO (United States). Dept. of Astrophysical, Planetary, and Atmospheric Sciences] [Colorado Univ., Boulder, CO (United States). Dept. of Astrophysical, Planetary, and Atmospheric Sciences

    1994-10-01T23:59:59.000Z

    Routine, surface synoptic weather reports from ships and land stations over the entire globe, for the ten-year period December 1981 through November 1991, were processed for total cloud cover and the frequencies of occurrence of clear sky, precipitation, and sky-obscured due to fog. Archived data, consisting of various annual, seasonal and monthly averages, are provided in grid boxes that are typically 2.5{degrees} {times} 2.5{degrees} for land and 5{degrees} {times} 5{degrees} for ocean. Day and nighttime averages are also given separately for each season. Several derived quantities, such as interannual variations and annual and diurnal harmonics, are provided as well. This data set incorporates an improved representation of nighttime cloudiness by utilizing only those nighttime observations for which the illuminance due to moonlight exceeds a specified threshold. This reduction in the night-detection bias increases the computed global average total cloud cover by about 2%. The impact on computed diurnal cycles is even greater, particularly over the oceans where is found, in contrast to previous surface-based climatologies, that cloudiness is often greater at night than during the day.

  19. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  20. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  1. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  2. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  3. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  4. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  5. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  6. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  7. Saving an Underground Reservoir 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite... resource. The amount of water seeping back into the aquifer is much less than the water taken out, especially in the southern half of the aquifer, which spreads out from western Kansas to the High Plains of Texas. ?Water levels are declining 2 to 4...

  8. Dynamic underground stripping. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993.

  9. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

    1998-01-01T23:59:59.000Z

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  10. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-04T23:59:59.000Z

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 17 figs.

  11. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  12. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  13. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  14. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  15. Preliminary Notice of Violation, Pacific Underground Construction...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Underground Construction, Inc. - WEA-2009-02 Preliminary Notice of Violation, Pacific Underground Construction, Inc. - WEA-2009-02 April 7, 2009 Issued to Pacific...

  16. Water intrusion in underground structures

    E-Print Network [OSTI]

    Nazarchuk, Alex

    2008-01-01T23:59:59.000Z

    This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

  17. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  18. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  19. GaN(0001) Surface Structures Studied Using Scanning Tunneling Microscopy and First-Principles Total Energy Calculations

    E-Print Network [OSTI]

    occurring on the (0001) surface of wurtzite GaN are studied using scanning tunneling microscopy, electron and electronic properties of wurtzite GaN surfaces. Several prior studies have reported that these surfaces do reconstructions were identified, corresponding to the two inequivalent polar fac- es of wurtzite GaN, the (0001

  20. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  1. Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces 

    E-Print Network [OSTI]

    Howson, Jonathan Embrey

    2012-10-19T23:59:59.000Z

    is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy...

  2. Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces

    E-Print Network [OSTI]

    Howson, Jonathan Embrey

    2012-10-19T23:59:59.000Z

    is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy...

  3. Lower 48 States Total Natural Gas Injections into Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766236,957Cubicfrom

  4. Lower 48 States Total Natural Gas Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766236,957CubicfromCubic

  5. Lower 48 States Working Natural Gas Total Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432 7,466,375 6,741,759(Million

  6. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s u o Q A(Million

  7. AGA Producing Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s u(Million Cubic

  8. Total Number of Existing Underground Natural Gas Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil and GasTop

  9. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  10. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  11. TSUAHXETSUAHXE UndergroUnd tank

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    USer waterheatexchange waterheatexchange general exhaUSt lab exhaUSt warmairexhaUSt radiant panel heat radiant panel heat by night air, then stored underground. cold water travels through floors and ceiling panels to absorb heat rain and snowmelt in toilets saves water and reduces stormwater runoff photovoltaic panels turn solar

  12. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  13. Underground and under scrutiny 

    E-Print Network [OSTI]

    Lee, Leslie

    2014-01-01T23:59:59.000Z

    turns to groundwater Nearly every aspect of Texas groundwater is complicated. Unlike the clear movement of surface water to rivers and reservoirs following rains, the science of exactly how water moves down into aquifers and then within... their geological features is more multifaceted. Consider that each aquifer in Texas has different geological and hydrological character- istics, and therefore varying recharge rates, water quality and regional needs, and the complexity heightens. From a legal...

  14. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  15. GRI highlights underground gasification effort

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    A consortium headed by the Gas Research Institute is supporting major underground coal gasification tests to take place over the next two years at a site near Hanna, Wyoming. About 200 tons of coal will be gasified per day. Directional drilling will be used to form the horizontal gasification pathways linking the injection and production wells. The objectives of the program include a further evaluation of the controlled-retracting-injection-point technology. The technology involves the use of a device that is capable of igniting successive coal zones as it is retracted through a borehole in the coal seam. Comparable data will also be obtained during the test in sections where a linked-vertical-well concept will be used instead of the retracting-injection method. The linked-vertical-well concept, which has been used in most coal gasification tests, involves drilling a series of vertical wells into the coal seam gasification pathway for the ignition of successive coal zones. A parallel program will be conducted to evaluate environmental control technology applicable to underground coal gasification and to define the process requirements that must be satisfied to meet environmental quality standards. The results of these combined programs will provide the process and environmental data bases necessary to assess the economic potential of underground coal gasification from various US locations for a variety of end-product applications.

  16. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  17. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  18. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  19. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Montana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Iowa Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"Pennsylvania Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Oregon Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Colorado Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Indiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Kansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Washington Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  8. Wells, Borings, and Underground Uses (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits...

  9. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01T23:59:59.000Z

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

  10. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12T23:59:59.000Z

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  11. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Newmark, Robin L. (Pleasanton, CA); Udell, Kent (Berkeley, CA); Buetnner, Harley M. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  12. Corrective Action Decision Document for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    1999-12-23T23:59:59.000Z

    This corrective action decision document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, under the Federal Facility Agreement and Consent Order. Located on the Nevada Test Site (NTS), CAU 135 consists of three Corrective Action Sites (CASs): 25-02-01, Underground Storage Tanks, referred to as the Engine, Maintenance, Assembly, and Disassembly Waste Holdup Tanks and Vault; 25-02-03, Underground Electrical Vault, referred to as the Deluge Valve Pit at the Test Cell A Facility; and 25-02-10, Underground Storage Tank, referred to as the former location of an aboveground storage tank for demineralized water at the Test Cell A Facility. Two of these CASs (25-02-03 and 25-02-10) were originally considered as underground storage tanks, but were found to be misidentified. Further, radio logical surveys conducted by Bechtel Nevada in January 1999 found no radiological contamination detected above background levels for these two sites; therefore, the closure report for CAU 135 will recommend no further action at these two sites. A corrective action investigation for the one remaining CAS (25-02-01) was conducted in June 1999, and analytes detected during this investigation were evaluated against preliminary action levels. It was determined that contaminants of potential concern included polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Two corrective action objectives were identified for this CAS (i.e., prevention and mitigation of human exposure to sediments and surrounding areas), and subsequently two CAAs developed for consideration based on a review of existing data, future use, and current operations at the NTS. These CAAs were: Alternative 1 - No Further Action, and Alternative 2 - Unrestricted Release Decontamination and Verification Survey. Alternative 2 was chosen as the preferred CAA, after evaluation of technical merit which focused on performance, reliability, feasibility, and safety. This alternative was judged to meet all applicable state and federal regulations for closure of the site and reduces the potential future exposure pathways to the contaminated surfaces at this site.

  13. Underground coal gasification: a brief review of current status

    SciTech Connect (OSTI)

    Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  14. Underground storage tank management plan

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  15. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  16. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  17. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  18. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  19. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota EA-1943: Long Baseline Neutrino FacilityDeep Underground Neutrino...

  20. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  1. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  2. Underground storage of hydrocarbons in Ontario

    SciTech Connect (OSTI)

    Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

    1995-09-01T23:59:59.000Z

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  3. Surfaces

    E-Print Network [OSTI]

    DeMaio, Ernest Vincent, 1964-

    1989-01-01T23:59:59.000Z

    Surfaces is a collection of four individual essays which focus on the characteristics and tactile qualities of surfaces within a variety of perceived landscapes. Each essay concentrates on a unique surface theme and purpose; ...

  4. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    E-Print Network [OSTI]

    Kevin T. Lesko; Steven Acheson; Jose Alonso; Paul Bauer; Yuen-Dat Chan; William Chinowsky; Steve Dangermond; Jason A. Detwiler; Syd De Vries; Richard DiGennaro; Elizabeth Exter; Felix B. Fernandez; Elizabeth L. Freer; Murdock G. D. Gilchriese; Azriel Goldschmidt; Ben Grammann; William Griffing; Bill Harlan; Wick C. Haxton; Michael Headley; Jaret Heise; Zbigniew Hladysz; Dianna Jacobs; Michael Johnson; Richard Kadel; Robert Kaufman; Greg King; Robert Lanou; Alberto Lemut; Zoltan Ligeti; Steve Marks; Ryan D. Martin; John Matthesen; Brendan Matthew; Warren Matthews; Randall McConnell; William McElroy; Deborah Meyer; Margaret Norris; David Plate; Kem E. Robinson; William Roggenthen; Rohit Salve; Ben Sayler; John Scheetz; Jim Tarpinian; David Taylor; David Vardiman; Ron Wheeler; Joshua Willhite; James Yeck

    2011-08-03T23:59:59.000Z

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations.

  5. Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYearThousandUnderground

  6. Washington Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas,Underground Storage

  7. Underground cosmic-ray experiment EMMA T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP), University

  8. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  9. Underground Gas Storage Reservoirs (West Virginia)

    Broader source: Energy.gov [DOE]

    Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements,...

  10. Underground Storage of Natural Gas (Kansas)

    Broader source: Energy.gov [DOE]

    Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

  11. Prince George's County Underground Storage Act (Maryland)

    Broader source: Energy.gov [DOE]

    A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

  12. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  13. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28T23:59:59.000Z

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

  14. Depleted argon from underground sources

    SciTech Connect (OSTI)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01T23:59:59.000Z

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  15. Geosphere in underground coal gasification

    SciTech Connect (OSTI)

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01T23:59:59.000Z

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  16. Viewing Systems for Large Underground Storage Tanks.

    SciTech Connect (OSTI)

    Heckendorn, F.M., Robinson, C.W., Anderson, E.K. [Westinghouse Savannah River Co., Aiken, SC (United States)], Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction.

  17. Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity

    SciTech Connect (OSTI)

    Koeylue, U.O. [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering] [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering

    1997-05-01T23:59:59.000Z

    An in situ particulate diagnostic/analysis technique is outlined based on the Rayleigh-Debye-Gans polydisperse fractal aggregate (RDG/PFA) scattering interpretation of absolute angular light scattering and extinction measurements. Using proper particle refractive index, the proposed data analysis method can quantitatively yield all aggregate parameters (particle volume fraction, f{sub v}, fractal dimension, D{sub f}, primary particle diameter, d{sub p}, particle number density, n{sub p}, and aggregate size distribution, pdf(N)) without any prior knowledge about the particle-laden environment. The present optical diagnostic/interpretation technique was applied to two different soot-containing laminar and turbulent ethylene/air nonpremixed flames in order to assess its reliability. The aggregate interpretation of optical measurements yielded D{sub f}, d{sub p}, and pdf(N) that are in excellent agreement with ex situ thermophoretic sampling/transmission electron microscope (TS/TEM) observations within experimental uncertainties. However, volume-equivalent single particle models (Rayleigh/Mie) overestimated d{sub p} by about a factor of 3, causing an order of magnitude underestimation in n{sub p}. Consequently, soot surface areas and growth rates were in error by a factor of 3, emphasizing that aggregation effects need to be taken into account when using optical diagnostics for a reliable understanding of soot formation/evolution mechanism in flames. The results also indicated that total soot emissivities were generally underestimated using Rayleigh analysis (up to 50%), mainly due to the uncertainties in soot refractive indices at infrared wavelengths. This suggests that aggregate considerations may not be essential for reasonable radiation heat transfer predictions from luminous flames because of fortuitous error cancellation, resulting in typically a 10 to 30% net effect.

  18. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    E-Print Network [OSTI]

    Jan Harms; Fausto Acernese; Fabrizio Barone; Imre Bartos; Mark Beker; J. F. J. van den Brand; Nelson Christensen; Michael Coughlin; Riccardo DeSalvo; Steven Dorsher; Jaret Heise; Shivaraj Kandhasamy; Vuk Mandic; Szabolcs Márka; Guido Müller; Luca Naticchioni; Thomas O'Keefe; David S. Rabeling; Angelo Sajeva; Tom Trancynger; Vinzenz Wand

    2010-06-03T23:59:59.000Z

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms, and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100-ft level as a world-class low seismic-noise environment.

  19. Method for making generally cylindrical underground openings

    DOE Patents [OSTI]

    Routh, J.W.

    1983-05-26T23:59:59.000Z

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  20. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  1. Potential underground risks associated with CAES.

    SciTech Connect (OSTI)

    Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2010-10-01T23:59:59.000Z

    CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

  2. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01T23:59:59.000Z

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  3. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  4. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  5. EMMA a new underground cosmic-ray experiment T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    and Nuclear Safety Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP

  6. Design and Field Testing of an Autonomous Underground Tramming System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the repetitive "load-haul-dump" cycle is well suited to automation. In this case, a vehicle called a load underground mining vehicle. Described is the development of a fast, re- liable, and robust "autotramming in underground mining operations by robotiz- ing some of the functions of underground vehicles. For example

  7. Appendix E: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E: Underground Storage Tank Data E-3 Table E.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA NA

  8. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  9. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Complex Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  10. The Public Perceptions of Underground Coal Gasification (UCG)

    E-Print Network [OSTI]

    Watson, Andrew

    The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

  11. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  12. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  13. Underground coal gasification simulation. Final report

    SciTech Connect (OSTI)

    Gunn, R.D.

    1984-07-01T23:59:59.000Z

    The underground coal gasification (UCG) process - both forward gasification and reverse combustion linkage - was mathematically modeled. The models were validated with field and laboratory data. They were then used to explain some important UCG phenomena that had not been predictable with other methods. Some views on the UCG technology status are also presented. 3 references, 25 figures, 10 tables.

  14. Minimize environmental impacts when replacing underground pipe

    SciTech Connect (OSTI)

    Miller, L.R. [Ashland Petroleum Co., Catlettsburg, KY (United States); Kroll, T.R. [Insituform Technologies, Inc., Memphis, TN (United States)

    1997-02-01T23:59:59.000Z

    A US refiner urgently needed to repair a 40-year-old oily-water sewer system without disrupting processing operations. Equally important, the refiner wanted to minimize soil and groundwater contamination. In this case history, the refiner elected to use an alternative method--trenchless rehabilitation--to make required underground repairs.

  15. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Bailey, D.W.; Brandenburg, C.F.

    1983-01-01T23:59:59.000Z

    Arco has studied underground coal gasification (UCG) since the mid-1970's in an attempt to advance the technology. This paper is a review of past and present UCG research and development efforts, starting with Arco's Rocky Hill No. 1 test. Although this first experiment gave Arco invaluable experience for conducting UCG in the deep, wet, thick coal resources of the Powder River Basin in Wyoming, many formidable questions remain to be addressed with the operation of a larger-scale, multi-well test. Unresolved issues include such items as site selection, well design, well linking, overburden subsidence, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating modules.

  16. A sweep efficiency model for underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Edgar, T.F.; Himmelblau, D.M.

    1985-01-01T23:59:59.000Z

    A new model to predict sweep efficiency for underground coal gasification (UCG) has been developed. The model is based on flow through rubble in the cavity as well as through the open channel and uses a tanks-in-series model for the flow characteristics. The model can predict cavity growth and product gas composition given the rate of water influx, roof collapse, and spalling. Self-gasification of coal is taken into account in the model, and the coal consumption rate and the location of the flame front are determined by material and energy balances at the char surface. The model has been used to predict the results of the Hoe Creek III field tests (for the air gasification period). Predictions made by the model such as cavity shape, product gas composition, temperature profile, and overall reaction stoichiometry between the injected oxygen and the coal show reasonable agreement with the field test results.

  17. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  18. Focused evaluation of selected remedial alternatives for the underground test area

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

  19. Coal bunkers in underground mines

    SciTech Connect (OSTI)

    Polak, J.; Zegzulka, J. [VSB-Technical Univ., Ostrava (Czech Republic)

    1996-12-31T23:59:59.000Z

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  20. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  1. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    J. Heise

    2014-01-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  2. The Sanford underground research facility at Homestake

    SciTech Connect (OSTI)

    Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

    2014-06-24T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  3. Pumping carbon out of underground coal deposits

    SciTech Connect (OSTI)

    Steinberg, M.

    1999-07-01T23:59:59.000Z

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  4. Legislation pertaining to underground storage tanks

    SciTech Connect (OSTI)

    Goth, W. (Ventura County Environmental Health Division, CA (United States))

    1994-04-01T23:59:59.000Z

    Statutory authority in California for cleanup of contaminated soil and groundwater to protect water quality is the Porter Cologne Water Quality Control Act (Water Code 1967). Two state laws regulating underground hazardous material storage tanks, passed in late 1983 and effective on January 1, 1984, were AB-2013 (Cortese) and AB-1362 (Sher). Both require specific actions by the tank owners. AB-2013 requires all tank owners to register them with the state Water Resources Control Board (SWCB) and to pay a registration fee. AB-1362, Health and Safety Code Section 25280 et seq., requires tank owners to obtain a Permit to Operate, pay a fee to the local agency, and to install a leak detection system on all existing tanks. New tanks installation requires a Permit to install and provide provide secondary containment for the tank and piping. For tank closures, a permit must be obtained from the local agency to clean out the tank, remove it from the ground, and collect samples from beneath the tank for evidence of contamination. In 1988, state law AB-853 appropriated state funds to be combined with federal EPA money to allow SWRCB to initiate rapid cleanups of leaks from underground tank sites by contracting with local agencies to oversee assessment and cleanup of underground tank releases. Locally, in Ventura County, there are more than 400 leaking underground tank sites in which petroleum products have entered the groundwater. To date, no public water supplies have been contaminated; however, action in necessary to prevent any future contamination to our water supply. Over 250 leaking tank sites have completed cleanup.

  5. Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in

    E-Print Network [OSTI]

    Stentz, Tony

    Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

  6. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Heise, Jaret

    2015-01-01T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  7. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Jaret Heise

    2015-03-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  8. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of South America; it supplies water to more than 15 million people. Scientists found helium pools in this aquifer and is released to the atmosphere when the water reaches the...

  9. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. H. Cox

    2001-06-01T23:59:59.000Z

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling removal of the cement-lined vault sump. Field activities began on November 28, 2000, and ended on December 4, 2000. After verification samples were collected, the vault was repaired with cement. The concrete vault sump, soil excavated beneath the sump, and compactable hot line trash were disposed at the Area 23 Sanitary Landfill. The vault interior was field surveyed following the removal of waste to verify that unrestricted release criteria had been achieved. Since the site is closed by unrestricted release decontamination and verification, post-closure care is not required.

  10. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  11. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  12. Alabama Underground Storage Tank And Wellhead Protection Act...

    Broader source: Energy.gov (indexed) [DOE]

    commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental...

  13. ,"Lower 48 States Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. NNSA Commemorates the 20th Anniversary of the Last Underground...

    National Nuclear Security Administration (NNSA)

    Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  15. ,"AGA Producing Region Underground Natural Gas Storage - All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"AGA Western Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"AGA Eastern Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOEEA-1799). Further...

  2. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Broader source: Energy.gov (indexed) [DOE]

    fiscal year 2013, which ended Sept. 30, SRR reached contract milestones in the Interim Salt Disposition Process, which treats salt waste from the underground storage tanks. Salt...

  3. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of David...

  4. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  5. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-05-01T23:59:59.000Z

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  6. Water pollution control for underground coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.

    1984-06-01T23:59:59.000Z

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes.

  7. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  8. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

  9. Assessment of a 40-kilowatt stirling engine for underground mining applications

    SciTech Connect (OSTI)

    Cairelli, J.E.; Kelm, G.G.; Slaby, J.G.

    1982-06-01T23:59:59.000Z

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  10. Underground pumped storage scheme in the Bukit Timah granite of Singapore

    SciTech Connect (OSTI)

    Wong, I.H. [Nanyang Technological Univ. (Singapore)] [Nanyang Technological Univ. (Singapore)

    1996-10-01T23:59:59.000Z

    Pumped storage is an energy storage method that involves the pumping of water from a lower reservoir to an upper reservoir during off-peak period using low cost power and releasing of the water from the upper reservoir to produce electricity during peak load period. Because of the very small and relatively flat land area of Singapore, a conventional surface pumped storage plant is not feasible. A pumped storage plant can be constructed here by siting the upper reservoir in one of the many abandoned granite quarries and by placing the lower reservoir and the powerhouse underground in the Bukit Timah granite, which is sound, massive and impervious. The capital costs for a pumped storage plant could be the same as those of an oil-fired plant of a comparable size. When the very high cost of land in Singapore is taken into account, an underground pumped storage scheme for peaking purposes becomes attractive. 7 refs., 4 figs., 3 tabs.

  11. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  12. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  13. Total Petroleum Systems and Assessment Units (AU)

    E-Print Network [OSTI]

    Torgersen, Christian

    Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

  14. Rocky Mountain 1 Underground Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Rocky Mountain 1 Underground Coal Gasification Test or Burn was conducted from approximately mid-November, 1987 through February, 1988. After the burn the project began proceeding with the following overall tasks: venting, flushing and cooling of the cavities; subsurface or groundwater cleanup; post-burn coring and drilling; groundwater monitoring, and site restoration/reclamation. By the beginning of 1991 field activities associated with venting, flushing and cooling of the cavities and post-burn coring and drilling had been completed. However, data analysis continued including the University of North Dakota analyzing drilling and coring data, and the US Department of Energy (DOE)/EG G developing a chronological listing of project events.

  15. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    D. S. Akerib; X. Bai; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; C. Camp; M. C. Carmona-Benitez; D. Carr; J. J. Chapman; A. Chiller; C. Chiller; K. Clark; T. Classen; T. Coffey; A. Curioni; E. Dahl; S. Dazeley; L. de Viveiros; A. Dobi; E. Dragowsky; E. Druszkiewicz; B. Edwards; C. H. Faham; S. Fiorucci; R. J. Gaitskell; K. R. Gibson; M. Gilchriese; C. Hall; M. Hanhardt; B. Holbrook; M. Ihm; R. G. Jacobsen; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; J. Kwong; R. Lander; N. A. Larsen; C. Lee; D. S. Leonard; K. T. Lesko; A. Lindote; M. I. Lopes; A. Lyashenko; D. C. Malling; R. Mannino; Z. Marquez; D. N. McKinsey; D. -M. Mei; J. Mock; M. Moongweluwan; M. Morii; H. Nelson; F. Neves; J. A. Nikkel; M. Pangilinan; P. D. Parker; E. K. Pease; K. Pech; P. Phelps; A. Rodionov; P. Roberts; A. Shei; T. Shutt; C. Silva; W. Skulski; V. N. Solovov; C. J. Sofka; P. Sorensen; J. Spaans; T. Stiegler; D. Stolp; R. Svoboda; M. Sweany; M. Szydagis; D. Taylor; J. Thomson; M. Tripathi; S. Uvarov; J. R. Verbus; N. Walsh; R. Webb; D. White; J. T. White; T. J. Whitis; M. Wlasenko; F. L. H. Wolfs; M. Woods; C. Zhang

    2012-11-21T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  16. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    Akerib, D S; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Camp, C; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chiller, A; Chiller, C; Clark, K; Classen, T; Coffey, T; Curioni, A; Dahl, E; Dazeley, S; de Viveiros, L; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Kwong, J; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; Marquez, Z; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Rodionov, A; Roberts, P; Shei, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sofka, C J; Sorensen, P; Spaans, J; Stiegler, T; Stolp, D; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, D; White, J T; Whitis, T J; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  17. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

  18. Wiener filtering with a seismic underground array at the Sanford Underground Research Facility

    E-Print Network [OSTI]

    Michael Coughlin; Jan Harms; Nelson Christensen; Vladimir Dergachev; Riccardo DeSalvo; Shivaraj Kandhasamy; Vuk Mandic

    2014-08-19T23:59:59.000Z

    A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

  19. Underground reactor containments: An option for the future?

    SciTech Connect (OSTI)

    Forsberg, C.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Kress, T.

    1997-02-18T23:59:59.000Z

    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action.

  20. Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-01-14T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  1. Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-06-08T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  2. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect (OSTI)

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01T23:59:59.000Z

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  3. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01T23:59:59.000Z

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  4. Lower 48 States Total Natural Gas in Underground Storage (Base Gas)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0

  5. U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawals (Million CubicFeet) -

  6. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks ofReservesNatural

  7. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 and No.DecreasesPlant

  8. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 and No.DecreasesPlantFeet) Year

  9. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales

  10. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner GasolineMonthly","4/2015"

  11. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear44Feet)Cubic(Million

  12. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  13. advanced underground vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and radiogenic 40Ar production in situ and from external sources, we can derive the ratio of 39Ar to 40Ar in underground sources. We show for the first time that...

  14. aging underground reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground...

  15. ,"New Mexico Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:08:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

  16. amchitka underground nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific...

  17. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  18. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Nevada National Security Site Underground Test Area...

  19. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:17:17 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

  20. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:28 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  1. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:55 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

  2. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:27 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  3. Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

  4. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  5. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01T23:59:59.000Z

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  6. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-03-01T23:59:59.000Z

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  7. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect (OSTI)

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07T23:59:59.000Z

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  8. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  9. Roof control strategies for underground coal mines

    SciTech Connect (OSTI)

    Smith, W.C. (Bureau of Mines, Denver, CO (United States))

    1993-01-01T23:59:59.000Z

    Roof support, an important aspect of ground control, involves maintaining roof competency to ensure a safe and efficient mining environment. Wide variability in rock quality and stress distributions requires a systematic approach to roof support design that satisfies specific goals. The success of past roof support in reducing the incidence of roof falls has been primarily attributed to safer roof bolting practices. However, roof falls continue to be the number one occupational hazard in underground coal mines. This US Bureau of Mines report presents a general overview of roof bolting and other roof support methods used in the United States. Characteristics of bad roof and associated roof failure theories are briefly presented as background to roof support. Methods of detecting and monitoring roof behavior and/or bolt performance provide essential feedback on roof support requirements. A discussion follows on roof bolt design that assimilates roof and support parameters into useful equations or nomographs to help decide what bolt types to use and how they should be installed under different roof conditions. 35 refs., 8 figs.

  10. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  11. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    none

    1998-09-30T23:59:59.000Z

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  12. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08T23:59:59.000Z

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.

  13. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  14. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17T23:59:59.000Z

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  15. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E. (Pleasanton, CA)

    1989-01-01T23:59:59.000Z

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  16. Underground physics without underground labs: large detectors in solution-mined salt caverns

    E-Print Network [OSTI]

    Benjamin Monreal

    2014-09-30T23:59:59.000Z

    A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

  17. Underground coal gasification: A near-term alternate fuel

    SciTech Connect (OSTI)

    Avasthi, J.; Singleton, A.M.

    1984-06-01T23:59:59.000Z

    Since the beginning of this century underground coal gasification has been considered as an alternative to mining as a means of utilizing the coal resources not recoverable by conventional methods. The energy crunch of the seventies gave a new impetus to it, and several tests were conducted in the U.S. to demonstrate the feasibility of this method in both horizontal and steeply dipping coal resources. Gulf Research and Development Company has conducted two successful underground coal gasification tests near Rawlins, Wyoming, in steeply dipping coal beds. The results of these tests indicate that the present state of the art is advanced enough for utilization of this technique for commercial purposes. A right combination of resource, consumer, and economic factors will dictate future commercialization of underground coal gasification for the U.S. coal resources.

  18. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06T23:59:59.000Z

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  19. INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT to 125 m in cemented boreholes drilled in thé vicinity of thé study area. The underground cavity under

  20. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  1. A study of the feasibility of construction of underground storage structures in soft soil

    E-Print Network [OSTI]

    Rosner, Stephen Anthony

    1984-01-01T23:59:59.000Z

    CHAPTER I INTRODUCTION Underground construction is a means of providing efficient use of land space. In recent times, the most extensive use of underground construction has been in Sweden. However, possible uses of underground space were recognized... widespread and efficient use of underground space has been in Sweden. This is facilitated in part by the competent rock that is found there. The stratigraphy in Sweden is dominated by Pre-Cambrian and Paleozoic rock with a thin covering of moraine sediment...

  2. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    SciTech Connect (OSTI)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01T23:59:59.000Z

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

  3. Recent underground observations of intercepted hydraulic stimulations in coalbed methane drainage wells

    SciTech Connect (OSTI)

    Diamond, W.P.; Oyler, D.C.

    1985-01-01T23:59:59.000Z

    The Bureau of Mines has been investigating several techniques, including the use of horizontal and vertical boreholes, to remove gas from coal in advance of mining. Horizontal boreholes drilled from underground workings as part of the mining cycle have been shown to be very effective in providing short-term, immediate relief from high methane emissions. The vertical borehole technique has the additional advantage over horizontal boreholes of allowing work to be performed on the surface instead of in the more restrictive underground environment. However, except for the relatively large scale vertical borehole programs for both mine safety and commercial production in the Black Warrior Basin of Alabama the technique has been underutilized. The primary reason for this seems to be a combination of the current economic climate in the coal industry, legal questions as to the ownership of coalbed gas, and potential roof damage from the stimulation treatments required to increase the characteristically low permeability of coalbeds to enhance gas production. The question of potential roof damage is the subject of this paper.

  4. Operation and performance of the ICARUS-T600 cryogenic plant at Gran Sasso underground Laboratory

    E-Print Network [OSTI]

    M. Antonello; P. Aprili; B. Baibussinov; F. Boffelli; A. Bubak; E. Calligarich; N. Canci; S. Centro; A. Cesana; K. Cie?lik; D. B. Cline; A. G. Cocco; A. Dabrowski; A. Dermenev; J. M. Disdier; A. Falcone; C. Farnese; A. Fava; A. Ferrari; D. Gibin; S. Gninenko; A. Guglielmi; M. Haranczyk; J. Holeczek; A. Ivashkin; M. Kirsanov; J. Kisiel; I. Kochanek; J. Lagoda; S. Mania; A. Menegolli; G. Meng; C. Montanari; S. Otwinowski; P. Picchi; F. Pietropaolo; P. Plonski; A. Rappoldi; G. L. Raselli; M. Rossella; C. Rubbia; P. R. Sala; A. Scaramelli; E. Segreto; F. Sergiampietri; D. Stefan; R. Sulej; M. Szarska; M. Terrani; M. Torti; F. Varanini; S. Ventura; C. Vignoli; H. G. Wang; X. Yang; A. Zalewska; A. Zani; K. Zaremba

    2015-04-22T23:59:59.000Z

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.

  5. Hanna, Wyoming underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    The six in situ coal gasification field tests conducted by LETC near Hanna, WY, demonstrated typical gasification rates of 100 tons/day for continuous operation of about 30 days. Featuring high coal recovery and high product-gas calorific values, the underground process proved to be simple, reliable, and potentially controllable.

  6. Underground Coal Mine Monitoring with Wireless Sensor Networks

    E-Print Network [OSTI]

    Liu, Yunhao

    10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

  7. GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1

    E-Print Network [OSTI]

    Boyer, Edmond

    GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1 Lynda, PIWAKOWSKI2 Bogdan, STYLES3 & Environmental Geophysics Research Group, School of Physical and Geographical Sciences, Keele University, UK; p.lataste@ghymac.u- bordeaux1.fr ABSTRACT: In this paper, we present a synthesis of the geophysical investigations conducted

  8. Underground Mine Communication and Tracking Systems : A Survey

    E-Print Network [OSTI]

    New South Wales, University of

    get carved and come into existence in the due course of the mineral extraction process. · Low loss of the cutting of the mineral faces. · Unstable nature of geological construction : A mineral face consists from the presence of pillars and undulations following the mineral seam. These underground structures

  9. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  10. Underground storage tank 511-D1U1 closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01T23:59:59.000Z

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  11. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect (OSTI)

    Yang, L. [China University of Mining & Technology, Xuzhou (China)

    2008-07-01T23:59:59.000Z

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  12. Effect of repository underground ventilation on emplacement drift temperature control

    SciTech Connect (OSTI)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

    1996-02-01T23:59:59.000Z

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

  13. Underground Natural Gas in Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023USWNC MO

  14. The Basics of Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale ProvedA(MillionGrossNatural Gas

  15. Illinois Underground Natural Gas Storage - All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15 0 0

  16. Illinois Underground Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15 0 0977,989

  17. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  18. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  20. Maine Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16,% of Total Residential

  1. Support research on chemical, mechanical, and environmental factors in underground coal gasification. Final technical report

    SciTech Connect (OSTI)

    Edgar, T.F.; Humenick, M.J.; Thompson, T.W.

    1984-03-01T23:59:59.000Z

    The general goal of this research has been to develop basic data and mathematical models in order to better understand information obtained from large scale field experimentation in underground gasification of Texas lignite. The chemical engineering research has focused on the topics of combustion tube studies of water influx, investigation of cavity growth mechanisms, cracking of pyrolysis products, and analysis of flow patterns in UCG. The petroleum engineering research has focused on subsidence analysis, creep testing and modeling, and effects of overburden drying. Good agreement between subsidence model predictions and data from the Hoe Creek No. 2 field experiment has been obtained. Environmental effects of UCG have been studied both for surface processing of wastewater as well as subsurface phenomena. Activated sludge processing of wastewater seems feasible and pertinent laboratory data have been acquired. Adsorption characteristics and microbial activity for different species in contaminated groundwater have been determined for the Tennessee Colony, Texas, field test site. 100 references, 95 figures, 10 tables.

  2. Proceedings of the eleventh annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Not Available

    1985-12-01T23:59:59.000Z

    The Eleventh Annual Underground Coal Gasification Symposium was sponsored by the Laramie Project Office of the Morgantown Energy Technology Center, US Department of Energy, and hosted by the Western Research Institute, University of Wyoming research Corporation, in Denver, Colorado, on August 11 to 14, 1985. The five-session symposium included 37 presentations describing research on underground coal gasification (UCG) being performed throughout the world. Eleven of the presentations were from foreign countries developing UCG technology for their coal resources. The papers printed in the proceedings have been reproduced from camera-ready manuscripts furnished by the authors. The papers have not been refereed, nor have they been edited extensively. All papers have been processed for inclusion in the Energy Data Base.

  3. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  4. Twenty Years of Underground Research at Canada's URL

    SciTech Connect (OSTI)

    Chandler, N. A.

    2003-02-27T23:59:59.000Z

    Construction of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) began in 1982. The URL was designed to address the needs of the Canadian nuclear fuel waste management program. Over the years, a comprehensive program of geologic characterization and underground hydrogeologic, geotechnical and geomechanical projects have been performed, many of which are ongoing. The scientific work at the URL has evolved through a number of different phases to meet the changing needs of Canada's waste management program. The various phases of the URL have included siting, site evaluation, construction and operation. Collaboration with international organizations is encouraged at the URL, with the facility being a centre of excellence in an International Atomic Energy Agency (IAEA) network of underground facilities. One of AECL's major achievements of the past 20 year program has been the preparation and public defense of a ten-volume Environmental Impact Statement (EIS) for a conceptual deep geologic repository. Completion of this dissertation on the characterization, construction and performance modeling of a conceptual repository in the granite rock of the Canadian Shield was largely based on work conducted at the URL. Work conducted over the seven years since public defense of the EIS has been directed towards developing those engineering and performance assessment tools that would be required for implementation of a deep geologic repository. The URL continues to be a very active facility with ongoing experiments and demonstrations performed for a variety of Canadian and international radioactive waste management organizations.

  5. Modeling of contaminant transport in underground coal gasification

    SciTech Connect (OSTI)

    Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

    2009-01-15T23:59:59.000Z

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  6. High frequency electromagnetic burn monitoring for underground coal gasification

    SciTech Connect (OSTI)

    Deadrick, F.J.; Hill, R.W.; Laine, E.F.

    1981-06-17T23:59:59.000Z

    This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

  7. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  8. A Testbed of Magnetic Induction-based Communication System for Underground Applications

    E-Print Network [OSTI]

    Tan, Xin; Akyildiz, Ian F

    2015-01-01T23:59:59.000Z

    Wireless underground sensor networks (WUSNs) can enable many important applications such as intelligent agriculture, pipeline fault diagnosis, mine disaster rescue, concealed border patrol, crude oil exploration, among others. The key challenge to realize WUSNs is the wireless communication in underground environments. Most existing wireless communication systems utilize the dipole antenna to transmit and receive propagating electromagnetic (EM) waves, which do not work well in underground environments due to the very high material absorption loss. The Magnetic Induction (MI) technique provides a promising alternative solution that could address the current problem in underground. Although the MI-based underground communication has been intensively investigated theoretically, to date, seldom effort has been made in developing a testbed for the MI-based underground communication that can validate the theoretical results. In this paper, a testbed of MI-based communication system is designed and implemented in a...

  9. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  10. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable.

  11. Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

  12. A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground...

    Office of Scientific and Technical Information (OSTI)

    of the surrounding air to prevent condensation. Most of city water, sewage and liquid waste are usually transferred through single or double underground pipe lines. The...

  13. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  14. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  15. Recolonization of surface-mined lands by pocket gophers (Geomys breviceps) in East Texas Post Oak Savannah

    E-Print Network [OSTI]

    Gutierrez, Paula B

    2001-01-01T23:59:59.000Z

    Surface mining involves the use of heavy equipment that would theoretically create underground vibrations sensed by pocket gophers. To determine if vibrations cause pocket gopher movement away from areas being mined, gopher movements were monitored...

  16. Contaminant Boundary at the Faultless Underground Nuclear Test

    SciTech Connect (OSTI)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

  17. SUNLAB - The Project of a Polish Underground Laboratory

    SciTech Connect (OSTI)

    Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T. [Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice (Poland); Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow (Poland); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wroclaw (Poland); Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P. [KGHM CUPRUM CBR, Wroclaw (Poland)

    2010-11-24T23:59:59.000Z

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  18. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J. (Livermore, CA)

    1980-01-01T23:59:59.000Z

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  19. New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govNThousand CubicUnderground

  20. Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96 1967-2010 PipelineUnderground

  1. Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousandUnderground Storage Volume

  2. Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year Jan Feb MarDecadeUnderground

  3. Delaware Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) Underground Storage

  4. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) Underground

  5. Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) UndergroundWithdrawals

  6. WAC - 173-218 Underground Injection Control Program | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: EnergydbaInformation Underground Injection

  7. AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y625(95)Feet) Underground

  8. Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year%Underground Storage Volume

  9. Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan

  10. Michigan Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecade

  11. Michigan Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year Jan Feb Mar

  12. Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year Jan Feb

  13. Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year Jan Feb Mar AprUnderground

  14. Montana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb(MillionYearUnderground

  15. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million Cubic

  16. Oregon Fees for Underground Injection Control Program Fact Sheet | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information Fees for Underground Injection Control Program

  17. Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInput SupplementalYear JanUnderground

  18. Maryland Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan Feb

  19. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir|Underground Storage Tanks Webpage

  20. NAC - 534 Underground Water and Wells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources Jump to:MuskingumMyers-4 Jump- 534 Underground

  1. Underground tank vitrification: Engineering-scale test results

    SciTech Connect (OSTI)

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01T23:59:59.000Z

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  2. Probing New Physics with Underground Accelerators and Radioactive Sources

    E-Print Network [OSTI]

    Eder Izaguirre; Gordan Krnjaic; Maxim Pospelov

    2014-05-19T23:59:59.000Z

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} new physics component to the neutrino and nuclear astrophysics programs at underground facilities.

  3. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect (OSTI)

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01T23:59:59.000Z

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  4. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  5. International Workshop on ecological aspects on underground mining of usable minerals deposits,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    International Workshop on ecological aspects on underground mining of usable minerals deposits, GIG Ecological aspects of underground mining of usable minerals deposits, Szczyrk : Poland (1993)" #12;2/12 I and exemplary programme for the reclamation of opencast mining sites at the Herault Operations Unit

  6. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  7. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  8. Product Description (<100) Total

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    -LA!(New) 17!x!22!mm,!low-pwr!ANTARIS® Module $!99.00 OEM GPS Module TIM-LA 16!ch,!low-pwr!ANTARIS® ,!no!Flash $!99.00 Surface!mount TIM-LC 16!ch,!low-pwr!ANTARIS® ,!no!Flash,!no!LNA $!99.00 machine!assembly TIM-LF 16!ch,!low-pwr!ANTARIS® ,!no!LNA $!99.00 TIM-LH!(New) 16!ch!ANTARIS® SuperSenseTM!Indoor!GPS $!124

  9. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01T23:59:59.000Z

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  10. Method and apparatus for constructing an underground barrier wall structure

    DOE Patents [OSTI]

    Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  11. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect (OSTI)

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01T23:59:59.000Z

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  12. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect (OSTI)

    Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

    2007-11-15T23:59:59.000Z

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  13. Large-block experiments in underground coal gasification

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

  14. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  15. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  16. Patterns of solidarity: A case study of self-organization in underground mining

    SciTech Connect (OSTI)

    Vaught, C.

    1991-01-01T23:59:59.000Z

    This case study in underground coal mining is informed by some notions of scholars who have written in widely divergent traditions and disciplines. Two major themes dealt with are labor's subjective moment and workplace culture. Regarding the subjective moment of labor, it is argued that there is an expressive element in work which defies reductions to some exchange principle. The struggle, for those articulating capitalist work processes, is to keep this purposive activity from being diverted totally to alien ends. The mediating element in this struggle, which structural Marxists have ignored in their analyses of capitalist workplaces, is culture. There is created a network of lasting relationships in the work group over and above any interdependence engendered by the division of labor. This shared culture allows for a collective recognition of the common product of group work, the shared nature of a particular work process, even the liberating potential of social relations themselves. The group's internalization of these social facts provides a base from which workers can mount an unceasing effort to control their workplace.

  17. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  18. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect (OSTI)

    Trudell, L.G.

    1985-02-01T23:59:59.000Z

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  19. Application of geological studies to overburden collapse at underground coal gasification experiments

    SciTech Connect (OSTI)

    Ethridge, F.G.; Alexander, W.G.; Craig, G.N. II; Burns, L.K.; Youngberg, A.D.

    1983-08-01T23:59:59.000Z

    Detailed geologic and mineralogic studies were conducted on the Hanna, Wyoming, and Hoe Creek, Wyoming, underground coal gasification sites. These studies demonstrate the importance geologic factors have on controlling overburden collapse into the reactor cavity during and after coal gasification and on subsequent environmental problems. Parameters that control the collapse of overburden material into the reactor cavity include: duration of the burn; maximum span of unsupported roof rock; lateral and vertical homogeneity, permeability and rock strength; and thickness of overburden materials. At the Hoe Creek I experiment, a small reactor cavity and a correspondingly short maximum span of unsupported roof rock consisting of fine-grained, low permeability overbank deposits resulted in minimal collapse. At the Hoe Creek II experiment, a significant amount of collapse occurred due to an increased span of unsupported roof rock comprised of poorly consolidated, more permeable channel sandstones and a limited amount of overburden mudstones and siltstones. Roof rock collapse extended to the surface at the Hoe Creek III experiment where the roof rock consisted of highly permeable, poorly consolidated channel sandstones. The unit comprising the reactor cavity roof rock at the Hanna II experimental site is a laterally continuous lacustrine delta deposit, which primarily consists of sandstones with lesser amounts of interbedded siltstones and claystones. Calcite cement has reduced permeability and interstitial waters which probably kept spalling of the roof rock to a minimum. Consequently, roof rock collapse at the Hanna II experiment was much less extensive than at the Hoe Creek II and III experiments.

  20. LLNL underground-coal-gasification project. Quarterly progress report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-08-06T23:59:59.000Z

    Cavity mapping has been completed for the large block experiments, which were done near Centralia, Washington, in the winter of 1981-1982. Postburn excavations into the experimental sites show all the cavities to be largely filled with rubble consisting of dried coal, char, ash, and slag. None of the five injection holes remained completely open through its associated cavity. Temperature histories for all the in situ thermocouples in the large block experiments have been analyzed. The interpretation of most of this temperature data is straightforward and consistent with other observations. As a further refinement in our underground coal gasification (UCG) modeling effort, transient temperature profiles have been calculated for open borehole gasification in wet coal by the isotherm migration method, using the LSODE computer code developed at LLNL. The next logical step in this calculation would be to make the rate of combustion surface movement a function of the rate of steam generation at the vaporization interface. Follow-up observations have continued at the Hoe Creek UCG experiment sites in Wyoming. Phenols have been detected at very low but significant levels in groundwater 400 ft from the Hoe Creek 2 experiment, which was done in 1977. It appears important to continue this investigation of phenol transport at Hoe Creek, and to extend it by drilling and sampling additional wells. The controlled retracting injection point (CRIP) technique, which was devised for UCG application, may also have applications in enhanced recovery of crude oil.

  1. Fundamental investigations of underground coal gasification. Final report, March 1982-December 1986

    SciTech Connect (OSTI)

    Gunn, R.D.

    1987-08-01T23:59:59.000Z

    The report presents several mathematical models of underground coal-gasification processes. Through these models, a much better theoretical understanding of underground coal gasification becomes possible. Specific phenomena studied were the effects of high-amplitude pressure oscillation, reverse combustion, spontaneous ignition at high pressures, an analytical model of reverse-combustion channeling, an exploratory study of electrolinking, cavity-growth behavior, and a technical evaluation of the Forestburg underground coal-gasification field test at Forestburg, Alberta. This test is especially interesting because the site was escavated after completion of the experiment.

  2. Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1980-11-26T23:59:59.000Z

    Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

  3. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08T23:59:59.000Z

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  4. Final Report: Detection and Characterization of Underground Facilities by Stochastic Inversion and Modeling of Data from the New Generation of Synthetic Aperture Satellites

    SciTech Connect (OSTI)

    Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J

    2012-02-27T23:59:59.000Z

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the ability to detect evidence for an underground facility using InSAR depends on the displacement sensitivity and spatial resolution of the interferogram, as well as on the size and depth of the facility and the time since its completion. The methodology development described in this report focuses on the exploitation of synthetic aperture radar data that are available commercially from a number of satellite missions. Development of the method involves three components: (1) Evaluation of the capability of InSAR to detect and characterize underground facilities ; (2) inversion of InSAR data to infer the location, depth, shape and volume of a subsurface facility; and (3) evaluation and selection of suitable geomechanical forward models to use in the inversion. We adapted LLNL's general-purpose Bayesian Markov Chain-Monte Carlo procedure, the 'Stochastic Engine' (SE), to carry out inversions to characterize subsurface void geometries. The SE performs forward simulations for a large number of trial source models to identify the set of models that are consistent with the observations and prior constraints. The inverse solution produced by this kind of stochastic method is a posterior probability density function (pdf) over alternative models, which forms an appropriate input to risk-based decision analyses to evaluate subsequent response strategies. One major advantage of a stochastic inversion approach is its ability to deal with complex, non-linear forward models employing empirical, analytical or numerical methods. However, while a geomechanical model must incorporate adequate physics to enable sufficiently accurate prediction of surface displacements, it must also be computationally fast enough to render the large number of forward realizations needed in stochastic inversion feasible. This latter requirement prompted us first to investigate computationally efficient empirical relations and closed-form analytical solutions. However, our evaluation revealed severe limitations in the ability of existing empirical and analytical forms to predict deformations from undergro

  5. Preliminary Notice of Violation, Pacific Underground Construction, Inc.- WEA-2009-02

    Broader source: Energy.gov [DOE]

    Issued to Pacific Underground Construction, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

  6. REGIONAL THERMOHYDROLOGICAL EFFECTS OF AN UNDERGROUND REPOSITORY FOR NUCLEAR WASTES IN HARD ROCK

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2014-01-01T23:59:59.000Z

    underground repository for nuclear waste in hard rock, LBL-and Vath, J.E. , Nuclear waste projections and source-termthe Scientific Basis for Nuclear Waste Management, Material

  7. Numerical Analysis of Heat and Moisture Transfer in Underground Air-conditioning Systems

    E-Print Network [OSTI]

    Wang, Q.; Miao, X.; Cheng, B.; Fan, L.

    2006-01-01T23:59:59.000Z

    In view of the influence of humidity of room air on room heat load, indoor environment and building energy consumption in underground intermittent air-conditioning systems, numerical simulation was used to dynamically analyze the coupling condition...

  8. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  9. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    SciTech Connect (OSTI)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.; Day, Anthony R.; Erikson, Luke E.; Fast, James E.; Forrester, Joel B.; Fuller, Erin S.; Glasgow, Brian D.; Greenwood, Lawrence R.; Hoppe, Eric W.; Hossbach, Todd W.; Hyronimus, Brian J.; Keillor, Martin E.; Mace, Emily K.; McIntyre, Justin I.; Merriman, Jason H.; Myers, Allan W.; Overman, Cory T.; Overman, Nicole R.; Panisko, Mark E.; Seifert, Allen; Warren, Glen A.; Runkle, Robert C.

    2012-11-08T23:59:59.000Z

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  10. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    E-Print Network [OSTI]

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-01-01T23:59:59.000Z

    Underground Storage of Natural Gas in the United States andEnergy Information Agency (2002). U.S. Natural Gas Storage.www.eia.doe.gov/oil_gas/natural_gas/info_glance/storage.html

  11. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  12. The strengthening and repair of underground structures: A new approach to the management of nuclear waste

    SciTech Connect (OSTI)

    Colgate, S.A.

    1991-01-01T23:59:59.000Z

    This paper presents three closely related ideas and technologies: (1) The secure, repairable, long time confinement of nuclear radioactive waste underground by a large surrounding region of compressive overstress; (2) The inherent tectonic weakness and vulnerability of the normal underground environment and its modification by overstress; (3) The process of creating overstress by the sequential periodic high pressure injection of a finite gel strength rapid setting grout. 12 refs., 6 figs.

  13. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  14. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  15. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  16. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The United States Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale Underground Coal Gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the hydrologic site characterization program is to provide an accurate representation of the hydrologic environment within the area to be gasified. This information will aid in the placement and operation of the process wells in relation to the ground water source. 21 refs., 14 figs., 6 tabs.

  17. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

  18. Effects of aquifer interconnection resulting from underground coal gasification

    SciTech Connect (OSTI)

    Stone, R.

    1983-09-01T23:59:59.000Z

    Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down to the lowest aquifer (the gasified coal seam) where it flows away from the collapse zones. The investigations showed that the hydraulic conductivity of the collapse rubble is less than that of the aquifers and provides only a moderately permeable interconnection between them, a marked reduction in hydraulic conductivity of the gasified coal seam near the collapse zones restricts the flow in the seam, away from them; changes in the hydraulic head and flow patterns caused by aquifer interconnection extend generally only 60-90 m away from the experiment sites, whereas flow in the uppermost aquifer at one of the sites may be influenced as far away as 122 m. At both sites, the aquifer interconnection allows water from the uppermost (sand) aquifer, which contains the poorest quality water of the 3 aquifers, to enter one or both of the underlying aquifers.

  19. Analysis of mathematical models of underground coal gasification

    SciTech Connect (OSTI)

    Fausett, L.V.

    1984-01-01T23:59:59.000Z

    Results are reported of a survey and comparison of forward combustion underground coal gasification (UCG) models that are available in the public domain. The six models obtained for study were mathematically analyzed to determine their conceptual completeness and computational complexity. The computer code for each model was implemented on the University of Wyoming CDC CYBER 730/760 computer system. Computed analyses were made with each of the programs using data to simulate six representative UCG field tests. Four of the field tests were air injection experiments and two were oxygen/steam. Modifications were necessary to two models in order for them to simulate oxygen/steam injection experiments. A mistake in the computer code for one model was discovered and corrected; this enabled the code to execute with data from one field test for which the original version had failed. An alternate numerical solution technique for one mdoel was studied, and improved correlations for the model were developed. An approximate analytical solution to the model was obtained that is valid over the region where difficulties were encountered, using both multiple shooting and collocation numerical solutions. The applicability of each model to the various conditions occurring in the different field tests was determined.

  20. Proceedings of the thirteenth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Martin, J.W.; Barone, S.P. (eds.)

    1987-08-01T23:59:59.000Z

    The Thirteenth Annual Underground Coal Gasification Symposium was cosponsored by the Morgantown Energy Technology Center's Laramie Projects Office and Gas Research Institute of Chicago, Illinois, and hosted by the Western Research Institute of Laramie, Wyoming. The symposium was held in Laramie, Wyoming, during the period, August 24 to 26, 1987. Papers printed in these Proceedings were reproduced from camera-ready manuscripts furnished by the authors. They have not been refereed nor have they been edited after receipt for publishing. The purpose for this annual meeting is to provide an opportunity for scientists working in the technology to present their research results, exchange ideas, and discuss their future plans. Nearly 100 attendees from industry, academia, Government, and eight countries, including Belgium, Brazil, France, the Netherlands, Japan, West Germany, India, and Yugoslavia participated. Forty-seven papers were presented in five formal sessions covering Technology, International, Environmental, and General Topics and one informal poster session dominantly covering laboratory and modeling studies. Industrial papers have been processed for inclusion in the Energy Data Base.

  1. Industrial hygiene aspects of underground oil shale mining

    SciTech Connect (OSTI)

    Hargis, K.M.; Jackson, J.O.

    1982-01-01T23:59:59.000Z

    Health hazards associated with underground oil shale mining are summarized in this report. Commercial oil shale mining will be conducted on a very large scale. Conventional mining techniques of drilling, blasting, mucking, loading, scaling, and roof bolting will be employed. Room-and-pillar mining will be utilized in most mines, but mining in support of MIS retorting may also be conducted. Potential health hazards to miners may include exposure to oil shale dusts, diesel exhaust, blasting products, gases released from the oil shale or mine water, noise and vibration, and poor environmental conditions. Mining in support of MIS retorting may in addition include potential exposure to oil shale retort offgases and retort liquid products. Based upon the very limited industrial hygiene surveys and sampling in experimental oil shale mines, it does not appear that oil shale mining will result in special or unique health hazards. Further animal toxicity testing data could result in reassessment if findings are unusual. Sufficient information is available to indicate that controls for dust will be required in most mining activities, ventilation will be necessary to carry away gases and vapors from blasting and diesel equipment, and a combination of engineering controls and personal protection will likely be required for control of noise. Recommendations for future research are included.

  2. Lateral Distribution for Aligned Events in Muon Groups Deep Underground

    E-Print Network [OSTI]

    A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

    2007-01-09T23:59:59.000Z

    The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

  3. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  4. Overall requirements for an advanced underground coal extraction system

    SciTech Connect (OSTI)

    Goldsmith, M.; Lavin, M.L.

    1980-10-15T23:59:59.000Z

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  5. Pricetown I underground coal gasification field test: operations report

    SciTech Connect (OSTI)

    Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

    1981-01-01T23:59:59.000Z

    An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

  6. Process analysis and simulation of underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.

    1984-01-01T23:59:59.000Z

    This investigation pertains to the prediction of cavity growth and the prediction of product gas composition in underground coal gasification (ICG) via mathematical model. The large-scale simulation model of the UCG process is comprised of a number of sub-models, each describing definable phenomena in the process. Considerable effort has been required in developing these sub-models, which are described in this work. In the first phase of the investigation, the flow field in field experiments was analyzed using five selected flow models and a combined model was developed based on the Hoe Creek II field experimental observations. The combined model was a modified tanks-in-series mode, and each tank consisted of a void space and a rubble zone. In the second phase of this work, a sub-model for self-gasification of coal was developed and simulated to determine the effect of water influx on the consumption of coal and whether self-gasification of coal alone was shown to be insufficient to explain the observed cavity growth. In the third phase of this work, a new sweep efficiency model was developed and coded to predict the cavity growth and product gas composition. Self-gasification of coal, water influx, and roof collapse and spalling were taken into account in the model. Predictions made by the model showed reasonable agreement with the experimental observations and calculations.

  7. Analysis of forward combustion underground coal gasification models

    SciTech Connect (OSTI)

    Fausett, L.K.; Fausett, D.W.

    1984-01-01T23:59:59.000Z

    A survey has been made of forward combustion gasification models that are available in the public domain. The six models obtained for study have been mathematically analyzed to determine their conceptual completeness and computational complexity. The models range in scope of generality from a simple constrained mass balance model to a two-dimensional unsteady-state model. The computer code for each model has been implemented on the University of Wyoming CDC CYBER 730/760 computer system. Computed analyses with each of the programs are compared using data (taken primarily from the Lawrence Livermore National Laboratory (LLNL) Underground Coal Gasification (UCG) Data Base) corresponding to six representative DOE sponsored field experiments at Hanna, Hoe Creek, Rawlins, and Pricetown. Four of the field tests were air injection experiments and two were oxygen/steam injection experiments. This study provides a direct comparison of input data requirements and computer resource requirements of the six computer codes. It furnishes an indication of the applicability of each model to the various operating conditions in the different field tests. Computational capabilities and limitations of each model are discussed in detail. 20 references, 47 figures, 13 tables.

  8. Physisorption and Chemisorption Methods for Evaluating the Total Surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of Energy Photovoltaics at DOE's2 DOE

  9. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy Nevada Operations Office

    1999-04-02T23:59:59.000Z

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant concentrations above preliminary action levels. Based on the potential exposure pathways, several risk-based CAAs were developed and evaluated against the individual CAS requirements. It was determined that a combination of the CAAs would be recommended to meet all applicable state and federal regulations for closure of these sites and to eliminate potential future exposure pathways to the TPH-contaminated soils.

  10. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment Project (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  11. Advances in technology for the construction of deep-underground facilities

    SciTech Connect (OSTI)

    Not Available

    1987-12-31T23:59:59.000Z

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  12. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08T23:59:59.000Z

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  13. LLNL Underground Coal Gasification Project annual report - fiscal year 1984

    SciTech Connect (OSTI)

    Stephens, D.R.; O'Neal, E.M. (eds.)

    1985-06-15T23:59:59.000Z

    The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

  14. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  15. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  3. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  6. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  7. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  8. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  9. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  10. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  12. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  13. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  14. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  15. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  16. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  19. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  20. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  1. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  3. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  4. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  5. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  6. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  7. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  8. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  9. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  10. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  11. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  12. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  13. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  14. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  15. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  16. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  17. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  18. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  19. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  20. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  1. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  2. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  3. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  4. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  5. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  6. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  7. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  8. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  9. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  10. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  11. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  12. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  13. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  14. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  15. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  16. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  17. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  18. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  19. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  20. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  1. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  2. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  3. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  4. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  5. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  6. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  7. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  8. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  9. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  10. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  11. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  12. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  13. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  14. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  15. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  16. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  17. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  18. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  19. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  20. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  1. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  2. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  3. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  4. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  5. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  6. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  7. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  8. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  9. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  10. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  11. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  12. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  13. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  14. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  15. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  16. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  17. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  19. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  20. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  1. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  2. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  3. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  4. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  5. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  6. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  7. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  8. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  9. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  10. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  11. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7

  12. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  13. Total................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  14. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0

  15. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.014.7

  16. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1

  17. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1 64.1

  18. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1

  19. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1.

  20. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770

  1. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3 1.9

  2. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3

  3. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3Type

  4. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2

  5. Total....................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7 7.4

  6. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7

  7. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.75.6

  8. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0

  9. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6 40.7

  10. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6

  11. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6 17.7

  12. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6

  13. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.64.2

  14. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8

  15. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0 22.7

  16. Total.........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0

  17. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6

  18. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.

  19. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.5.6

  20. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1