Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Available Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability Jump to: navigation, search Dictionary.png Available Transfer Capability A measure of the transfer capability remaining in the physical transmission network for further commercial activity over and above already committed uses. It is defined as Total Transfer Capability less existing transmission commitments (including retail customer service), less a Capacity Benefit Margin, less a Transmission Reliability Margin.[1] Related Terms transfer capability, transmission lines, transmission line, capacity benefit margin, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Available_Transfer_Capability&oldid=502496

2

Definition: Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability The measure of the ability of interconnected electric systems to move or transfer power in a reliable manner from one area to another over all transmission lines (or paths) between those areas under specified system conditions. The units of transfer capability are in terms of electric power, generally expressed in megawatts (MW). The transfer capability from 'Area A' to 'Area B' is not generally equal to the transfer capability from 'Area B' to 'Area A.'[1] Related Terms transmission lines, power, electricity generation, transmission line References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transfer_Capability&oldid=480565"

3

Definition: Total Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

from one area to another area of the interconnected transmission systems by way of all transmission lines (or paths) between those areas under specified system conditions.1...

4

A Roadmap for NEAMS Capability Transfer  

SciTech Connect

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

5

Available transfer capability calculation with transfer based static security-constrained optimal power flow  

Science Conference Proceedings (OSTI)

In power market environment, available transfer capability (ATC) is an important index, indicating the amount of the further usable transmission capacity for commercial trading. ATC calculation is non-trivial when static security constraints are included. ... Keywords: available transfer capability (ATC), optimal power flow, power market, power system, static stability

M. Gandchi; M. Tarafdar Haque; A. Yazdanpanah

2006-03-01T23:59:59.000Z

6

A survey of publicly available transfer capability data  

Science Conference Proceedings (OSTI)

This paper summarizes the transmission system data resources used to construct a North American network representation modeled in the Spot Market Network (SMN) model developed at Argonne National Laboratory (ANL). The data, largely available through various FERC Form 715 reports, are used to construct a network representation capable of modeling interarea transfer opportunities between modeled systems. A brief introduction of the SMN model and the desired level of transmission detail is first described. Next, various data resources that report published transfer capabilities essential to model operation are introduced. Modifications or adaptations of individual published network topologies are described, which are supported through extensive examinations of alternate data sources, as well as through discussions with knowledgeable operations experts or regional staff. The method of obtaining the current SMN network formulation is finally presented to illustrate the integration of regional and subregional network detail into the North American SMN transmission representation.

Kavicky, J.A.; VanKuiken, J.C.

1995-07-01T23:59:59.000Z

7

Fast static available transfer capability determination using radial basis function neural network  

Science Conference Proceedings (OSTI)

In a competitive electricity market, available transfer capability information is required by market participants as well as the system operator for secure operation of the power system. The on-line updating of available transfer capability information ... Keywords: Available transfer capability, Euclidean distance based clustering technique, Radial basis function neural network, Random forest technique

T. Jain; S. N. Singh; S. C. Srivastava

2011-03-01T23:59:59.000Z

8

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

9

FACTS Assessment Study To Increase the Arizona-California Transfer Capability  

Science Conference Proceedings (OSTI)

This report assesses the potential solutions that Flexible AC Transmission System (FACTS) technologies offer on the Arizona-California interface. The study found that use of FACTS devices was cost-effective compared to conventional methods of increasing transfer capability.

1997-06-02T23:59:59.000Z

10

Available Transfer Capability Calculation for AC/DC Systems with VSC-HVDC  

Science Conference Proceedings (OSTI)

In this paper, the voltage source converter is equivalently represented by voltage source model, thus the model of voltage source converter--high voltage direct current (VSC-HVDC) system suitable for optimal power flow is established. Each control mode ... Keywords: available transfer capability, voltage source converter, AC/DC systems, sequential quadratic programming method

Guoqing Li; Jian Zhang

2010-06-01T23:59:59.000Z

11

Study of power transfer capability of dc systems incorporating ac loads and a parallel ac line  

Science Conference Proceedings (OSTI)

Concepts of maximum power transfer of dc systems and associated ac voltage variations, particularly at inverter stations having low short-circuit ratios, have been extended to include various ac load models and an ac line in parallel with the dc line. The operating capabilities are shown to vary from those predicted from either a Thevenin ac source model or the corresponding short-circuit ratio. The study used an ac/dc load flow program.

Reeve, J.; Uzunovic, E. [Univ. of Waterloo, Ontario (Canada)

1997-01-01T23:59:59.000Z

12

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

860. Batchelor, G.K. 1954. Heat transfer by free convectionfree convection. In: Heat Transfer and Turbulent BuoyantHEAT2, A PC-program for heat transfer in two dimensions.

Gustavsen, Arild

2009-01-01T23:59:59.000Z

13

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

internal cavities the heat transfer process is more complex,heat transfer in these insulated zones could be used in the design process

Gustavsen, Arild

2009-01-01T23:59:59.000Z

14

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

and spacer effects on window U- value. ASHRAE Transactions,Enermodal. (2001). Modelling Windows, Glass Doors and OtherA. (2001). Heat transfer in window frames with internal

Gustavsen, Arild

2009-01-01T23:59:59.000Z

15

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

16

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

17

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

18

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

19

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

20

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

22

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

23

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

24

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

25

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

26

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

27

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

28

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

29

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

30

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

31

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

32

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

33

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

34

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

35

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

36

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

37

Towards the capability of providing power-area-delay trade-off at the register transfer level  

Science Conference Proceedings (OSTI)

This paper presents a new register-transfer level (RT-level) power estimation technique based on technology decomposition. Given the Boolean description of a circuit function, the power consumption of two typical circuit implementations, namely the minimum ...

Chun-hong Chen; Chi-ying Tsui

1998-08-01T23:59:59.000Z

38

Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations  

Science Conference Proceedings (OSTI)

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (...

Christopher J. Merchant; Pierre Le Borgne

2004-11-01T23:59:59.000Z

39

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

40

Capabilities Series  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Series Capabilities Series www.emsl.pnl.gov Scientific Innovation Through Integration WHY USE EMSL'S MOLECULAR SCIENCE COMPUTING CAPABILITY? Ì Molecular Science Computing provides users with an integrated suite of computing hardware and software capabilities optimized for achieving the fastest time-to-solution for complex systems-level environmental molecular science simulations. Ì Expert staff members have extensive knowledge and experience in high-performance computing, as well as the operations, domain expertise, and scientific knowledge to support EMSL's users. Ì Substantial integration of transformational high-end computing simulations with experimental resources at EMSL provides a unique multidisciplinary research environment. The Molecular Science Computing capability at EMSL

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved energy sealing capability  

DOE Green Energy (OSTI)

In response to the need for tapping national energy resources, an improved high temperature sealing material has been developed through the sponsorship of the Department of Energy. Parker Seal was selected as one of the technology transferees from L'Garde Inc. and has optimized this transferred technology for further improved performance capabilities and acceptable plant processing. This paper summarizes Parker Seal's testing and evaluation efforts on L'Garde's Y267 transferred technology for a new geothermal and stream service material. This new product, Parker's E962-85 is described in this paper.

Barsoumian, Jerry L.

1982-10-08T23:59:59.000Z

42

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

43

Electric Power Transfer Capability: Concepts, Applications,  

E-Print Network (OSTI)

,3] . In addition to the basic func- tionality of these devices (TTL compatible inputs, high current outputs), other

44

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

45

NSTec Overview and Capabilities  

SciTech Connect

This presentation describes the history of the Nevada National Security Site (Nevada Test Site) Contract as well as current capabilities.

Meidinger, A.

2012-07-27T23:59:59.000Z

46

Capabilities for information flow  

Science Conference Proceedings (OSTI)

This paper presents a capability-based mechanism for permissive yet secure enforcement of information-flow policies. Language capabilities have been studied widely, and several popular implementations, such as Caja and Joe-E, are available. By making ... Keywords: capabilities, information flow control

Arnar Birgisson; Alejandro Russo; Andrei Sabelfeld

2011-06-01T23:59:59.000Z

47

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of...

48

Instruments/Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities FEI Titan Extreme Schottky-field emission gun (X-FEG) CEOS dodecapole probe (STEM) aberration corrector GIF Quantum with dual EELS and fast spectrum imaging...

49

PNNL: ASGC - Research Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Platform for Regional Integrated Modeling and Analysis (PRIMA) The PRIMA Initiative is developing a modeling framework to address regional human-environmental...

50

PNNL: Capability Replacement Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

history. But it is much more than bricks, mortar, and scientific instrumentation. These facilities are essential to retaining capabilities and expertise developed and nurtured...

51

GIS Capability.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

GIS. ORNL's Capabilities Facilities and infrastructure management tools for space, maintenance, security, and use management. Route planning and analysis tools for...

52

Federal Energy Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Energy Capabilities Federal Energy Capabilities Federal Energy Capabilities MCKINSTRY'S CYCLE OF SERVICES PROGRAM SERVICES McKinstry is dedicated to excellence in design, construction, and facilities operation. We strive to develop innovative, cost effective facility solutions for you. Below are the services we can deliver under our energy services program: * Design-Build MEDP contracting * Energy savings performance contracting * Smart Building System integration * Demand response * Smart metering to Smart Grid solutions * Advanced metering services * Renewable energy systems * Cogeneration/combined heat power * Creative tax credit and green tags/white tags * ESCO preventative maintenance APPROACH * No premium for the energy services delivery * Open book pricing and guaranteed

53

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

54

NREL: About NREL - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Photo of a large, modern lab building. The Energy Systems Integration Facility, a U.S. Department of Energy user facility, is designed to support grid integration of...

55

The Cooperative Engagement Capability  

E-Print Network (OSTI)

picture as well as the ability to engage targets that may not be seen locally, a new level of capability may be attained. This ability is precisely what the Cooperative Engagement Capability (CEC) provides for a network of combatants. Recent tests demonstrated that from older, short-range systems such as NATO Sea Sparrow through the latest Aegis baselines, CEC can provide greater defensive capabilities and even provide new types of capabilities to a battle force. However, CEC does not obviate the need for advances in sensors, fire control, and interceptors. Rather, CEC allows the INTRODUCTION Operation in the littoral theater is a principal Navy 1990s scenario with complexities never considered in the Cold War era. For theater air defense, the complexities include the natural environment and its effects on sensor range. For example, desensitization by clutter from propagation ducting and rough terrain, as well as blockage by coastal mountains and clif

Apl

1995-01-01T23:59:59.000Z

56

Instruments/Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities: Hitachi NB-5000 FEG scanning electron microscope with STEM detector High-milling-rate Ga ion column W or C deposition Hitachi nanomanipulator for specimen lift-out...

57

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

58

Assessment of Grid Reliability Benefits and Transfer Gains with Segmentation  

Science Conference Proceedings (OSTI)

Developments in the electric power industry have accentuated the need to resolve problems caused by certain limitations inherent to ac transmission, including inadvertent (parallel and loop) flows, stability and voltage constraints limiting total transfer capability (TTC), the propagation of disturbances capable of producing system separations and cascading outages, limited power densities on rights-of-way, and difficulties in achieving coordinated transmission planning. Segmenting a grid by breaking it ...

2009-12-20T23:59:59.000Z

59

NREL: Solar Radiation Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities NREL's solar radiation research staff provides expertise in renewable energy measurement and instrumentation. Major capabilities include solar resource measurement,...

60

EMSL: Capabilities: Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopy Microscopy Additional Information Meet the Microscopy Experts Related EMSL User Projects Microscopy Tools are Applied to all Science Themes Watch the Microscopy capability video on EMSL's YouTube channel and read the transcript. Microscopy brochure Quiet Wing brochure EMSL hosts a variety of sophisticated microscopy instruments, including electron microscopes, optical microscopes, scanning probe microscopes, and computer-controlled microscopes for automated particle analysis. These tools are used to image a range of sample types with nanoscale-and even atomic-resolution with applications to surface, environmental, biogeochemical, atmospheric, and biological science. Each state-of-the-art instrument and customized capability is equipped with features for specific

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MECHANICAL TEST LAB CAPABILITIES  

E-Print Network (OSTI)

MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

62

Advanced Technology and Knowledge Transfer  

Science Conference Proceedings (OSTI)

This paper reports on a specific food and agribusiness industry project, employing new technological capabilities to better transfer expert knowledge. Knowledge transfer and technical support are key components of this project. VisIT, which stands for ...

Geetanjali Tandon; Steven T. Sonka

2003-01-01T23:59:59.000Z

63

TMV Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

TMV Technology Capabilities TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance systems that provide instant identification of wheel specific, out-of-adjustment, non-functioning or dragging brake issues. AC Shore Power Since the TMV is equipped with DC power in-vehicle, shore power is needed to 1) charge the batteries that supply power to those outlets and 2) be used when running off battery power is not necessary FMCSA Laptop The laptop contains key software which helps enforcement officials perform inspections, look up information, etc. This computer also contains software for the USDOT # reader. Electronic On-Board Recorder EOBRs remove the need for paper logs by automatically recording duty status and location. EOBRs help

64

Advanced Simulation Capability for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

65

Federal Technical Capability Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Technical Capability Federal Technical Capability Program (FTCP) Home About the FTCP FTCP Topics FTCP Meetings Performance Indicator Reports Guiding Documents Qualifying Official Training Approaches FTCP Plans, Reports & Issue Papers Workforce Analysis & Staffing Site Specific Information Nuclear Executive Leadership Training General Information 2004-1 FTCP Commitments FTCP Correspondence Site Map Contact Us Quick Reference Departmental Representative to the DNFSB Facility Representative Safety System Oversight DOE Integrated Safety Management National Training Center DOE Directives Program DOE Technical Standards Program DOE Phone Book HSS Logo FTCP FTCP Topics DOE Strategic Human Capital Plan (FY 2006 - 2011) New Directions in Learning: Building a DOE University System May 4, 2007, the Deputy Secretary memorandum designating Karen Boardman the FTCP Chairperson.

66

Atmospheric Release Advisory Capability  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

1983-02-01T23:59:59.000Z

67

FEDERAL TECHNICAL CAPABILITY PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL TECHNICAL CAPABILITY PROGRAM C C A A L L E E N N D D A A R R Y Y E E A A R R S S 2 2 0 0 1 1 1 1 - - 2 2 0 0 1 1 2 2 B B I I E E N N N N I I A A L L R R E E P P O O R R T T UNITED STATES DEPARTMENT OF ENERGY November 2013 INTENTIONALLY BLANK FTCP 2011-2012 Biennial Report ~ 2 ~ Table of Contents Section Title Page 1.0 Purpose and Scope .......................................................................................... 3 2.0 2011/2012 Accomplishments.......................................................................... 3

68

ORISE Science Education Programs: Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Science Education Programs Capabilities The Oak Ridge Institute for Science and Education (ORISE) connects the best and most diverse students and faculty members to...

69

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

70

Solar mechanics thermal response capabilities.  

DOE Green Energy (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

71

Mobile systems capability plan  

Science Conference Proceedings (OSTI)

This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

NONE

1996-09-01T23:59:59.000Z

72

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

73

Relational Contracts and Organizational Capabilities  

E-Print Network (OSTI)

A large literature identifies unique organizational capabilities as a potent source of competitive advantage, yet our knowledge of why capabilities fail to diffuse more rapidlyparticularly in situations in which competitors ...

Gibbons, Robert S.

74

LANL Analytical and Radiochemistry Capabilities  

Science Conference Proceedings (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; Lamont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-07-27T23:59:59.000Z

75

PML Develops Graphene Fabrication Capability  

Science Conference Proceedings (OSTI)

PML Develops Graphene Fabrication Capability. October 3, 2011. ... That further limits the growth of the graphene, we think. ...

2011-10-06T23:59:59.000Z

76

On Building Inexpensive Network Capabilities  

Science Conference Proceedings (OSTI)

There are many deployed approaches for blocking unwanted traffic, either once it reaches the recipient's network, or closer to its point of origin. One of these schemes is based on the notion of traffic carrying capabilities that grant access to a network and/or end host. However, leveraging capabilities results in added complexity and additional steps in the communication process: Before communication starts a remote host must be vetted and given a capability to use in the subsequent communication. In this paper, we propose a lightweight mechanism that turns the answers provided by DNS name resolution---which Internet communication broadly depends on anyway---into capabilities. While not achieving an ideal capability system, we show the mechanism can be built from commodity technology and is therefore a pragmatic way to gain some of the key benefits of capabilities without requiring new infrastructure.

Shue, Craig A [ORNL; Kalafut, Prof. Andrew [Grand Valley State University (GVSU), Michigan; Allman, Mark [International Computer Science Institute (ICSI); Taylor, Curtis R [ORNL

2011-01-01T23:59:59.000Z

77

Electricity Subsector Cybersecurity Capability Maturity Model...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Electricity Subsector Cybersecurity Capability Maturity Model Electricity Subsector Cybersecurity Capability Maturity Model Electricity Advisory Committee...

78

Capabilities  

Science Conference Proceedings (OSTI)

Table 1   Inorganic ions determined by ion chromatography...Barium Pyrophosphate Cobalt Chloride Borate Calcium Silicate Copper Cyanide Bromide Cesium Tripolyphosphate Gold Iodide Carbonate Lithium lridium Sulfide Chlorate Magnesium Iron(II,III) Chlorite Rubidium Lead Chromate Sodium Mercury Dithionite Strontium Nickel Fluoride Platinum Iodate Zinc Iodide...

79

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

80

NETL: Research Capabilities and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities and Facilities Research Capabilities and Facilities Onsite Research Research Capabilities and Facilities Lab Worker As the lead field center for the DOE Office of Fossil Energy's research and development program, NETL has established a strong onsite research program conducted by Federal scientists and engineers. Onsite R&D – managed by NETL's Office of Research and Development – makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of producing and using fossil resources. With its expert research staff and state-of-the-art facilities, NETL has extensive experience in working with the technical issues related to fossil resources. Onsite researchers also participate with NETL's industrial partners to solve problems that become barriers to commercialization of power systems, fuels, and environmental and waste management. Onsite research capabilities are strengthened by collaborations with well-known research universities.

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Accelerator and electrodynamics capability review  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

Jones, Kevin W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

82

Federal Technical Capability Program - Quarterly Performance Indicator  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarterly Performance Indicator Reports Quarterly Performance Indicator Reports 2013 Quarterly Report on Federal Technical Capability August 16, 2013 Quarterly Report on Federal Technical Capability June 5, 2013 Quarterly Report on Federal Technical Capability February 20, 2013 2012 Quarterly Report on Federal Technical Capability November 20, 2012 Quarterly Report on Federal Technical Capability August 8, 2012 Quarterly Report on Federal Technical Capability May 30, 2012 Quarterly Report on Federal Technical Capability March 6, 2012 2011 Quarterly Report on Federal Technical Capability November 10, 2011 Quarterly Report on Federal Technical Capability August 24, 2011 Quarterly Report on Federal Technical Capability May 18, 2011 Quarterly Report on Federal Technical Capability February 23, 2011

83

Upgrading of TREAT experimental capabilities  

Science Conference Proceedings (OSTI)

The TREAT facility at the Argonne National Laboratory site in the Idaho National Engineering Laboratory is being upgraded to provide capabilities for fast-reactor-safety transient experiments not possible at any other experimental facility. Principal TREAT Upgrade (TU) goal is provision for 37-pin size experiments on energetics of core-disruptive accidents (CDA) in fast breeder reactor cores with moderate sodium void coefficients. this goal requires a significant enhancement of the capabilities of the TREAT facility, specifically including reactor control, hardened neutron spectrum incident on the test sample, and enlarged building. The upgraded facility will retain the capability for small-size experiments of the types currently being performed in TREAT. Reactor building and crane upgrading have been completed. TU schedules call for the components of the upgraded reactor system to be finished in 1984, including upgraded TREAT fuel and control system, and expanded coverage by the hodoscope fuel-motion diagnostics system.

Dickerman, C.E.; Rose, D.; Bhattacharyya, S.K.

1982-01-01T23:59:59.000Z

84

Functional capability of piping systems  

SciTech Connect

General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants.

Terao, D.; Rodabaugh, E.C.

1992-11-01T23:59:59.000Z

85

Sandia National Labs: PCNSC: Partnering: Designated Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Research Partnering Designated Capabilities The "Physical, Chemical, and Nano Sciences Designated Capabilities" 'umbrella' agreement, approved by the Department of...

86

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

87

Argonne CNM: Nanobio Interfaces Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanobio Interfaces Capabilities Nanobio Interfaces Capabilities Synthesis Synthesis of metal oxide, semiconducting, metallic, and magnetic nanoparticles Self-assembly of monodisperse nanoparticles into two- and three-dimensional crystals and binary superlattices Bioconjugation and biochemical techniques with a focus on the synthetic biology and recombinant DNA/protein techniques Peptide synthesis (CSBio CS136XT) Functionalization of nanocrystalline surfaces with biomolecules, such as DNA, peptides, proteins and antibodies, using biochemical, electrochemical, and photochemical techniques Equipment Centrifuges (Beckman Coulter Optima L-100 XP Ultracentrifuge and Avanti J-E Centrifuge) Biological safety cabinets [Labconco Purifier Delta Series (Class II, B2)] Glovebox (MBraun LabMaster 130)

88

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

89

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

90

Transferring Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

91

Argonne CNM: Materials Synthesis Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis Facilities Materials Synthesis Facilities Capabilities biosynthesis View larger image. Biosynthesis Methods Peptide and DNA synthesis (E. Rozhkova, Nanobio Interfaces Group) Nanobio hybrid synthesis (T. Rajh, Nanobio Interfaces Group) Hierarchal assembly View larger image. Hierarchical Assembly Bottom-up polymeric and bio-templating as well as lithographically directed self-assembly (S. Darling, Electronic & Magnetic Materials & Devices Group; E. Rozhkova, Nanobio Interfaces Group) Molecular beam epitaxy View high-resolution image. Molecular Beam Epitaxy Complex oxide nanoferroelectric and nanoferromagnetic materials and devices created using a DCA R450D Custom MBE instrument (A. Bhattacharya, Electronic & Magnetic Materials & Devices Group) Nanoparticle synthesis

92

EMSL: Capabilities: Spectroscopy and Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy and Diffraction Spectroscopy and Diffraction Additional Information Meet the Spectroscopy and Diffraction Experts Related EMSL User Projects Spectroscopy and Diffraction Tools are Applied to all Science Themes Tutorial: XPS Tools for Surface Analysis Spectroscopy and Diffraction brochure EMSL's suite of spectroscopy and diffraction instruments allows users to study solid-, liquid-, and gas-phase sample structure and composition with remarkable resolution. Ideal for integrated studies, spectrometers and diffractometers are easily coupled with EMSL's computational and modeling capabilities, allowing users to apply a multifaceted research approach for experimental data interpretation and gain fundamental understanding of scientific problems. At EMSL, spectroscopy and diffraction instruments are

93

EMSL: Capabilities: Deposition and Microfabrication  

NLE Websites -- All DOE Office Websites (Extended Search)

Deposition and Microfabrication Deposition and Microfabrication Additional Information Meet the Deposition and Microfabrication Experts Related EMSL User Projects Deposition and Microfabrication Tools are Applied to all Science Themes Deposition and Microfabrication brochure Designed to augment research important to a variety of disciplines, EMSL's Deposition and Microfabrication Capability tackles serious scientific challenges from a microscopic perspective. From deposition instruments that emphasize oxide films and interfaces to a state-of-the-art microfabrication suite, EMSL has equipment to tailor surfaces, as diverse as single-crystal thin films or nanostructures, or create the microenvironments needed for direct experimentation at micron scales. Users benefit from coupling deposition and microfabrication applications

94

Electricity Subsector Cybersecurity Capability Maturity Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Program Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Program Electricity...

95

NREL: Process Development and Integration Laboratory - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities The process development and integration approach used within the Process Development and Integration Laboratory (PDIL) provides numerous capabilities for scientific...

96

Sandia SAR Capabilities -- Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Sandia National Laboratories offers state-of-the-art capability in the design and development of Synthetic Aperture Radars, from system design through system...

97

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

98

Argonne CNM: Proximal Probes Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Proximal Probes Proximal Probes Capabilities Omicron VT-AFM XA microscope scanning tunneling microscope VIew high-resolution image. Variable-temperature, ultra-high-vacuum, atomic force microscope/scanning tunneling microscope: Omicron VT-AFM XA (N. Guisinger, Electronic & Magnetic Materials & Devices Group) Measurement modes include: Contact and non-contact AFM Magnetic force microscopy (MFM) Scanning tunneling spectroscopy Preparation tools include: Resistive sample heating Direct current heating E-beam heating Sputter ion etching Gas dosing E-beam evaporation An analysis chamber contains combined four-grid LEED/Auger optics Omicron nanoprobe View high-resolution image Scanning probe/scanning electron microscopy: Omicron UHV Nanoprobe (N. Guisinger, Electronic & Magnetic Materials & Devices Group)

99

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Chinook! Welcome to Chinook! Chinook Supercomputer Chinook is a supercluster with 2310 HP(tm) dual-socket, quad-core AMD(tm) nodes for computation. With 32 GB of memory per node, each processor-core has 4 GB available. Thus, Chinook is the only computer in its class capable of running certain chemical computations. The overall system has 74 TB of memory, 350 GB of local scratch disk per node, a 250 TB of global parallel file system, and a peak performance 163 teraFLOPs. Fast communication between nodes is obtained using single rail InfiniBand interconnect from Voltaire (switches) and Mellanox (network interface cards). Currently, Chinook's operating system is an EMSL modified version of a Red Hat's Scientific Linux. Node allocation is scheduled using Moab® and Simple

100

Core Capabilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Advanced Photon Source is one of the brightest sources of X-rays in the The Advanced Photon Source is one of the brightest sources of X-rays in the Western Hemisphere. Photons are accelerated to over 99% of the speed of light around its ring, which is the size of a baseball stadium. To view a larger version of the image, click on it. The Center for Nanoscale Materials at Argonne is a premier user facility, providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. To view a larger version of the image, click on it. Core Capabilities Argonne's vision is to lead the world in discovery science and engineering that provides technical solutions to the grand challenges of our time. Argonne's vision is to lead the world in discovery science and engineering that provides technical solutions to the grand challenges of our time:

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphics and Visualization Laboratory Graphics and Visualization Laboratory Photo of researcher in the Graphics and Visualization Laboratory EMSL's Graphics and Visualization Laboratory (GVL) helps researchers visualize and analyze complex experimental and computational data sets. GVL provides EMSL users with high-performance graphics systems as well as support staff who have capabilities in illustration and image editing, data modeling and image analysis, scene rendering and model creation, as well as audio/video compositing and editing. The GVL contains five high-performance graphics stations based on SGI technologies with high-speed connections to parallel computers and the database/archive system, a video system integrated with the workstations to facilitate the display and capture of scientific data, and video editing

102

Crosswalk of Target Capabilities to Core Capabilities The following table maps the target capabilities outlined in the former Target Capabilities List (TCL) version  

E-Print Network (OSTI)

capabilities outlined in the former Target Capabilities List (TCL) version 2.0, released in September 2007 was performed such that all thirty-seven target capabilities from the TCL were mapped; and each target target capability in the TCL. This crosswalk was created to support the transition that states

Harms, Kyle E.

103

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

Not Available

2013-01-01T23:59:59.000Z

104

NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING  

Science Conference Proceedings (OSTI)

The detonation of a 10 Kiloton Improvised Nuclear Device (IND) is a serious scenario that the United States must be prepared to address. The likelihood of a single nuclear bomb exploding in a single city is greater today than at the height of the Cold War. Layered defenses against domestic nuclear terrorism indicate that our government continues to view the threat as credible. The risk of such an event is further evidenced by terrorists desire to acquire nuclear weapons. The act of nuclear terrorism, particularly an act directed against a large population center in the United States, will overwhelm the capabilities of many local and state governments to respond, and will seriously challenge existing federal response capabilities. A 10 Kiloton IND detonation would cause total infrastructure damage in a 3-mile radius and levels of radiation spanning out 3,000 square miles. In a densely populated urban area, the anticipated casualties would be in excess of several hundred thousand. Although there would be enormous loss of life, housing and infrastructure, an IND detonation is a recoverable event. We can reduce the risk of these high-consequence, nontraditional threats by enhancing our nuclear detection architecture and establishing well planned and rehearsed plans for coordinated response. It is also important for us to identify new and improved ways to foster collaboration regarding the response to the IND threat to ensure the demand and density of expertise required for such an event is postured and prepared to mobilize, integrate, and support a myriad of anticipated challenges. We must be prepared to manage the consequences of such an event in a deliberate manner and get beyond notions of total devastation by adopting planning assumptions around survivability and resiliency. Planning for such a scenario needs to be decisive in determining a response based on competencies and desired outcomes. It is time to synthesize known threats and plausible consequences into action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It also includes developing plans, training, exercises, recruitment strategies, and processes to e

Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

2011-04-18T23:59:59.000Z

105

OPSAID improvements and capabilities report.  

SciTech Connect

Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

Halbgewachs, Ronald D.; Chavez, Adrian R.

2011-08-01T23:59:59.000Z

106

Technology Transfer Overview | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

107

Secure Facilities & Capabilities | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Facilities SHARE Secure Facilities and Capabilities...

108

Advanced Simulation Capability for Environmental Management  

Multi-Process High Performance Computing Simulator Modular simulation capability for barrier and waste form degradation, multiphase flow and reactive ...

109

Los Alamos Lab: Bioscience Division: Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Capabilities Biomaterials Cell Biology Computational Biology Environmental Microbiology Genomic Science Measurement Science and Diagnostics Metabolomics Molecular...

110

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

2013-01-01T23:59:59.000Z

111

Evolution of a Unique Systems Engineering Capability  

SciTech Connect

The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INLs Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INLs Systems Engineering Department has chosen to focus on customer intimacy where the customers needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

Robert M. Caliva; James A. Murphy; Kyle B. Oswald

2011-06-01T23:59:59.000Z

112

Capabilities listed by Department: Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Bio Research & Test Reactor Advanced Reactor Development Decontamination and Decommissioning Heat Transfer and fluid Mechanics International Nuclear Safety Reactor...

113

EMSL: Science: Research and Capability Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Intramural Research & Capability Development Program Intramural Research & Capability Development Program The EMSL Intramural Research and Capability Development Program facilitates development of new research tools and enables EMSL staff members to advance the important skills and expertise necessary to enhance the EMSL user program. These intramural projects are intended to increase the scientific visibility of EMSL staff in areas that promote the objectives of EMSL's three science themes- Biological Interactions and Dynamics, Geochemistry/Biogeochemistry and Subsurface Science, and Science of Interfacial Phenomena. Technical outcomes of this program include journal publications, scientific presentations, new capabilities or capability enhancements, and expertise to augment EMSL user activities and foster development of innovative

114

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

115

Transfer system  

DOE Patents (OSTI)

A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

Kurosawa, Kanji (Tokyo, JP); Koga, Bunichiro (Miyagi, JP); Ito, Hideki (Miyagi, JP); Kiriyama, Shigeru (Miyagi, JP); Higuchi, Shizuo (Kanagawa, JP)

2003-05-20T23:59:59.000Z

116

Energy transfer processes in solar energy conversion  

DOE Green Energy (OSTI)

During the past year, we have been working in three general areas: electronic excitation transport in clustered chromophore systems and other complex systems, photo-induced electron transfer and back transfer in liquid solutions in which diffusion and charge interactions are important, and the construction of a new two color dye laser system to enhance our experimental capability.

Fayer, M.D.

1992-01-01T23:59:59.000Z

117

Frame Heat Transfer Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

118

User Facilities and Technical Capabilities | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities and Technical Capabilities BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About...

119

Advanced Simulation Capability for Environmental Management (ASCEM) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing programs as well as collaborating with the Offices of Science,

120

NREL: Advanced Power Electronics - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Key to making hybrid electric and fuel cell vehicles practical is the development of low-cost, high-power integrated power electronics devices. The research...

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Argonne CNM: Theory and Modeling Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

aid in the design of functional nanoscale systems. Our primary facility is a high-performance computing cluster accommodating parallel computer-intensive applications. Capabilities...

122

Additive manufacturing capabilities expanding | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

123

Dynamic System Identification Toolbox Capabilities Update Frank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capabilities Update Frank Tuffner Pacific Northwest National Laboratory francis.tuffner@pnnl.gov 27 June 2013 Washington, DC DOEOE Transmission Reliability Program Project...

124

Microsoft Word - Objective Supply Capability Adaptive Redesign...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact The National Guard Bureau (NGB) requires capabilities beyond the scope of standard army systems in order to increase the efficiency and cost effectiveness of its...

125

ORISE: Helping Strengthen Emergency Response Capabilities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Science and Education (ORISE) helps strengthen government agencies' emergency response capabilities through a variety of exercises, from tabletop training to...

126

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

127

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

128

Optimizing the Transportation System's Response Capabilities  

E-Print Network (OSTI)

Capabilities 2 Abstract For the purposes of post-disaster response and recovery we view the transportation cooperation among evacuation vehicles. Keywords: Post-disaster response, controlled evacuation, transportation the Transportation System's Response Capabilities 1 Introduction For the purposes of a post-disaster response

Paschalidis, Ioannis "Yannis"

129

Definition: Dynamic Capability Rating | Open Energy Information  

Open Energy Info (EERE)

Capability Rating Capability Rating Jump to: navigation, search Dictionary.png Dynamic Capability Rating Dynamic capability rating can be achieved through real-time determination of an element's (e.g., line, transformer etc.) ability to carry load based on electrical and environmental conditions.[1] Related Terms rating References ↑ SmartGrid.gov 'Description of Functions' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Dynamic_Capability_Rating&oldid=506158" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

130

Analytical Chemistry Core Capability Assessment - Preliminary Report  

Science Conference Proceedings (OSTI)

The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

131

Data Transfer | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Data Transfer The Blue Gene/P connects to other research institutions using a total of 20 GBs of public network connectivity. This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and the Metropolitan Research and Education Network (MREN). Data Transfer Node Overview Two data transfer nodes are available to all Intrepid users, that provide the ability to perform wide and local area data transfers. dtn01.intrepid.alcf.anl.gov (alias for gs1.intrepid.alcf.anl.gov) dtn02.intrepid.alcf.anl.gov (alias for gs2.intrepid.alcf.anl.gov) Data Transfer Utilities HSI/HTAR HSI and HTAR allow users to transfer data to and from HPSS Using HPSS on Intrepid GridFTP GridFTP provides the ability to transfer data between trusted sites such

132

CTH reference manual : composite capability and technologies.  

DOE Green Energy (OSTI)

The composite material research and development performed over the last year has greatly enhanced the capabilities of CTH for non-isotropic materials. The enhancements provide the users and developers with greatly enhanced capabilities to address non-isotropic materials and their constitutive model development. The enhancements to CTH are intended to address various composite material applications such as armor systems, rocket motor cases, etc. A new method for inserting non-isotropic materials was developed using Diatom capabilities. This new insertion method makes it possible to add a layering capability to a shock physics hydrocode. This allows users to explicitly model each lamina of a composite without the overhead of modeling each lamina as a separate material to represent a laminate composite. This capability is designed for computational speed and modeling efficiency when studying composite material applications. In addition, the layering capability also allows a user to model interlaminar mechanisms. Finally, non-isotropic coupling methods have been investigated. The coupling methods are specific to shock physics where the Equation of State (EOS) is used with a nonisotropic constitutive model. This capability elastically corrects the EOS pressure (typically isotropic) for deviatoric pressure coupling for non-isotropic materials.

Key, Christopher T.; Schumacher, Shane C.

2009-02-01T23:59:59.000Z

133

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

134

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

135

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

136

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

137

EMSL: Capabilities: Cellular Isolation and Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Isolation and Systems Analysis Cell Isolation and Systems Analysis Additional Information Related EMSL User Projects Cell Isolation & Systems Analysis Tools are Applied to all Science Themes Cell Isolation & Systems Analysis brochure CISA Capability Group movie series: CISA Read the transcript. The Cell Isolation & Systems Analysis (CISA) capability at EMSL includes techniques for isolating cells from complex cell populations or environmental samples for further 'omics and imaging analyses. EMSL specializes in quantitative live cell fluorescence imaging with single molecule sensitivity, super resolution fluorescence and electron microscopy techniques, and transcriptomics and proteomics analyses. These capabilities provide the foundation for attaining a molecular-level understanding of

138

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

139

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

140

NREL: Biomass Research - Microalgal Biofuels Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Microalgal Biofuels Capabilities Microalgal Biofuels Capabilities Research into producing microalgal biofuels for transportation has been revitalized at NREL. Because algae have the potential to produce the feedstock for a number of transportation fuels-biodiesel, "green" diesel and gasoline, and jet fuel-NREL has developed strong capabilities in producing biofuels from microalgae. Through standard procedures for microalgal biofuels analysis, NREL helps scientists and researchers understand more about the chemical composition of algae. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the microalgae-to-biofuels conversion process. NREL's capabilities in microalgal biofuels R&D include: Why is algal research important? Algae have the potential to produce the feedstock for transportation fuels.

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:Wavemaking Capabilities | Open Energy Information  

Open Energy Info (EERE)

Wavemaking Capabilities Wavemaking Capabilities Jump to: navigation, search Property Name Wavemaking Capabilities Property Type String Pages using the property "Wavemaking Capabilities" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Yes + 10-ft Wave Flume Facility + Yes + 11-ft Wave Flume Facility + Yes + 2 2-ft Flume Facility + Yes + 3 3-ft Wave Flume Facility + Yes + 5 5-ft Wave Flume Facility + Yes + 6 6-ft Wave Flume Facility + Yes + A Alden Large Flume + Yes + Alden Small Flume + Yes + Alden Tow Tank + None + Alden Wave Basin + Yes + B Breakwater Research Facility + Yes + Bucknell Hydraulic Flume + None + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + None + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + None +

142

NREL: ReFUEL Laboratory - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities The Renewable Fuels and Lubricants (ReFUEL) Laboratory is a world-class testing facility dedicated to advanced fuels and vehicles research. The lab features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Combustion Lab. Because the ReFUEL Laboratory is located in Denver, Colorado, it offers the additional capability of testing emissions and vehicle performance at high altitude. It also features an altitude simulation system to mimic results found at lower altitudes, including sea level.

143

Property:Wind Capabilities | Open Energy Information  

Open Energy Info (EERE)

Capabilities Capabilities Jump to: navigation, search Property Name Wind Capabilities Property Type String Pages using the property "Wind Capabilities" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + None + 10-ft Wave Flume Facility + None + 11-ft Wave Flume Facility + Yes + 2 2-ft Flume Facility + None + 3 3-ft Wave Flume Facility + None + 5 5-ft Wave Flume Facility + None + 6 6-ft Wave Flume Facility + None + A Alden Large Flume + Yes + Alden Small Flume + Yes + Alden Tow Tank + Yes + Alden Wave Basin + Yes + B Breakwater Research Facility + None + Bucknell Hydraulic Flume + None + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + None + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + None +

144

Property:Towing Capabilities | Open Energy Information  

Open Energy Info (EERE)

Towing Capabilities Towing Capabilities Jump to: navigation, search Property Name Towing Capabilities Property Type String Pages using the property "Towing Capabilities" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + None + 10-ft Wave Flume Facility + None + 11-ft Wave Flume Facility + None + 2 2-ft Flume Facility + None + 3 3-ft Wave Flume Facility + None + 5 5-ft Wave Flume Facility + None + 6 6-ft Wave Flume Facility + None + A Alden Large Flume + Yes + Alden Small Flume + None + Alden Tow Tank + Yes + Alden Wave Basin + None + B Breakwater Research Facility + None + Bucknell Hydraulic Flume + Yes + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + None + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + None +

145

NREL: Hydrogen and Fuel Cells Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Photo of a demonstration with a small photovoltaic cell used with a light to produce electricity. The small light is being powered from the energy stored in the fuel...

146

2009 Federal Technical Capabilities Program (FTCP) Corrective...  

NLE Websites -- All DOE Office Websites (Extended Search)

NW, Suite 700 Washington D.C. 20004-2901 Dear Mr. Chairman: Enclosed is the Federal Technical Capabilities Program (FTCP) Corrective Action Plan, Revision 2, which is Deliverable...

147

The New MCNP6 Depletion Capability  

SciTech Connect

The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

148

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

149

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

150

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

151

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

152

Heat Transfer and Fluid Mechanics - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Computation Engineering Computation and Design > Heat Transfer and Fluid Mechanics Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Engineering Simulation Capabilities at Argonne Nuclear Engineering Division The Engineering Simulation section specializes in the development and

153

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

154

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

155

Definition: Blackstart Capability Plan | Open Energy Information  

Open Energy Info (EERE)

Blackstart Capability Plan Blackstart Capability Plan Jump to: navigation, search Dictionary.png Blackstart Capability Plan A documented procedure for a generating unit or station to go from a shutdown condition to an operating condition delivering electric power without assistance from the electric system. This procedure is only a portion of an overall system restoration plan.[1] View on Wikipedia Wikipedia Definition A black start is the process of restoring a power station to operation without relying on the external electric power transmission network. Normally, the electric power used within the plant is provided from the station's own generators. If all of the plant's main generators are shut down, station service power is provided by drawing power from the grid through the plant's transmission line. However, during a wide-area

156

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

157

Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)  

SciTech Connect

D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

Not Available

2013-07-01T23:59:59.000Z

158

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

159

Scientific Innovation Through Integration Capabilities Series  

NLE Websites -- All DOE Office Websites (Extended Search)

EMSL EMSL 's expansive mass spectrometry capability group enables high-throughput, high-resolution analysis of complex mixtures of many sample types. These world-class instruments and techniques are part of an unparalleled collection of capabilities designed for research that integrates experimental and computational tools. In particular, mass spectrometry at EMSL facilitates advanced global proteomics research, aerosol particle characterization, the study of ion-surface collisions, and materials characterization. These tools enable novel, fundamental research in EMSL's Science Themes of Biological Interactions and Dynamics, Geochemistry/ Biogeochemistry and Subsurface Science, and Science of Interfacial Phenomena. Specific research topics include:

160

Audit Report - Office of Secure Transportation Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Secure Transportation Office of Secure Transportation Capabilities OAS-M-12-05 June 2012 Department of Energy Washington, DC 20585 June 29, 2012 UN MEMORANDUM FOR THE ASSISTANT DEPUTY ADMINISTRATOR, OFFICE OF SECURE TRANSPORTATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Secure Transportation Capabilities" BACKGROUND The National Nuclear Security Administration's Office of Secure Transportation (OST) is responsible for safely and securely transporting nuclear weapons, weapon components and special nuclear material for customers such as the Department of Energy, Department of Defense and the Nuclear Regulatory Commission. Specifically, OST shipments support the nuclear

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

162

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network (OSTI)

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

163

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

Senor, David J.; Burkes, Douglas

2013-06-28T23:59:59.000Z

164

Roofing shingle assembly having solar capabilities  

Science Conference Proceedings (OSTI)

A roofing shingle assembly having solar capabilities comprising a flat main portion having upper and lower surfaces, and curved segments integral with the upper and lower edges of said shingle. The roofing shingles are mounted in overlapping parallel array with the curved segments interconnected to define a fluid conduit enclosure. Mounting brackets for the shingles are secured on the roof rafters.

Murphy, J.A.

1982-03-16T23:59:59.000Z

165

Federal Technical Capability Panel Conference Call Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Capability Panel Conference Call Schedule CY 2013 Time: 11:00 an -12:00pm (EST) * 10:00-11:00 am (CST) * 9:00-10:00 am (MST) * 8:00-9:00am (PST) Date Call-In Number June 19, 2013...

166

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

167

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

168

Phase Change Materials for Enhancing Heat Transfer in Thermal ...  

Science Conference Proceedings (OSTI)

One of the main issues with using phase change materials is that solidification often reduces total heat transfer, reducing the efficiency of the storage system.

169

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

170

ORISE: Capabilities in Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities ORISE partners with NOAA to operate climate monitoring network U.S. Climate Reference Network (CRN) station in Hawaii The U.S. Climate Reference Network (CRN) consists of 121 stations throughout the continental U.S., Alaska, Hawaii and Canada. The stations use highly accurate and reliable sensors and gauges to measure temperature, wind speed and precipitation. The network allows scientists to study the climate of an area over sustained periods, from 50 to 100 years. Pictured here is a CRN station at the Mauna Loa Slope Observatory in Hawaii. The Oak Ridge Institute for Science and Education (ORISE) works closely with the National Oceanic and Atmospheric Administration's (NOAA) Atmospheric Turbulence and Diffusion Division (ATDD) to perform lower

171

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act American Recovery and Reinvestment Act Recovery Act Logo EMSL researchers are benefitting from a recent $60 million investment in innovation through the American Recovery and Reinvestment Act. These Recovery Act funds were employed to further develop and deploy transformational capabilities that deliver scientific discoveries in support of DOE's mission. Today, they are helping EMSL accomplish the following: Establish leadership in in situ chemical imaging and procure ultrahigh-resolution microscopy tools Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald

172

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

173

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

174

ARAC: A support capability for emergency managers  

SciTech Connect

This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

1995-08-01T23:59:59.000Z

175

Recombinant organisms capable of fermenting cellobiose  

DOE Patents (OSTI)

This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

Ingram, Lonnie O. (Gainesville, FL); Lai, Xiaokuang (Gainesville, FL); Moniruzzaman, Mohammed (Gainesville, FL); York, Sean W. (Gainesville, FL)

2000-01-01T23:59:59.000Z

176

Fuel Performance Analysis Capability in FALCON  

Science Conference Proceedings (OSTI)

The Fuel Analysis and Licensing Code -- New (FALCON) is being developed as a state-of-the-art light water reactor (LWR) fuel performance analysis and modeling code validated to high burnup. Based on a robust finite-element numerical structure, it is capable of analyzing both steady-state and transient fuel behaviors with a seamless transition between the two modes. EPRI plans to release a fully benchmarked and validated beta version of FALCON in 2003.

2002-12-06T23:59:59.000Z

177

Manufacturing fuel-switching capability, 1988  

SciTech Connect

Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

1991-09-01T23:59:59.000Z

178

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

179

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

180

Table A58. Capability to Switch from LPG to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

8. Capability to Switch from LPG to Alternative Energy Sources by" 8. Capability to Switch from LPG to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," LPG",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity",,,,,,,"Row" ,,"Consumed(b)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","and Breeze","Other(e)","Factors"

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table A67. Capability to Switch from Electricity to Alternative Energy Source  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Electricity to Alternative Energy Sources" 7. Capability to Switch from Electricity to Alternative Energy Sources" " by Industry Group, Selected Industries, and Selected Characteristics," " 1994: Part 1" " (Estimates in Million Kilowatthours)" ,,,"Electricity Receipts",,,," Alternative Types of Energy(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "SIC"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and",,"Row" "Code(a)","Industry Group and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

182

Heat and mass transfer in porous media  

DOE Green Energy (OSTI)

Field test data on the OOSI MR3 experiments are used as a basis for exhibiting the computational capabilities of the WAFE computer code, which is a generalized tool for the analysis of heat and mass transfer in multi-dimensional domains of porous geothermal materials.

Cook, T.L.; Harlow, F.H.; Travis, B.J.; Bartel, T.J.; Tyner, C.E.

1981-01-01T23:59:59.000Z

183

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

184

Identifying Needed Capabilities in Multifamily Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identifying Needed Capabilities in Multifamily Models Building America Technical Update Meeting Eric Wilson April 30, 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Definitions Current definitions for HSP/BEopt: Single Family Attached = Townhouses, row houses, duplexes Multifamily Buildings = 5+ units; shared floors/ceilings 2 Single Family Attached - Rowhouses 3 Multifamily - Stacked Units * Enable Superinsulated Slab and Roof options in Option Manager 4 Multifamily Modeling Needs * Adiabatic shared walls, floors, and ceilings * Unit multipliers  Whole-Building Model * Corridors * Common Areas * Operating Conditions (Benchmark)

185

Visualization of Flows and Transfer Capability in Electric Networks Thomas J. Overbye James D. Weber  

E-Print Network (OSTI)

transmission system. Indeed, what sets the electricity market apart form all other markets is this common transmission system. In order to participate in this electricity market, it is important that the various, the ability to participate in the electricity market depends upon the availability of transmission capacity

186

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Capabilities ofemployer. LBNL-52432 Distributed Generation Capabilities of1.1 Definition of Distributed Generation and Interpretation

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

187

An Assessment of Analytical Capabilities, Services and Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Assessment of Analytical Capabilities, Services and Tools for Demand Response Title An Assessment of Analytical Capabilities, Services and Tools for Demand Response Publication...

188

Increased cycling efficiency and rate capability of copper-coated...  

NLE Websites -- All DOE Office Websites (Extended Search)

cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries Title Increased cycling efficiency and rate capability of copper-coated silicon...

189

High-rate capable organic radical cathodes for lithium rechargeable...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-rate capable organic radical cathodes for lithium rechargeable batteries Title High-rate capable organic radical cathodes for lithium rechargeable batteries Publication Type...

190

Clark Atlanta Universities (CAU) Energy Related Research Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped...

191

MTC Envelope: Defining the Capability of Large Scale Computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

MTC Envelope: Defining the Capability of Large Scale Computers in the Context of Parallel Scripting Applications Title MTC Envelope: Defining the Capability of Large Scale...

192

ORISE: Capabilities in National Security and Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities ORISE Emergency Management Capabilities In preparation for a natural or man-made disaster, the Oak Ridge Institute for Science and Education (ORISE) provides national...

193

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

194

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

195

Transferring Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

196

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

197

EXPANDING THE CAPABILITIES OF DOE'S ENERGYPLUS BUILDING ENERGY SIMULATION PROGRAM  

DOE Green Energy (OSTI)

EnergyPlus{trademark} is a new generation analysis tool that is being developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It will also support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by six updated versions over the ensuing three-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features: (1) A model for energy recovery ventilation equipment that transfers both sensible (temperature) and latent (moisture) energy between building exhaust air and incoming outdoor ventilation air; (2) A model to account for the degradation of cooling coil dehumidification performance at part-load conditions; (3) A model for cooling coils augmented with air-to-air heat exchangers for improved dehumidification; and (4) A heat transfer coefficient calculator and automatic sizing algorithms for the existing EnergyPlus cooling tower model. UCF/FSEC located existing mathematical models for these features and incorporated them into EnergyPlus. The software models were written using Fortran-90 and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (Input Output Reference and Engineering Document) was updated with information describing the new model/feature.

Don B. Shirey, III; Richard A. Raustad

2004-04-01T23:59:59.000Z

198

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

199

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

200

Federal Technical Capability Panel Contacts list  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 U. S. Department of Energy and National Nuclear Security Administration Federal Technical Capability Panel Organization Name Telephone Fax E-Mail FTCP CHAIR Chair (DOE/NTC) Karen L. Boardman (505) 845-6444 (505) 845-6079 kboardman@ntc.doe.gov FTCP Deputy Dave Chaney (505) 845-4300 (505) 845-4879 david.chaney@nnsa.doe.gov FTCP Technical Standards Mgr. Jeanette Yarrington (301) 903-7030 (301) 903-3445 Jeanette.Yarrington@hq.doe.gov FTCP Coordinator Patricia Parrish (505) 845-4057 (505) 284-7057 patricia.parrish@nnsa.doe.gov FTCP Agents DOE Headquarters Chief of Nuclear Safety (CNS) Richard Lagdon (202) 586-9471 (202) 586-5533 Chip.Lagdon@eh.doe.gov Office of Health, Safety & Security Pat Worthington (301) 903-6929 (301) 903-3445 pat.worthington@hq.doe.gov

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surge and Choke Capable Compressor Model  

E-Print Network (OSTI)

Abstract: A compressor model is developed. It is capable of representing mass flow and pressure characteristic for three different regions: surge, normal operation as well as for when the compressor acts as a restriction, i.e. having a pressure ratio of less than unity. Different submodels are discussed and methods to parametrize the given model structure are given. Both the parametrization and validation are supported extensively by measured data. Dynamic data sets include measurements from engine and surge test stands. The compressor model is further validated against a database of stationary compressor maps. The proposed model is shown to have good agreement with measured data for all regions, without the need for extensive geometric information or data.

Oskar Leufven; Lars Eriksson

2011-01-01T23:59:59.000Z

202

Federal Technical Capabilities Panel Meeting Minutes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Minutes May 22, 2013 The May 22, 2013 F2F Meeting was held thru VTC, video streaming and call-in number. Karen Boardman welcomed the FTCP and expressed her appreciation for the participation and support. She emphasized to everyone that we would work thru the meeting in regards to the new technology capabilities being used (VTC, video streaming, etc.) for the first time on this DOE FTCP Face-to-Face meeting. There were some issues with the video streaming and at the end of the meeting Ms. Boardman thanked everyone for the participation. She also asked everyone to provide feedback regarding the VTC and video streaming. As part of Ms. Boardman's welcome, she informed the group that Mark Alsdorf, NTC Nuclear Safety Training Program Manager (NSTPM) has retired from the DOE, and introduced Al MacDougall who will be on detail to

203

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

EMSL Procurements under Recovery Act EMSL Procurements under Recovery Act Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald Related Links Recovery.gov DOE and the Recovery Act Message from Energy Secretary Chu Recovery Act at PNNL EMSL evolves with the needs of its scientific users, and the American Recovery and Reinvestment Act has helped to accelerate this evolution. Thirty-one instruments were acquired and installed at EMSL. These instruments are listed below, and each listing is accompanied by a brief overview. Each of these new and leading-edge instruments was chosen by design to

204

Turbine vane with high temperature capable skins  

Science Conference Proceedings (OSTI)

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

205

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

206

Joint demilitarization technology test and demonstration capabilities  

SciTech Connect

This paper provides a review of the two components of the Nevada Test Site (NTS) Demilitarization test and demonstration capabilities. Part one is a general discussion of the NTS and the many assets it offers to the Demilitarization community; and more specifically, a discussion of the NTS Open Burn/Open Detonation (OB/OD) test facility. The NTS Joint Demilitarization Technology (JDT) OB/OD Test Chamber is located at the X Tunnel facility which as been designed and constructed to contain and characterize the effluent from demilitarization activities. X Tunnel consists of a large test chamber capable of withstanding a 3,000 pound net explosive weight detonation or up to a static pressure of well over 100 pounds per square inch. The test chamber is fully instrumented to measure and collect gas and particulate samples as well as to monitor shock phenomenology. Part two is a discussion of the NTS Tactical Demilitarization Demonstration (TaDD) program currently planned for the Area 11 Technical Facility. This project will produce equipment that can dispose of unneeded tactical military rocket motors in a safe, environmentally-friendly, and timely fashion. The initial effort is the development of a demilitarization system for the disposal of excess Shillelagh missiles at the Anniston Army Depot. The prototype for this system will be assembled at the Area 11 facility taking advantage of the inherent infrastructure and proximity to numerous existing structures. Upon completion of testing, the prototype facility will become the test bed for future tactical disposal development activities. It is expected that the research and development techniques, prototype testing and production processes, and expertise developed during the Shillelagh disposal program will be applicable to follow-on tactical missile disposal programs, but with significant cost and schedule advantages.

Williams, S.M. [Bechtel Nevada, Inc., Las Vegas, NV (United States); Byrd, E.R. [Lockheed Martin Missiles and Space (United States); Decker, M.W. [Naval Air Warfare Center, Warminster, PA (United States)

1998-12-31T23:59:59.000Z

207

RESPECT Research & Enterprise Services; Promoting Excellence in Commercialisation and Knowledge Transfer Email: Technology-Licensing@hw.ac.uk  

E-Print Network (OSTI)

cover interconnection capabilities for flip chip packaging and 3D integration of MEMS. Problem this Heriot-Watt technology through an industry/ university knowledge transfer partnership: Knowledge Transfer Partnership Scheme or Scottish Enterprise For further information: Robert Goodfellow, Commercialisation

Painter, Kevin

208

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

209

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

210

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

211

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

212

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

213

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

214

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

215

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

216

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

217

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

218

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"

219

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

220

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

222

LANL capabilities towards bioenergy and biofuels programs  

SciTech Connect

LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

223

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

224

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

225

Continuous chain bit with downhole cycling capability  

DOE Patents (OSTI)

A continuous chain bit for hard rock drilling is disclosed which is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

Ritter, D.F.; St. Clair, J.A.; Togami, H.K.

1981-03-17T23:59:59.000Z

226

Continuous chain bit with downhole cycling capability  

DOE Patents (OSTI)

A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

Ritter, Don F. (Albuquerque, NM); St. Clair, Jack A. (Albuquerque, NM); Togami, Henry K. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

227

Development of covariance capabilities in EMPIRE code  

SciTech Connect

The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance and fast neutron regions. The Atlas of Neutron Resonances by Mughabghab is used as a primary source of information on uncertainties at low energies. Care is taken to ensure consistency among the resonance parameter uncertainties and those for thermal cross sections. The resulting resonance parameter covariances are formatted in the ENDF-6 File 32. In the fast neutron range our methodology is based on model calculations with the code EMPIRE combined with experimental data through several available approaches. The model-based covariances can be obtained using deterministic (Kalman) or stochastic (Monte Carlo) propagation of model parameter uncertainties. We show that these two procedures yield comparable results. The Kalman filter and/or the generalized least square fitting procedures are employed to incorporate experimental information. We compare the two approaches analyzing results for the major reaction channels on {sup 89}Y. We also discuss a long-standing issue of unreasonably low uncertainties and link it to the rigidity of the model.

Herman,M.; Pigni, M.T.; Oblozinsky, P.; Mughabghab, S.F.; Mattoon, C.M.; Capote, R.; Cho, Young-Sik; Trkov, A.

2008-06-24T23:59:59.000Z

228

Data Transfer | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Globus Online Using GridFTP Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Data Transfer The Blue Gene/Q will connect to other research institutions using a total of 100 Gbit/s of public network connectivity (10 Gbit/s during early access). This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and the Metropolitan Research and Education Network (MREN). Data Transfer Node Overview A total of 12 data transfer nodes (DTNs) will be available to all Mira

229

Federal Technical Capability Program Assessment Guidance and Criteria  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNICAL CAPABILITY PROGRAM TECHNICAL CAPABILITY PROGRAM FEDERAL TECHNICAL CAPABILITY PROGRAM ASSESSMENT GUIDANCE AND CRITERIA Federal Technical Capability Panel and the Office of Human Resources and Administration U.S. Department of Energy Washington, D.C. 20585 September 1998 Federal Technical Capability Program Assessment Guidance and Criteria 1 September 15, 1998 INTRODUCTION The Federal Technical Capability Program provides for the recruitment, deployment, development and retention of federal personnel with the demonstrated technical capability to safely accomplish the Department' s missions and responsibilities. The Federal Technical Capability Panel (Panel) reports to the Deputy Secretary and oversees and resolves issues affecting the Federal Technical Capability Program. The Panel periodically assesses the effectiveness of the four functions of the

230

REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES  

SciTech Connect

This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension ? not fully fleshed out yet ? that aims to reduce the current number of nuclear explosives from seven to five, the so-called ?3+2? vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.

Swegle, J.; Tincher, D.

2013-09-10T23:59:59.000Z

231

Federal Technical Capabilities Program (FTCP) 2005 Annual Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program Fiscal Year (FY) 2005 Annual Plan January 15, 2005 FTCP Annual Plan, FY 2005 INTRODUCTION The objective of the Federal Technical Capability Program (Program) is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the U.S. Department of Energy (also known as the "Department" or DOE) missions and responsibilities. The current Program was formalized in 1998 through Department directives DOE Policy 426.1, Federal Technical Capability Program for Defense Nuclear Facilities, and DOE Manual (M) 426.1-1A, Federal Technical Capability Manual. The Federal Technical Capability Panel (FTCP) provides leadership in implementing the

232

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

233

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

234

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

235

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

236

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

237

Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Anniversary Anniversary Capabilities Video (Text Version) to someone by E-mail Share Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on Facebook Tweet about Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on Twitter Bookmark Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on Google Bookmark Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on Delicious Rank Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on Digg Find More places to share Clean Cities: Clean Cities 20th Anniversary Capabilities Video (Text Version) on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities 20th Anniversary Capabilities Video (Text Version)

238

NERSC's Data Transfer Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

239

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

240

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tech Transfer Report 2000  

Science Conference Proceedings (OSTI)

Page 1. Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report ...

2010-07-27T23:59:59.000Z

242

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

243

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

244

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

245

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

246

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

247

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

248

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

249

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

250

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

251

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

252

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

253

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

254

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

255

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

256

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

257

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

258

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

259

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

260

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

262

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

263

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

264

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

265

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

266

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

267

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

268

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

269

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

270

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

271

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

272

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

273

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

274

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

275

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

276

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

277

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

278

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

279

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

280

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

282

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

283

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

284

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

285

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

286

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

287

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

288

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

289

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

290

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

291

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

292

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

293

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

294

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

295

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

296

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

297

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

298

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

299

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

300

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

302

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

303

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

304

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

305

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

306

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

307

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

308

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

309

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

310

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

311

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

312

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

313

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

314

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

315

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

316

Technology Transfer and Commercialization Annual Report 2008  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INLs Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

Michelle R. Blacker

2008-12-01T23:59:59.000Z

317

Federal Technical Capability Program (FTCP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistance » Federal Technical Capability Program Assistance » Federal Technical Capability Program (FTCP) Federal Technical Capability Program (FTCP) Vision For DOE to be a technically proficient enterprise, with federal technical personnel overseeing Defense Nuclear Facilities in a manner that enables and enhances the DOE mission in a technically defensible fashion, while being recognized as preeminent in federal technical leadership and competency. Missions and Functions The Department of Energy is committed to developing and maintaining a technically competent workforce to accomplish its missions in a safe and efficient manner. The Federal Technical Capability Program (FTCP) provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely

318

MSTC - Microsystems Science, Technology, and Components - Capabilities and  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities and Technologies Capabilities and Technologies Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News Capabilities and Technologies product images The Sandia National Laboratories MSTC's capabilities are designed to integrate the numerous scientific disciplines necessary to produce functional, robust, integrated microsystems. This represents the center of Sandia's investment in microsystems research, development, and prototyping activities. This facility encompasses approximately nearly 400,000 square feet and includes cleanroom facilities, laboratories and supporting administrate offices. These facilities are divided between the Silicon Fab and the MicroFab.

319

Federal Technical Capabilities Program (FTCP) 2004 Annual Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capalbility Program Federal Technical Capalbility Program Fiscal Year (FY) 2004 Annual Plan November 20,2003 FTCP Annual Plan. FY 2004 INTRODUCTION The objective of the Federal Technical Capability Program (Program) is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The current Program was formalized in 1998 through Department directives DOE P 426.1, Federal Technical Capability Program for Defense Nuclear Facilities, and DOE M 426. l-l, Federal Technical Capability Manual. The Federal Technical Capability Panel (FTCP) provides leadership in implementing the Program. The FTCP consists of senior technical safety managers representing nuclear facilities,

320

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

322

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

323

CRAD, Federal Assurance Capability Plan - February 11, 2009 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Assurance Capability Plan - February 11, 2009 Federal Assurance Capability Plan - February 11, 2009 CRAD, Federal Assurance Capability Plan - February 11, 2009 February 11, 2009 Federal Assurance Capability Plan Inspection Criteria and Approach, DNFSB 2004-1, Commitment 16 (HSS CRAD 64-40, Rev. 0) Federal Assurance Capability Review Plan provides a plan, including criteria, approaches, and the lines of inquiry, to be used for assessing the effectiveness of areas relating to the establishment of a robust Federal assurance capability. The review plan covers all areas in Section 5.1 of the DOE Implementation Plan (IP) except for Section 5.1.3, Instituting a Nuclear Safety Research Function. CRAD, Federal Assurance Capability Plan - February 11, 2009 More Documents & Publications CRAD, Operating Experience - February 11, 2009

324

Photo-induced electron transfer method  

DOE Patents (OSTI)

The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

Wohlgemuth, Roland (2823 Hillegass Ave., Berkeley, CA 94705); Calvin, Melvin (2683 Buena Vista Way, Berkeley, CA 94708)

1984-01-01T23:59:59.000Z

325

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

326

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

327

Transfer Credit Approval Form For Transfer Terms and Exchange Programs  

E-Print Network (OSTI)

Transfer Credit Approval Form For Transfer Terms and Exchange Programs CONTINUED Student/transfer term is not a Dartmouth-sponsored program. ______ The regulations for exchange/transfer terms of the COI will review my transfer term application and I may only receive Dartmouth credit for a transfer

Myers, Lawrence C.

328

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

329

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

330

Underhood Thermal Management [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Underhood Thermal Underhood Thermal Management Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Underhood Thermal Management Hybrid Vehicle Underhood Thermal Analysis Hybrid Vehicle Underhood Thermal Analysis. Click on image to view larger image. In addition to nuclear system applications, the section applies its

331

Managing corporate capabilities:theory and industry approaches.  

SciTech Connect

This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. We found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.

Slavin, Adam M.

2007-02-01T23:59:59.000Z

332

Focusing and matching properties of the ATR transfer line  

Science Conference Proceedings (OSTI)

The AGS to RHIC (AtR) beam transfer line has been constructed and will be used to transfer beam bunches from the AGS machine into the RHIC machine which is presently under construction at BNL. The original design of the AtR line has been modified. This article will present the optics of the various sections of the existing AtR beam line, as well as the matching capabilities of the AtR line to the RHIC machine.

Tsoupas, N.; Fischer, W.; Kewisch, J.; MacKay, W.W.; Peggs, S.; Pilat, F.; Tepikian, S.; Wei, J.

1997-07-01T23:59:59.000Z

333

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

334

Federal Technical Capabilities Program (FTCP) 2002 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S. Department of Energy S. Department of Energy Federal Technical Capability Panel FY 2002 Annual Report to the Secretary of Energy on the Status of Federal Technical Capability Related to the Safe Operation of Defense Nuclear Facilities Washington, D.C. 20585 JUNE 1, 2001 to MAY 31, 2002 FEDERAL TECHNICAL CAPABILITY PANEL ANNUAL REPORT ON THE STATUS OF FEDERAL TECHNICAL CAPABILITY RELATED TO THE SAFE OPERATIONS OF DEFENSE NUCLEAR FACILITIES This is the fourth Annual Report issued by the Federal Technical Capability Panel (FTCP). This report covers the period from June 1, 2001, to May 31, 2002, and summarizes the status of the federal technical capability program in the Department. It identifies accomplishments, issues, and recommendations as appropriate.

335

Federal Technical Capabilities Program (FTCP) 2004 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program Federal Technical Capability Program Annual Report to the Secretary of Energy for Fiscal Year 2004 2 Federal Technical Capability Program Annual Report to the Secretary of Energy for Fiscal Year 2004 Introduction The U.S. Department of Energy (DOE) is committed to ensuring that employees are trained and technically capable of performing their duties. In pursuit of this objective, the Secretary of Energy issued DOE Policy 426.1, Federal Technical Capability Policy for Defense Nuclear Facilities, to institutionalize the Federal Technical Capability Program (FTCP). This program specifically applies to those offices and organizations performing functions related to the safe operation of defense nuclear facilities, including the National Nuclear Security Administration (NNSA).

336

Definition: Dynamic Capability Rating System | Open Energy Information  

Open Energy Info (EERE)

Capability Rating System Capability Rating System Jump to: navigation, search Dictionary.png Dynamic Capability Rating System Dynamic capability rating adjusts the thermal rating of power equipment based on factors such as air temperature, wind speed, and solar radiation to reflect actual operating conditions. These systems are primarily used on high capacity or critical power system elements such as transmission lines and large power transformers.[1] Related Terms transmission lines, Dynamic capability rating, thermal rating, power, solar radiation, rating, transmission line, transformer References ↑ https://www.smartgrid.gov/category/technology/dynamic_capability_rating_system [[Category LikeLike UnlikeLike You like this.Sign Up to see what your friends like. : Smart Grid Definitions|Template:BASEPAGENAME]]

337

Electricity Subsector Cybersecurity Capability Maturity Model (May 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subsector Cybersecurity Capability Maturity Model (May Subsector Cybersecurity Capability Maturity Model (May 2012) Electricity Subsector Cybersecurity Capability Maturity Model (May 2012) The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2), which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements from existing cybersecurity efforts into a common tool that can be used consistently across the industry. The Maturity Model was developed as part of a White House initiative led by the Department of Energy in partnership with the Department of Homeland Security (DHS) and involved close collaboration with industry, other Federal agencies, and other stakeholders. Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) -

338

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

339

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

340

Memristive Transfer Matrices  

E-Print Network (OSTI)

An electrical analysis is performed for a memristor crossbar array integrated with operational amplifiers including the effects of parasitic or contact resistances. It is shown that the memristor crossbar array can act as a transfer matrix for a multiple input-multiple output signal processing system. Special cases of the transfer matrix are described related to reconfigurable analog filters, waveform generators, analog computing, and pattern similarity. Keywords: transfer matrix, memristor, analog electronics, crossbar, operational amplifier, reconfigurable electronics

Mouttet, Blaise

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Good Timing: NIST/CU Collaboration Adds Timing Capability ...  

Science Conference Proceedings (OSTI)

... With the added capability to track the timing of dynamic biochemical reactions, cell ... to measure sensor signals at two points in time at a rate of up to ...

2012-02-07T23:59:59.000Z

342

Federal Technical Capabilities Program (FTCP) 2003 Annual Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program FY 2003 Annual Plan Washington, D.C. 20585 September 2002 FTCP FY 2003 Annual Action Plan INTRODUCTION The U.S. Department of Energy's Federal Technical Capability Program (FTCP) provides management direction to assist the Federal workforce in maintaining necessary technical competencies to safely operate its defense nuclear facilities. The Federal Technical Capability Panel (Panel) consists of senior technical safety managers representing nuclear facilities, and reports to the Deputy Secretary for workforce safety technical capabilities' matters. The Panel will continue to pursue progress in the following areas: 1. Continued development of senior management commitment and support for the technical intern

343

The Fuel Fabrication Capability and Uranium-molybdenum Alloy  

Science Conference Proceedings (OSTI)

Abstract Scope, The Fuel Fabrication Capability (FFC) is part of the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Global...

344

NREL: Computational Science - High-Performance Computing Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Computing Capabilities The Computational Science Center carries out research using computers as the primary tool of investigation. The Center focuses on supporting...

345

Overview: The Increasing Importance and Capabilities of Biomass...  

NLE Websites -- All DOE Office Websites (Extended Search)

IB IN DEPTH-Special Section on Advances in Biomass Characterization Technology brian h. davison, guest editor Overview: The Increasing Importance and Capabilities of Biomass...

346

2012 SG Peer Review - Enhanced DMS Capabilities Supporting Distributio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4. Advance the capability of distribution engineering modeling tools to model smart grid operations * System Definition- Define Modeling and Simulation architecture and...

347

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

348

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

349

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

350

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

351

Partnerships and Technology Transfer  

Economic Development Overview. ORNL's Partnerships Staff works with a number of partners in the region, State, and across the nation to help transfer ORNL-developed ...

352

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

353

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625??658...

354

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

355

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

356

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

357

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

358

Knowledge transfer frameworks  

Science Conference Proceedings (OSTI)

While theories abound concerning knowledge transfer in organisations, little empirical work has been undertaken to assess any possible relationship between repositories of knowledge and those responsible for the use of knowledge. This paper develops ... Keywords: hybrid approach, knowledge administration, knowledge management, knowledge storage, knowledge transfer framework

Sajjad M Jasimuddin; Nigel Connell; Jonathan H Klein

2012-05-01T23:59:59.000Z

359

of Internet-based Capabilities References: See Attachment 1  

E-Print Network (OSTI)

responsible and effective use of Internet-based capabilities, including social networking services (SNS). This policy recognizes that Internet-based capabilities are integral to operations across the Department of Defense. This DTM is effective immediately; it will be converted to a new

unknown authors

2012-01-01T23:59:59.000Z

360

BottleCap: a credential manager for capability systems  

Science Conference Proceedings (OSTI)

In distributed systems, capability-based security provides substantial performance and scalability advantages over traditional user-based authentication. Unfortunately, the usual implementation of this concept in a networked context, the password ... Keywords: capability-based security, distributed access control, drtm, flicker, tpm, trusted computing

Justin King-Lacroix; Andrew Martin

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhancing Transport Layer Capability in HAPS--Satellite Integrated Architecture  

Science Conference Proceedings (OSTI)

The use of HAPS/UAV to enhance telecommunication capabilities has been proposed as an effective solution to support hot spot communications in limited areas. To ensure communication capabilities even in case of emergency (earthquake, power blackout, ... Keywords: HAPS, TCP, TCP Westwood, UAV, satellite, splitting

C. E. Palazzi; C. Roseti; M. Luglio; M. Gerla; M. Y. Sanadidi; J. Stepanek

2005-02-01T23:59:59.000Z

362

NCT HE roadmap meeting/LANL capabilities and perspectives  

SciTech Connect

The presentation is a summary of LANL capabilities and perspectives on high explosives. it describes our high explosives research capabilities (firing sites and diagnostics), a list of the extent to which high explosive materials have been characterized at LANL, as well as LANL's perspectives on potential research direction for the NCT program.

Robbins, David [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

363

Transfers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

364

Data Transfer Examples  

NLE Websites -- All DOE Office Websites (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

365

Multinucleon transfer reactions  

SciTech Connect

The development of higher energies and better resolution in heavy-ion beams has led to a resurgence of interest in transfer reactions at energies well above the Coulomb barrier. Direct reactions with heavy ions are discussed in some detail. Heavy-ion reactions open up the possibility of new methods of spectroscopy, e.g., elastic transfer. Differential cross sections for heavy-ion ' transfer reactions are often featureless; however, some data show diffractive effects. The high angular momenta associated with recoil effects in heavy-ion reactions can be exploited to perform selective spectroscopy on light nuclei. Although most heavy-iontransfer data suggest that reactions proceed in a direct fashion, recent experiments indicate the presence of second-order multistep processes. Correlated nucleon transfer and transfer of many nucleons (e.g., (12C, alpha )) are also being investigated. (20 figures, 3 tables, 93 references) (RWR)

Scott, D.K.

1973-08-01T23:59:59.000Z

366

EM Leads with Advanced Simulation Capability Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Advanced Simulation Capability Technology with Advanced Simulation Capability Technology EM Leads with Advanced Simulation Capability Technology April 4, 2013 - 12:00pm Addthis Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 3: Conceptual model of uranium attenuation processes in the Savannah River F Area Seepage Basins plume, including adsorption/desorption (1); dissolution/precipitation (2); mixing/dilution (3); aqueous reactions (4); microbial interactions (5); and abiotic organic interactions (6).

367

Microsoft Word - Objective Supply Capability Adaptive Redesign.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Objective Supply Capability Adaptive Redesign Objective Supply Capability Adaptive Redesign Providing Automated Interfaces between Legacy Systems Army National Guard Issues and Technology Impact The National Guard Bureau (NGB) requires capabilities beyond the scope of standard army systems in order to increase the efficiency and cost effectiveness of its operations. However, the NGB has limited control over the process of enhancing standard army systems. Changing these systems to introduce new capabilities for NGB can require a great deal of time and money. It is a significant achievement to leverage standard army systems to enhance NGB capabilities even when changes to these systems are not permitted or the cost of changes is prohibitive. The Oak Ridge National Laboratory (ORNL) offers a solution for this challenge called Objective

368

Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode  

Science Conference Proceedings (OSTI)

The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in the MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.

Geng, M.; Han, J.; Feng, F.; Northwood, D.O.

1999-10-01T23:59:59.000Z

369

Custody transfer measurements for LNG/LPG  

SciTech Connect

The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

Williams, R.A.

1984-04-01T23:59:59.000Z

370

Measurements and characterization - Data transfer and virtual lab  

DOE Green Energy (OSTI)

This brochure presents the capabilities that the Measurements and Characterization Division has for transferring secure characterization data to clients over the Web, and for collaborating in R and D via the Web over distances (i.e., working as a virtual lab).

Cook, G.

2000-03-16T23:59:59.000Z

371

Implementing information-theoretically secure oblivious transfer from packet reordering  

Science Conference Proceedings (OSTI)

If we assume that adversaries have unlimited computational capabilities, secure computation between mutually distrusting players can not be achieved using an error-free communication medium. However, secure multi-party computation becomes possible when ... Keywords: delay, noisy channels, oblivious transfer, packet reordering, secure multi-party computation

Paolo Palmieri; Olivier Pereira

2011-11-01T23:59:59.000Z

372

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

373

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

374

Determination of total gas in lithium tritide-deuteride compounds  

DOE Green Energy (OSTI)

Lithium tritide--deuteride samples are enclosed in a copper foil and decomposed by heating to 850/sup 0/C in a copper reaction tube in vacuum. The temperature and pressure of the evolved gas, collected in a measured volume using a Toepler pump, are measured to determine the total moles of gas released from the sample. The gas is transferred to a removable sample bulb and, if required, analyzed for gaseous constituents by mass spectrometry. Based on 14 total gas determinations for a lithium deuteride sample, the calculated relative standard deviation was 1.0% and the estimated bias was <2.5%.

Smith, M.E.; Koski, N.L.; Waterbury, G.R.

1979-04-01T23:59:59.000Z

375

Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project  

Science Conference Proceedings (OSTI)

CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

Gunderson, L Nguyen [Los Alamos National Laboratory; Kornreich, Drew E [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

2011-01-04T23:59:59.000Z

376

Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly.

Chang Oh; Eung Kim; Robert Shrake; Mike Patterson

2009-05-01T23:59:59.000Z

377

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

378

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

379

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Policy Statement on Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of Energy's National Laboratories, single- purpose research facilities, and other facilities ("Facilities") are transferred to any other entity, including private industry, academia, state and local governments, or other government entities to meet public and private needs. The Policy Statement follows upon

380

Energy transfer processes in solar energy conversion. Progress report, March 1, 1991--February 29, 1992  

DOE Green Energy (OSTI)

During the past year, we have been working in three general areas: electronic excitation transport in clustered chromophore systems and other complex systems, photo-induced electron transfer and back transfer in liquid solutions in which diffusion and charge interactions are important, and the construction of a new two color dye laser system to enhance our experimental capability.

Fayer, M.D.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Transfer Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

382

VOLUNTARY LEAVE TRANSFER PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM) Form 630, Application to Become A Leave Recipient Under the Voluntary Leave Transfer Program, through your supervisor to be considered for the program. The application must include an explanation of the reason the donation is needed (including a brief description of the

383

Technology Transfer: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory masthead A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search Tech Transfer Tech Index For Industry For...

384

Multiscale photosynthetic exciton transfer  

E-Print Network (OSTI)

Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...

Ringsmuth, A K; Stace, T M; 10.1038/nphys2332

2012-01-01T23:59:59.000Z

385

Transfer reactions at ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer reactions before, and with, HELIOS Or - "...seems like an awful lot of work just to do (d,p)..." Congratulations ATLAS Happy 25 th Prologue: Long before ATLAS... 11...

386

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

387

Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Capability Replacement Laboratory (CRL) Completion Ceremony at the Capability Replacement Laboratory (CRL) Completion Ceremony by Deputy Administrator Anne M. Harrington | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks at the Capability Replacement Laboratory (CRL) ... Speech Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony

388

Capabilities of the SNAP Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the SNAP Instrument Capabilities of the SNAP Instrument As general note, we have now moved to the MANTID software package for most of our data reduction processing. This makes the reduction of raw data a much easier and automated process for most applications. Current General Capabilities Disordered materials studies (glasses/liquids/sloppy crystals at HP): low-resolution wide Q-range mode, 0.6capabilities are still being developed for this press). Powder crystallographic studies: higher resolution with detectors at 90 degrees. First frame covers 0.5

389

Survey of Biomass Resource Assessments and Assessment Capabilities in APEC  

Open Energy Info (EERE)

Assessments and Assessment Capabilities in APEC Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Name Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Website http://www.nrel.gov/internatio Country Australia, Brunei, Canada, Chile, China, Indonesia, Japan, South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand, South-Eastern Asia, Northern America, South America, Eastern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, Central America, Australia and New Zealand, Melanesia, South America, South-Eastern Asia, Eastern Europe, , South-Eastern Asia, Northern America, South-Eastern Asia

390

Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report  

SciTech Connect

An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities capabilities distributed among multiple locations ? Modify Existing DOE Facilities capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

Jeff Bryan; Bill Landman; Porter Hill

2012-12-01T23:59:59.000Z

391

Loop simulation capability for sodium-cooled systems  

E-Print Network (OSTI)

A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

Adekugbe, Oluwole A.

1984-01-01T23:59:59.000Z

392

The DOE Joint Genome Institute Expands Capabilities via New Partnershi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Expands Capabilities via New Partnerships With the publication last year of its strategic plan, "Forging the Future - A Ten-Year Strategic Vision" the U.S. Department of...

393

June 8, 2010, Quarterly Report on Federal Technical Capability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for for Which Onboard Staff are Overdue to Complete Initial Qualification or Requalification (F) Staffing Shortfall , i.e. Number of Capabilities for Which Personnel are Not Onboard =C-(D+E) Percentage of Capabilities for Which Staff are Onboard =(D+E)/C Percentage of Capabilities Staffed by Onboard, Fully Qualified Personnel =D/C Percentage of Required Capabilities That Are Either Fully Qualified or on Schedule for Qualification =((D+E)-F)/C Comments National Nuclear Security Administration (NNSA) Los Alamos Site Office LASO 114 69 25 2 20 82% 61% 81% Recruiting to fill authorized positions. 7 FTEs are over target. Livermore Site Office LSO 60 39 17 0 4 93% 65% 93% Added 12 staff members to Safeguards and Security Standard. Vacancy announcement in process for Deputy Manager. 1 Facility Rep. vacancy is on HOLD. 1 Facility Rep. and 1

394

Technology Transfer Awards 2012  

Science Conference Proceedings (OSTI)

EPRI's 2012 Technology Transfer Awards recognize the leaders and the innovators who have transferred research into applied results. The 2012 award winners have shown exceptional application of EPRI research and technology to solve a problem of size and significance, to champion a technology both within their companies and across the industry, to drive progress in the electricity sector, and to provide meaningful benefits for stakeholders and for society.

2013-01-23T23:59:59.000Z

395

NGNP Component Test Capability Design Code of Record  

Science Conference Proceedings (OSTI)

The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testingthrough large-scale, integrated testscan be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

2009-09-01T23:59:59.000Z

396

Equipment Capability Study of the Mettler DWA Automatic Filling Balance  

SciTech Connect

A process capability study was made to evaluate the capability of the Mettler DWA Automatic Filling Balance to dispense desired weights of material. Under ideal or relatively normal conditions the balance met the manufacturer's stated rating. For somewhat abnormal material, the rating was not quite met. An additional calculation is given to indicate expected improvement if abnormal material could be weighed under ideal conditions.

Boerger, J. J.; Madachy, J. S.

1971-08-27T23:59:59.000Z

397

Energy Management and Control System: Desired Capabilities and Functionality  

SciTech Connect

This document discusses functions and capabilities of a typical building/facility energy management and control systems (EMCS). The overall intent is to provide a building operator, manager or engineer with basic background information and recommended functions, capabilities, and good/best practices that will enable the control systems to be fully utilized/optimized, resulting in improved building occupant quality of life and more reliable, energy efficient facilities.

Hatley, Darrel D.; Meador, Richard J.; Katipamula, Srinivas; Brambley, Michael R.; Wouden, Carl

2005-04-29T23:59:59.000Z

398

Enhancing Transport Layer Capability in HAPS-Satellite Integrated Architecture  

E-Print Network (OSTI)

The use of HAPS/UAVs to enhance telecommunication capabilities has been proposed as an effective solution to support hot spot communications in limited areas. To ensure communication capabilities even in case of emergency (earthquake, power blackout, chemical/nuclear disaster, terrorist attack), when terrestrial fixed and mobile infrastructures are damaged or become unavailable, the access to satellites represents a reliable solution with worldwide coverage, even though it may suffer from shadowing impairment, especially in an urban environment.

C. E. Palazzi; C. Roseti; M. Luglio; M. Gerla; M. Y. Sanadidi; J. Stepanek

2005-01-01T23:59:59.000Z

399

Multiscale photosynthetic exciton transfer  

E-Print Network (OSTI)

Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.

A. K. Ringsmuth; G. J. Milburn; T. M. Stace

2012-06-14T23:59:59.000Z

400

NREL: Technology Transfer - Ombuds - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer Technology Transfer Ombuds. NREL's Technology Transfer Ombuds offers an informal process to ...

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

402

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

403

New Capabilities for the Analysis of Nanocrystalline Powders Using ...  

Science Conference Proceedings (OSTI)

Application of Line Profile Analysis for the Study of Dislocations in Deep Earth ... H-3: The Competition between the Stress Relaxation and Load Transfer in ... of Cube and Goss Texture after Primary Recrystallization in Electrical Steels.

404

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.

Wilson, D.G.

1993-11-09T23:59:59.000Z

405

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

Wilson, David G. (Winchester, MA)

1993-01-01T23:59:59.000Z

406

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

Wilson, David Gordon (Winchester, MA)

2002-01-01T23:59:59.000Z

407

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

408

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

409

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

410

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

411

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

412

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

SciTech Connect

A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website (Task 5.0). A paper entitled ''Integrated Process Simulation and CFD for Improved Process Engineering'' was presented at the European Symposium on Computer Aided Process Engineering-12, May 26-29, 2002, The Hague, The Netherlands (Task 7.0).

Madhava Syamlal, Ph.D.

2002-07-01T23:59:59.000Z

413

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website (Task 5.0). A paper entitled ''Integrated Process Simulation and CFD for Improved Process Engineering'' was presented at the European Symposium on Computer Aided Process Engineering-12, May 26-29, 2002, The Hague, The Netherlands (Task 7.0).

Madhava Syamlal, Ph.D.

2002-07-01T23:59:59.000Z

414

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

J. L. Schulthess; K. E. Rosenberg

2011-05-01T23:59:59.000Z

415

NREL: Technology Transfer - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

416

NREL: Technology Transfer - Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

417

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

418

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

419

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

420

Alabama Justice Center Expands its Solar Capabilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Justice Center Expands its Solar Capabilities Justice Center Expands its Solar Capabilities Alabama Justice Center Expands its Solar Capabilities March 22, 2010 - 4:56pm Addthis The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission Joshua DeLung What are the key facts? A $162,000 EECBG grant awarded to Lee County through the Recovery Act is helping add solar power to their facilities and save the community money on energy costs. At the T.K. Davis Justice Center in Opelika, Ala., the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center's roof and on poles

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Operating Experience Level 1: Improving Department of Energy Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Experience Level 1: Improving Department of Energy Operating Experience Level 1: Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events, April 2013 Operating Experience Level 1: Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events, April 2013 PURPOSE: The purpose of this Operating Experience (OE) document is to (1) provide results from U.S. Department of Energy (DOE), including the National Nuclear Security Administration, initiatives related to beyond design basis events (BDBEs), and (2) provide direction for enhancing capabilities for mitigating BDBEs at DOE sites. BACKGROUND: After the March 2011 Fukushima Daiichi nuclear plant accident in Japan, DOE embarked upon several initiatives to investigate the safety posture of its nuclear facilities relative to BDBEs. These initiatives

422

NNSA's Second Line of Defense Program Receives Capability Award |  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Line of Defense Program Receives Capability Award | Second Line of Defense Program Receives Capability Award | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Second Line of Defense Program Receives ... NNSA's Second Line of Defense Program Receives Capability Award Posted By Office of Public Affairs NNSA's Second Line of Defense (SLD) was awarded the 2013 Non-Conventional

423

Argonne CNM: Electronic & Magnetic Materials & Devices Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV) environment with a base pressure of < 1E-10 mbar and 55-400 K. Atomic resolution is routinely obtained at room temperature and below. The AFM capabilities support a range of scanning modes. The analysis chamber also houses a LEED/Auger with an attached preparation chamber for sample cleaning and deposition (sputter cleaning, direct current heating, e-beam heating stage, metal deposition, etc.)

424

ASSESSMENT OF TECHNICAL QUALIFICATION AND FEDERAL TECHNICAL CAPABILITY PROGRAMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And TQP Assessment Crads 11 2012 Smooth (2) 1 11/29/12 And TQP Assessment Crads 11 2012 Smooth (2) 1 11/29/12 ASSESSMENT OF TECHNICAL QUALIFICATION AND FEDERAL TECHNICAL CAPABILITY PROGRAMS This document provides guidance and objectives and criteria to support assessments required by DOE O 426.1 Federal Technical Capability (FTC), Section 4. REQUIREMENTS, paragraph b. FTC Program Implementation, subparagraph (7) Self- Assessment. This FTC Order paragraph requires self-assessment of TQP and FTC Program implementation within one's organization. To ensure effective implementation of the Technical Qualification Programs (TQP), Headquarters and field elements conduct self-assessments of these programs. The Federal Technical Capability Panel (FTCP) also reviews the results of the TQP self-assessments and determines if further action is

425

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

426

Operating Experience Level 1: Improving Department of Energy Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Experience Level 1: Improving Department of Energy Operating Experience Level 1: Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Operating Experience Level 1: Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events PURPOSE: The purpose of this Operating Experience (OE) document is to (1) provide results from U.S. Department of Energy (DOE), including the National Nuclear Security Administration, initiatives related to beyond design basis events (BDBEs), and (2) provide direction for enhancing capabilities for mitigating BDBEs at DOE sites. BACKGROUND: After the March 2011 Fukushima Daiichi nuclear plant accident in Japan, DOE embarked upon several initiatives to investigate the safety posture of its nuclear facilities relative to BDBEs. These initiatives

427

Capabilities of the FIE-TAX Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the FIE-TAX Instrument Capabilities of the FIE-TAX Instrument The HB-1A triple axis spectrometer is an excellent instrument for measuring low-lying magnetic excitations in solids, and for measuring structural and magnetic order parameters in bulk materials as well as in nanostructured materials such as thin films and nanoparticles. In the case of thin films the use of energy analysis is key capability which enables the desired signal to be separated from the massive background due to the substrate. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic

428

NETL Publications: Computational Capabilities to Develop Materials for  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Capabilities to Develop Materials for Advanced Fossil Energy Power Systems Computational Capabilities to Develop Materials for Advanced Fossil Energy Power Systems February 23, 2011 Table of Contents Disclaimer Presentations PRESENTATIONS Overview of FOA000260 awards Patricia Rawls, NETL Presentation [PDF-153KB] Computational Design of Creep Resistant Alloys and Experimental Validation in Ferritic Alloys Peter Liaw, U. Tennessee Presentation [PDF-5.19MB] Computational Capabilities for Predictions of Interactions at the Grain Boundaries of Refractory Alloys Alex Vasenkov, CFD Research Corp Presentation [PDF-7.03MB] Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for Fossil Energy Power System Applications Wai-Yim Ching, U. Missouri - Kansas City Presentation [PDF-1.14MB] Modeling Creep-Fatigue- Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants

429

November 29, 2010, Quarterly Report on Federal Technical Capability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEMORANDUM FOR: Distribution FROM: Karen L. Boardman, Chairperson, Federal Technical Capability Panel SUBJECT: Quarterly Report on Federal Technical Capability - 10-NA SC-010 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps as of September 30, 2010. Attachment 1 provides the Status of Qualifications in the TQP. The U.S. Department of Energy (DOE) goal is to exceed 80% "fully qualified or on schedule for qualification" for all personnel in the TQP. Currently, this overall DOE TQP qualification rate is 90%. In addition, 71% of all required personnel are fully qualified. Headquarters and site office managers are encouraged to maintain emphasis on the

430

LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIVE: Meeting on Strengthening Deepwater Blowout Containment LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities September 22, 2010 - 12:56pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs At 1 PM EDT today Secretary Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells on the Outer Continental Shelf. The panel discussion will help guide reforms that are raising the bar for the oil and gas industry's practices, inform recommendations on whether and how to lift the current deepwater drilling suspension and assist in

431

Property:Specializations, Capabilities, and Key Facility Attributes Not  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Specializations, Capabilities, and Key Facility Attributes Not Covered Elsewhere Jump to: navigation, search Property Name Specializations, Capabilities, and Key Facility Attributes Not Covered Elsewhere Property Type Text Pages using the property "Specializations, Capabilities, and Key Facility Attributes Not Covered Elsewhere" Showing 25 pages using this property. 1 11-ft Wave Flume Facility + Glass window 6 6-ft Wave Flume Facility + Glass window A Alden Large Flume + This is a recirculating flume facility, so a constant velocity can be maintained indefinitely. This allows collection of a much greater amount of data than possible in tow tanks. Alden's biologists are highly experienced in assessing the impacts of generation devices on fish and the facilities allow for accurate testing with fish in a highly controlled environment.

432

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

433

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

434

Technology transfer issue  

Science Conference Proceedings (OSTI)

Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

Jacobson, C.

1982-05-31T23:59:59.000Z

435

DE-SOL-0003174 Critical Capabilities for Emergency Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

3174 Critical Capabilities for Emergency Operations 3174 Critical Capabilities for Emergency Operations Training Academy (EOTA) Support 1. Interested parties shall have experience in: a. Developing training for emergency operations type programs such as response to radiological or nuclear incidents, emergency management and preparation, exercises (full scale through table top), continuity of operations, or other related programs, b. Coordinating consultants and instructional design staff to integrate content provided by the consultants with the course development process employed by instructional designers for technical training development, c. conducting comprehensive analyses such as needs assessments, training effectiveness evaluations, job analyses, functional analyses, task analyses, etc.,

436

of Internet-based Capabilities References: See Attachment 1  

E-Print Network (OSTI)

responsible and effective use of Internet-based capabilities, including social networking services (SNS). This policy recognizes that Internet-based capabilities are integral to operations across the Department of Defense. This DTM is effective immediately; it will be converted to a new DoD issuance. This DTM shall expire effective 1 March, 2011 January 2012. Applicability. This DTM applies to: OSD, the Military Departments, the Office of the Chairman of the Joint Chiefs of Staff and the Joint Staff, the Combatant Commands, the Office of the Inspector

unknown authors

2011-01-01T23:59:59.000Z

437

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

438

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

439

EMSL Research and Capability Development Proposals Cryogenic NMR and Advanced Electronic Structure Theory as a Unique EMSL Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature dependence of the on-resonance portion Temperature dependence of the on-resonance portion of the 55 Mn-NMR spectrum of a Mn(IV,IV) dimer acquired at 9.4 T. EMSL Research and Capability Development Proposals Cryogenic NMR and Advanced Electronic Structure Theory as a Unique EMSL Capability for Complex Systems: Application to the Photosynthetic Energy Conversion Systems Project start date: April 1, 2010 EMSL Lead Investigator: Ping Yang Molecular Science Computing Group, EMSL, PNNL Co-investigator: Andrew S. Lipton Cell Biology & Biochemistry, FCSD, PNNL Collaborator: K.V. Lakshmi Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute The goal of this proposal is to demonstrate a unique capability to be enabled at EMSL-the integration of leading-edge cryogenic nuclear magnetic resonance (NMR) measurements and advanced electronic

440

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Regional Energy Deployment System (ReEDS) Model - Capabilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

storage capacity expansion, transmission capacity expansion, total electric sector costs, electricity price, fuel prices, and carbon dioxide (CO2) emissions. Figure 1 shows an...

442

Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor  

E-Print Network (OSTI)

The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

Cochran, Peter A. (Peter Andrew)

2005-01-01T23:59:59.000Z

443

Federal Technical Capability Program Operational Plan - FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* D D e e c c e e m m b b e e r r 2 2 0 0 1 1 1 1 Revised: February 2012 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 2 2 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability P rogram FY 2012 Operational P lan December 2011 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:

444

Core capabilities and technical enhancement, FY-98 annual report  

Science Conference Proceedings (OSTI)

The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, D.L.

1999-04-01T23:59:59.000Z

445

Capability wrangling made easy: debugging on a microkernel with valgrind  

Science Conference Proceedings (OSTI)

Not all operating systems are created equal. Contrasting traditional monolithic kernels, there is a class of systems called microkernels more prevalent in embedded systems like cellphones, chip cards or real-time controllers. These kernels offer an abstraction ... Keywords: capability, l4, microkernel, valgrind

Aaron Pohle; Bjrn Dbel; Michael Roitzsch; Hermann Hrtig

2010-03-01T23:59:59.000Z

446

Evolution of cartesian genetic programs capable of learning  

Science Conference Proceedings (OSTI)

We propose a new form of Cartesian Genetic Programming (CGP) that develops into a computational network capable of learning. The developed network architecture is inspired by the brain. When the genetically encoded programs are run, a networks develops ... Keywords: artificial neural networks, cartesian genetic programming, checkers, co-evolution, computational development

Gul Muhammad Khan; Julian F. Miller

2009-07-01T23:59:59.000Z

447

Federal Technical Capability Program Operational Plan - FY 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

i i * D D e e c c e e m m b b e e r r 2 2 0 0 1 1 1 1 Revised: February 2012 U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 1 1 2 2 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N Federal Technical Capability P rogram FY 2012 Operational P lan December 2011 1 The objective of the Federal Technical Capability Program is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The Department has identified guiding principles to accomplish that objective and identified four general functions of the Federal Technical Capability Program. The guiding principles are:

448

High-Energy Petawatt Capability for the Omega Laser  

Science Conference Proceedings (OSTI)

The 60-beam Omega laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) has been a workhorse on the frontier of laser fusion and high-energy-density physics for more than a decade. LLE scientists are currently extending the performance of this unique, direct-drive laser system by adding high-energy petawatt capabilities.

Waxer, L.J.; Maywar, D.N.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Stoeckl, C.; Zuegel, J.D.

2005-07-25T23:59:59.000Z

449

FTCP Quarterly Report on Federal Technical Capability, May 18, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

450

Exploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios  

E-Print Network (OSTI)

Exploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios Karim. INTRODUCTION Disaster response is attracting attention from the robotics research community, and even more by the DARPA's call on disaster operations. Hence, we focus on locomotion tasks that apparently require human

Paris-Sud XI, Université de

451

Automatic tagging by exploring tag information capability and correlation  

Science Conference Proceedings (OSTI)

Automatic tagging can automatically label images and videos with semantic tags to significantly facilitate multimedia search and organization. However, most of existing tagging algorithms often don't differentiate between tags used to describe visual ... Keywords: automatic tagging, information capability, set correlation

Xiaoming Zhang; Zi Huang; Heng Tao Shen; Yang Yang; Zhoujun Li

2012-05-01T23:59:59.000Z

452

Core Capabilities and Technical Enhancement -- FY-98 Annual Report  

Science Conference Proceedings (OSTI)

The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, David Lynn

1999-04-01T23:59:59.000Z

453

A Survey of National Transmission Grid Modeling Capabilities at DOE  

E-Print Network (OSTI)

. Outages can be predicted, but only in steady state. They expect to have dynamic capabilities in about.g., generator outages, transmission outages, unexpected load variations). The simulation continues when;ramp up/down rates;startup time;shutdown time; minimum down time;forced outage rate; maintenance

Howle, Victoria E.

454

Entirely passive heat pipe apparatus capable of operating against gravity  

DOE Patents (OSTI)

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, Daniel R. (Santa Fe, NM)

1982-01-01T23:59:59.000Z

455

On the Need for a Consortium of Capability Centers  

Science Conference Proceedings (OSTI)

Users of high-performance computing systems face many challenges, particularly as they design and develop their software to run at multiple facilities. This can lead to a ??greatest common denominator? strategy that slows innovation and ... Keywords: capability centers, consortium, exascale, high-performance computing, sharing of expertise and information, system operation and HPC software

William Gropp; Marc Snir

2009-11-01T23:59:59.000Z

456

CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF  

SciTech Connect

We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

2009-07-15T23:59:59.000Z

457

Nuclear Data Capabilities Supported by the DOE NCSP  

E-Print Network (OSTI)

Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) · Nuclear Data

Danon, Yaron

458

The "Z" Pulsed Radiation Source: Recent Developments in Equation of State Measurement Capabilities  

SciTech Connect

The Sandia Z machine is a source of intense radiation which can be used to drive ablative shocks for equation of state studies. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experiments were leveraged. The primary diagnostic transferred was velocity interferome~, VLSAR, [1] which not only provides Hugoniot particle velocity measurements, but also indications of shock stability and wave attenuation. In addition to a VISAR capability on the Z machine, methods for measuring shock velocity have been developed. When these measured parameters are used in conjunction with the Rankine-Hugoniot jump conditions, [2] material response at high temperatures and pressures can be inferred. With sample sizes used on Z being much smaller than those fielded in typical impact experiments, temporal resolution and methods of interfacing the diagnostics with the targets had to be improved. In this paper, a "standard" equation of state experiment, associated diagnostics, and some recent results in aluminum and beryllium will be discussed.

Asay, J.R.; Chandler, G.; Clark, B.; Fleming, K.; Hall, C.A.; Holland, K.; Trott, W.M.

1998-10-13T23:59:59.000Z

459

A description of the physical capabilities of a mature workforce  

E-Print Network (OSTI)

The purpose of this study was to 1) describe and evaluate the physical capabilities and personal factors of a mature workforce, 2) to determine the relationship between identified risk factors and musculoskeletal morbidity 3) to compare the physical capabilities of the target group to young manual material handlers (MMHs) and 50th percentile U.S. male sample populations. The components related to the functional capacity of the individual workers were anthropometrics, aerobic capacity, muscular strength, muscular endurance, and flexibility. This study was comprised of 42 male surface mine and power plant employees working different jobs: mechanics, heavy equipment operators, maintenance, and pump operators. Each worker's physical capabilities were evaluated using a standardized physical testing protocol: submaximal graded step-test, dynamic lift test (floor to knuckle, knuckle to acromial. and acromial to functional overhead reach), hand grip dynamometer strength test, sit-and-reach flexibility test, push-up test, and bent knee sit-up test. There were no reported incidents of musculoskeletal morbidity during the past three years of employment', therefore, there was no morbidity assessment. Compared to the younger MMHs, the physical capabilities of aerobic capacity, dynamic lifting (all three regions), flexibility, sit-ups, and push-ups were significantly lower for the mature workforce. However, handgrip strength was significantly greater for the mature workforce compared to the young MMHs. Compared to the 50th percentile U.S.male population, aerobic capacity, dynamic lift (acromial to functional overhead reach), and flexibility were significantly lower for the mature workforce. Push-ups, handgrip strength, and dynamic lift (floor to knuckle and knuckle to acromial) were significantly greater for the mature workforce. There was no significant difference for the physical capability of sit-ups between these two groups. The results of this study provide a database that may enhance job design/redesign, worker selection, work hardening programs, exercise programs, and manual material handling performance.

Bartels, Kendra Lynn

1999-01-01T23:59:59.000Z

460

Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF).  

Science Conference Proceedings (OSTI)

The following report presents an assessment of existing capabilities in Sierra/Fuego applied to modeling several aspects of grid-to-rod-fretting (GTRF) including: fluid dynamics, heat transfer, and fluid-structure interaction. We compare the results of a number of Fuego simulations with relevant sources in the literature to evaluate the accuracy, efficiency, and robustness of using Fuego to model the aforementioned aspects. Comparisons between flow domains that include the full fuel rod length vs. a subsection of the domain near the spacer show that tremendous efficiency gains can be obtained by truncating the domain without loss of accuracy. Thermal analysis reveals the extent to which heat transfer from the fuel rods to the coolant is improved by the swirling flow created by the mixing vanes. Lastly, coupled fluid-structure interaction analysis shows that the vibrational modes of the fuel rods filter out high frequency turbulent pressure fluctuations. In general, these results allude to interesting phenomena for which further investigation could be quite fruitful.

Turner, Daniel Zack; Rodriguez, Salvador B.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Quartz microbalance device for transfer into ultrahigh vacuum systems  

Science Conference Proceedings (OSTI)

An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

Stavale, F.; Achete, C. A. [Divisao de Metrologia de Materiais (DIMAT), Inmetro, CEP 25250-020, Xerem, Duque de Caxias, Rio de Janeiro (Brazil); Programa de Engenharia Metalurgica e de Materiais (PEMM), Universidade Federal do Rio de Janeiro, Cx. Postal 68505, CEP 21945-970, Rio de Janeiro (Brazil); Niehus, H. [Divisao de Metrologia de Materiais (DIMAT), Inmetro, CEP 25250-020, Xerem, Duque de Caxias, Rio de Janeiro (Brazil); Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, Berlin 12489 (Germany)

2008-10-15T23:59:59.000Z

462

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

463

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

464

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

465

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

466

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

467

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

468

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

469

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

470

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

471

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

472

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

473

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

474

Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration  

SciTech Connect

In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energys Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.?

Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

2012-09-28T23:59:59.000Z

475

Developing an operational capabilities index of the emergency services sector.  

Science Conference Proceedings (OSTI)

In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the capabilities of a jurisdiction to protect itself from, mitigate, respond to, and recover from a potential incident. On the basis of this metric, an interactive tool - the ESSCI Dashboard - can identify scenarios for enhancement that can be implemented, and it can identify the repercussions of these scenarios on the jurisdiction. It can assess the capabilities of law enforcement, fire fighting, search and rescue, emergency medical services, hazardous materials response, dispatch/911, and emergency management services in a given jurisdiction and it can help guide those who need to prioritize what limited resources should be used to improve these capabilities. Furthermore, this tool can be used to compare the level of capabilities of various jurisdictions that have similar socioeconomic characteristics. It can thus help DHS define how it can support risk reduction and community preparedness at a national level. This tool aligns directly with Presidential Policy Directive 8 by giving a jurisdiction a metric of its ESS's capabilities and by promoting an interactive approach for defining options to improve preparedness and to effectively respond to a disruptive event. It can be used in combination with other CI performance metrics developed at Argonne National Laboratory, such as the vulnerability index and the resilience index for assessing regional resilience.

Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D. (Decision and Information Sciences)

2012-02-20T23:59:59.000Z

476

Jefferson Lab Technology Transfer - JLab  

This control system must provide supervisory I/O, local feedback control, analysis capability, and operator interfaces for numerous accelerator ...

477

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

478

Technology Transfer Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

479

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

480

Efficient Data Transfer Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps on today's hardware. RDMA over Converged Ethernet (RoCE) is a promising new technology for high-performance network data movement with minimal CPU impact over circuit-based infrastructures. We compare the performance of TCP, UDP, UDT, and RoCE over high latency 10Gbps and 40Gbps network paths, and show that RoCE-based data transfers can fill a 40Gbps path using much less CPU than other protocols.

Note: This page contains sample records for the topic "total transfer capability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC's Franklin NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability July 20, 2009 OCEAN EDDIES: This image comes from a computer simulation modeling eddies in the ocean. An interesting feature is the abundance of eddies away from the equator, which is shown in the center of the image at y=0. This research collaboration led by Paola Cessi of the Scripps Institute of Oceanography performed over 15,000 years worth of deep ocean circulation simulations with 1.6 million processor core hours on the upgraded Franklin system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer, providing the facility's 3,000 users with twice

482

Idaho National Laboratory DOE-NE's National Nuclear Capability-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-2023 4-2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where leading bioenergy feedstock processing, advanced battery testing, and hybrid energy systems integration research will be conducted. The Advanced Test Reactor is the world's most advanced nuclear research capability - crucial to (1) the ongoing development of safe, efficient

483

TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNIQUES AND CAPABILITIES TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * Source: 2 ID - EPU 105 (3 m, PM , 20-200 eV) EPU 56 (3 m PM, 200-2000 eV) * High-Resolution Angular Resolved Photoemission Scanning Microscopy (µ-ARPES): 20-1500 eV, 1 µm, < 1 meV, <0.1 o , 5-2000 K * Ambient Pressure Scanning Photoelectron Microscopy (AP- SPEM): 200-1800 eV, < 300 nm, 10 +3 Torr * Low-Energy Electron Microscopy & X-ray Photoemission Electron Microscopy (LEEM/XPEEM): 20 - 1800 eV, < 10 nm, high- transmission aberration correction µ-SP-ARPES: Momentum-resolved electronic structurelectronic bands of magnetic materials and non- magnetic materials with le of solids; spin-polarized arge spin-orbit interaction; a 1 µm spot from NSLS-

484

Capability Brief_Supply Chain Analysis.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Chain Analysis Chain Analysis Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Diane Davidson (865) 946-1475 davidsond@ornl.gov Capabilities Brief Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies O RNL has a staff with extensive experience in supply chain analysis and automated support for supply chain systems. ORNL's Capabilities  Optimization modeling for supply chain systems, including:  Facility number and location analysis,  Distribution network configuration,

485

Capabilities of the CTAX Instrument - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the CTAX Instrument Capabilities of the CTAX Instrument The US-Japan Cold Neutron Triple Axis CTAX ideal for measuring low-lying magnetic and lattice excitations in solids, and in measuring structural and magnetic order parameters in bulk materials. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. Most of the recent demand for this instrument has been focused in studies of unconventional superconductors, quantum magnets, thermoelectrics, organometallic magnets and multiferroics. Examples of typical experiments carried out at CTAX since its commissioning

486

Capabilities of the TAX Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the TAX Instrument Capabilities of the TAX Instrument The HB-3 is a high-intensity triple axis spectrometer that is ideal for measuring magnetic excitations in solids, up to 100 meV and for measuring structural and magnetic order parameters in bulk materials. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. During the last few years most of the demand for this instrument has been focused in studies of unconventional superconductors, quantum magnets, thermoelectrics, ferroelectrics and multiferroics.

487

Overview of AREVA Logistics Business Unit Capabilities and Expertise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outline Outline Presentation Outline Overview of AREVA Logistics Business Unit capabilities and E ti Expertise Overview of Transnuclear Inc Transportation Capabilities in the United States Questions Quick Reminder of Fuel Cycle - p.2 AREVA Logistics Business Unit - p.3 Around 4 000 transports each year Around 4,000 transports each year More than 200 transports of used fuel (France and Europe), of vitrified and compacted waste (Europe and Japan) of vitrified and compacted waste (Europe and Japan) More than 150 MOX fuel transports More than 300 transports of low level waste More than 2,700 front-end transports More than 400 transports of heavy industrial equipment Around 150 transports for research reactors and laboratories - p.4 Around 150 transports for research reactors and laboratories Design, Testing and Licensing:

488

Capabilities of the POWDER Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the POWDER Instrument Capabilities of the POWDER Instrument The scientific areas that may benefit from using the HB-2A instrument are condensed matter physics, chemistry, geology, and material science. Due to its versatility, this instrument can be employed for a large variety of experiments, but it is particularly adapted for determining crystal structures with relatively large unit cells (dmax ≈ 28 Å), as well as complex magnetic structures. Furthermore, studies of phase transitions, thermal expansion, quantitative analysis, and ab-initio structure solution from powder data can be undertaken. A full range of ancillary sample environments can be used to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. The following examples highlight some of the basic features and

489

Capabilities of the WAND Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the WAND Instrument Capabilities of the WAND Instrument The HFIR HB-2C Wide Angle Neutron Diffractometer (WAND) is a dual purpose instrument that can be used as a fast coarse-resolution powder diffractometer or as a single crystal diffractometer to explore broad regions of reciprocal space. This instrument is most beneficial to the condensed matter, materials science, as well as the planetary sciences communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. Most of the recent demand for this instrument has been focused in studies of unconventional superconductors, low-dimensional magnets, multiferroics and geophysics.

490

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

491

Capabilities of the ARCS Instrument - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the ARCS Instrument Capabilities of the ARCS Instrument ARCS Overview The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of 3He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and

492

NREL: Biomass Research - Chemical and Catalyst Science Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Catalyst Science Capabilities Chemical and Catalyst Science Capabilities A photo of a man in a white lab coat and dark goggles looking at a microscope. A bright green light shines down from the microscope lens and illuminates a round glass tray containing small white beads. The Laser Raman Spectrometer is used to obtain phase and structural identification information for catalysts used in the thermochemical conversion process. NREL researchers use chemical and catalyst science to assess and improve biochemical and thermochemical conversion throughout the processes, from analyzing feedstocks to improving the yield of desired end products. Catalyst Science Syngas produced during gasification contains tars that are contaminants, but these tars can be reformed to more syngas using tar-reforming

493

Transmittal Memorandum, Report on Review of Requirements and Capabilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmittal Memorandum, Report on Review of Requirements and Transmittal Memorandum, Report on Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events, September 2011 Transmittal Memorandum, Report on Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events, September 2011 Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, the Department of Energy (DOE) took several actions to review the safety of its nuclear facilities. These actions focused on learning how DOE can better prepare to manage potential beyond design basis events. A summary of these actions and the resulting insights, and recommended opportunities and actions to improve nuclear safety at DOE> are included in the attached report. I have directed

494

Vehicle System Impacts of Fuel Cell System Power Response Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

- 01 - 1959 - 01 - 1959 Vehicle System Impacts of Fuel Cell System Power Response Capability Tony Markel and Keith Wipke National Renewable Energy Laboratory Doug Nelson Virginia Polytechnic University and State Institute Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7

495

National Criticality Experiments Research Center: Capability and Status  

SciTech Connect

After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

Hayes, David K. [Los Alamos National Laboratory; Myers, William L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

496

Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review  

Science Conference Proceedings (OSTI)

The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

497

The monochromator beamline at FLASH: performance, capabilities and upgrade plans  

E-Print Network (OSTI)

The monochromator beamline at the FLASH facility at DESY is the worldwide first XUV monochromator beamline operational on a free electron laser (FEL)source. Being a single-user machine, FLASH demands a high flexibility of the instrumentation to fulfil the needs of diverse experiments performed by a multidisciplinary user community. Thus, the beamline has not only been used for high-resolution spectroscopy that it was originally designed for, but also for pump-probe experiments controlling the temporal-spectral properties at moderate resolution, and as a filter for high harmonics of the FEL at very low resolution. The present performance and capabilities of the beamline are discussed with emphasis on particularities arising from the nature of the FEL source, and current developments are presented aiming to enhance its capabilities for accommodating a wide variety of experiments.

Gerasimova, Natalia; Feldhaus, Josef; 10.1080/09500340.2011.588344

2013-01-01T23:59:59.000Z

498

Development of a fourth generation predictive capability maturity model.  

Science Conference Proceedings (OSTI)

The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy