National Library of Energy BETA

Sample records for total transfer capability

  1. Coordination of Transmission Line Transfer Capabilities

    E-Print Network [OSTI]

    Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Industry Representative Richard Goddard Portland General Electric Research Team Students Yuan Li Yonghong

  2. A Roadmap for NEAMS Capability Transfer

    SciTech Connect (OSTI)

    Bernholdt, David E [ORNL

    2011-11-01

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

  3. Dynamic Transfer Capability Analysis with Wind Farms and Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . An investigation on the effect of dynamics loads, wind farms and flexible AC transmission system (FACTS) devices capability unnecessarily limits the power transfers and is a costly and inefficient use of a network with increasing loads, the need to transfer power over long transmission lines increases. Deregulation

  4. Analyses of power system vulnerability and total transfer capability 

    E-Print Network [OSTI]

    Yu, Xingbin

    2006-04-12

    companies and the ISOs. An uninterrupted and high quality power is required for the sustainable development of a technological society. Power system blackouts generally result from cascading outages. Protection system hidden failures remain dormant when...

  5. The Requesting Access to Dynamic Transfer Capability Pilot (ŤDTC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and control of dynamic transfer adequate for Dispatchers? * What control center (AGC, SCADA, etc.) changes were required to provide adequate visibility and control? * Did the...

  6. Min-max Transfer Capability: A New Concept D. Gan X. Luo D. V. Bourcier

    E-Print Network [OSTI]

    a DC load flow setting. A generalization of the algorithm to problems using an AC load flow is briefly, Optimization, Transfer Capability Introduction The notion of the transfer capability of a transmission interface is often used by operators for monitoring transmission system security. Traditionally, the maximum

  7. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  8. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  9. Existing technology transfer report: analytical capabilities. Volume 1

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods; and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. Expertise in analytical chemistry was developed by organizing historical knowledge and assimilating new knowledge as it became available from inside and outside research facilities and the chemical literature. The data were then used to define analytical methods, instrumentation, space, staff needed to create a functional coal analysis laboratory. This report summarizes the direction and progress of the analytical development efforts during the period 1974 to 1980. 2 references, 5 figures.

  10. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    on the total window heat transfer rates may be much larger. This effect is even greater in low on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities

  11. Technical Challenges of Computing Available Transfer Capability (ATC) in Electric Power Systems

    E-Print Network [OSTI]

    Technical Challenges of Computing Available Transfer Capability (ATC) in Electric Power Systems Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana with the technical challenges of computation. 1. Introduction There has been interest in quantifying the transmission

  12. Occupational requirements as compared to worker capabilities with respect to total weight lifted per day 

    E-Print Network [OSTI]

    Narvaez, Angela Marae

    1998-01-01

    , this research was designed to compare worker capabilities with tasks regularly required in the work environment. Data was gathered on 442 (403 male, 39 female) experienced manual material handlers from a variety of companies with the intent of determining...

  13. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01

    of convection and radiation heat transfer and developconvection and radiation heat transfer in three dimensionsaccount for 3- D radiation heat transfer on indoor surfaces.

  14. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01

    free convection. In: Heat Transfer and Turbulent Buoyantof convection heat transfer and develop correlations.and radiation heat transfer and develop correlations for

  15. Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    TCTE Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions What is the purpose of the TCTE mission? The Total Solar Irradiance Calibration Transfer Experiment (TCTE to monitor changes in solar irradiance at the top of the Earth's atmosphere. TCTE will launch as one of five

  16. PREPRINT DECEMBER 1999; SUBMITTED TO IEEE TRANS. ON POWER SYSTEMS SENSITIVITY OF TRANSFER CAPABILITY MARGINS

    E-Print Network [OSTI]

    are limited by transmission network security. Transfer capa- bility measures the maximum power transfer fast to evaluate. The approach is consistent with the current industrial practice of using DC load flow: power system security, power system control, power transmission planning INTRODUCTION Transfer

  17. NSF Workshop on Available Transfer Capability, Urbana IL, USA, June 1997 INITIAL CONCEPTS FOR APPLYING SENSITIVITY TO

    E-Print Network [OSTI]

    POWER SYSTEMS ENGINEERING RESEARCH CENTER Electrical & Computer Engineering Dept. Electrical & Computer limits re- quires nonlinear power system models and the continuation computation described below. Once of the experience in computing transfer ca- pabilities concerns line #ow limits and uses DC load #ow power system

  18. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect (OSTI)

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  19. Congestion Management, Total Transfer Capability Improvement and Short-Term Adequacy Evaluation in Deregulated Power Systems – Prospering and Surviving in the Competitive World 

    E-Print Network [OSTI]

    Yan, Ping

    2012-10-19

    While two objectives of deregulation are to reduce service interruptions and achieve lower energy costs, deregulation has actually introduced new problems in both areas. Since the transmission network was built in the ...

  20. The Evaluation of Stochastic Available Transfer Capability

    E-Print Network [OSTI]

    website. © 2004 Arizona State University. All rights reserved. #12;Acknowledgements The work described of Illinois who contributed technical advice and data to this work. i #12;Preface This is an intermediate the operation of the energy system multiple markets over a repeated number of years. The risk of delivery

  1. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  2. NSTec Overview and Capabilities

    SciTech Connect (OSTI)

    Meidinger, A.

    2012-07-27

    This presentation describes the history of the Nevada National Security Site (Nevada Test Site) Contract as well as current capabilities.

  3. Instruments/Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities FEI Titan Extreme Schottky-field emission gun (X-FEG) CEOS dodecapole probe (STEM) aberration corrector GIF Quantum with dual EELS and fast spectrum imaging...

  4. Postdoc capability awareness AOT

    SciTech Connect (OSTI)

    Erickson, John L.

    2015-12-18

    This is a summary of the LANL accelerator operations and technology division prepared for the postdoc programmatic capability awareness workshop in engineering and applied sciences.

  5. Nonconventional tight-binding method for the calculation of the total energy and spectroscopic energies of atomic clusters: Transferable parameters for silicon

    E-Print Network [OSTI]

    Swihart, Mark T.

    electronic structure calculation methods, being rather close in efficiency to the former due to strong simplifications in the electronic structure calculations. In the last two decades much attention has been paid of solids has become a popular and convenient tool for total energy calculations and molecular dynamics

  6. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  7. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  8. Instruments/Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microsope TechniquesCapabilities Nion UltraSTEAM 60-100 Cold field emission gun 3rd generation C3C5 aberration corrector 60-100kV operation <1 spatial...

  9. Instruments/Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechniquesCapabilities Philips CM200 200-kV Schottky field-emission gun (FEG) Post-column Gatan imaging filter (GIF) for EFTEM and EELS EDAX R-TEM Si(Li) X-ray spectrometer...

  10. Electronic Mail Analysis Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

  11. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  12. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  13. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  14. Sandia Energy » Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe

  15. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-NOperatorsCan't We AllCapabilities

  16. Sandia Energy - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificAppliedBiofuelsProposedCapabilities Home

  17. Laboratory microfusion capability study

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report.

  18. Solar mechanics thermal response capabilities.

    SciTech Connect (OSTI)

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  19. Total Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total Crude

  20. Transmission Services WIST Task Force Dynamic Transfer Capability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ("WIST"), a Task Force of technical staff primarily from Northwest and California transmission providers and sub-regional entities, completed a report documenting Phase 1 of its...

  1. On Building Inexpensive Network Capabilities

    SciTech Connect (OSTI)

    Shue, Craig A; Kalafut, Prof. Andrew; Allman, Mark; Taylor, Curtis R

    2011-01-01

    There are many deployed approaches for blocking unwanted traffic, either once it reaches the recipient's network, or closer to its point of origin. One of these schemes is based on the notion of traffic carrying capabilities that grant access to a network and/or end host. However, leveraging capabilities results in added complexity and additional steps in the communication process: Before communication starts a remote host must be vetted and given a capability to use in the subsequent communication. In this paper, we propose a lightweight mechanism that turns the answers provided by DNS name resolution---which Internet communication broadly depends on anyway---into capabilities. While not achieving an ideal capability system, we show the mechanism can be built from commodity technology and is therefore a pragmatic way to gain some of the key benefits of capabilities without requiring new infrastructure.

  2. Centre de recherche RELATIONAL CAPABILITY

    E-Print Network [OSTI]

    Boyer, Edmond

    vary across time according to how close the population is to some poverty threshold. It relies's framework of capabilities. Key-Words: - Empowerment - Escaping Poverty Index - Index - Relational Capability vary across time according to how close the population is to some poverty threshold. It relies

  3. Capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-NOperatorsCan't

  4. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013,Cafe ScientifiqueCanister Storage

  5. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  6. Research for new UAV capabilities

    SciTech Connect (OSTI)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  7. HIGEE Mass Transfer 

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    1986-01-01

    compared with other more conventional mass transfer equipment, will show up to advantage at reasonably large capacity but compare poorly for low capacity duties. (3) Capacity and separation capability (i.e. number of stages) in a HIGEE... are not independent variables, because diameter features in both. If the casing dimensions, OD and axial length, are arbitrarily fixed; then for a duty requiring a large number of stages the packing thickness will be greater and the ID correspondingly smaller...

  8. Analysis of the capabilities of continuous high-speed microcontact printing

    E-Print Network [OSTI]

    Khanna, Kanika

    2008-01-01

    Microcontact printing uses elastomeric stamps to transfer ink onto a substrate by the process of self-assembly. It has the capability to print features as small as 200nm over large areas. Because of this it has many potential ...

  9. Office of Technology Transfer Material Transfer Agreements

    E-Print Network [OSTI]

    Tullos, Desiree

    Office of Technology Transfer · Material Transfer Agreements · Confidentiality Agreements · Copyright / Patent Licensing The Office of Technology Transfer facilitates the transfer of innovations out of the university for public benefit TOOLS #12;Office of Technology Transfer Facilitating transfer of innovations

  10. Data Transfer Considerations for ALS Scientists and Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understand and correct. There are three main areas to consider: Use capable network switches For big, long distance data transfers, packet loss is a significant problem. Network...

  11. Electricity Subsector Cybersecurity Capability Maturity Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The...

  12. NERSC Enhances PDSF, Genepool Computing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Capabilities NERSC Enhances PDSF, Genepool Computing Capabilities Linux cluster expansion speeds data access and analysis January 3, 2014 | Tags: Data, Joint Genome...

  13. Advanced Simulation Capability for Environmental Management ...

    Office of Scientific and Technical Information (OSTI)

    Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration Citation Details In-Document Search Title: Advanced Simulation Capability for...

  14. Electricity Subsector Cybersecurity Capability Maturity Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity...

  15. Electricity Subsector Cybersecurity Capability Maturity Model...

    Office of Environmental Management (EM)

    Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The Electricity...

  16. Magna: Product Capabilities Brochure | Department of Energy

    Office of Environmental Management (EM)

    Product Capabilities Brochure Magna: Product Capabilities Brochure More Documents & Publications Remy: Presentation Remy: Comments GM-Ford-Chrysler: ATV Proposed Product Costs...

  17. Unique Capabilities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| ReactionSite MapGasUnique Capabilities Whether

  18. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis ToIsothermal BatteryCapabilities

  19. Nanophotonics Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopmentEnergy StorageNanophotonics Capabilities

  20. Project Development and Finance: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

  1. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. OPSAID improvements and capabilities report.

    SciTech Connect (OSTI)

    Halbgewachs, Ronald D.; Chavez, Adrian R.

    2011-08-01

    Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

  3. Transfer system

    DOE Patents [OSTI]

    Kurosawa, Kanji (Tokyo, JP); Koga, Bunichiro (Miyagi, JP); Ito, Hideki (Miyagi, JP); Kiriyama, Shigeru (Miyagi, JP); Higuchi, Shizuo (Kanagawa, JP)

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  4. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials...

  5. Evolution of a Unique Systems Engineering Capability

    SciTech Connect (OSTI)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  6. Cybersecurity Capability Maturity Model - Facilitator Guide ...

    Energy Savers [EERE]

    Capability Maturity Model (C2M2) program is intended to aid organizations of all types evaluate and make improvements to their cybersecurity programs. The model focuses on...

  7. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories 2012 DOE...

  8. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE Hydrogen and Fuel...

  9. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  10. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  11. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  12. "Multiscale Capabilities for Exploring Transport Phenomena in...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Multiscale Capabilities for Exploring Transport Phenomena in Batteries": Ab Initio Calculations on Defective LiFePO4 Citation Details In-Document Search Title:...

  13. ORISE: Helping Strengthen Emergency Response Capabilities for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities through a variety of exercises, from tabletop training to full-scale drills. ORISE supports emergency response needs across multiple disciplines, including the...

  14. Facilities and Capabilities | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHARE Facilities and Capabilities ORNL operates two of the world's most powerful neutron scattering user facilities: the High Flux Isotope Reactor and the Spallation...

  15. Integrated Data Analysis to expand measurement capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis to expand measurement capability Whitepaper submitted to DOE Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences Primary topic: F (Data management,...

  16. Federal Technical Capability Panel Conference Call Minutes -...

    Broader source: Energy.gov (indexed) [DOE]

    Technical Capability Panel Conference Call Minutes May 20, 2015 Karen Boardman, Chair, opened the meeting and welcomed everyone. Karen recaptured the F2F Meeting and highlighted...

  17. Advanced Data Analysis Capability and Surrogate Generation |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis Capability and Surrogate Generation May 16, 2013 ADACGen Problem Statement: Researchers rely on realistic datasets to build new analysis algorithms, but in many...

  18. Additive manufacturing capabilities expanding | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

  19. Advanced simulation capability for environmental management ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Advanced simulation capability for environmental management (ASCEM): An overview of initial results Citation Details In-Document Search Title: Advanced simulation...

  20. Electricity Subsector Cybersecurity Capability Maturity Model...

    Broader source: Energy.gov (indexed) [DOE]

    The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1, which allows electric utilities and grid operators to assess their cybersecurity...

  1. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the HTML: SurfaceSub-surface dislocation density analysis of forming samples using advanced characterization techniques 2011 DOE...

  2. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01

    radiative heat transfer, since radiation was neglectedradiation striking the floor makes up the majority of the total heat transferheat transfer processes: conduction through the slab and floor panels and into the supply plenum via convection; radiation

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Chemical Imaging Initiative Delivering New Capabilities for

    E-Print Network [OSTI]

    or with light-source capabilities to image materials of importance to the nation's energy and environmentalChemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding

  11. Analytical Chemistry Core Capability Assessment - Preliminary Report

    SciTech Connect (OSTI)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

  12. Overview of AREVA Logistics Business Unit Capabilities and Expertise...

    Office of Environmental Management (EM)

    AREVA Logistics Business Unit Capabilities and Expertise Overview of AREVA Logistics Business Unit Capabilities and Expertise Overview of AREVA Logistics Business Unit capabilities...

  13. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  14. Scientific Innovation Through Integration Capabilities Series

    E-Print Network [OSTI]

    and quantify metabolites in complex biofluids ęę NMR with radiological capabilities ęę Combined confocal(5948):1670-1673. ABOUT EMSL EMSL, a U.S. Department of Energy national scientific user facility located at Pacific

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  16. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  17. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  18. Nuclear Data Needs and Capabilities for Applications

    E-Print Network [OSTI]

    Bernstein, Lee; Hurst, Aaron; Kelly, John; Kondev, Filip; McCutchan, Elizabeth; Nesaraja, Caroline; Slaybaugh, Rachel; Sonzogni, Alejandro

    2015-01-01

    The Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA) was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goals of NDNCA were compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for required measurements. This document represents the results of the workshop and a compilation of other recent documents assessing nuclear data needs for the above-mentioned applications.

  19. The New MCNP6 Depletion Capability

    SciTech Connect (OSTI)

    Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  20. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  1. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N.; Pope, R.B.

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  2. TOTAL ANNUAL Rent / Mortgage $

    E-Print Network [OSTI]

    Snider, Barry B.

    etc.) $ Child Care Expenses $ Educational Loans taken out in parent's name $ Other (itemize below): $ $ RESOURCES TOTAL ANNUAL AMOUNT Parent 1 Wages $ Parent 2 Wages $ Interest and/or Dividend Income $ Net Income $ Contributions to tax deferred plans(401K) $ Non Educational Veterans' Benefits $ Unemployment Compensation

  3. Total Sustainability Humber College

    E-Print Network [OSTI]

    Thompson, Michael

    1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

  4. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  5. TMV Technology Capabilities Brake Stroke Monitor

    E-Print Network [OSTI]

    TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

  6. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  7. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  8. Plutonium Oxide Process Capability Work Plan

    SciTech Connect (OSTI)

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  9. Blue Waters: An Extraordinary Research Capability for

    E-Print Network [OSTI]

    Blue Waters: An Extraordinary Research Capability for Ad ancing Science & Engineering Frontiers will talk about the new supercomputer Blue Waters and its proposed use by the science and engineering of the University of Illinois at Urbana-Champaign. This system, called Blue Waters, is based on the latest computing

  10. Bioheat Transfer Valvano, page 1 Bioheat Transfer

    E-Print Network [OSTI]

    a technically challenging task. First, tissue heat transfer includes conduction, convection, radiation and by heat transfer due to blood flow near the probe. In vivo, the instrument measures effective thermal properties that are the combination of conductive and convective heat transfer. Thermal properties

  11. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product: Total

  12. Recombinant organisms capable of fermenting cellobiose

    DOE Patents [OSTI]

    Ingram, Lonnie O. (Gainesville, FL); Lai, Xiaokuang (Gainesville, FL); Moniruzzaman, Mohammed (Gainesville, FL); York, Sean W. (Gainesville, FL)

    2000-01-01

    This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

  13. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  14. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

  15. Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rigorous HDD Emissions Capabilities of Shell GTL Fuel Rigorous HDD Emissions Capabilities of Shell GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

  16. DOE Efforts in Preparing and Improving First Response Capabilities...

    Office of Environmental Management (EM)

    Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises DOE Efforts in Preparing and Improving First Response Capabilities and...

  17. Sandia Energy - New Polarized-Depolarized Measurement Capability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarized-Depolarized Measurement Capability Extends Use of RamanRayleigh Methods to More Flame Types Home Energy Transportation Energy CRF Facilities Capabilities News News &...

  18. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In...

  19. Overview of AREVA Logistics Business Unit Capabilities and Expertise

    Office of Environmental Management (EM)

    Presentation Outline Presentation Outline Overview of AREVA Logistics Business Unit capabilities and E ti Expertise Overview of Transnuclear Inc Transportation Capabilities in the...

  20. Los Alamos to study future computing technology capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology capabilities Los Alamos will lead a collaboration within the Department of Energy and with select university partners to explore what the current capabilities and...

  1. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

  2. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

  3. Progress on ARRA-funded Facility & Capability Upgrades for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory Progress on ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory...

  4. SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES

    SciTech Connect (OSTI)

    Koenig, R.

    2013-07-02

    In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

  5. Nanobio Interfaces Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of09SponsorNanobio Interfaces Capabilities

  6. Property:Wind Capabilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url JumpTechnology Jump to:Capabilities Jump to: navigation,

  7. ORISE: Capabilities in Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHowAssetonCapabilities ORISE

  8. ORISE: Capabilities in Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHowAssetonCapabilitiesRelated

  9. Visualization of Flows and Transfer Capability in Electric Networks Thomas J. Overbye James D. Weber

    E-Print Network [OSTI]

    , the ability to participate in the electricity market depends upon the availability of transmission capacity of many new players into the electricity marketplace, such as non- utility generators, brokers, marketers and load aggregators. While their interests are diverse, what facilitates the market for electricity

  10. Existing technology transfer report: analytical capabilities. Volume 2. Appendix A. [Methods and procedures for analysis

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    This volume contains 10 attachments entitled: Monthly progress reports; Method CHN-4 (Carbon, Hydrogen and Nitrogen analysis by Perkin-Elmer elemental analyses); Method Oxygen-6 (oxygen analyzer); Method Nitrogen-8 (Low level nitrogen analysis by Perkin-Elmer 240 elemental analyzer); Method Sulfur-10 (sulfur analysis by oxidative microcoulometry); Method TGA-3 (thermogravimetric analysis of coal liquefaction products and process solvents); Method DSC-5 (Determination of glass transition temperature by differential scanning calorimetry); Method GC-1 (gas chromatography of Fischer-Tropsch products); Method GC-2 (gas chromatography of distillate products from coal liquefaction); Analytical Method No. 1160 (estimation of OH, NH, NH/sub 2/, concentration in methylene chloride soluble materials from SRC liquids); x-ray diffraction method for determining the orientation tendency in calcined coke; and evaluation of mass spectrometers.

  11. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet), Thermal Systems Group: CSP Capabilities (TSG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer CoatingThermophysical

  12. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  13. Tonopah Test Range capabilities: technical manual

    SciTech Connect (OSTI)

    Manhart, R.L.

    1982-11-01

    This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

  14. Laboratory microfusion capability study. Phase II report

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy`s Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report.

  15. Overview of ASC Capability Computing System Governance Model

    SciTech Connect (OSTI)

    Doebling, Scott W. [Los Alamos National Laboratory

    2012-07-11

    This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

  16. Process Capability Database Usage In Industry: Myth vs. Reality

    E-Print Network [OSTI]

    Tata, Melissa M.

    1999-01-01

    Process capability data (PCD) is needed for robust design, optimal tolerance allocation, and variation

  17. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A., E-mail: rangelov@phys.uni-sofia.bg [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Suchowski, H.; Silberberg, Y. [Department of Physics of Complex System, Weizmann Institute of Science, Rehovot 76100 (Israel); Vitanov, N.V. [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria)

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  18. Advanced composites enhance coiled tubing capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.; Williams, J.G.

    1994-04-01

    From early coiled tubing (CT) use to recent operations, most concerns have been about tube damage from past service and remaining safe working life. Composite CT (CCT) is designed and constructed to exhibit unique anisotropic characteristics relative to steel or alternative isotropic materials that expand burst, collapse, tensile and compressive load performance capabilities. In 1988, Conoco Inc. began a development effort focused on using high-performance composite materials to meet numerous challenges associated with current and future oil and gas exploration and development. At that time, Conoco initiated a project to explore composite materials use for high-pressure, long-length, non-corroding tubulars with primary application as onshore water injection lines. In 1989, Conoco awarded a contract to AMAT a/s in Sandefjord, Norway to develop spoolable composite pipe for small diameter subsea lines. Concurrent with ongoing spoolable composite subsea lines, Conoco also began to explore high-performance CCT development in 1989.

  19. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A. (Oviedo, FL)

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  20. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  1. Transfer stations and long-haul transport systems

    SciTech Connect (OSTI)

    Walsh, P.; Pferdehirt, W.; O'Leary, P. (Univ. of Wisconsin, Madison, WI (United States). Solid and Hazardous Waste Education Center)

    1993-12-01

    Transfer stations can be an important link between pickup at the curb and ultimate disposal, often allowing significant savings in the total costs to move wastes from the generator to the disposal site. A transfer station is simply a facility where collection trucks bring collected materials for loading into larger vehicles and subsequent shipment, usually to a landfill, waste-to-energy plant, or composting facility. Transferred wastes are typically shipped out in large trailers, but barges and railroad cars are also transport options. Although modern transfer stations usually include some provisions for handling recyclables, solid waste transfer dominates the operation of most facilities. Some communities have begun experimenting with transferring commingled, source-separated recyclables to regional processing centers. Transfer facilities can be as simple as a pavement slab and a front-end loader. Alternatively, transfer stations can cost millions of dollars and move thousands of tons of waste each day.

  2. High-Rate Capable Floating Strip Micromegas

    E-Print Network [OSTI]

    Jonathan Bortfeldt; Michael Bender; Otmar Biebel; Helge Danger; Bernhard Flierl; Ralf Hertenberger; Philipp Lösel; Samuel Moll; Katia Parodi; Ilaria Rinaldi; Alexander Ruschke; André Zibell

    2015-08-04

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60MHz/cm$^2$. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48cm$\\times$50cm with 1920 copper anode strips exhibits in 120GeV pion beams a spatial resolution of 50$\\mu$m at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below $5^\\circ$ are observed. Systematic deviations of this $\\mu$TPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4cm$\\times$6.4cm floating strip Micromegas under intense background irradiation of the whole active area with 20MeV protons at a rate of 550kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4cm$\\times$6.4cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2MHz and 2GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  3. RELAP-7 Beta Release: Summary of Capabilities

    SciTech Connect (OSTI)

    Martineau, Richard C.; Zhang, Hongbin; Zhao, Haihua

    2014-12-01

    RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory (INL). Building upon the decades of software development at the INL, we began the development of RELAP-7 in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway. As part of this development, the first lines of RELAP-7 code were committed to the software revision control repository on November 7th, 2011. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. RELAP-7 is built using the INL’s modern scientific software development framework, MOOSE (Multi-physics Object Oriented Simulation Environment). MOOSE provides improved numerical calculations (including higher-order integration in both space and time, yielding converged second-order accuracy). The RELAP-7 code structure is based on multiple physical component models such as pipes, junctions, pumps, etc. Each component can have options for different fluid models such as single- and two-phase flow. This component-based and physics-based software architecture allows RELAP-7 to adopt different physical models for different applications. A relatively new two-phase hydrodynamic model, termed the ''7-Equation model'' for two phasic pressures, velocities, energies, and volumetric fraction, is incorporated into RELAP-7 for liquid-gas (water-steam) flows. This new model allows second-order integration because it is well-posed, which will reduce the numerical error associated with traditional systems analysis codes. In this paper, we provide a RELAP-7 capability list describing analysis features, range of applicability, and reactor components that will be available for the December 15th, 2014 beta release of the software.

  4. Technology Transfer and Commercialization Annual Report 2008

    SciTech Connect (OSTI)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

  5. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  6. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA LNG Exports from Babb, MT LNG Exports from Buffalo, NY LNG Exports from Kenai, AK LNG Exports...

  7. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  8. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  9. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect (OSTI)

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  10. Photo-induced electron transfer method

    DOE Patents [OSTI]

    Wohlgemuth, Roland (2823 Hillegass Ave., Berkeley, CA 94705); Calvin, Melvin (2683 Buena Vista Way, Berkeley, CA 94708)

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  11. Continuous chain bit with downhole cycling capability

    DOE Patents [OSTI]

    Ritter, Don F. (Albuquerque, NM); St. Clair, Jack A. (Albuquerque, NM); Togami, Henry K. (Albuquerque, NM)

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  12. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, Roy Clifford (Livermore, CA); Jones, Cecil Roy (Saratoga, CA)

    1998-01-01

    A refueling machine having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images.

  13. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, R.C.; Jones, C.R.

    1998-12-15

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  14. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect (OSTI)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  15. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  16. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  17. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    to the exchange of sensible heat. Higher surface tension results in a slight increase in the total heat transfer into turns. There are two types of PHPs: the looped pulsating heat pipe and the unlooped pulsating heat pipeAnalysis of heat transfer in unlooped and looped pulsating heat pipes M.B. Sha®i and A. Faghri

  18. Applications of Expanded WRAP Modeling Capabilities to the Brazos WAM 

    E-Print Network [OSTI]

    Wurbs, R.; Hoffpauir, R.; Schnier, S.

    2012-10-01

    applications of the following new WRAP modeling capabilities: (1) conditional reliability modeling to determine short-term storage and flow frequencies and supply reliabilities conditioned on preceding reservoir storage contents; (2) capabilities added to allow...

  19. Health and justice: the capability to be healthy.

    E-Print Network [OSTI]

    Venkatapuram, Sridhar

    2009-08-18

    central human capabilities SR sophisticated resourcist 3 Statement of Length Sridhar Venkatapuram King’s College December 2007 Thesis Title: Health and justice: The capability to be healthy The dissertation does not exceed 80...

  20. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities...

    Office of Environmental Management (EM)

    Leader Forum: Oil and Gas Technical Assistance Capabilities Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities August 18, 2015 8:00AM to 5:00PM MDT Denver, Colorado...

  1. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) is a derivative of the Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2)...

  2. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) was...

  3. PARAMETRICALLY-EXCITED MICROELECTROMECHANICAL OSCILLATORS WITH FILTERING CAPABILITIES

    E-Print Network [OSTI]

    Shaw, Steven W.

    This thesis investigates a class of tunable microelectromechanical (MEM) oscillators that can be implemented#12;PARAMETRICALLY-EXCITED MICROELECTROMECHANICAL OSCILLATORS WITH FILTERING CAPABILITIES PARAMETRICALLY-EXCITED MICROELECTROMECHANICAL OSCILLATORS WITH FILTERING CAPABILITIES By Jeffrey Frederick Rhoads

  4. Federal Technical Capability Policy for Defense Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-10

    The policy regarding the Federal Technical Capability Program, which provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Department’s missions and responsibilities.

  5. REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-10

    This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension ? not fully fleshed out yet ? that aims to reduce the current number of nuclear explosives from seven to five, the so-called ?3+2? vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.

  6. Lean Transition of Emerging Industrial Capability (LeanTEC)

    E-Print Network [OSTI]

    Shroyer, E.

    Lean Transition of Emerging Industrial Capability (LeanTEC) program was a cooperative agreement between the Boeing Company

  7. MUJERES TOTAL BIOLOGIA 21 32

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    CIENCIAS ECON�MICAS Y EMPRESARIALES TOTAL DERECHO Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS CIENCIAS MEDICINA TOTAL MEDICINA #12;MUJERES TOTAL Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS

  8. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    1.4 0.4 0.5 1.0 1.2 1.4 2.1 1.3 Table HC5.2 Living Space Characteristics by Year of Construction, 2005 Living Space Characteristics 1970 to 1979 1980 to 1989 1990 to 1999 2000 to...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump... 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat...

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    em... 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump... 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump... 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    1.5 2.3 3.0 6.0 For Two Housing Units... 0.9 0.3 0.4 Q Q N Q 0.4 Heat Pump... 9.2 1.2 2.2 2.0 1.3 2.4 0.6 1.9...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump... 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    tem... 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump... 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 22.9 9.8 14.1 11.9...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 14.1 10.0 4.0...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 10.4 14.1 20.5 13.7...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 20.5 11.0 3.4 6.1...

  1. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 11.4 8.1 3.3 Flat-panel...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 11.4 15.4 10.2 Flat-panel...

  3. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 2.3 2.5 3.1 4.8...

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 5.6 2.4 Flat-panel...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 15.4 7.9 2.8 4.8 Flat-panel...

  6. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 17.7 7.5 10.2 9.6 Flat-panel...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 13.7 4.2 9.5 Laptop...

  8. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 10.2 3.2 7.0 Flat-panel...

  9. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 3.2 3.9 4.0 6.7...

  10. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.2 0.5 0.9 3 or More... 0.6 Q Q Q Q Q N Q Plasma Television Sets... 3.6 0.6 0.8 0.5 0.6 1.2 0.3 0.9...

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 2.9 Q Q Q N For Two Housing Units... 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace... 2.8 2.4 Q Q Q 0.2 Other...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  15. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central Warm-Air Furnace... 44.7 5.2 3.1 5.6 5.2 7.1 7.4 7.3 3.9 For...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38.9 12.9 Have Equipment But Do Not Use it... 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System......

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..............................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 86.6

  2. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  3. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 111.1

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  5. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1Q

  6. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ

  7. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ14.7

  8. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6

  9. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  10. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  11. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6 13.1

  12. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6

  13. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do Not

  14. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do

  15. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do0.7

  16. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8

  17. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not Have

  18. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  19. Total................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  20. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not49.2

  1. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do

  2. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7 28.8

  3. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7

  4. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0

  5. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0.

  6. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7

  7. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0 1.2

  8. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0

  9. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0Type

  10. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8

  11. Total....................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7 7.4

  12. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7

  13. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.75.6

  14. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6 40.7

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6 17.7

  18. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.64.2

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7

  1. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3 Do

  2. Total.........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3

  3. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6

  4. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6.

  5. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7

  6. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.7

  7. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.74.2

  8. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7

  9. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1 19.0

  10. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1

  11. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.15.6

  12. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0

  13. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not Have

  14. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not

  15. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCooking

  16. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCookingDo

  17. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do

  18. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCooking

  19. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo Not

  20. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo

  1. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo20.6

  2. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1

  3. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0 8.0

  4. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0 8.07.1

  5. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.0

  6. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.1 7.0

  7. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.1

  8. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1 7.07.15.6

  9. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1

  10. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1Personal

  11. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 7.1Personal4.2

  12. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1

  13. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 111.1 47.1

  14. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1 111.1

  15. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4)5,Product:

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)

  17. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  18. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  19. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  20. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Booth, Steven Richard

    2011-01-26

    Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

  1. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  2. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    13 INGENIERÍA INFORMÁTICA 2 11 TOTAL ESCUELA POLITÉCNICA SUPERIOR 2 11 ANTROPOLOGÍA SOCIAL Y TEORÍA DEL ARTE 1 1 LINGÜISTICA 4 7 MÚSICA 1 3 PREHISTORIA Y ARQUEOLOGÍA 0 1 TOTAL FILOSOFÍA Y LETRAS 22 Y EMPRESARIALES Fuente: Centro de Estudios de Posgrado, a 9 de Julio del 2010 DERECHO ESCUELA

  3. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  4. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  5. Managing corporate capabilities:theory and industry approaches.

    SciTech Connect (OSTI)

    Slavin, Adam M.

    2007-02-01

    This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. We found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.

  6. Wireless adiabatic power transfer

    E-Print Network [OSTI]

    A. A. Rangelov; H. Suchowski; Y. Silberberg; N. V. Vitanov

    2010-10-30

    We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  7. U.S. Total Exports

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports...

  8. MUJERES ( * ) TOTAL BIOLOGA 18 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    DE PROFESORADO Y EDUCACI�N CIENCIAS ECON�MICAS Y EMPRESARIALES Nº de tesis leídas y aprobadas por centro y departamento en el año 2010 CENTRO DEPARTAMENTO Nº TESIS CIENCIAS #12;ANATOMÍA PATOL�GICA 0 1 Y DE LA EDUCACI�N 0 2 PSICOLOGÍA SOCIAL Y METODOLOGÍA 3 8 TOTAL PSICOLOGÍA 11 26 TOTAL TESIS LEIDAS

  9. Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response

    SciTech Connect (OSTI)

    Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

    1982-02-01

    The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

  10. A new formula for the total longshore sediment transport rate Atilla Bayram a,, Magnus Larson b

    E-Print Network [OSTI]

    US Army Corps of Engineers

    A new formula for the total longshore sediment transport rate Atilla Bayram a,, Magnus Larson b April 2007 Available online 7 June 2007 Abstract A new predictive formula for the total longshore employed to evaluate the predictive capability of the new formula. The main parameter of the formula (a

  11. Understanding the supply chain resilience: a Dynamic Capabilities approach

    E-Print Network [OSTI]

    Van Der Meer, Cynthia

    2012-01-01

    metaphor for strategic management, Academy of Managementwhat are they? Strategic Management Journal, Special IssueCapability lifecycles, Strategic Management Journal, Vol.24,

  12. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

    Office of Scientific and Technical Information (OSTI)

    LHC and ILC Capabilities for Higgs Boson Coupling Measurements Peskin, Michael E.; SLAC 43 PARTICLE ACCELERATORS; ACCURACY; BOSONS; COUPLING CONSTANTS; DECOUPLING; FERMIONS;...

  13. DEX: Increasing the Capability of Scientific Data Analysis Pipelines...

    Office of Scientific and Technical Information (OSTI)

    DEX: Increasing the Capability of Scientific Data Analysis Pipelines by Using Efficient Bitmap Indices to Accelerate Scientific Visualization Citation Details In-Document Search...

  14. Application of the AT Research Capabilities: Investigation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Application of the AT Research Capabilities: Investigation of Diesel Soot Oxidation and of the Catalysts Degradation 2002 DEER Conference Presentation: Cummins Inc....

  15. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its...

  16. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation Capabilities for In Situ Heating of Oil Shale Hoda, Nazish ExxonMobil Upstream Research Company, Houston, TX, USA; Fang, Chen ExxonMobil Upstream Research...

  17. A Survey of National Transmission Grid Modeling Capabilities at DOE

    E-Print Network [OSTI]

    Howle, Victoria E.

    711712003 A Survey of National Transmission Grid Modeling Capabilities at DOE Laboratories Steve Data Sheets.................................................................... 9 Electricity Market Complex Adaptive Systems (EMCAS)..................10 Generation and Transmission Maximization (GTMAX

  18. Survey of Biomass Resource Assessments and Assessment Capabilities...

    Open Energy Info (EERE)

    Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment...

  19. Total transmission and total reflection by zero index materials

    E-Print Network [OSTI]

    Viet Cuong Nguyen; Lang Chen

    2010-07-01

    In this report, we achieved total transmission and reflection in a slab of zero index materials with defect(s). By controlling the defect's radius and dielectric constant, we can obtain total transmission and reflection of EM wave. The zero index materials, in this report, stand for materials with permittivity and permeability which are simultaneously equal to zero or so called matched impedance zero index materials. Along with theoretical calculations and simulation demonstrations, we also discuss about some possible applications for the proposed structure such as shielding or cloaking an object without restricting its view. We also suggest a way to control total transmission and reflection actively by using tunable refractive index materials such as liquid crystal and BST. The physics behind those phenomena is attributed to intrinsic properties of zero index materials: constant field inside zero index slab.

  20. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  1. Custody transfer enhanced by electronic billing system

    SciTech Connect (OSTI)

    Knox, R.M.

    1986-10-20

    Transcontinental Gas Pipe Line (TGPL) Corp. engineers have developed an electronic billing system for custody transfer that can reduce the cost of doing business and improve the accuracy of transfer measurements. The system accurately measures gas flow and quality, transmits gas data to a central facility, provides a capability to review the collected data, prepares bills based upon these data, and reduces staffing associated with the data collection and billing process. On-line flow computers are keys to this electronic billing system. These computers, referred to as remote terminal units (RTU's), are currently in service at TGPL at more than 30 locations with 30 more locations due to be on-line within 6 months and an additional 40 locations due within 15 months. These RTU's will be obtaining gas data from metering stations located in New York, New Jersey, Pennsylvania, Maryland, Virginia, North Carolina, Georgia, Louisiana, and Texas.

  2. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  3. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  4. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  5. Los Alamos National Laboratory capability reviews - FY 2011 status

    SciTech Connect (OSTI)

    Springer, Everett P [Los Alamos National Laboratory

    2011-01-12

    Capability reviews are the Los Alamos National Laboratory approach to assess the quality of its science, technology, and engineering (STE), and its integration across the Laboratory. There are seven capability reviews in FY 2011 reviews. The Weapons Science and Engineering review will be replaced by the National Nuclear Security Administration's Predictive Science Panel for 2011 . Beginning in 2011, third-year LORD projects will be reviewed by capability review committees rather than the first-year LORD projects that have been performed for the last three years. This change addresses concerns from committees about reviewing a project before it had made any substantive progress. The current schedule, and chairs for the 2011 capability reviews is presented. The three-year cycle (2011-2013) for capability reviews are presented for planning purposes.

  6. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  7. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  8. Multiscale photosynthetic exciton transfer

    E-Print Network [OSTI]

    A. K. Ringsmuth; G. J. Milburn; T. M. Stace

    2012-06-14

    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.

  9. TOWARDS ESTIMATING TOTAL ECONOMIC VALUE

    E-Print Network [OSTI]

    Bateman, Ian J.

    TOWARDS ESTIMATING TOTAL ECONOMIC VALUE OF FORESTS IN MEXICO by Neil Adger Katrina Brown Raffaello OF FORESTS IN MEXICO by Neil Adger Katrina Brown Raffaello Cervigni Dominic Moran Centre for Social and SEDESOL for their assistance whilst in Mexico, and David Pearce and Kerry Turner for comments on earlier

  10. Policy on Cost Transfer Policy on Cost Transfer

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Policy on Cost Transfer 12/22/2014 Policy on Cost Transfer I. Purpose and Scope The University has posting of a cost to the general ledger, initiated by payroll charges, purchase orders or check requests (and the purchasing card). Cost Transfer means any subsequent transfer of the original charge

  11. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  12. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer in

  13. Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project

    SciTech Connect (OSTI)

    Gunderson, L Nguyen [Los Alamos National Laboratory; Kornreich, Drew E [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

    2011-01-04

    CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

  14. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  15. TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS

    E-Print Network [OSTI]

    TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS Jesse w. Fussell Department of Defense 9800 Savage Road of technology transfer in this technical area in the past, to forecast prospects for technology transfer in the future, and to suggest some ideas for stimulating the process. 2. TECHNOLOGY TRANSFER PROBLEMS Many

  16. MUJERES ( * ) TOTAL BIOLOGA 10 19

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    mujeres que han leído tesis en la UAM en el año 2007 Fuente: Centro de Posgrado de la UAM, a 31 de Diciembre de 2007 FILOSOFÍA Y LETRAS MEDICINA PSICOLOGÍA TOTAL TESIS LEIDAS Y APROBADAS EN EL A�O 2007 EN LA UAM CIENCIAS CIENCIAS ECON�MICAS Y EMPRESARIALES DERECHO ESCUELA POLIT�CNICA SUPERIOR Nº de tesis

  17. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings forTitle XVIIof EnergyofTotal Energy

  18. A data-driven approach to online flight capability estimation

    E-Print Network [OSTI]

    Lecerf, Marc Alain

    2014-01-01

    Similar to a living organism, an autonomous vehicle benefits not only from awareness of its surrounding environment and mission directives, but also from awareness of its performance capability. Because this degrades over ...

  19. INNOVATIVE CAPABILITIES, OPERATIONS PRIORITIES AND CORPORATE PERFORMANCE IN MANUFACTURING FIRMS

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    , Turkey 3 Faculty of Management, Gebze Institute of Technology, Kocaeli, Turkey ABSTRACT The purposeINNOVATIVE CAPABILITIES, OPERATIONS PRIORITIES AND CORPORATE PERFORMANCE IN MANUFACTURING FIRMS Management, Kocaeli, Turkey 2 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul

  20. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  1. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Indian Energy is hosting a Tribal Leader Forum on oil and gas technical assistance capabilities on Aug. 18, 2015, at the Magnolia Hotel in Denver, Colorado.

  2. A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini 

    E-Print Network [OSTI]

    Sanford, Mathew

    2012-10-19

    on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D...

  3. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  4. Land capability classification of minesoils in East Texas 

    E-Print Network [OSTI]

    Barth, Amy Kristen

    2002-01-01

    for the post-mine land. A land capability classification specific to minesoils will facilitate the design of appropriate land uses or alternative uses for reclaimed mine areas based on observed limitations. The proposed system is similar to the Land...

  5. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  6. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David Gordon (Winchester, MA)

    2002-01-01

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  7. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David G. (Winchester, MA)

    1993-01-01

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  8. Technology transfer issue

    SciTech Connect (OSTI)

    Jacobson, C.

    1982-05-31

    Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

  9. Quartz microbalance device for transfer into ultrahigh vacuum systems

    SciTech Connect (OSTI)

    Stavale, F.; Achete, C. A. [Divisao de Metrologia de Materiais (DIMAT), Inmetro, CEP 25250-020, Xerem, Duque de Caxias, Rio de Janeiro (Brazil); Programa de Engenharia Metalurgica e de Materiais (PEMM), Universidade Federal do Rio de Janeiro, Cx. Postal 68505, CEP 21945-970, Rio de Janeiro (Brazil); Niehus, H. [Divisao de Metrologia de Materiais (DIMAT), Inmetro, CEP 25250-020, Xerem, Duque de Caxias, Rio de Janeiro (Brazil); Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, Berlin 12489 (Germany)

    2008-10-15

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  10. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA's Today8Topo II: AnUsersTotalView

  11. Total Adjusted Sales of Kerosene

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015End Use: Total

  12. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total CrudeMay-15

  13. CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization

    E-Print Network [OSTI]

    Watson, Robert N. M.; Woodruff, Jonathan; Neumann, Peter G.; Moore, Simon W.; Anderson, Jonathan; Chisnall, David; Dave, Nirav; Davis, Brooks; Gudka, Khilan; Laurie, Ben; Murdoch, Steven J.; Norton, Robert; Roe, Michael; Son, Stacey; Vadera, Munraj

    2015-05-26

    ’ code uses RISC pointers or source-code annotated CHERI capabilities ‘Legacy’ code compiled against a RISC ISA Per-address-space memory-management and capability executive ‘Pure-capability’ code uses CHERI capabilities for all C pointers FreeBSD kernel... + CHERI support for userspace capabilities Hybrid Netsurf links against legacy and pure-capability code Hypervisor / Separation Kernel + CHERI support for guest capabilities Capability-based single-address-space OS and applications Address...

  14. Fuel Fabrication Capability WBS 01.02.01.05 - HIP Bonding Experiments Final Report

    SciTech Connect (OSTI)

    Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng; Tucker, Laura Arias; Chen, Ching-Fong; Aikin, Beverly; Aragon, Daniel Adrian; Beard, Timothy Vance; Montalvo, Joel Dwayne; Pena, Maria Isela; Dombrowski, David E.

    2015-06-10

    The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIP bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.

  15. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  16. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect (OSTI)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  1. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  3. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  4. Presto 4.20 user's guide : addendum for shock capabilities.

    SciTech Connect (OSTI)

    Spencer, Benjamin Whiting

    2011-06-01

    This is an addendum to the Presto 4.20 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Presto. Presto{_}ITAR is an enhanced version of Presto that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Presto User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

  5. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect (OSTI)

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  6. Cost Transfer Procedures How And When To Make Cost Transfers

    E-Print Network [OSTI]

    Hammack, Richard

    Cost Transfer Procedures How And When To Make Cost Transfers Effective February 9, 2003, cost elsewhere. Federal regulations require additional documentation to support cost transfers to sponsored program indexes. Costs may not be shifted to other research projects or from one budget period to the next

  7. PHISICS multi-group transport neutronic capabilities for RELAP5

    SciTech Connect (OSTI)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  8. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOE Patents [OSTI]

    Nyman, May D. (Albuquerque, NM); Hobbs, David T. (North Augusta, SC)

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  9. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  10. Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF).

    SciTech Connect (OSTI)

    Turner, Daniel Zack; Rodriguez, Salvador B.

    2011-06-01

    The following report presents an assessment of existing capabilities in Sierra/Fuego applied to modeling several aspects of grid-to-rod-fretting (GTRF) including: fluid dynamics, heat transfer, and fluid-structure interaction. We compare the results of a number of Fuego simulations with relevant sources in the literature to evaluate the accuracy, efficiency, and robustness of using Fuego to model the aforementioned aspects. Comparisons between flow domains that include the full fuel rod length vs. a subsection of the domain near the spacer show that tremendous efficiency gains can be obtained by truncating the domain without loss of accuracy. Thermal analysis reveals the extent to which heat transfer from the fuel rods to the coolant is improved by the swirling flow created by the mixing vanes. Lastly, coupled fluid-structure interaction analysis shows that the vibrational modes of the fuel rods filter out high frequency turbulent pressure fluctuations. In general, these results allude to interesting phenomena for which further investigation could be quite fruitful.

  11. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  12. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Kayser, R.F.

    1993-08-13

    The measurement capabilities to be developed include new apparatus for transport properties, thermodynamic properties, phase equilibria, and dielectric properties. Specific capabilities are: Thermal conductivity apparatus, vibrating wire viscometer, dual-sinker densimeter, high-temperature vibrating tube densimeter, dynamic phase equilibria apparatus, apparatus for dilute solutions, total-enthalpy flow calorimeter. Benchmark measurements were made (no data given) on pure and mixed alternative refrigerants and their mixtures with lubricants, and other fluids.

  13. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M. (Blackfoot, ID); Mills, William C. (McKeesport, PA)

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  14. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  15. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  16. Technology Transfer, Entrepreneurship and Innovation

    E-Print Network [OSTI]

    Reed, Nancy E.

    Technology Transfer, Entrepreneurship and Innovation The College of Engineering at UH MaŻnoa has a strong tradition of technology transfer and entrepreneurship that supports the University of Hawai`i's innovation and technology transfer initiative. Principal units are mechanical engineering, electrical

  17. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: BÖ88 Ĺbo Akademi University1/120 5. Heat transfer Ron Zevenhoven Ĺbo Akademi University Thermal and Flow Engineering / Värme | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer Ĺbo Akademi

  18. Technology Transfer Ombudsman Program | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

  19. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  20. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  1. Orthogonal Capability Building Blocks for Flexible AHS Deployment

    E-Print Network [OSTI]

    Koopman, Philip

    , orthogonal building blocks #12;2 INTRODUCTION Reaping the full benefits of an Automated Highway System (AHS1 Orthogonal Capability Building Blocks for Flexible AHS Deployment Philip Koopman Michelle Bayouth, PA 15213 USA Pittsburgh, PA 15213 USA ABSTRACT Once a baseline level of full automation is possible

  2. Computing, Storage, and Data Dissemination Capabilities in 2010

    E-Print Network [OSTI]

    Computing, Storage, and Data Dissemination Capabilities in 2010 Joseph B. Gurman NASA Goddard Space;2003 May 28 J.B. Gurma · Anyone who thinks they can predict the computing, storage, and networking.B. Gurma · Storage · Similarly, there have been several forms of storage vaporware over the last ~ 20 years

  3. car_lib1\\3987552\\1 CAPABILITY AND PERFORMANCE

    E-Print Network [OSTI]

    Martin, Ralph R.

    of staff's performance gives rise for concern, his/her line manager or Head of School the member of staff improve their performance. The line manager or Head of School/Department should makecar_lib1\\3987552\\1 1 P0910-1266 CAPABILITY AND PERFORMANCE Part I ­ Application and scope

  4. Entirely passive heat pipe apparatus capable of operating against gravity

    DOE Patents [OSTI]

    Koenig, Daniel R. (Santa Fe, NM)

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  5. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect (OSTI)

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  6. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Program’s oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  7. Person Aware Advertising Displays: Emotional, Cognitive, Physical Adaptation Capabilities

    E-Print Network [OSTI]

    Person Aware Advertising Displays: Emotional, Cognitive, Physical Adaptation Capabilities advertising. In the future however, the ever more demanding audience will not be satisfied by today's contents the efficiency of outdoor advertising. The paper starts with a vision of out-of-home- media in the year 2034

  8. Developing the capabilities to make strategic export controls effective.

    SciTech Connect (OSTI)

    Heine, P.; Perry, T.; Nuclear Engineering Division; NNSA Office of Global Engagement and Cooperation

    2008-12-01

    The International Nonproliferation Export Control Program (INECP) of the U.S. Department of Energy has been focused for over 10 years on engaging partner countries to strengthen global efforts to prevent proliferation. This paper summarizes some of the key lessons learned regarding the development of the capabilities needed to make strategic export controls truly effective.

  9. Inherent shutdown capabilities in accelerator-driven systems

    E-Print Network [OSTI]

    Inherent shutdown capabilities in accelerator-driven systems M. Erikssona, *, J.E. Cahalanb a Royal Abstract The applicability for inherent shutdown mechanisms in accelerator-driven systems (ADS) has been. In this paper, we explore the use of passive safety mechanisms to accelerator- driven systems (ADS). While

  10. Adaptive Optics at the Subaru Telescope: current capabilities and development

    E-Print Network [OSTI]

    Guyon, Olivier

    Adaptive Optics at the Subaru Telescope: current capabilities and development Olivier Guyona Barbara, CA 93106, USA ABSTRACT Adaptive optics is a key component of Subaru Telescope's current-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch

  11. Core capabilities and technical enhancement, FY-98 annual report

    SciTech Connect (OSTI)

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  12. XPOLA An Extensible Capability-based Authorization Infrastructure for Grids

    E-Print Network [OSTI]

    , especially with the host account maintenance and certificate management. This paper proposes a capability-based infrastructure that provides a fine-grained authorization solution to Web service deployments, and also manages collaboration and resource sharing securely across multiple domains. Interests from academia and industry

  13. Insect-Inspired, Actively Compliant Hexapod Capable of Object Manipulation

    E-Print Network [OSTI]

    Branicky, Michael S.

    Insect-Inspired, Actively Compliant Hexapod Capable of Object Manipulation William A. Lewinger1. An investigation into existing hexapod robots [2] was conducted, such as Tarry I and Tarry II [4], MAX [1], Robot I][6][7], the BILL-Ant-p robot (Fig. 1, left) is an actively compliant 18-DOF hexapod robot with six force

  14. LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities

    Broader source: Energy.gov [DOE]

    Secretary Chu and Secretary of the Interior Ken Salazar convened with top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells on the Outer Continental Shelf.

  15. Nuclear Data Capabilities Supported by the DOE NCSP

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) · Nuclear Data

  16. M.P. BELT DETERIORATION. ACCELERATOR STRUCTURE. BELT CAPABILITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1375 M.P. BELT DETERIORATION. ACCELERATOR STRUCTURE. BELT CAPABILITY M. LETOURNEL Centre de.P. belt deterioration is proposed. It takes into account the strain of discharge to which the belt is submitted following the combination, first of a too high belt charge density in addition to the machine

  17. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    SciTech Connect (OSTI)

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  18. AIPS Memo 112 Capabilities of the VLA pipeline in AIPS

    E-Print Network [OSTI]

    Sjouwerman, Loránt

    AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

  19. Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman

    E-Print Network [OSTI]

    Sjouwerman, Loránt

    Capabilities of the VLA pipeline in AIPS Lorâ??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

  20. The Capability Approach in social policy analysis. Yet another concept? 

    E-Print Network [OSTI]

    Goerne, Alexander

    2010-01-01

    in Europe. Against the backdrop of these questions, this paper looks at recent contributions which use the Capability Approach (CA) for analysing social policy. This leads me to argue that the most interesting applications of the CA may not lie in policy...

  1. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  2. CU-LASP Test Facilities ! and Instrument Calibration Capabilities"

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    ­ Computer-controlled monochromator for wavelength selection ­ Deuterium lamp is primary light source ­ 2°C #12;Calibration and Test Equipment 3 (CTE 3) · Characterization of detectors and detector modules;Total Solar Irradiance Radiometer Facility (TRF) · Total Solar Irradiance (TSI) instrument calibrations

  3. Abstract--The transfer capability on a transmission path is limited by constraints on acceptability, voltage security, small-

    E-Print Network [OSTI]

    Venkatasubramanian, Mani V.

    State University, Pullman, WA 99163 USA (Email: mani@eecs.wsu.edu). utilization of the grid and security on acceptability, voltage security, small- signal stability and transient stability. For a large interconnected power grid, these constraints are influenced significantly by the interactions among path flows

  4. Capabilities and Integration Potential of Current Casting Design Software

    E-Print Network [OSTI]

    Beckermann, Christoph

    , solidification, defects, and microstructure development). Both expendable mold and permanent mold processes, iterative procedure. Heavy design dependence is placed on a few, experienced mold and pattern makers include: computer-aided drafting of the mold cavity design, electronic transfer of part geometry

  5. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect (OSTI)

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D. (Decision and Information Sciences)

    2012-02-20

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the capabilities of a jurisdiction to protect itself from, mitigate, respond to, and recover from a potential incident. On the basis of this metric, an interactive tool - the ESSCI Dashboard - can identify scenarios for enhancement that can be implemented, and it can identify the repercussions of these scenarios on the jurisdiction. It can assess the capabilities of law enforcement, fire fighting, search and rescue, emergency medical services, hazardous materials response, dispatch/911, and emergency management services in a given jurisdiction and it can help guide those who need to prioritize what limited resources should be used to improve these capabilities. Furthermore, this tool can be used to compare the level of capabilities of various jurisdictions that have similar socioeconomic characteristics. It can thus help DHS define how it can support risk reduction and community preparedness at a national level. This tool aligns directly with Presidential Policy Directive 8 by giving a jurisdiction a metric of its ESS's capabilities and by promoting an interactive approach for defining options to improve preparedness and to effectively respond to a disruptive event. It can be used in combination with other CI performance metrics developed at Argonne National Laboratory, such as the vulnerability index and the resilience index for assessing regional resilience.

  6. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect (OSTI)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  7. Bibliography of US patents on augmentation of convective heat and mass transfer-II

    SciTech Connect (OSTI)

    Webb, R.L.; Bergles, A.E.; Junkhan, G.H.

    1983-12-01

    Patents are an important source of information on the potential commercialization of augmented heat transfer technology. This report presents a bibliography of US patents pertinent to that technology. The total number of patents cited is 454. They are presented in three separate lists: by patent number, alphabetically by first inventor, and by augmentation technique (with secondary arrangement according to mode of heat transfer).

  8. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  9. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  10. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnology Transfer

  11. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect (OSTI)

    Hayes, David K. [Los Alamos National Laboratory; Myers, William L. [Los Alamos National Laboratory

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  12. Oil spill response capabilities in the United States

    SciTech Connect (OSTI)

    Westermeyer, W.E. )

    1991-02-01

    The Exxon Valdez incident has been a catalyst for the US to reexamine its technology and policies for fighting oil spills. Many organizations are now at work on the problems highlighted by this sill, including federal and state agencies and the oil industry. It is hoped that the attention generated by the Exxon Valdez will result in fewer spills and a greatly improved capability to fight the ones that will still occur. Cleaning up a discharge of millions of gallons of oil at sea under even moderate environmental conditions is an extraordinary problem. Current national capabilities to respond effectively to such an accident are marginal at best. Response technologies must and will improve, but in addition and perhaps more importantly, many improvements can be made in the way the country has organized itself to fight major spills. Nonetheless, prevention is still the best medicine.

  13. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  14. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  15. New Criticality Safety Analysis Capabilities in SCALE 5.1

    SciTech Connect (OSTI)

    Bowman, Stephen M [ORNL; DeHart, Mark D [ORNL; Dunn, Michael E [ORNL; Goluoglu, Sedat [ORNL; Horwedel, James E [ORNL; Petrie Jr, Lester M [ORNL; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2007-01-01

    Version 5.1 of the SCALE computer software system developed at Oak Ridge National Laboratory, released in 2006, contains several significant enhancements for nuclear criticality safety analysis. This paper highlights new capabilities in SCALE 5.1, including improved resonance self-shielding capabilities; ENDF/B-VI.7 cross-section and covariance data libraries; HTML output for KENO V.a; analytical calculations of KENO-VI volumes with GeeWiz/KENO3D; new CENTRMST/PMCST modules for processing ENDF/B-VI data in TSUNAMI; SCALE Generalized Geometry Package in NEWT; KENO Monte Carlo depletion in TRITON; and plotting of cross-section and covariance data in Javapeno.

  16. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  17. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect (OSTI)

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  18. Development of a fourth generation predictive capability maturity model.

    SciTech Connect (OSTI)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  19. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  20. Quality Assurance Program Application for the Component Test Capability

    SciTech Connect (OSTI)

    Stephanin L. Austad

    2009-06-01

    This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

  1. Inteum is the database used by CURF to manage the technology transfer process, i.e. confidential invention disclosures, patents, licenses, etc.

    E-Print Network [OSTI]

    Stuart, Steven J.

    Inteum is the database used by CURF to manage the technology transfer process, i.e. confidential to the disclosure. The enhanced capability of Inventor Portal will greatly assist in CURF's technology evaluation

  2. Unmanned and Unattended Response Capability for Homeland Defense

    SciTech Connect (OSTI)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologies supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.

  3. Predictive Capability Maturity Model for computational modeling and simulation.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  4. Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis

    SciTech Connect (OSTI)

    Humberto E. Garcia

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  5. User's guide for the REBUS-3 fuel cycle analysis capability

    SciTech Connect (OSTI)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions.

  6. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  7. Total cost model for making sourcing decisions

    E-Print Network [OSTI]

    Morita, Mark, M.B.A. Massachusetts Institute of Technology

    2007-01-01

    This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

  8. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  9. Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene

    SciTech Connect (OSTI)

    Capasso, A.; Leoni, E.; Dikonimos, T.; Buonocore, F.; Lisi, N. [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00060 Rome (Italy); De Francesco, M. [ENEA, Technical Unit for Renewable Energies Sources, Casaccia Research Center, Via Anguillarese 301, 00060 Rome (Italy); Lancellotti, L.; Bobeico, E. [ENEA, Portici Research Centre, P.le E. Fermi 1, 80055 Portici (Italy); Sarto, M. S.; Tamburrano, A.; De Bellis, G. [Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), SSNLab, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy)

    2014-09-15

    The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.

  10. 8, 31433162, 2008 Total ozone over

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 3143­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Chemistry and Physics Discussions Total column ozone variations over oceanic region around Indian sub­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Abstract Introduction

  11. 5, 1133111375, 2005 NH total ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract Introduction On the possible causes of recent increases in NH total ozone from a statistical analysis of satellite data from License. 11331 #12;ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract

  12. 6, 39133943, 2006 Svalbard total ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 3913­3943, 2006 Svalbard total ozone C. Vogler et al. Title Page Abstract Introduction Discussions Re-evaluation of the 1950­1962 total ozone record from Longyearbyen, Svalbard C. Vogler 1 , S. Br total ozone C. Vogler et al. Title Page Abstract Introduction Conclusions References Tables Figures Back

  13. Total Algorithms \\Lambda Gerard Tel y

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total Algorithms \\Lambda Gerard Tel y Department of Computer Science, University of Utrecht, P and February 1993 Abstract We define the notion of total algorithms for networks of processes. A total algorithm enforces that a ``decision'' is taken by a subset of the processes, and that participation of all

  14. Seasonal persistence of midlatitude total ozone anomalies

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Seasonal persistence of midlatitude total ozone anomalies Article Published Version Fioletov, V. E. and Shepherd, T. G. (2003) Seasonal persistence of midlatitude total ozone anomalies. Geophysical Research persistence of midlatitude total ozone anomalies Vitali E. Fioletov Meteorological Service of Canada, Toronto

  15. The Role of Surface Chemistry on the Cycling and Rate Capability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium Positive Electrode Materials 2009 DOE...

  16. Ly{alpha} RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT

    SciTech Connect (OSTI)

    Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100, Copenhagen Oe (Denmark); Razoumov, Alexei O. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary's University, Halifax, NS, B3H3C3 (Canada); Sommer-Larsen, Jesper [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstrasse 2, D-85748 Garching (Germany)], E-mail: pela@dark-cosmology.dk, E-mail: razoumov@ap.smu.ca, E-mail: jslarsen@astro.ku.dk

    2009-05-01

    A numerical code for solving various Ly{alpha} radiative transfer (RT) problems is presented. The code is suitable for an arbitrary, three-dimensional distribution of Ly{alpha} emissivity, gas temperature, density, and velocity field. Capable of handling Ly{alpha} RT in an adaptively refined grid-based structure, it enables detailed investigation of the effects of clumpiness of the interstellar (or intergalactic) medium. The code is tested against various geometrically and physically idealized configurations for which analytical solutions exist, and subsequently applied to three different simulated high-resolution 'Lyman-break galaxies', extracted from high-resolution cosmological simulations at redshift z = 3.6. Proper treatment of the Ly{alpha} scattering reveals a diversity of surface brightness (SB) and line profiles. Specifically, for a given galaxy the maximum observed SB can vary by an order of magnitude, and the total flux by a factor of 3-6, depending on the viewing angle. This may provide an explanation for differences in observed properties of high-redshift galaxies, and in particular a possible physical link between Lyman-break galaxies and regular Ly{alpha} emitters.

  17. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  18. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  19. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  20. Verification of New Floating Capabilities in FAST v8: Preprint

    SciTech Connect (OSTI)

    Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.

    2015-01-01

    In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.

  1. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  2. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect (OSTI)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  3. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOE Patents [OSTI]

    Buelter, Thomas (Denver, CO); Meinhold, Peter (Denver, CO); Feldman, Reid M. Renny (San Francisco, CA); Hawkins, Andrew C. (Parker, CO); Urano, Jun (Irvine, CA); Bastian, Sabine (Pasadena, CA); Arnold, Frances (La Canada, CA)

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  4. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  5. Alternative fuel capabilities of the Mod II Stirling vehicle

    SciTech Connect (OSTI)

    Grandin, A.W.; Ernst, W.D.

    1988-01-01

    The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

  6. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E D SALSALS Capabilities

  7. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E DALS Capabilities Reveal

  8. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E DALS Capabilities

  9. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News BelowAskedAIKENALS Capabilities Reveal

  10. ORISE: Capabilities in National Security and Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHowAssetonCapabilities

  11. ORISE: Capabilities in environmental assessments and health physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISE technician performs a

  12. Initial demonstration of the NRC`s capability to conduct a performance assessment for a High-Level Waste Repository

    SciTech Connect (OSTI)

    Codell, R.; Eisenberg, N.; Fehringer, D.; Ford, W.; Margulies, T.; McCartin, T.; Park, J.; Randall, J.

    1992-05-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. This report documents an initial demonstration of this capability. The demonstration made use of the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada. By expanding and developing the NRC staff capability to conduct such analyses, NRC would be better able to conduct an independent technical review of the US Department of Energy (DOE) licensing submittals for a high-level waste (HLW) repository. These activities were divided initially into Phase 1 and Phase 2 activities. Additional phases may follow as part of a program of iterative performance assessment at the NRC. The NRC staff conducted Phase 1 activities primarily in CY 1989 with minimal participation from NRC contractors. The Phase 2 activities were to involve NRC contractors actively and to provide for the transfer of technology. The Phase 2 activities are scheduled to start in CY 1990, to allow Sandia National Laboratories to complete development and transfer of computer codes and the Center for Nuclear Waste Regulatory Analyses (CNWRA) to be in a position to assist in the acquisition of the codes.

  13. Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System

    E-Print Network [OSTI]

    Szabados, Barna

    were performed to determine the energy transfer capabilities of a flywheel coupled high speed permanent magnet synchronous machine through the proposed system's energy storage tank. Results are presented have helped generate much interest for the development of practical and highly efficient electric

  14. Enhanced impingement heat transfer using a Self-Oscillating Jet Impingement Nozzle array 

    E-Print Network [OSTI]

    Heatly, Michael Mincen

    1995-01-01

    A simple modification to an in-line jet (ILJ) has been proven to significantly increase its heat transfer capabilities. The transport properties of the ILJ were enhanced by the addition of a collar over the nozzle exit. When extended to the proper...

  15. Heat rate and maximum load capability improvements through cycle isolation

    SciTech Connect (OSTI)

    Coons, K. [Coronado Generating Station, Saint Johns, AZ (United States); Dimmick, J.G. [Leak Detection Services, Inc., Annapolis, MD (United States)

    1995-06-01

    Major improvements in maximum load capability and gross turbine heat rate were obtained at Salt River Project`s Coronado Unit 1, resulting from work done during the Spring 1993 overhaul. Corrected maximum load increased by 13.1 MW -- from 403.8 MW prior to the overhaul compared to 416.9 MW after the overhaul. Corrected gross turbine heat rate was reduced 270 BTU/kWH -- from 7,920 BTU/kWH before the overhaul to 7,650 BTU/kWH after the overhaul. Of the work done, the repair of leaking valves had the largest impact on cycle performance. The reduction of cycle leakage accounted for an increase of 9.9 MW in maximum load capability and a reduction to gross turbine heat rate of 190 BTU. Weekly maximum load tests, which started in August 1992 with the installation of an on-line monitoring system, show that maximum load had decreased approximately 4 MW during the six months prior to the overhaul. During this time there were no significant changes in HP or IP efficiencies, or any other directly-measured cycle parameters. Therefore, this degradation was attributed to cycle isolation valve leakage. Acoustic emission leak detection methods were used to identify leaking valves prior to the outage. Of the 138 valves tested for leakage, 31 valves had medium to very large leaks. Of these 31 leaking valves identified, 30 were repaired or replaced.

  16. EMERGING CAPABILITIES FOR MATERIALS CHARACTERIZATION WITH POLYCHROMATIC MICRODIFFRACTION8

    SciTech Connect (OSTI)

    Ice, Gene E [ORNL; Larson, Ben C [ORNL; Budai, John D [ORNL; Specht, Eliot D [ORNL; Barabash, Rozaliya [ORNL; Pang, Judy [ORNL; Tischler, Jonathan [Argonne National Laboratory (ANL); Liu, Wenjun [ORNL

    2014-01-01

    Polychromatic microdiffraction is an emerging tool for mapping local crystal structure with submicron three-dimensional resolution. The method is sensitive to the local crystal phase, crystallographic orientation, elastic strain, and lattice curvature. For many materials it is also nondestructive, which allows for unique experiments that probe how particular structural configurations evolve during processing and service. This capability opens up the possibility of testing and guiding theories without the limitations imposed by destructive techniques, surface-limited measurements or ensemble averages. This new capability will impact long-standing issues of materials science ranging from the factors that control anisotropic materials deformation to factors that influence grain growth, grain boundary migration, electromigration and stress driven materials evolution. Such mesoscopic phenomena are at the heart of virtually all materials processing and form the basis for modern materials engineering. Here we describe the state-of-the-art, and discuss new instrumentation with the promise of better sensitivity and better real and reciprocal space resolution. Example science and future research opportunities are described.

  17. on technology transfer, industry research +

    E-Print Network [OSTI]

    Cafarella, Michael J.

    on technology transfer, industry research + economic development annual report U N I V E R S I T Y and resources available at the University of Michigan as showcased in this year's Annual Report on Technology Transfer, Industry Research, and Economic Development. At the heart of the University's contributions

  18. 4065 (RP-664) Heat Transfer

    E-Print Network [OSTI]

    of roomsurface-to-air heat transmission is dependentonan accurateestimateof the filmcoefficient. Forty- eight4065 (RP-664) Convective Energy and Heat Transfer Thermal Load in Building Calculations Daniel E convection film coefficients significantly underpredict the rate of surface convective heat 'transfer

  19. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2003 Total Fuel Oil Consumption (million gallons) Fuel Oil Energy Intensity (gallonssquare foot) Energy Information Administration 2003 Commercial Buildings Energy Consumption...

  1. Generalized Gravitational Entropy from Total Derivative Action

    E-Print Network [OSTI]

    Dong, Xi

    2015-01-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  2. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    endorse the viewpoint of a publication or guarantee its technical correctness. Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual Permit for...

  3. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    SciTech Connect (OSTI)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-21

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  4. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01

    analysis of above flow resistance and energy cost, we know that the economy flux ratio of transfer heat-transfer means is between 0.54 and 0.85, namely sewage flux is smaller, and minC Cr min wwCVc?= . It is necessary to point out that though depending... efficiency of contranatant two pass thimble: ()213 1 11 21wwNn wz tt Cr tt 1n? ?? ?==?+ ? (1) Fig.1 Reverse-flow heat efficiency of TDHTS Contranatant single pass heat-transfer efficiency: ( ) ()1 1exp (1 ) 1exp (1)n Cr NTU Cr? = ?? ? ? Put...

  5. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect (OSTI)

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  6. New capabilities and applications for electrophoretically deposited coatings

    SciTech Connect (OSTI)

    Sharp, D.J.

    1991-01-01

    Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

  7. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Boehm, L.; Volin, K.J.; Delbecq, C.J.

    1982-05-06

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS/sub 2/, B/sub 2/S/sub 2/ and SiS/sub 2/ in mixture with a glass modifier such as Na/sub 2/S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1 - X) Na/sub 2/O:XB/sub 2/S/sub 3/ is disclosed.

  8. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Delbecq, C.J.; Volin, K.J.; Boehm, L.

    1984-02-21

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS[sub 2], B[sub 2]S[sub 3] and SiS[sub 2] in mixture with a glass modifier such as Na[sub 2]S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na[sub 2]O:XB[sub 2]S[sub 3] is disclosed. 4 figs.

  9. Y-12 defense programs: Nuclear Packaging Systems testing capabilities

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    The Nuclear Packaging Systems (NPS) Department can manage/accomplish any packaging task. The NPS organization is responsible for managing the design, testing, certification, procurement, operation, refurbishment, maintenance, and disposal of packaging used to transport radioactive materials, other hazardous materials, and general cargoes on public roads and within the Oak Ridge Y-12 Plant. Additionally, the NPS Department has developed a Quality Assurance plan for all packaging, design and procurement of nonweapon shipping containers for radioactive materials, and design and procurement of performance-oriented packaging for hazardous materials. Further, the NPS Department is responsible for preparation and submittal of Safety Analysis Reports for Packaging (SARP). The NPS Department coordinates shipping container procurement and safety certification activities that have lead-times of up to two years. A Packaging Testing Capabilities Table at the Oak Ridge complex is included as a table.

  10. Fission matrix capability for MCNP, Part II - Applications

    SciTech Connect (OSTI)

    Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R.

    2013-07-01

    This paper describes the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. Numerous examples are presented. A companion paper (Part I - Theory) describes the theoretical basis for the fission matrix method. (authors)

  11. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect (OSTI)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  12. Low resistance bakelite RPC study for high rate working capability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore »structure performs as efficiently as traditional RPCs.« less

  13. Stand Up of Uranium Capability for Swipe Analysis

    SciTech Connect (OSTI)

    Matthew Watrous; Anthony Appelhans; Robert Hague; Tracy Houghton; John Olson

    2013-11-01

    The INL has established the capability to process and analyze swipe samples to determine if the amount of U and Pu present on equipment and facilities are at the level typical for natural background, to quantify their isotopic composition and to determine if any off-normal isotopic ratio present in the sample is statistically relevant. A previous report detailed this capability for Pu and preliminarily for U; this report describes the measurements and analysis that were performed to demonstrate the INL capability for U. To establish that a piece of equipment is not contaminated with the element to be sampled, a fabric swipe is used to collect a sample of the materials present on the surface. The swipes are then processed and analyzed to determine if Pu and U are present on the sample at levels above what is accepted as natural background and, for the case of U, whether the isotope ratios deviate from the accepted natural background levels. Both the method applied for chemical processing of the swipes to remove and isolate the U and Pu and the method used to analyze the extracts influences the sensitivity and specificity. Over the years various methods have been developed for processing and analyzing these types of samples; the gold standard for these measurements involves a lengthy and complex separation process followed by analysis using thermal ionization mass spectrometry (TIMS). However, this method is expensive and time consuming, thus driving a need for a less complicated and more efficient method that provides the necessary level of sensitivity and specificity. Advances in Inductively Coupled Plasma Mass Spectrometry (ICPMS) over the last decade have enabled analyses of U and Pu that rival that of TIMS. This, coupled with the potential for simplifying the extraction and separation process required for an ICPMS analysis, prompted the INL’s development of methods that provide the analysis of swipes in a timely and efficient manner. U is present in the blank swipe material at nanogram (~2 x 10-9 g) levels for a typical sample, a level easily detected with ICPMS. The abundance of the isotopes ranges over 4 orders of magnitude for the naturally occurring 234U, 235U and 238U and a goal was set to be able to detect the presence of 236U at 6 orders of magnitude lower than the 238U. The 236U measurement is particularly important because the presence of 236U is a strong indicator that the uranium as been in a nuclear reactor. To demonstrate these capabilities the following sample types were used: blank swipe material, blank process reagents, swipe material spiked with a natural abundance U isotope standard, swipe material spiked with an environmental standard (Columbia River sediment), and swipes taken at various locations within the processing laboratories and the INL environment. This report summarizes the method used to extract the U from the swipe material, the ICPMS analyses that demonstrate the limit of detection (LOD) and the limit of quantification (LOQ) for the U isotopes of interest, the precision of the measured isotope ratios and the dependence of precision on the quantity of U present, and the method proposed to determine if an off-normal ratio is statistically relevant.

  14. Final Technical Report: Development of Post?Installation Monitoring Capabilities

    SciTech Connect (OSTI)

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large?scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under?developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6?meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger?scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization of the subsea base support structure. In support of these plans, the project team developed and field tested a strobe?illuminated stereooptical camera system suitable for studying near?turbine interactions with marine animals. The camera system underwent short?term field testing at the proposed turbine deployment site and a multi?month endurance test in shallower water to evaluate the effectiveness of biofouling mitigation measures for the optical ports on camera and strobe pressure housings. These tests demonstrated that the camera system is likely to meet the objectives of the near?turbine monitoring plan and operate, without maintenance, for periods of at least three months. The project team also advanced monitoring capabilities related to passive acoustic monitoring of marine mammals and monitoring of tidal currents. These capabilities will be integrated in a recoverable monitoring package that has a single interface point with the OpenHydro turbines, connects to shore power and data via a wet?mate connector, and can be recovered to the surface for maintenance and reconfiguration independent of the turbine. A logical next step would be to integrate these instruments within the package, such that one instrument can trigger the operation of another.

  15. Wireless communication capability of a reconfigurable plasma antenna

    SciTech Connect (OSTI)

    Kumar, Rajneesh [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India); Bora, Dhiraj [ITER Organisation, Cadarache-13108 (France)

    2011-03-15

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  16. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  17. Technology transfer personnel exchange at the Boeing Company

    SciTech Connect (OSTI)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application. The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.

  18. Technology transfer personnel exchange at the Boeing Company

    SciTech Connect (OSTI)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application. The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.

  19. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  20. NREL Quickens its Tech Transfer Efforts

    SciTech Connect (OSTI)

    Lammers, H.

    2012-02-01

    Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent portfolio, often companies are looking to do more than just license a technology. These relationships are invaluable in successfully moving technologies from NREL to the marketplace. 'We may generate new and potentially valuable innovations, but our commercialization partners do the heavy work of building a successful business around our technology,' Farris said. Tools such as CRADAs (Cooperative Research and Development Agreements) allow NREL to continue working with companies to refine and develop technologies. And, working with businesses is an area where NREL excels. NREL is responsible for one quarter of the CRADAs in the DOE system. 'When you look at the results of our CRADA program, you can demonstrate that we are actively engaged with companies in collaborating on research and moving technologies to market,' Farris said. NREL is first among DOE labs with 186 active CRADAs. And last year, NREL also was first with the number of new CRADAs signed. 'Part of the success in our working with industry goes back to NREL's mission to grow and support new industries,' Farris added. 'NREL has basic research capabilities, but we are never going to be the ultimate producer of a commercial product. That is the role of the private sector.' Farris also credits the advocacy and support that the Office of Energy Efficiency and Renewable Energy at DOE provides for these technology transfer activities. 'EERE's support is critical to our success,' Farris said. To assist the private sector in moving a technology from the lab to the manufacturing line, NREL has a number of programs in place to give that first, or even final, nudge toward commercialization. For instance, the Commercialization Assistance Program helps startups overcome technical barriers by granting free access to 40 hours of work at the lab. Through the Innovation and Entrepreneurship Center, NREL also helps clean energy businesses develop strong links with the financial community, as well as other key stakeholders in the commercialization process. In March, NREL formally opened the Colorado Center for Renewable Ene

  1. Vrije Universiteit Brussel Technology Transfer Interface

    E-Print Network [OSTI]

    Goelzer, Heiko

    Vrije Universiteit Brussel Technology Transfer Interface -connecting science and society- [for Prof. Hugo Thienpont More Information Technology Transfer Interface (TTI) Vrije Universiteit Brussel.interface@vub.ac.be - www.vubtechtransfer.be Vrije Universiteit Brussel Technology Transfer Interface -connecting science

  2. Nanoparticles for heat transfer and thermal energy storage

    DOE Patents [OSTI]

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  3. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect (OSTI)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  4. Direct memory access transfer completion notification

    DOE Patents [OSTI]

    Chen, Dong (Croton on Hudson, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Kumar, Sameer (White Plains, NY); Parker, Jeffrey J. (Rochester, MN); Steinmacher-Burow, Burkhard D. (Esslingen, DE); Vranas, Pavlos (Danville, CA)

    2010-07-27

    Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.

  5. DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

    SciTech Connect (OSTI)

    Adamson, D.

    2011-08-04

    In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22{sup nd} scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 {mu}m stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 {mu}m stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U{sub o}D=0.63 ft{sup 2}/s) or 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The demonstrations that used simulants that ranged from 1.6 Pa to 7 Pa yield stress had the most successful batch transfer of solids to the RTs in terms of the total quantity of seed particles transferred. Testing suggest that when mixing water/seed particles and transferring, water provides the least desired batch transfer of solids based on the total quantity transferred. For the water tests, large dead zones of solids formed in the MDT and fewer solids get transferred to the RTs. For simulants with a yield stress of 0.3 Pa and below, the batch transfer behavior in terms of total transfer of seed particles was slightly higher than water test results. The testing did show somewhat more batch-to-batch variation in the transfer of seed particles with the slurries in comparison to water. A comparison of batch transfers with the kaolin slurries that had Bingham consistencies (viscosities) that wernearly the same as the Newtonian glycerol/water mixtures showed that the kaolin slurries with Bingham yield stresses of 1.6 and 7 Pa gave better batch transfer of seed particles based on the total quantities transferred. Overall, the batch transfer testing results show that testing with water is conservative, since using a simulant with a yield stress and/or elevated viscosity always resulted in a better total transfer of solids.

  6. Technology Transfer Overview | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

  7. MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER

    E-Print Network [OSTI]

    Lahey, Richard T.

    MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

  8. Testing the Delayed Gamma Capability in MCNP6

    SciTech Connect (OSTI)

    Weldon, Robert A.; Fensin, Michael L.; Mckinney, Gregg W.

    2014-01-01

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modelling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy. Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy and multiplicity. The delayed particle capability was initially given a time bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by D. Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data, but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by A. W.Hunt, Vladimir Mozin, E.T.E. Reedy, H.A. Selpel and Steve Tobin at the Idaho Accelerator Center; however, due to the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented here is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for 2 particular sets of decay systems. We examine five different decay chains (two stage decay to stable), and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g. Ba-137), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often greater than 40% (Mg-28, Al-28, K- 42, Ca-47, Sc-47, Co-60). With the MNCP6 1.1 Beta release, the 10th entry on the DBCN card allows improved calculation within less than 5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the 10th entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it did little to improve daughter emissions of secular equilibrium systems. Hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.

  9. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering Operations

  10. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Biomedical Engineering* Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering

  11. Knowledge Capture and Transfer Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences...

  12. Electrohydrodynamically enhanced condensation heat transfer 

    E-Print Network [OSTI]

    Wawzyniak, Markus

    1993-01-01

    In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

  13. Wireless transfer of electric power

    E-Print Network [OSTI]

    Moffatt, Robert Alexander

    2009-01-01

    In this dissertation, I describe the design and construction of a system which can transfer electric power wirelessly. This is accomplished using inductive, near-field, non-radiative coupling between self-resonant copper ...

  14. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect (OSTI)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

  15. Automatic computation of transfer functions

    DOE Patents [OSTI]

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  16. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  17. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    SciTech Connect (OSTI)

    Lehmberg, R. H. [Research Support Instruments, Inc., Lanham, Maryland 20706 (United States); Giuliani, J. L.; Schmitt, A. J. [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2009-07-15

    This paper describes a rep-rated multibeam KrF laser driver design for the 500 kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the approx4 MW/cm{sup 2} saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of approx1 ns. For the chosen pulse, which gives a predicted fusion energy gain of approx120, the simulations predict the FTF can deliver a total on-target energy of 428 kJ, a peak spike power of 385 TW, and amplified spontaneous emission prepulse contrast ratios I{sub ASE}/I<3x10{sup -7} in intensity and F{sub ASE}/F<1.5x10{sup -5} in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248 nm light and a 1 mum control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  18. Local, instantaneous heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics; Beasley, D.E. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

    1996-12-31

    The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 {micro}m and total fluidization ratios ranging from 1.1 through 2.7. Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.

  19. A workshop on enhanced national capability for neutron scattering

    SciTech Connect (OSTI)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  20. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    SciTech Connect (OSTI)

    Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

  1. Fission matrix capability for MCNP, Part I - Theory

    SciTech Connect (OSTI)

    Brown, F. B.; Carney, S. E.; Kiedrowski, B. C.; Martin, W. R.

    2013-07-01

    The theory underlying the fission matrix method is derived using a rigorous Green's function approach. The method is then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. We provide evidence that an infinite set of discrete, real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined. We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to the transpose of the forward matrix. While the energy-dependent transport equation is strictly bi-orthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for a variety of continuous-energy problems. A companion paper (Part II - Applications) describes the initial experience and results from implementing this fission matrix capability into the MCNP Monte Carlo code. (authors)

  2. A high capability teleoperated vehicle for hazardous applications

    SciTech Connect (OSTI)

    Dudar, A.M.; Witherspoon, R.L.

    1995-09-01

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste.

  3. Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

  4. Total synthesis of cyclotryptamine and diketopiperazine alkaloids

    E-Print Network [OSTI]

    Kim, Justin, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

  5. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  6. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  7. Total Energy Management in General Motors 

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  8. Total synthesis and study of myrmicarin alkaloids

    E-Print Network [OSTI]

    Ondrus, Alison Evelynn, 1981-

    2009-01-01

    I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

  9. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  10. Capabilities, Configurations, and Leveraging Strategies: an Investigation of the Leveraging Process of Resource Orchestration 

    E-Print Network [OSTI]

    Boss, David S

    2014-08-21

    process, particularly as it relates to the types of capabilities needed to form capability configurations that are coordinated and deployed. Further, principles of configuration theory have yet to be applied to the resource-based view of the firm. Herein...

  11. Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones

    E-Print Network [OSTI]

    Albert, Mark V.

    To be effective, a prescribed prosthetic device must match the functional requirements and capabilities of each patient. These capabilities are usually assessed by a clinician and reported by the Medicare K-level designation ...

  12. Improvements to TITAN's Mass Measurement and Decay Spectroscopy Capabilities

    E-Print Network [OSTI]

    D. Lascar; A. A. Kwiatkowski; U. Chowdhury; A. Finlay; A. T. Gallant; M. Good; R. Klawitter; B. Kootte; K. G. Leach; A. Lennarz; E. Leistenschneider; B. E. Schultz; R. Schupp; D. A. Short; C. Andreoiu; J. Dilling; G. Gwinner

    2015-08-27

    The study of nuclei farther from the valley of $\\beta$-stability goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their more stable counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS Conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's electron beam ion trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity and opens the door to access, via in-trap decay and recapture, isotopes not available from the ISOL method. This was recently demonstrated during TITAN's mass measurement of $^{30}$Al. The EBIT's decay spectroscopy setup was commissioned with a successful branching ratio and half-life measurement of $^{124}$Cs. Charge breeding in the EBIT increases the energy spread of the ion bunch sent to the Penning trap for mass measurement so a new Cooler Penning Trap (CPET), which aims to cool highly charge ions with an electron plasma, is undergoing online commissioning. Already, CPET has demonstrated the trapping and self-cooling of a room-temperature electron plasma which was stored for several minutes. A new detector has been installed inside the CPET magnetic field which will allow for in-magnet charged particle detection.

  13. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  14. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  15. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect (OSTI)

    David Hamilton

    2004-12-31

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  16. Water and Capabilities Guest Editor of this issue: Jacqueline Goldin, jgoldin@uwc.ac.za

    E-Print Network [OSTI]

    Water and Capabilities Guest Editor of this issue: Jacqueline Goldin, jgoldin@uwc.ac.za HDCA) ------------------------------------------------------------------- Elements of Feminist Political Ecology and Capabilities (Leila Harris) Access to Water and the Capability Approach (PB Anand) Water Insecurity, Emotional Distress, and Mental Illness: Implications for Human

  17. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  18. Development of the prototype pneumatic transfer system for ITER neutron activation system

    SciTech Connect (OSTI)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-15

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  19. Radiative transfer in decomposed domains

    E-Print Network [OSTI]

    T. Heinemann; W. Dobler; A. Nordlund; A. Brandenburg

    2005-11-09

    An efficient algorithm for calculating radiative transfer on massively parallel computers using domain decomposition is presented. The integral formulation of the transfer equation is used to divide the problem into a local but compute-intensive part for calculating the intensity and optical depth integrals, and a nonlocal part for communicating the intensity between adjacent processors. The waiting time of idle processors during the nonlocal communication part does not have a severe impact on the scaling. The wall clock time thus scales nearly linearly with the inverse number of processors.

  20. The $?^* ?^*$ total cross section in NLA BFKL

    E-Print Network [OSTI]

    Dmitry Yu. Ivanov; Beatrice Murdaca; Alessandro Papa

    2014-11-16

    We study the $\\gamma^* \\gamma^*$ total cross section in the NLA BFKL approach. We have extracted the NLO corrections to the photon impact factor from two recent papers of Balitsky and Chirilli and Chirilli and Kovchegov and used them to build several representations of the total cross section, equivalent within the NLA. We have combined these different representations with two among the most common methods for the optimization of a perturbative series, namely PMS and BLM, and compared their behavior with the energy with the only available experimental data, those from the LEP2 collider.