Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

2

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

3

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

4

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

5

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

6

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

7

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

8

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

9

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

10

Transportation Energy Databook: Edition 17  

SciTech Connect

The Transportation Energy Data Book: Edition 17 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C.

1997-08-01T23:59:59.000Z

11

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

12

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

13

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT Jim Page, Malachi Weng-Gutierrez, and Gordon Schremp Fossil Fuels Office Fuels and Transportation....................................................................................................... 3 SUMMARY OF PROPOSED TRANSPORTATION ENERGY ANALYSES ............... 4 Background

14

Westminster Energy Environment Transport Forum | Open Energy...  

Open Energy Info (EERE)

Westminster Energy Environment Transport Forum Jump to: navigation, search Name Westminster Energy, Environment & Transport Forum Place United Kingdom Product String representation...

15

Transportation Energy-Efficiency Workshop  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Transportation Sector Energy-Efficiency Workshop on March 21, 1996

16

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

17

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

18

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

19

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

20

Tips: Transportation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Tips: Transportation July 5, 2012 - 5:19pm Addthis Tips: Transportation In 2010, Americans traveled a total of 3 trillion miles -- the equivalent of 6.5 million...

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Californias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

22

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

23

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

24

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

25

Transportation Research | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweighting Materials Bioenergy...

26

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State Click on a state for more information. Addthis Browse By Topic...

27

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

28

Total Energy | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What's New in Total Energy. Monthly Energy Review September 25, 2013. Monthly Energy Review August 27, 2013. Monthly Energy Review July 26, 2013.

29

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

30

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

31

Green-Energy Transportation  

E-Print Network (OSTI)

Battery technology is the key bottleneck in many cyberphysical systems (CPS). For green-energy CPS transportation applications, such as hybrid electrical vehicles (HEVs) and plug-in HEVs (PHEVs), the battery system design is mostly based on lithium-ion rechargeable electrochemical battery technology, which is bulky, expensive, unreliable, and is the primary roadblock for PHEV adoption and market penetration. For PHEVs, the battery system performance and lifetime reliability are further affected by various user-dependent effects. Battery system modeling and user study are thus essential for battery system design and optimization. This paper presents detailed investigation on battery system modeling and user study for emerging PHEVs. The proposed modeling solution can accurately characterize battery system run-time charge-cycle efficiency, and long-term cycle life. In particular, it models battery system capacity variation and fading due to fabrication and run-time aging effects. An embedded monitoring system is designed and deployed in a number of HEVs and PHEVs, which can monitor users driving behavior and battery usage at real time. Using the proposed modeling and monitoring solutions, we conduct user study to investigate battery system run-time usage, characterize user driving behavior, and study the impact of user driving patterns on battery system run-time charge-cycle efficiency, capacity variation and reliability, and life-cycle economy. This work is the first step in battery system design and optimization for emerging green-energy CPS transportation applications. 1.

Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic; Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic

2010-01-01T23:59:59.000Z

32

Transportation energy data book: edition 16  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

33

Transportation: Environment, energy and the economy  

DOE Green Energy (OSTI)

In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

Petrakis, L.

1993-01-11T23:59:59.000Z

34

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

35

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

36

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

37

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

38

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

39

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

40

Transportation energy data book: Edition 13  

SciTech Connect

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transportation energy data book: Edition 12  

SciTech Connect

The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Morris, M.D.

1992-03-01T23:59:59.000Z

42

Transportation energy data book: Edition 13  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

43

Cogeneration Plant is Designed for Total Energy  

E-Print Network (OSTI)

This paper describes application considerations, design criteria, design features, operating characteristics and performance of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle cogeneration in an energy intensive electrochemical manufacturing process has resulted in an efficient reliable energy supply that has significantly reduced energy cost and therefore manufacturing cost.

Howell, H. D.; Vera, R. L.

1987-09-01T23:59:59.000Z

44

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... They are for public testing and comment only. We ...

45

Transportation energy data book: Edition 15  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

46

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

47

Transportation Energy Futures  

E-Print Network (OSTI)

TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

Sperling, Daniel

1989-01-01T23:59:59.000Z

48

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

49

Energy Information Administration - Transportation Energy ...  

U.S. Energy Information Administration (EIA)

Survey forms used by the U.S. Department of Energy (DOE) to collect energy information (e.g., gasoline prices, oil and gas reserves, coal production, etc.).

50

TRANSPORTATION ENERGY DATA BOOK: EDITION 21  

NLE Websites -- All DOE Office Websites (Extended Search)

6 (Edition 21 of ORNL-5198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 21 Stacy C. Davis Oak Ridge National Laboratory October 2001...

51

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

52

Transportation Energy Data Book: Edition 14  

Science Conference Proceedings (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

53

Total Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Glossary FAQS Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States EIA's latest Short-Term...

54

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

55

Transportation Energy Futures  

E-Print Network (OSTI)

solar or nuclear power(from fission or fusion reactors), andand nuclear energy (from breeder reactors or possibly fusion

Sperling, Daniel

1989-01-01T23:59:59.000Z

56

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

57

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

58

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

59

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

60

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

62

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

63

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

64

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu. Figures in this table...

65

Solar Total Energy Project final test report  

DOE Green Energy (OSTI)

The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

1990-09-01T23:59:59.000Z

66

Electrofuels: Versatile Transportation Energy Solutions  

Science Conference Proceedings (OSTI)

Electrofuels Project: ARPA-Es Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

None

2010-07-01T23:59:59.000Z

67

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

E?ects of Transportation Energy policy on Tra?c Crashes .of international data. Energy Policy, 33(17), 21832190. O?e?ciency standards. Energy Policy, 33(3), 407419. Blincoe,

Kim, Chun Kon

2008-01-01T23:59:59.000Z

68

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Total Energy - Analysis & Projections - U.S. Energy Information...  

Annual Energy Outlook 2012 (EIA)

Current & Selected Reports Most Requested Annual Monthly Projections U.S. States Search within Total Energy Search By: Go Pick a date range: From: To: Go Search All Reports &...

70

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

72

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

73

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

74

Isospin Transport at Fermi Energies  

E-Print Network (OSTI)

In this paper we investigate isospin transport mechanisms in semi-peripheral collisions at Fermi energies. The effects of the formation of a low density region (neck) between the two reaction partners and of pre-equilibrium emission on the dynamics of isospin equilibration are carefully analyzed. We clearly identify two main contributions to the isospin transport: isospin diffusion due to the $N/Z$ ratio and isospin drift due to the density gradients. Both effects are sensitive to the symmetry part of the nuclear Equation of State (EOS), in particular to the value and slope around saturation density.

V. Baran; M. Colonna; M. Di Toro; M. Zielinska-Pfabe; H. H. Wolter

2005-06-28T23:59:59.000Z

75

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

on Transportation, Energy and Policy convened in 1988. Oilon Transportation, Energy and Policy has been held at theon Transportation, Energy and Policy in July 2009 was the

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

76

AEO2011: Total Energy Supply, Disposition, and Price Summary...  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

77

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

78

Annual Energy Outlook with Projections to 2025-Figure 5. Total...  

Gasoline and Diesel Fuel Update (EIA)

5. Total energy production and consumption, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

79

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

80

Nanocomposites for Energy Transport, Harvesting and Storage  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Nanocomposites: Nanocomposites for Energy Transport, Harvesting and Storage Sponsored by: The Minerals, Metals and Materials Society,...

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

82

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

83

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

84

Energy, Transportation Ministers from Asia-Pacific Nations Pledge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific...

85

Thermal Transport in Nanomaterials for Energy Applications  

Science Conference Proceedings (OSTI)

Symposium, Energy Nanomaterials. Presentation Title, Thermal Transport in Nanomaterials for Energy Applications. Author(s), Xinwei Wang. On-Site Speaker ...

86

DOE Hydrogen Analysis Repository: Hawaii Transportation Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

future energy demand; analyze the possibility of satisfying a portion of the state's future transportation energy demand through alternative fuels; and recommend a program...

87

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

88

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

89

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

90

Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales  

Science Conference Proceedings (OSTI)

Vertically integrated atmospheric energy and heat budgets are presented with a focus on the zonal mean transports and divergences of dry static energy, latent energy, their sum (the moist static energy), and the total (which includes kinetic ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

91

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

92

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

93

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

94

Program on Technology Innovation: Treatment of Colloid-Facilitated Transport for Yucca Mountain Total System Performance Assessment  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has evaluated the potential importance of colloid-aided radionuclide transport from the candidate high level radioactive waste (HLW) and spent nuclear fuel repository at Yucca Mountain, Nevada. EPRI has been conducting independent assessments of the total system performance of Yucca Mountain since 1989. The purpose of this report is to provide a succinct summary of EPRI's independent evaluation of the importance of radionuclide transport via colloids. EPRI concludes th...

2006-05-25T23:59:59.000Z

95

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

96

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

97

The Transportation Energy Data Book (TEDB)  

E-Print Network (OSTI)

Ridge National Laboratory for the U.S. Department of Energy's Office of Energy Efficiency and Renewable: cta.ornl.gov Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DepartmentThe Transportation Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB

98

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

99

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

100

Energy Transport in the Vaidya System  

E-Print Network (OSTI)

Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

J. P. Krisch; E. N. Glass

2005-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

102

Department of Energy Office of Science Transportation Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

103

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2050 target. Thus, total heavy truck energy usage even with9 shows total light-duty fuel energy usage is approximatelyof fuel usage (PEV: 87% combined: 77%). Total energy use for

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

104

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

105

Sector Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

106

Solar total energy systems final technical summary report. Volume I. Solar total energy systems market penetration  

SciTech Connect

The results of the market penetration analysis of Solar Total Energy Systems (STES) for the industrial sector are described. Performance data derived for STES commercial applications are included. The energy use and price forecasts used in the analysis are summarized. The STES Applications Model (SAM), has been used to develop data on STES development potential by state and industry as a function of time from 1985 through 2015. A second computer code, the Market Penetration Model (MPM), has been completed and used to develop forecasts of STES market penetration and national energy displacement by fuel type. This model was also used to generate sensitivity factors for incentives, and variations in assumptions of cost of STES competing fuel. Results for the STES performance analysis for commercial applications are presented. (MHR)

Bush, L.R.; Munjal, P.K.

1978-03-31T23:59:59.000Z

107

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

108

Estimating Meridional Energy Transports by the Atmospheric and Oceanic General Circulations Using Boundary Fluxes  

Science Conference Proceedings (OSTI)

The annual-mean meridional energy transport in the atmosphereocean system (total transport) is estimated using 4-yr mean net radiative fluxes at the top of the atmosphere (TOA) calculated from the International Satellite Cloud Climatology ...

Y-C. Zhang; W. B. Rossow

1997-09-01T23:59:59.000Z

109

Transportation Energy Model of the World Energy Projection System ...  

U.S. Energy Information Administration (EIA)

The WEPS Transportation Energy Model is a structural accounting model for road, rail, air, domestic shipping, international shipping, and pipeline energy use.

110

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Raytheon Employee Engagement Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010 Raytheon ... What We Do Raytheon is a global technology company that provides innovative solutions to customers in 80 nations. Through strategic vision, disciplined management and world-class talent, Raytheon is delivering operational advantages for customers every day while helping them prepare for the

111

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

112

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

113

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

114

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

115

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

116

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

117

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Total Economics of Energy Efficient Motors  

E-Print Network (OSTI)

Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part of the story. Engineers responsible for the selection of motors for many varying uses must also consider many less tangible factors when deciding whether a price premium for an energy-efficient motor is justified. These important intangible factors may throw a borderline decision in favor of a premium motor; at other times these factors may dictate that the capital money could be spent more wisely in other areas. This paper will point out those factors which effect the decision of whether or not to buy a premium priced energy-efficient motor or a standard electric motor. It will also address the question of whether it is cost-effective to rewind an old motor which has failed or to replace it with a new energy-efficient motor.

Nester, A. T.

1984-01-01T23:59:59.000Z

119

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Second Quarter Clean EnergyClean Transportation Jobs Report 2013 Second Quarter Clean EnergyClean Transportation Jobs Report Enivronmental Entrepreneurs (E2) Clean Energy...

120

Energy Policy Act Transportation Rate Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

ii Energy Information Administration/ Energy Policy Act Transportation Rate Study: Interim Report on Coal Transportation Contacts This report, Energy Policy Act ...

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Energy Data Book, Edition 18  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

122

Transportation Energy Data Book, Edition 19  

SciTech Connect

The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

Davis, S.C.

1999-09-01T23:59:59.000Z

123

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

125

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

126

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

127

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

128

"Table 17. Total Delivered Residential Energy Consumption, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,...

129

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Facebook icon Twitter icon Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

130

Atomic total energies: Atomic Ref.Data Elec Struc Cal  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

131

Atomic total energies: Atomic Ref. Data Elec. Struc. Cal.  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

132

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

133

Effective Potential Energy Expression for Membrane Transport  

E-Print Network (OSTI)

All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

Robert W. Finkel

2007-02-11T23:59:59.000Z

134

Energy dependence of the total photoproduction cross section at HERA  

E-Print Network (OSTI)

The energy dependence of the total photon-proton cross-section is determined from data collected with the ZEUS detector at HERA with two different proton beam energies.

Aharon Levy

2008-07-01T23:59:59.000Z

135

The Total Energy Norm in a Quasigeostrophic Model  

Science Conference Proceedings (OSTI)

Total energy E as the sum of kinetic and available potential energies is considered here for quasigeostrophic (QG) dynamics. The discrete expression for E is derived for the QG model formulation of Marshall and Molteni. While E is conserved by ...

Martin Ehrendorfer

2000-10-01T23:59:59.000Z

136

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy ... Solar Energy in Brief. What's ... They are for public testing and comment ...

137

Total Energy - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy Consumption ... Solar Energy in ... testing but not to operate at full power.

138

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

139

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

140

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation  

Science Conference Proceedings (OSTI)

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

142

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

143

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Maps. Maps by energy source and topic, ... Solar Energy in Brief. ... U.S. Department of Energy USA.gov FedStats. Stay Connected

144

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. ... is the U.S. Energy Information Administration's primary report of recent energy statistics.

145

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

146

Residential and Transport Energy Use in India: Past Trend and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Transport Energy Use in India: Past Trend and Future Outlook Title Residential and Transport Energy Use in India: Past Trend and Future Outlook Publication Type...

147

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Transportation Toolkits Jump to: navigation, search Add a new Transportation Toolkit Pages in category "Transportation Toolkits" The following 86 pages are in this category, out of 86 total. A A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Review of HOV Lane Performance and Policy Options in the United States - Final Report A Roadmap to Funding Infrastructure Development Adapting Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Africa's Transport Infrastructure Mainstreaming Maintenance and Management

148

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook Energy Disruptions International Energy Outlook ... A B C D E F G H I J K L M N O P Q R S T U V ...

149

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandy Alternative Fueling Station Locator Alternative Fueling Station Locator Energy Department National Labs and Minority Serving Institutions Energy Department National...

150

Total Energy - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Released: July 25, 2013. This report presents international energy projections through 2040, ... 2012. A report of historical annual energy ...

151

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

152

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is also available and will be finalized once all reports are released. The Buildings Industry Transportation Electricity Scenarios (BITES) tool is an interactive framework...

153

Energy Crossroads: Transportation | Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide...

154

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash a wide range of topics associated with power sources for hybrid electric cars. Major emphasis

Azad, Abdul-Majeed

155

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

156

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

157

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

158

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

159

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

160

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

162

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

163

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

164

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams Creating an Energy Innovation Ecosystem Creating an Energy Innovation Ecosystem Sunshot Rooftop Solar...

165

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

166

AEO2011:Total Energy Supply, Disposition, and Price Summary ...  

Open Energy Info (EERE)

AEO2011:Total Energy Supply, Disposition, and Price Summary

167

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

168

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

169

Sustainable Transportation Energy Pathways Research  

E-Print Network (OSTI)

800 1995 2000 2005 Year #Vehicles LPG CNG/LNG M85/M100 E85/E95 Electricity Hydrogen Total #12;CURRENT 2030 2035 2040 2045 2050 Year AlternativeVehicle(%ofallLDVs). New vehicle sales Total market penetration Early Com m ercialization Pre-Com m ercial Sales Prototype Dem onstration & Product Developm ent

Handy, Susan L.

170

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

171

Total Prompt Energy Release in the Neutron-Induced Fission  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235 U, 238 U, and 239 Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study. Key words: Energy release and energy deposition in neutron-induced fission,

D. G. Madland

2006-01-01T23:59:59.000Z

172

Energy Policy Act Transportation Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Preface This report, ...

173

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

174

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

175

Transportation Energy Data Book: Edition 24  

SciTech Connect

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

176

Transportation Energy Data Book: Edition 23  

SciTech Connect

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2003-10-24T23:59:59.000Z

177

Transportation Energy Data Book: Edition 27  

SciTech Connect

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

178

Transportation Energy Data Book: Edition 26  

SciTech Connect

The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2007-07-01T23:59:59.000Z

179

Transportation Energy Data Book: Edition 25  

SciTech Connect

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

180

Transportation Energy Data Book: Edition 28  

DOE Green Energy (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Transportation Energy Data Book: Edition 30  

SciTech Connect

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

182

Transportation Energy Data Book: Edition 31  

SciTech Connect

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

183

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

184

Storing and transporting energy - Energy Innovation Portal  

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a ...

185

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

186

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

187

Transportation Energy Data Book: Edition 21  

Science Conference Proceedings (OSTI)

The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2001-09-13T23:59:59.000Z

188

Transportation Energy Data Book (Edition 20)  

SciTech Connect

The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2000-10-09T23:59:59.000Z

189

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

What's New in Monthly Energy Review What's New in Monthly Energy Review December 2013 PDF | previous editions Release Date: December 24, 2013 Next Update: January 28, 2014 Listed below are changes in Monthly Energy Review content. Only months with changes beyond the standard updates are shown. CONTENT CHANGES + EXPAND ALL Changes in 2013 December 2013 Release Electricity statistics have been revised in coordination with EIA's Electric Power Annual 2012. Revisions affect data series in Energy Overview, Energy Consumption, Petroleum, Natural Gas, Coal, Electricity, Nuclear Energy, Energy Prices, Renewable Energy, and Environment. Final 2012 heat content values for electricity (Table A6) have also been incorporated. October 2013 Release Excel and CSV files now include pre-1973 data for all series except for Section 12. The Excel files now have two worksheets, one for monthly data and one for annual data.

190

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources. Highlights This Week in Petroleum ... Wind Geothermal

191

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

192

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

193

TRANSPORTATION ENERGY DATA BOOK: EDITION 22  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 (Edition 22 of ORNL-5198) Center for Transportation Analysis Engineering Science & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory September 2002 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the

194

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Meier AKMeier@lbl.gov (510) 486-4740 Links Transportation and Air Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

195

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE))

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation, May 2013.

196

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

197

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

198

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

199

Energy and Transportation Science | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

research areas and facilities, ETSD research is advancing building and electricity systems integration, transformational energy-efficient manufacturing, and intelligent,...

200

Energy transport through rare collisions  

E-Print Network (OSTI)

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

Franois Huveneers

2011-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

202

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

203

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

204

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

205

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

206

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Superseded -- see MER for key annual tables Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go CONTENT CHANGES + EXPAND ALL Changes in Annual Energy Review 2011 Annual Energy Review 2011 Release: September 27, 2012 1. Energy Consumption, Expenditures, and Emissions Indicators Estimates (Table 1.5) has been modified to include columns for Gross Output and Energy Expenditures as Share of Gross Output and remove Greenhouse Gas Emissions per Real Dollar of Gross Domestic Product. 2. Sales of Fossil Fuels Produced on Federal and American Indian Lands (Table 1.14) was previously titled "Fossil Fuel Production on Federally Administered Lands." It has been redesigned and now provides data on sales of fossil fuels from Federal and American Indian lands for fiscal years 2003 through 2011.

207

Audit of the Department of Energy's Transportation Accident Resistant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Accident Resistant Container Program, IG-0380 Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380 Audit of the...

208

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

209

End use energy consumption data base: transportation sector  

SciTech Connect

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

210

Transportation Energy Data Book: Edition 31  

DOE Data Explorer (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium designed for use as a reference reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

211

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and more energy-efficient, U.S. Transportation Secretary Ray LaHood and U.S. Energy Secretary Steven Chu announced today. The announcement came during the first-ever joint Transportation and Energy Ministerial Conference held by the Asia-Pacific Economic Cooperation (APEC), the principal economic organization for the region. Secretaries

212

The Use of Trust Regions in Kohn-Sham Total Energy Minimization  

E-Print Network (OSTI)

of the KS total energy optimization problem, which has beenthe original total energy minimization problem is. Secondly,the KS total energy minimiza- tion problem as min E total (

Yang, Chao; Meza, Juan C.; Wang, Lin-wang

2006-01-01T23:59:59.000Z

213

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

214

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

215

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

216

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight · Practice working with diffusion Mean Molecular Weight 1. We will frequently use µ, µe, and µI (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

217

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

218

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

219

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

220

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

222

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

223

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

224

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

225

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

226

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

227

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

228

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

229

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

230

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

231

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

232

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

233

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

234

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

235

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

236

Estimating the Meridional Energy Transports in the Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The poleward energy transports in the atmosphereocean system are estimated for the annual mean and the four seasons based on satellite measurements of the net radiation balance at the top of the atmosphere, atmospheric transports of energy at ...

B. C. Carissimo; A. H. Oort; T. H. Vonder Haar

1985-01-01T23:59:59.000Z

237

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

238

Energy Efficiency Report:Chapter 5: Transportation Sector  

U.S. Energy Information Administration (EIA)

... e Green, David L. And Yuehui Fan, Transportation Energy Efficiency Trends, 1972-1992, Oak Ridge National Laboratory (December 1994) ...

239

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

240

Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

242

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

243

Mechanical and Thermal Energy Transport in Biological and ...  

Science Conference Proceedings (OSTI)

A series of studies will be presented, including energy transport in carbon ... performance for applications in thermal management and energy harvesting.

244

Total Primary Energy Use in the U.S. by Sector, 1998 (chart)  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Energy Efficiency Page > Figure 1. Total Primary Energy Use by Sector [Trends in Building-Related Energy and ...

245

Consumer Views on Transportation and Energy  

DOE Green Energy (OSTI)

This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. An issue that still needs attention from EERE is the finding that the public tends to lack information about hybrid vehicles, hydrogen, and alternative fuels for passenger vehicles. Also, the public seems to want fuel-efficiency improvements and cleaner fuels, but is not very willing to pay for these benefits. The public also says that it supports initiatives to promote energy conservation over increased production and that it is willing to make changes such as driving less in an effort to reduce oil consumption.

Steiner, E.

2003-08-01T23:59:59.000Z

246

Transportation of Nuclear Materials | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

247

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name Texas Department of Transportation Short Name TxDOT Place Austin, Texas...

248

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

VTPI-Transportation Statistics Jump to: navigation, search Name VTPI-Transportation Statistics AgencyCompany Organization Victoria Transportation Policy Institute Focus Area...

249

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

Center for Energy and Transportation ICET Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name Innovation Center for Energy and Transportation (ICET) Place Beijing, China Zip 100020 Sector Carbon Product Beijing-based independent non-profit organization to mitigate climate change through the promotion of clean, low carbon and energy efficient policies and technologies in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Energy and transportation in Canada and the United States  

SciTech Connect

The transportation consumption of petroleum fuels in Canada and U.S. is analyzed, and the fuel savings, which could be realized through the use of more economical cars and through partial shift of automobile, air, and truck traffic to rail and urban transit, are evaluated. They amount to 32% of energy and oil used in transportation. Through partial electrification of intercity rail, and urban auto, transit, and truck traffic, the oil consumption could be reduced by a further 25%. The total saving of 57% in transportation corresponds to one-fifth of the total consumption of oil in Canada. The extra demand for electrical energy required for electric traction is evaluated; for electrification to be completed over a period of 20 years, the annual rate of growth of electrical energy production would have to increase by 1% p.a. (from 7% p.a. to 8% p.a.). In view of the increasing scarcity of oil, the railway share of traffic should be augmented, and modernization of North American rail is necessary to achieve this desirable change. Rail modernization is contingent on the density of traffic. The traffic density distribution on Canadian and U.S. railroads compares favorably with that on other electrified systems, and thus electrification of main lines in N. America appears practical. The required extra electrical generating capacity is a small fraction of the demand by other users. The rationalization of intercity passenger traffic in N. America is contingent on improvement of the quality of railway services. ... The major deficiencies of the current regulation of railways in Canada are indentified. It is suggested that replacement of the present legislation is a necessary first step toward modernization of railway transportation in Canada. (32 references) (auth, abstract modified)

Lukasiewicz, J.

1975-01-01T23:59:59.000Z

251

Developer American Public Transportation Association | Open Energy...  

Open Energy Info (EERE)

value "American Public Transportation Association" 2011 APTA Public Transportation Fact Book + Quantifying Greenhouse Gas Emissions from Transit + Property: Developer Value:...

252

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

253

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

California at Davis, University of

254

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

255

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

256

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

257

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

258

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

259

Analysis of photovoltaic total energy systems for single family residential applications  

DOE Green Energy (OSTI)

The performance and cost-effectiveness of three photovoltaic total energy system concepts designed to meet the thermal and electrical demands of a typical single family house are compared. The three photovoltaic total energy system concepts considered are: (1) All-photovoltaic systems. Passively air-cooled photovoltaic panels provide electricity to meet both electrical and thermal demands. (2) Separate-panel systems. Solar thermal panels provide thermal energy, while passively air-cooled photovoltaic panels serve the purely electric demand. (3) Combined thermal/electric panel systems. Water-cooled photovoltaic panels provide both thermal energy (transported by cooling water) and electrical energy to meet the separate thermal and electrical demands. Additional passively air-cooled photovoltaic panels are added, as required, to meet the electrical demand. The thermal demand is assumed to consist of the energy required for domestic hot water and space heating, while the electrical demand includes the energy required for baseload power (lights, appliances, etc.) plus air conditioning. An analysis procedure has been developed that permits definition of the panel area, electrical and/or thermal storage capacity, and utility backup energy level that, in combination, provide the lowest annual energy cost to the homeowner for each system concept for specified assumptions about costs and system operations. The procedure appears capable of being used to approximately any size system using solar collectors, as well as in any application where the thermal and/or electrical demand is being provided by solar energy, with utility or other conventional backup. This procedure has been used to provide results for homes located in Phoenix, Arizona, and Madison, Wisconsin, and to evaluate the effects of array and backup power costs and the desirability of selling excess electrical energy back to the utility. (WHK)

Chobotov, V.; Siegel, B.

1978-08-01T23:59:59.000Z

260

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

262

Table 1.4b Primary Energy Exports by Source and Total Net Imports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 11 Table 1.4b Primary Energy Exports by Source and Total Net Imports

263

Transportation and Energy Use Data Files  

U.S. Energy Information Administration (EIA) Indexed Site

Data Files Data Files Transportation and Energy Use Data Files Data from the last two Residential Transportation Energy Consumption Surveys are available on-line. These data include fuel consumption and expenditures, vehicle-miles traveled, vehicle characteristics, and household characteristics from national samples of over 3,000 households. To protect respondent confidentiality, these data files do not contain any information which could be used to identify individual households. The lowest level of geographic detail provided is the Census Division (a grouping of 3 to 5 States.) 1994 RTECS Public Use Data 1991 RTECS Public Use Data 1994 RTECS Public Use Data The data from the 1994 RTECS is distributed in dBase and ASCII formats. The data in each set has been compressed using PKZIP. After downloading either the ASCII or dBase set, place the downloaded file in a separate directory and expand it using pkunzip. If you don't have pkunzip.exe, you can download that package here. PKUNZIP.EXE is in PKZ204g.exe. PKUNZIP.EXE is the only file you need, but the developers of the product have asked that the entire package be distributed and not the individual files. You can however find pkunzip.exe on several other Internet sites. If you download PKZ204g.exe to a separate directory, type PKZ204g and press ENTER.

264

Solar total energy systems (STES) simulation program user's guide  

DOE Green Energy (OSTI)

A computer program which simulates the operations of a STES facility and evaluates its annualized costs and energy displacement is described. The program contains a dynamic model which simulates the interaction of the insolation and electrical and thermal demands on an hourly basis. The program is flexible enough to allow thousands of different configurations to be simulated under a wide variety of conditions. Moreover, with this program, the sizes of the STES components can be adjusted to maximize the return on invested capital or the savings in fossil fuels. The program can also be used to simulate conventional fossil fuel Total Energy (TE) systems and solar thermal energy systems for comparison with STES. The program is written in Fortran for the FTN compiler on The Aerospace Corporation's CDC 7600 computer. It consists of 9 routines and approximately 1300 cards, including comments. A description of the program, its inputs and its outputs are presented. Examples of program input and otput as well as a sample deck structure are provided. A source listing appears in the appendix.

Timmer, B.R.

1979-01-04T23:59:59.000Z

265

Chapter 47 - Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Transportation Chapter 47 - Transportation 47.1TransportationAirCharterServices0.pdf More Documents & Publications AcqGuide47pt1.doc&0; TEC Working Group Topic Groups...

266

A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers  

Science Conference Proceedings (OSTI)

This paper presents a turbulence closure for neutral and stratified atmospheric conditions. The closure is based on the concept of the total turbulent energy. The total turbulent energy is the sum of the turbulent kinetic energy and turbulent ...

Thorsten Mauritsen; Gunilla Svensson; Sergej S. Zilitinkevich; Igor Esau; Leif Enger; Branko Grisogono

2007-11-01T23:59:59.000Z

267

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Total embodied energy was highest for the hotel subsector,School Hotel The total non-operational embodied energy ofEnergy, Reference Case) Million Tonnes CO2 Hospital Hotel

Fridley, David G.

2008-01-01T23:59:59.000Z

268

International Transport Forum | Open Energy Information  

Open Energy Info (EERE)

Forum Jump to: navigation, search Logo: International Transport Forum Name International Transport Forum Address 2 rue Andr Pascal, F-75775 Place Paris, France Website http:...

269

Access and Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAccessandTransportation&oldid647797" Category: NEPA Resources...

270

National Transportation Stakeholders Forum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center National...

271

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

272

INL Site Executable Plan for Energy and Transportation Fuels Management  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

273

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

274

Total Floorspace of Commercial Buildings - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities >Table 4

275

NREL: News - Transportation Energy Futures Study Reveals Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

generation, and other applications. Transportation Demand Opportunities to save energy and abate GHG emissions through community development and urban planning. Trip...

276

Pages that link to "Transportation" | Open Energy Information  

Open Energy Info (EERE)

( links) Israel-NREL Cooperation ( links) Transportation Energy Data Book ( links) OpenEI:Requested Pages ( links) User:TwongSandbox (...

277

Energy Policy Act Transportation Study: Interim Report on Natural ...  

U.S. Energy Information Administration (EIA)

For your convenience the publication can be viewed or download by section or in its entirety. This report, "Energy Policy Act Transportation Study: Interim Report on ...

278

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In...

279

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

280

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

282

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

283

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

284

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

285

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

286

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

287

Market assessment of fuel cell total energy systems summary report  

DOE Green Energy (OSTI)

An investigation of the potential market penetration of fuel cell total energy systems (FCTES) into the nonindustrial, single building market is summarized. Nine building types, two types of construction, and the ten Department of Energy (DOE) regions were used to model the market for the time period 1985--2000. Input data developed for the penetration model included size distributions of each building type and performance and cost characteristics of FCTES and competing conventional systems. Two fuel cell systems, fuel cell - heat pump and fuel cell - central boiler and chiller, were assumed to compete with two conventional systems, electric heat pump and central chiller-boiler models. Two fuel cell supply situations were considered: (a) one in which only 40 kW(e) modules were available, and (b) one in which a catalog of 25, 40, 100, and 250 kW(e) modules were available. Data characterizing the economic climate, the intended market, and system cost and performance were used to determine the present value of life-cycle costs for each system in each market segment. Two market models were used to estimate FCTES sales. In the first, the perfect market model, FCTES sales were assumed to occur in all segments in which that system had the lowest present-valued costs. In the second, a market diffusion model was used to obtain a more probable (and lower) sales estimate than that of the perfect market model. Results are presented as FCTES sales for each market segment by FCTES module size and the effect on primary energy use by fuel type.

Mixon, W.R.; Christian, J.E.; Jackson, W.L.; Pine, G.D.; Hagler, H.; Shanker, R.; Koppelman, L.; Greenstein, D.

1979-03-01T23:59:59.000Z

288

Packaging and Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

289

Global Energy Transports and the Influence of Clouds on Transport RequirementsA Satellite Analysis  

Science Conference Proceedings (OSTI)

This study examines the impact of differential net radiative heating on two-dimensional energy transports within the atmosphere-ocean system and the role of clouds on this process. Nimbus-7 earth radiation budget data show basic energy surpluses ...

Byung-Ju Sohn; Eric A. Smith

1992-07-01T23:59:59.000Z

290

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network (OSTI)

Energy Unit lecture outline & graphics ­ Fritz Stahr Tues 1/21/03 - Transportation of Energy & Energy of Transportation ­ an intricate link - history of settlement & industry largely due to transportation and energy supplies - initial towns on rivers or by sea where ships could service cargo as water

291

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

292

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

293

Rail transport. trends in energy efficiency  

Science Conference Proceedings (OSTI)

The increasing cost and insecure future supply of diesel fuel have led the U.S. railroad industry to continuously improve on its already efficient use of energy. Among such improvements that are planned or in progress are a fuel-efficient version of a mainline engine, which should save 13,200 gal/yr of fuel; and lightweight coal cars and freight-car trucks, which offer fuel-saving opportunities. The use of synthetic fuels such as methanol-from-coal or all-electric locomotive on a broad scale is unlikely within the next 20 yr, but an increased use of synthetic fuels in other large fuel-consuming transport modes, notably cars, would ease the rail industry's future diesel fuel supply problems. Other fuel-saving factors to consider, such as proper train-operating procedures and the use of the best routes; and the new design of rail cars are also discussed.

Eldridge, C.C.; Van Gorp, P.H.

1980-06-01T23:59:59.000Z

294

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network (OSTI)

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation and policies that could support their development are often contentious. The future of these fuels and vehicles associated with the transition to new fuels and vehicles, the UC Davis Institute of Transportation Studies

California at Davis, University of

295

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

296

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

Reductions in Urban Transport Reductions in Urban Transport Jump to: navigation, search Logo: Indonesia-GTZ Emissions Reductions in Urban Transport Name Indonesia-GTZ Emissions Reductions in Urban Transport Agency/Company /Organization GTZ Partner Ministry of Transportation Sector Energy Focus Area Transportation Topics Background analysis Website http://www.gtz.de/en/themen/um Program Start 2008 Program End 2012 Country Indonesia UN Region South-Eastern Asia References GTZ Transport & Climate Change Website[1] GTZ is working with Indonesia on this program with the following objective: "Indonesian cities increasingly plan and implement measures for a transport system that is energy efficient as well as environmentally and climate friendly." Background of the project is the absence of a national policy on

297

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

298

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

299

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

300

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transportation Energy Survey Data Book 1.1  

DOE Green Energy (OSTI)

The transportation sector is the major consumer of oil in the United States. In 2000, the transportation sector's share of U.S. oil consumption was 68 percent (U.S. DOE/EIA, 2001a, Table 2.5, p. 33, Table 1.4, p.7). As a result, the transportation sector is one of the major producers of greenhouse gases. In 2000, the transportation sector accounted for one-third (33 percent) of carbon emissions (U.S. DOE/EIA, 2000b, Table 5, p.28). In comparison, the industrial sector accounted for 32 percent and residential and commercial sector for 35 percent of carbon emissions in 2000. Carbon emissions, together with other gases, constitute greenhouse gases that are believed to cause global warming. Because that the transportation sector is a major oil consumer and producer of greenhouse gases, the work of the Analytic Team of the Office of Transportation Technologies (OTT) focuses on two main objectives: (1) reduction of U.S. oil dependence and (2) reduction of carbon emissions from vehicles. There are two major factors that contribute to the problem of U.S. oil dependence. First, compared to the rest of the world, the United States does not have a large oil reserve. The United States accounts for only 9 percent of oil production (U.S. DOE/EIA, 2001c, Table 4.1C). In comparison, the Organization for Petroleum Exporting Countries (OPEC) produces 42 percent of oil, and the Persian Gulf accounts for 28 percent. (U.S. DOE/EIA, 2001c, Table 1.1A). More than half (54 percent) of oil consumed in the United States is imported (U.S. DOE/EIA, 2001a, Table 1.8, p. 15). Second, it is estimated that the world is approaching the point at which half of the total resources of conventional oil believed to exist on earth will have been used up (Birky et. al., 2001, p. 2). Given that the United States is highly dependent on imported oil and that half of the world's conventional oil reserves will have been used up in the near future, the OTT's goal is to ensure an adequate supply of fuel for vehicles. There are three ways to achieve this goal: efficiency, substitution, or less travel. A reduction in oil usage will result in a reduction of carbon emissions. Successful transition to alternative types of fuel and advanced technology vehicles may depend on awareness of U.S. dependence on imported oil and the U.S. energy situation. Successful transition may also depend on knowledge of alternative types of fuels and advanced technologies. The ''Transportation Energy Survey Data Book 1.1'' examines the public's knowledge, beliefs and expectations of the energy situation in the United States and transportation energy-related issues. The data presented in the report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation International (ORCI) for National Renewable Energy Laboratory (NREL) that are commissioned and funded by OTT, Gallup polls, ABC News/Washington Post polls, NBC News/Wall Street Journal polls, polls conducted by the Ipsos-Reid Corporation, as well articles from The Washington Post (2001) and other sources. All surveys are telephone interviews conducted with randomly selected national samples of adults 18 years of age and older. Almost all surveys were conducted before the September 11, 2001 terrorist attacks, with the only exceptions being the November 2001 ORCI survey and the November 2001 survey conducted by the Ipsos-Reid Corporation.

Gurikova, T

2002-06-18T23:59:59.000Z

302

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

303

Carbonless Transportation and Energy Storage in Future Energy Systems  

SciTech Connect

By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

Lamont, A.D.; Berry, G.D.

2001-01-17T23:59:59.000Z

304

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Energy.gov (U.S. Department of Energy (DOE))

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

305

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

306

Department of Energy Receives Highest Transportation Industry Safety Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

307

Medical Area Total Egy Plt Inc | Open Energy Information  

Open Energy Info (EERE)

Total Egy Plt Inc Jump to: navigation, search Name Medical Area Total Egy Plt Inc Place Massachusetts Utility Id 12258 References EIA Form EIA-861 Final Data File for 2010 -...

308

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

309

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

component of Chinas total energy consumption mix. However,China-specific factors were used to calculate the energy mix

Fridley, David G.

2008-01-01T23:59:59.000Z

310

Energy and Environmental Policy Analysis - Center for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy and Energy and Environmental Policy Analysis The Center for Transportation Analysis does specialty research and development in Energy and Environmental Policy Analysis. Transportation systems in the U.S. and around the world face the challenge of providing for increased mobility of people and goods while reducing impacts on the environment and finding sustainable sources of energy. Governmental policies, from investment in research to information, efficiency or emissions standards and fiscal measures, play a critical role in the effort to create a sustainable transportation system. The Transportation Energy and Environmental Policy program conducts research and policy analysis to support the development of efficient, effective and equitable policies to achieve a sustainable transportation system.

311

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

312

Trends in transportation energy use, 1970--1988: An international perspective  

SciTech Connect

Personal mobility and timely movement of goods have become increasingly important around the world, and energy use for transportation has grown rapidly as a consequence. Energy is used in transportation for two rather different activities: moving people, which we refer to as passenger travel, and moving freight. While freight transport is closely connected to economic activity, much of travel is conducted for personal reasons. In the OECD countries, travel accounts for around 70% of total transportation energy use. In contrast, freight transport accounts for the larger share in the Former East Bloc and the developing countries (LDCs). In our analysis, we focus on three elements that shape transportation energy use: activity, which we measure in passenger-km (p-km) or tonne-km (t-km), modal structure (the share of total activity accounted for by various modes), and modal energy intensities (energy use per p-km or t-km). The modal structure of travel and freight transport is important because there are often considerable differences in energy intensity among modes. The average 1988 average energy use per p-km of different travel modes in the United States (US), West Germany, and Japan are illustrated. With the exception of rail in the US, bus and rail travel had much lower intensity than automobile and air travel. What is perhaps surprising is that the intensity of air travel is only slightly higher than that of automobile travel. This reflects the much higher utilization of vehicle capacity in air travel and the large share of automobile travel that takes place in urban traffic (automobile energy intensity in long-distance driving is much lower than the average over types of driving).

Schipper, L.; Steiner, R.; Meyers, S.

1992-05-01T23:59:59.000Z

313

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

314

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

315

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

316

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

317

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

TransportToolkit Prototype TransportToolkit Prototype Jump to: navigation, search Tool Summary Name: TransportToolkit Prototype Agency/Company /Organization: Nick Langle Complexity/Ease of Use: Not Available Cost: Free Related Tools Journal of Public Transportation Handbook for Handling, Storing, and Dispensing E85 Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks ... further results Find Another Tool FIND TRANSPORTATION TOOLS This is a test tool to set values needed for Exhibit search results When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key phases of the process: Evaluate System - Assessing the current transportation situation Create Baseline - Developing a business-as-usual scenario

318

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

319

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

320

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

322

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

323

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

324

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP(Redirected from Transportation Toolkit) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation LEDS Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low emission transportation systems that support economic growth. This toolkit website helps users navigate a variety of resources in order to identify the most effective tools necessary to build and implement low

325

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

326

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

before tax) on gasoline and motor oil, which is about 17% ofon motor gasoline and motor oil, which is about 17.4% of allmotor fuel raised a concern regarding energy security along with the unstable international oil

Kim, Chun Kon

2008-01-01T23:59:59.000Z

327

Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search The Department of Transportation is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTranspo...

328

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and...

329

Renewable Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Transportation Fuels Jump to: navigation, search TODO: Add description List of...

330

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

331

Available Technologies: Solar Energy Storage, Transportation ...  

Researchers at Berkeley Lab have developed a system for converting solar energy to chemical energy and, subsequently, to thermal energy. The system includes a light ...

332

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Survey and screening of intermediate-size photovoltaic total energy and electric applications  

DOE Green Energy (OSTI)

One of the principal objectives of this photovoltaic mission analysis effort has been to identify and evaluate applications for photovoltaic solar energy conversion that could lead to significant contributions to the national energy supply and that would provide attractive opportunities for application experiments aimed at stimulating the adoption of photovoltaic technology. The scope of the study has included applications both for electric-only photovoltaic (PV) systems and for photovoltaic total energy systems (PTES), i.e., systems that provide both photovoltaic electricity and solar thermal energy to meet all or part of the energy demand at a single load point or a group of related load points. In either case, both flat-plate and concentrating systems have been considered and it has been assumed that the thermal energy is collected in and transported by the fluid used in an active cooling system for the photovoltaic cells. Because the efficiency of photovoltaic devices decreases rapidly with increasing temperature and because the operational lifetime of such devices is reduced by prolonged operation at elevated temperatures, a practical upper limit of about 200/sup 0/C (400/sup 0/F) was assumed for the temperature at which arrays can be allowed to be operated. This limitation, in turn, places an upper bound on the temperature at which solar thermal energy is available in PTES applications. An initial screening aimed at identifying the most promising applications has therefore been required, with the expectation that detailed evaluation will be made of only the higher-ranking candidates. A description of the screening procedure that was adopted and a discussion of the results are presented.

Rattin, E.J.

1978-08-01T23:59:59.000Z

334

Predictability of Total Ozone Using a Global Three-Dimensional Chemical Transport Model Coupled with the MRI/JMA98 GCM  

Science Conference Proceedings (OSTI)

A global three-dimensional chemical transport model is being developed for forecasting total ozone. The model includes detailed stratospheric chemistry and transport and couples with a dynamical module of the Meteorological Research Institute/...

T. T. Sekiyama; K. Shibata

2005-08-01T23:59:59.000Z

335

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

336

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

337

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 4:31pm Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

338

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in the West to

339

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 11:31am Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

340

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » EPA State and Local Transportation Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA State and Local Transportation Resources Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: Transportation-Related Documents[1] Provides a variety of resources discussing approaches to reducing transportation energy use. Overview This EPA website gathers together a number of guidance documents covering various approaches to reducing emissions and energy use in the

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Capital requirements for the transportation of energy materials: 1979 arc estimates  

Science Conference Proceedings (OSTI)

Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

Not Available

1980-08-29T23:59:59.000Z

342

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

Science Conference Proceedings (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

343

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

344

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

345

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network (OSTI)

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

346

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

347

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Jump to: navigation, search Logo: Oregon Department of Transportation Name Oregon Department of Transportation Address 355 Capitol Street NE Place Salem, Oregon Zip 97301-3871 Year founded 1969 Phone number 888-275-6368 Website http://www.oregon.gov/ODOT/Pag Coordinates 44.940436°, -123.028211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.940436,"lon":-123.028211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

349

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

351

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Nevada Department of Transportation Nevada Department of Transportation Jump to: navigation, search Logo: Nevada Department of Transportation Name Nevada Department of Transportation Address 1263 S. Stewart St. Place Carson City, Nevada Zip 89712 Phone number 775-888-7000 Website http://www.nevadadot.com/defau Coordinates 39.157202°, -119.764694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.157202,"lon":-119.764694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Montana Department of Transportation Name Montana Department of Transportation Address 2701 Prospect Avenue P.O. Box 201001 Place Helena, Montana Zip 59620 Website http://www.mdt.mt.gov/ Coordinates 46.589151°, -111.992175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589151,"lon":-111.992175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

Idaho Transportation Department Idaho Transportation Department Jump to: navigation, search Logo: Idaho Transportation Department Name Idaho Transportation Department Address 3311 W. State St. PO Box 7129 Place Boise, Idaho Zip 83707-1129 Phone number 208-334-8000 Website http://itd.idaho.gov/ Coordinates 43.635205°, -116.230588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.635205,"lon":-116.230588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

EIA - International Energy Outlook 2009-Transportation Sector...  

Gasoline and Diesel Fuel Update (EIA)

2009 Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 Figure 70. World Liquids Consumption by End-Use Sector, 2006-2030 Figure 71. OECD and...

355

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background....

356

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced...

357

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

358

Figure 6. Transportation energy consumption by fuel, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 6. Transportation energy consumption by fuel, 1990-2040 (quadrillion Btu) Motor Gasoline, no E85 Pipeline Other E85 Jet Fuel

359

New concepts in energy and mass transport within carbon nanotubes  

E-Print Network (OSTI)

The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

360

World Energy Projection System Plus Model Documentation: Transportation Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Victoria Zaretskaya

2011-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:Building/SPElectrtyUsePercTotal | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercTotal SPElectrtyUsePercTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 + 100.0 + Sweden Building 05K0004 + 100.0 + Sweden Building 05K0005 + 100.0 + Sweden Building 05K0006 + 100.0 + Sweden Building 05K0007 + 100.0 + Sweden Building 05K0008 + 100.0 + Sweden Building 05K0009 + 100.0 + Sweden Building 05K0010 + 100.0 + Sweden Building 05K0011 + 100.0 + Sweden Building 05K0012 + 100.0 + Sweden Building 05K0013 + 100.0 + Sweden Building 05K0014 + 100.0 + Sweden Building 05K0015 + 100.0 + Sweden Building 05K0016 + 100.0 +

362

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

363

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

364

T O T Section 7. Total Energy L E N E R G Y Total Energy Consumption  

U.S. Energy Information Administration (EIA)

Residential Sector Solar thermal direct use energy and photovoltaic electricity net generation ... dent population as published by the U.S. Department of Commerce, Bu-

365

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

366

Sustainable Transportation Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Vehicle Technologies, Biomass, and Fuel Cell Technologies Programs. The Department of...

367

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

368

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

369

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

370

Research and development opportunities for improved transportation energy usage. (REDOTEUS)  

SciTech Connect

The document is a draft of the final report of the Transportation Energy Panel (TEP) prepared for the Office of Science and Technology. The report attempts to assess the relevant technology for improving the usage by the transportation sector of the energy resources of the nation. In pursuit of its study, TEP sponsored several workshops, briefings, and coordination meetings which had personnel from a variety of Federal, academic, and industrial organizations. Emphasis was given both to transportation demands and to relevant technology assessment. (GRA)

1972-07-14T23:59:59.000Z

371

U.S. Department of Energy Releases Revised Total System Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost...

372

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

373

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

374

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

375

National Transportation Stakeholders Forum (NTSF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. The purpose of the NTSF is to bring transparency, openness, and accountability to DOE's offsite transportation activities through collaboration with state and tribal governments. The NTSF meetings and webinars will be particularly relevant for personnel with responsibilities in packaging and transportation, emergency management, security, inspection and enforcement, and radiation protection. Send your

376

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

377

Journal of Public Transportation | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Journal of Public Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Journal of Public Transportation Agency/Company /Organization: National Center for Transit Research Focus Area: Public Transit & Infrastructure Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nctr.usf.edu/jpt/pdf/JPT13-1.pdf This document have like principal topics: Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms, The Operating Characteristics of Intercity Public Van Service in Lampung, Indonesia,

378

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Name Colorado Department of Transportation Address 4201 E Arkansas Ave Place Denver, Colorado Zip 80222 Year founded 1917 Phone number 303-757-9011 Coordinates 39.6911535°, -104.9384066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6911535,"lon":-104.9384066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

380

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Consumer Views on Transportation and Energy (Second Edition)  

DOE Green Energy (OSTI)

This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, and other sources.

Kubik, M.

2005-04-01T23:59:59.000Z

382

A method for evaluating transport energy consumption in suburban areas  

Science Conference Proceedings (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

383

Table A4. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" "...

384

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A36. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Fuel Type, Industry Group, Selected Industries, and End Use, 1991:" " Part 2" " (Estimates in...

385

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in...

386

Table A26. Total Quantity of Purchased Energy Sources by Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)"...

387

Table A12. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical...

388

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

389

Sustainable Transportation Decision-Making: Spatial Decision Support Systems (SDSS) and Total Cost Analysis  

E-Print Network (OSTI)

Building a new infrastructure facility requires a significant amount of time and expense. This is particularly true for investments in transportation for their longstanding and great degree of impact on society. The scope of time and money involved does not mean, however, we only focus on the economies of scale and may ignore other aspects of the built environment. To this extent, how can we achieve a more balanced perspective in infrastructure decision-making? In addition, what aspects should be considered when making more sustainable decisions about transportation investments? These two questions are the foundations of this study. This dissertation shares its process in part with a previous research project Texas Urban Triangle (TUT). Although the TUT research generated diverse variables and created possible implementations of spatial decision support system (SDSS), the methodology still demands improvement. The current method has been developed to create suitable routes but is not designed to rank or make comparisons. This is admittedly one of the biggest shortfalls in the general SDSS approach, but is also where I see as an opportunity to make alternative interpretation more comprehensive and effective. The main purpose of this dissertation is to develop a Spatial Decision Support System (SDSS) that will lead to more balanced decision-making in transportation investment and optimize the most sustainable high-speed rail (HSR) route. The decision support system developed here explicitly elaborates the advantages and disadvantages of a transportation corridor in three particular perspectives: construction (fixed costs); operation (maintenance costs); and externalities (social and environmental costs), with a specific focus on environmental externalities. Considering more environmental features in rail routing will offset short-term economic losses and creates more sustainable environments in long-term infrastructure planning.

Kim, Hwan Yong

2013-05-01T23:59:59.000Z

390

Energy Efficiency Report: Chapter 5 Figures (Transportation)  

U.S. Energy Information Administration (EIA)

EIAs effort to take the lead to develop robust and reproducible energy-efficiency indicators and also measurements of greenhouse gas as related to energy use and ...

391

Energy statistics. A supplement to the summary of national transportation statistics  

SciTech Connect

This annual report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. The statistics have been assembled from a wide variety of sources, including the U.S. Department of the Interior, the Interstate Commerce Commission, and the American Petroleum Institute. The report is divided into three main sections. The first, entitled ''Energy Transport,'' contains such items as the revenues and expenses of oil pipeline companies, number and capacities of U.S. tank ships, and the total crude oil transported in the U.S. by method of transportation. The second section, entitled ''Reserves, Production, and Refining,'' reveals the growth over time of the U.S. oil and natural gas reserves, refinery capacity, and yields. Trends in the demand for fuel and power are displayed in the third section, entitled ''Energy Consumption.'' Throughout this part, the transportation sector is emphasized. Included are the gasoline and oil costs of automobiles of different sizes, the consumption of petroleum by type of product, the electrical energy consumed by the local transit industry, and other important statistics describing the supply and demand for energy. (auth)

Gay, W.F.

1975-08-01T23:59:59.000Z

392

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Conference Proceedings (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

393

Screening study on high temperature energy transport systems  

SciTech Connect

The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

Graves, R.L.

1980-10-01T23:59:59.000Z

394

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

395

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

396

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network (OSTI)

square foot on campus has flattened out. Students making a difference In 2004, Colorado State became one, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

398

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power ResearchMarket for Hybrid Electric Vehicles. Transportation ResearchProceedings of the Electric Vehicle Symposium 2009 (EVS24).

Yang, Christopher

2011-01-01T23:59:59.000Z

399

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power Researchs Early Market for Hybrid Electric Vehicles. TransportationTechnologies--Plug-in Hybrid Electric Vehicles. Committee on

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

400

Energy Savers in the Community: Green Transportation Rally | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers in the Community: Green Transportation Rally Savers in the Community: Green Transportation Rally Energy Savers in the Community: Green Transportation Rally September 22, 2009 - 12:31pm Addthis John Lippert This year marks the seventh year that I'm organizing a Green Transportation Rally in my city's Labor Day parade. I think it's a great way to educate the public, plus it's a lot of fun. I started out organizing a group of local residents who own hybrid-electric vehicles (HEVs). Each year my grandchildren and I lead the group on foot carrying a banner proclaiming "Green Transportation." I produce signs that we tape to the windows or attach to the doors and hoods with magnets. One neighbor produces her own huge cardboard sign that she attaches to the roof, proudly proclaiming that she achieves more than 50 mpg in her hybrid-averaged over nearly 100,000

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Storage for Transportation Applications II  

Science Conference Proceedings (OSTI)

Oct 18, 2011... are proven to be critical for high specific energy and high specific power. ... batteries for use in secondary applications such as power backup...

402

Rail Coal Transportation Rates - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... this $1 adder was determined based on research by the U.S. Department of Energy and was only incorporated into the GIS analysis below; ...

403

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

404

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

405

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

406

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

407

Engineering guidelines for total energy are even more vital during fuel shortage  

SciTech Connect

Large total-energy facilities, from 3 to 20 MW in capacity, are studied, but the guidelines are applicable to small units also. Heat-balance analysis, fuel costs, load factor, load-profile match, and control-system design are engineering parameters for total-energy systems that will improve fuel economy. (MCW)

Kauffmann, W.M.

1974-04-01T23:59:59.000Z

408

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Vehicles in Southern California, Energy Policy, 39 (2011)contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for their

Yang, Christopher

2011-01-01T23:59:59.000Z

409

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

410

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

411

Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China  

E-Print Network (OSTI)

This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

Jiang, Yang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

412

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

413

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

414

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

415

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

416

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

417

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

418

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

419

Radioactive Material Transportation Requirements for the Department of Energy  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

2000-07-01T23:59:59.000Z

420

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

422

2013 US Department of Energy National Transportation Stakeholders Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 US Department of Energy National Transportation 3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation Stakeholders Forum being held in Buffalo, New York on May 14-16. Please access the entitled link to proceed directly to the official registration website. Once you have entered the site you will be able to register for the meeting, select activities (regional/working meetings, group breakout sessions, TRANSCOM training and the West Valley tour) to attend, view the draft agenda and make lodging reservations. While the event is over two months away, please register at your earliest opportunity as it will greatly

423

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

424

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

425

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

426

A study of total reaction cross section models used in particle and heavy ion transport codes  

Science Conference Proceedings (OSTI)

Understanding the interactions and propagations of high energy protons and heavy ions are essential when trying to estimate the biological effects of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) on personnel in space.12 To be able to calculate ...

L. Sihver; M. Lantz

2011-03-01T23:59:59.000Z

427

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

428

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport  

E-Print Network (OSTI)

A hybrid model for particle transport and electron energy distributions in positive column the fluid portion of the model. Transport coefficients, source functions, and energy distributions for all field has motivated a num- ber of investigations into its effect on the `electron energy distribution

Kushner, Mark

429

Andreas A. Malikopoulos Energy & Transportation Science Division,  

E-Print Network (OSTI)

. However, the high costs associated with their components, and in particular, with their energy storage here, we investigated the implications of motor/generator and battery size on fuel economy and GHG to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better

430

Energy Balance Models Incorporating Transport of Thermal and Latent Energy  

Science Conference Proceedings (OSTI)

Standard latitudinally resolved energy balance models describe conservation of energy on a sphere subject to solar heating, cooling by infrared radiation and diffusive redistribution of energy according to a Fourier type heat flow with flux ...

Brian P. Flannery

1984-02-01T23:59:59.000Z

431

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

432

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

433

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

434

The Sensitivity of the Simulated Normal and Enhanced C02 Climates to Different Heat Transport Parameterizations in a Two-Dimensional Multilevel Energy Balance Model  

Science Conference Proceedings (OSTI)

Atmospheric sensible and latent heat fluxes constitute an important component of the total poleward energy transport in the climate system. The authors investigate the relative role of these heat fluxes in normal and enhanced C02 warming ...

Douglas Chan; Kaz Higuchi; Charles A. Lin

1995-04-01T23:59:59.000Z

435

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

436

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

437

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

438

Decision Analysis Tool to Compare Energy Pathways for Transportation  

Science Conference Proceedings (OSTI)

With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

Bloyd, Cary N.; Stork, Kevin

2011-02-01T23:59:59.000Z

439

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

440

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

, not specifically aimed at biofuels, target the sweeping economy-wide changes needed to reduce the unwanted "leakage SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 12: KEY MEASUREMENT UNCERTAINTIES FOR BIOFUEL POLICY Chapter 12: Key Measurement Uncertainties for Biofuel Policy Sonia Yeh, Mark A. Delucchi, Alissa Kendall

California at Davis, University of

442

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

TRANSPORTATION ENERGY PATHWAYS CHAPTER 4: COMPARING FUEL ECONOMIES AND COSTS OF ADVANCED VS. CONVENTIONAL VEHICLES PART 2 Chapter 4: Comparing Fuel Economies and Costs of Advanced vs. Conventional Vehicles Andrew-electric vehicles, and electric-drive battery and fuel cell-powered vehicles. We present the results of our

California at Davis, University of

443

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

444

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

445

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Liu, Yu-Xiao; Yang Jie; Duan Yi Shi

2007-01-01T23:59:59.000Z

446

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Yu-Xiao Liu; Zhen-Hua Zhao; Jie Yang; Yi-Shi Duan

2007-06-22T23:59:59.000Z

447

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

448

Fort Hood Solar Total Energy Project. Volume I. Executive summary. Final report  

DOE Green Energy (OSTI)

A summary of the history, design, performance, supporting activities, and management plans for the Solar Total Energy System for the troop housing complex at Fort Hood, Texas, is presented. (WHK)

None

1979-01-01T23:59:59.000Z

449

Energy transport by acoustic modes of harmonic lattices  

E-Print Network (OSTI)

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

450

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

451

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

452

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

and hydrogen as alternative fuels is in energy storage.hydrogen energy density and cost goals is not possible using current compressed hydrogen storageenergy density of electricity storage in batteries or hydrogen

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

453

Macomb College Transportation and Energy Technology 126.09  

Science Conference Proceedings (OSTI)

The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

None

2010-12-31T23:59:59.000Z

454

Correlations between industrial demands (direct and total) for communications and transportation in the US economy 1947-1997  

E-Print Network (OSTI)

information and communications technology on transportation.information and communication technologies (ICT), and travelcommunications and transportation using Almost Ideal Demand System modeling: 1984-2002. Transportation Planning and Technology

Lee, Taihyeong; Mokhtarian, Patricia L

2008-01-01T23:59:59.000Z

455

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

456

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

457

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

458

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

459

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

460

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

Science Conference Proceedings (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

462

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

463

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

464

Proposed Energy Transport Corridors: West-wide energy corridor...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Programmatic Environmental Impact Statement FACT SHEET: Designation of National Interest Electric Transmission Corridors,As Authorized by the Energy Policy Act of 2005...

465

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

466

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

467

Transportation energy contingency plans for rural areas and small communities  

SciTech Connect

This study was undertaken to determine the most effective transportation fuel conservation measures which could be implemented by such areas during energy emergencies. The study involved a review of the transportation fuels contingency planning literature, state transportation energy contingency plans (with special emphasis on that for Missouri) and transportation studies recently conducted in rural Missouri, together with a survey by mail of local government officials, telephone interviews with rural residents and participation in two community-wide attitude surveys in the Meramec Region of Missouri. On the basis of the review of the literature and the results of the surveys, recommendations have been made on both the strategies that could be implemented to reduce gasoline consumption in rural areas and the institutional arrangements required for coping with a transportation fuels shortage. For small communities and rural areas of Missouri, it was specifically recommended that the multi-county regional planning commission should become the lead agency in implementing and coordinating fuel conservation measures in the event of a serious petroleum shortfall. Each regional planning commission would serve as a single focal point in communicating with the State Energy Office in behalf of its numerous county and city members. Furthermore, the existing statewide network of emergency preparedness officers should be utilized to inventory local fuel distribution services, monitor local service station operating practices and to serve motorists who might be stranded without fuel. Finally, the University of Missouri Cooperative Extension Service should offer educational programs covering topics as fuel conserving driving techniques, vehicle maintenance, trip planning, and ridesharing.

Dare, C.E.

1981-12-01T23:59:59.000Z

468

2011 APTA Public Transportation Fact Book | Open Energy Information  

Open Energy Info (EERE)

2011 APTA Public Transportation Fact Book 2011 APTA Public Transportation Fact Book Jump to: navigation, search Tool Summary Name: 2011 APTA Public Transportation Fact Book Agency/Company /Organization: American Public Transportation Association Sector: Energy Focus Area: Transportation Resource Type: Publications Website: www.apta.com/resources/statistics/Documents/FactBook/APTA_2011_Fact_Bo Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Alternative energy sources for non-highway transportation. Appendices  

DOE Green Energy (OSTI)

A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

Not Available

1980-06-01T23:59:59.000Z

470

A low energy beam transport system for proton beam  

SciTech Connect

A low energy beam transport (LEBT) system has been built for a compact pulsed hadron source (CPHS) at Tsinghua University in China. The LEBT, consisting of two solenoids and three short-drift sections, transports a pulsed proton beam of 60 mA of energy of 50 keV to the entrance of a radio frequency quadrupole (RFQ). Measurement has shown a normalized RMS beam emittance less than 0.2 {pi} mm mrad at the end of the LEBT. Beam simulations were carried out to compare with the measurement and are in good agreement. Based on the successful CPHS LEBT development, a new LEBT for a China ADS projector has been designed. The features of the new design, including a beam chopper and beam simulations of the LEBT are presented and discussed along with CPHS LEBT development in this article.

Yang, Y. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Z. M.; Wu, Q.; Zhang, W. H.; Ma, H. Y.; Sun, L. T.; Zhang, X. Z.; Liu, Z. W.; He, Y.; Zhao, H. W.; Xie, D. Z. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

2013-03-15T23:59:59.000Z

471

Opportunities for the Use of Renewable Energy in Road Transport | Open  

Open Energy Info (EERE)

Opportunities for the Use of Renewable Energy in Road Transport Opportunities for the Use of Renewable Energy in Road Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities for the Use of Renewable Energy in Road Transport Agency/Company /Organization: Renewable Energy Technology Deployment Sector: Energy Focus Area: Renewable Energy, Transportation Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual Website: www.iea-retd.org/files/RETRANS_PolicyMakersReport_final.pdf Opportunities for the Use of Renewable Energy in Road Transport Screenshot References: Opportunities for the Use of Renewable Energy in Road Transport[1] "This report discusses the current state of the art of the use of options for using renewable energies in road transport, and explores possible

472

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

473

Transport and Fractionation in Periodic Potential-Energy Landscapes  

E-Print Network (OSTI)

Objects driven through periodically modulated potential-energy landscapes in two dimensions can become locked in to symmetr