Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

2

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

3

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

4

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

5

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

6

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

7

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

8

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

9

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

10

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

11

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

12

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

13

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...Katan MB.Underestimation of energy intake by 3-d records compared with energy intake to maintain body weight...Multimodel Inference.2nd ed.New York:Springer;2002. Supplementary...the Observing Protein and Energy Nutrition (OPEN) study...

Nataša Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

14

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...whereas in analysis with energy-adjusted intakes...epidemiology may have prevented us from detecting a causal...and overreporting of energy intake related to weight status and lifestyle in a nationwide...Elliott P.Who are the low energy reporters' in the dietary...

Nataša Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

15

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

16

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

17

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

18

Prospective Investigation of Poultry and Fish Intake in Relation to Cancer Risk  

Science Journals Connector (OSTI)

...566,401 completed the survey satisfactorily and consented...women: 318 kcal) total energy intake beyond twice the...1994-1996 USDA Continuing Survey of Food Intakes by Individuals...consuming skin and light or dark meat. Total fish intake...were adjusted for total energy intake using the nutrient...

Carrie R. Daniel; Amanda J. Cross; Barry I. Graubard; Albert R. Hollenbeck; Yikyung Park; and Rashmi Sinha

2011-11-01T23:59:59.000Z

19

Vitamin D Intake and the Risk for Pancreatic Cancer in Two Cohort Studies  

Science Journals Connector (OSTI)

...intervals), and total energy intake (kcal). * Multivariate...increasing categories of energy-adjusted total vitamin...both cohorts, whereas dark fish (salmon, mackerel...Nutrition Examination Survey. Cancer Epidemiol Biomarkers...Stampfer MJ. Total energy intake: implications...

Halcyon G. Skinner; Dominique S. Michaud; Edward Giovannucci; Walter C. Willett; Graham A. Colditz; and Charles S. Fuchs

2006-09-01T23:59:59.000Z

20

Dietary B Vitamin and Methionine Intakes and Plasma Folate Are Not Associated with Colorectal Cancer Risk in Chinese Women  

Science Journals Connector (OSTI)

...and daily intakes of energy, vegetables, fruits...attainment, baseline household income, smoking status...and daily intakes of energy, vegetables, fruits...Stampfer MJ. Total energy intake: implications...case-control study in Japan. Nutr Cancer 2005...

Martha J. Shrubsole; Gong Yang; Yu-Tang Gao; Wang Ho Chow; Xiao Ou Shu; Qiuyin Cai; Nathaniel Rothman; Jin Gao; Conrad Wagner; and Wei Zheng

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reduced Risk of Colon Cancer with High Intake of Vitamin E: The Iowa Women's Health Study  

Science Journals Connector (OSTI)

...Further adjustment for total energy intake and other risk factors...Further adjustment for total energy intake and other risk factors...payment of page charges. This a tide must therefore be hereby marked...implausibly high or low total daily energy intake (5000 kcal...

Roberd M. Bostick; John D. Potter; David R. McKenzie; Thomas A. Sellers; Lawrence H. Kushi; Kristi A. Steinmetz; and Aaron R. Folsom

1993-09-15T23:59:59.000Z

22

Soyfood Intake during Adolescence and Subsequent Risk of Breast Cancer among Chinese Women  

Science Journals Connector (OSTI)

...Relative to the lowest quartile of energy-adjusted total soy intake...daidzein, and glycitein in market samples of common soyfoods in...confounders (9) . To adjust for energy intake, all foods and nutrients...either as percentage of total energy or as weight/1000 Kcal. Intake...

Xiao Ou Shu; Fan Jin; Qi Dai; Wanqing Wen; John D. Potter; Lawrence H. Kushi; Zhixian Ruan; Yu-Tang Gao; and Wei Zheng

2001-05-01T23:59:59.000Z

23

Semi-continuous Tap-water Aerator  

Science Journals Connector (OSTI)

...a cooling environment. This use for insulation must be a fairly recent innovation because...many of the most highly specialized thermal animals, the birds, do not acquire...glass tubing used are equivalent to the specifications outlined in Fig. la. The aeration...

E. C. CANTINO; E. D. HATFIELD

1946-01-18T23:59:59.000Z

24

Shock-less Hypersonic Intakes.  

E-Print Network (OSTI)

??The accuracy of CFD for simulating hypersonic air intake flow is verified by calculating the flow inside a Busemann type intake. The CFD results are… (more)

Miri, Seyed Hossein

2012-01-01T23:59:59.000Z

25

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...activity, alcohol consumption, diet (69-item...Assessment of obesity and energy intake Participants...North Carolina). Energy intake and total...status, alcohol consumption, smoking, BMI...of cancer in the world: comparative risk...height, body mass, energy intake, and physical...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

26

Organotin intake through fish consumption in Finland  

SciTech Connect

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

27

Contribution of cod liver oil related nutrients –vitamins A, D, E and eicosapentaenoic acid and docosahexaenoic acid- to daily nutrient intake and their associations with plasma concentrations in the EPIC-Norfolk cohort  

E-Print Network (OSTI)

Background: Total Nutrient Intake (TNI) is intake from food and supplements. This provides assessment of nutrient adequacy, prevalence of excessive intake as well as response on biomarkers. Cod liver oil (CLO) is the most frequently consumed...

Lentjes, Marleen A. H.; Mulligan, Angela A.; Welch, Ailsa A.; Bhaniani, Amit; Luben, Robert N.; Khaw, Kay-Tee

2014-09-16T23:59:59.000Z

28

Energy Intake and Risk of Postmenopausal Breast Cancer: An Expanded Analysis in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort  

Science Journals Connector (OSTI)

...high (4.5) diet quality score groups (P 0...survivors with low diet quality scores had lower intake of total energy, protein, carbohydrate...for age and total energy intake (Model 1...covariates and diet quality scores, the risk...

Laura Y. Sue; Catherine Schairer; Xiaomei Ma; Craig Williams; Shih-Chen Chang; Anthony B. Miller; Catherine A. McCarty; Bradley J. Willcox; and Regina G. Ziegler

2009-11-01T23:59:59.000Z

29

Acceptable Daily Intake (ADI)  

Science Journals Connector (OSTI)

Abstract The acceptable daily intake (ADI) is commonly defined as the maximum amount of a chemical to which a person can be exposed, on a daily basis over an extended period of time, usually without suffering a deleterious effect. It represents a daily intake level of a chemical in humans that is associated with minimal or no risk of adverse effects, and if the ingestion exceeds, this amount may cause toxic effects. It is a numerical estimate of daily oral exposure to the human population, including sensitive subgroups such as children, that is not likely to cause harmful effects during a lifetime. The ADI is expressed in milligrams of the chemical, as it appears in the food, per kilogram of body weight per day (mg kg?1 day?1).

J. Chilakapati; H.M. Mehendale

2014-01-01T23:59:59.000Z

30

Effect of Intake on Compressor Performance  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet briefly describes the effect of intake air on air compressor performance, offers guidance on selecting intake air filters, and outlines when to pursue filter replacement.

31

Vitamin D Intake and the Risk for Pancreatic Cancer in Two Cohort Studies  

Science Journals Connector (OSTI)

...were compared with the total energy-adjusted vitamin D intake...questionnaires. The (age, sex, energy) adjusted mean concentrations...smoking, and diabetes. Because solar UV light exposure is strongly...Arizona, Wyoming, Colorado, New Mexico, Nebraska, Kansas, Oklahoma...

Halcyon G. Skinner; Dominique S. Michaud; Edward Giovannucci; Walter C. Willett; Graham A. Colditz; and Charles S. Fuchs

2006-09-01T23:59:59.000Z

32

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

33

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

34

Association of Energy Intake and Energy Balance with Postmenopausal Breast Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial  

Science Journals Connector (OSTI)

...four measures of dietary quality (total energy, energy from fat, FV...servings). Overall, dietary quality was poor, with mean...differences in dietary quality by drinking status; mean daily total energy intake was higher among...

Shih-Chen Chang; Regina G. Ziegler; Barbara Dunn; Rachael Stolzenberg-Solomon; James V. Lacey, Jr.; Wen-Yi Huang; Arthur Schatzkin; Douglas Reding; Robert N. Hoover; Patricia Hartge; and Michael F. Leitzmann

2006-02-01T23:59:59.000Z

35

Group Level Validation of Protein Intakes Estimated by 24-Hour Diet Recall and Dietary Questionnaires against 24-Hour Urinary Nitrogen in the European Prospective Investigation into Cancer and Nutrition (EPIC) Calibration Study  

Science Journals Connector (OSTI)

...standard units and household measurements. Trained...average N and energy intakes were...considered the units of observation...dietary N (energy intakes), when dietary measurements (24-HDRs...or total energy intakes...the dietary measurement error characteristics...calibration. | Unit of Nutrition...

Nadia Slimani; Sheila Bingham; Shirley Runswick; Pietro Ferrari; Nicholas E. Day; Ailsa A. Welch; Timothy J. Key; Antony B. Miller; Heiner Boeing; Sabina Sieri; Fabrizio Veglia; Dominico Palli; Salvatore Panico; Rosario Tumino; Bas Bueno-de-Mesquita; Marga C. Ocké; Françoise Clavel-Chapelon; Antonia Trichopoulou; Wija A. van Staveren; and Elio Riboli

2003-08-01T23:59:59.000Z

36

A Prospective Study of Plasma Total Cysteine and Risk of Breast Cancer  

Science Journals Connector (OSTI)

...processing, and storage, which limits...for a dose-response assessment...modulates immune responses as well as...and 1990 food frequency questionnaires...adjusted for total energy intake. Table...collection, storage and derivatization...Oxidant stress responses in premature...Intakes for Energy, Carbohydrate...

Shumin M. Zhang; Walter C. Willett; Jacob Selhub; JoAnn E. Manson; Graham A. Colditz; and Susan E. Hankinson

2003-11-01T23:59:59.000Z

37

Seafood Intake and Neurodevelopment: A Systematic Review  

Science Journals Connector (OSTI)

Exposure to fish intake is of particular interest for neurodevelopment. Seafood contains nutrients that are essential for brain development and function. Seafood is also a potential source of well- ... of the lit...

Claudia B. Avella-Garcia; Jordi Julvez

2014-03-01T23:59:59.000Z

38

Calcium Intake and Lung Cancer Risk Among Female Nonsmokers: A Report from the Shanghai Women's Health Study  

Science Journals Connector (OSTI)

...time of our baseline survey, when the FFQ was administered...exposure and relatively dark skin, may have resulted...time of our baseline survey. In addition, information...Table 2. Age- and total energy intake-adjusted nutrient...Noncases Cases P Total energy, Kcal/d b 1677 1...

Yumie Takata; Xiao-Ou Shu; Gong Yang; Honglan Li; Qi Dai; Jing Gao; Qiuyin Cai; Yu-Tang Gao; and Wei Zheng

2013-01-01T23:59:59.000Z

39

Calcium Intake and Lung Cancer Risk Among Female Nonsmokers: A Report from the Shanghai Women's Health Study  

Science Journals Connector (OSTI)

...100,000 person-years in Japan; ref. 16). In addition...13.0% 0.92 Income (per household) 10,000 yuan 15.7% 15...Table 2. Age- and total energy intake-adjusted nutrient...baseline a Noncases Cases P Total energy, Kcal/d b 1677 1.5 1675...

Yumie Takata; Xiao-Ou Shu; Gong Yang; Honglan Li; Qi Dai; Jing Gao; Qiuyin Cai; Yu-Tang Gao; and Wei Zheng

2013-01-01T23:59:59.000Z

40

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......modelling. In: Quantification of cancer and non-cancer risks associated with multiple...distribution in the air of the uranium mine, Rozna, Czech Republic...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Association of Energy Intake and Energy Balance with Postmenopausal Breast Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial  

Science Journals Connector (OSTI)

...extreme estimates of energy consumption (upper or lower...Implication of total energy intake for epidemiologic...equation for resting energy expenditure in...per capita food consumption. Cancer 1986...of the effect of World War II in Norway...

Shih-Chen Chang; Regina G. Ziegler; Barbara Dunn; Rachael Stolzenberg-Solomon; James V. Lacey, Jr.; Wen-Yi Huang; Arthur Schatzkin; Douglas Reding; Robert N. Hoover; Patricia Hartge; and Michael F. Leitzmann

2006-02-01T23:59:59.000Z

42

Dietary lignan intakes and survival in women with breast cancer in the Western New York Exposures and Breast Cancer (WEB) Study  

Science Journals Connector (OSTI)

...with breast cancer in the Western New York Exposures and Breast Cancer (WEB...cancer, participants in the Western New York Exposures and Breast Cancer Study...models adjusting for age, total energy intake, stage, and body mass index...

Susan McCann; Jing Nie; Joan Dorn; Maurizio Trevisan; Amy Millen; Peter Shields; Michele Schelske-Santos; Christine Ambrosone; Catalan Marian; Dominica Vito; Stephen Edge; and Jo Freudenheim

2008-05-01T23:59:59.000Z

43

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

44

High dietary methionine intake increases the risk of acute coronary events in middle-aged men  

Science Journals Connector (OSTI)

Background and aim Homocysteine, a methionine metabolite, is suggested to be a risk factor for cardiovascular diseases (CVD). To date, the effects of dietary intake of methionine, the key amino acid in homocysteine metabolism, on CVD have not been studied. Our aim was to examine the effects of dietary methionine intake on the risk of acute coronary events. Methods and results We examined the effects of dietary methionine intake, assessed with 4-d food record, on acute coronary events in a prospective cohort study consisting of 1981 coronary disease free men from eastern Finland, aged 42–60 years at baseline in 1984–89, in the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. During an average follow-up time of 14.0 years, 292 subjects experienced an acute coronary event. In a Cox proportional hazards model adjusting for age, examination years, BMI, urinary nicotine metabolites and protein intake (excluding methionine) the relative risks of acute coronary event in the three highest quarters of dietary methionine intake were 1.31 (95% CI: 0.92, 1.86), 1.31 (95% CI: 0.88, 1.96) and 2.08 (95% CI: 1.31, 3.29) as compared with the lowest quarter. Further adjustments did not change the results. However, opposite association was observed with total protein intake, which tended to decrease the risk. Conclusions The main finding of this study is that long-term, moderately high dietary methionine intake may increase the risk of acute coronary events in middle-aged Finnish men free of prior CHD. More prospective research is needed to confirm the role of dietary methionine in the development of CVD, and whether its effects are independent of homocysteine.

Jyrki K. Virtanen; Sari Voutilainen; Tiina H. Rissanen; Pertti Happonen; Jaakko Mursu; Jari A. Laukkanen; Henrik Poulsen; Timo A. Lakka; Jukka T. Salonen

2006-01-01T23:59:59.000Z

45

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

46

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network (OSTI)

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

47

Intake retention functions and derived investigation levels for selected radioelements  

E-Print Network (OSTI)

an element is preferentially excreted via feces, as in clearance of class Y material from the lung. In addition, the ICRP recommends its use in special investigations, particularly following a known or suspected intake by inhalation of class W or Y.... INHALATION I RACTION OF INTAKE 2. 12. INDOS TECHNIQUE. 3. DEVELOPMENT . . . . . 19 . . . 26 . . . 29 . . . 30 Page 3. 1. ELEMENTS. . 3. 2. INTAKE PATHWAY. 3. 3. METABOLIC DATA. . 3. 4. EXCRETION DATA. . . 3. S. INTAKE DATA. 4. RESULTS...

Buitron Sanchez, Susana

2012-06-07T23:59:59.000Z

48

Inhalation and Ingestion Intakes with Associated Dose Estimates for Level II and Level III Personnel Using Capstone Study Data  

SciTech Connect

Depleted uranium (DU) intake rates and subsequent dose rates were estimated for personnel entering armored combat vehicles perforated with DU penetrators (level II and level III personnel) using data generated during the Capstone Depleted Uranium (DU) Aerosol Study. Inhalation intake rates and associated dose rates were estimated from cascade impactors worn by sample recovery personnel and from cascade impactors that served as area monitors. Ingestion intake rates and associated dose rates were estimated from cotton gloves worn by sample recovery personnel and from wipe test samples from the interior of vehicles perforated with large caliber DU munitions. The mean DU inhalation intake rate for level II personnel ranged from 0.447 mg h-1 based on breathing zone monitor data (in and around a perforated vehicle) to 14.5 mg h-1 based on area monitor data (in a perforated vehicle). The mean DU ingestion intake rate for level II ranged from 4.8 mg h-1 to 38.9 mg h-1 based on the wipe test data including surface to glove transfer factors derived from the Capstone data. Based on glove contamination data, the mean DU ingestion intake rates for level II and level III personnel were 10.6 mg h-1 was and 1.78 mg h-1, respectively. Effective dose rates and peak kidney uranium concentration rates were calculated based on the intake rates. The peak kidney uranium concentration rate cannot be multiplied by the total exposure duration when multiple intakes occur because uranium will clear from the kidney between the exposures.

Szrom, Fran; Falo, Gerald A.; Lodde, Gordon M.; Parkhurst, MaryAnn; Daxon, Eric G.

2009-03-01T23:59:59.000Z

49

Trends in Energy Intake among US Children by Eating Location and Food Source, 1977-2006  

Science Journals Connector (OSTI)

Background Little is known about the influence of location of food consumption and preparation upon daily energy intake of children. Objective To examine trends in daily energy intake by children for foods eaten at home or away from home, by source of preparation, and for combined categories of eating location and food source. Subjects The analysis uses data from 29,217 children aged 2 to 18 years from the 1977-1978 Nationwide Food Consumption Survey, 1989-1991 and 1994-1998 Continuing Survey of Food Intakes by Individuals, and 2003-2006 National Health and Nutrition Examination Surveys. Methods Nationally representative weighted percentages and means of daily energy intake by eating location were analyzed for trends from 1977 to 2006. Comparisons by food source were examined from 1994 to 2006. Analyses were repeated for three age groups: 2 to 6 years, 7 to 12 years, and 13 to 18 years. Difference testing was conducted using a t test. Results Increased energy intake (+179 kcal/day) by children from 1977-2006 was associated with a major increase in energy eaten away from home (+255 kcal/day). The percentage of daily energy eaten away from home increased from 23.4% to 33.9% from 1977-2006. No further increase was observed from 1994-2006, but the sources of energy shifted. The percentage of energy from fast food increased to surpass intake from schools and become the largest contributor to foods prepared away from home for all age groups. For foods eaten away from home, the percentage of daily energy from stores increased to become the largest source of energy eaten away from home. Fast food eaten at home and store-bought food eaten away from home increased significantly. Conclusions Eating location and food source significantly influence daily energy intake for children. Foods prepared away from home, including fast food eaten at home and store-prepared food eaten away from home, are fueling the increase in total energy intake. However, further research using alternative data sources is necessary to verify that store-bought foods eaten away from home are increasingly store-prepared.

Jennifer M. Poti; Barry M. Popkin

2011-01-01T23:59:59.000Z

50

Prospective Study of Solar Exposure, Dietary Vitamin D Intake, and Risk of Breast Cancer among Middle-aged Women  

Science Journals Connector (OSTI)

...cancer risk was not related to solar exposure variables, including...assess the association between solar exposure and dietary or supplementary...n = 1,213), had total energy intake outside of the 1% to...843), or lacked data on all solar exposure variables (26...

Hannah Kuper; Ling Yang; Sven Sandin; Marie Lof; Hans-Olov Adami; and Elisabete Weiderpass

2009-09-01T23:59:59.000Z

51

Equol-Producing Status, Isoflavone Intake, and Breast Density in a Sample of U.S. Chinese Women  

Science Journals Connector (OSTI)

...Health and Human Services, US Department of Agriculture...ed. Washington, DC: US Government Printing Office; 2005. 11. US Department of Agriculture...defining equol-producer status and its frequency among...W , Stampfer M.Total energy intake: implications...

Marilyn Tseng; Celia Byrne; Mindy S. Kurzer; and Carolyn Y. Fang

2013-11-01T23:59:59.000Z

52

CMC intake ramp for hypersonic propulsion systems  

SciTech Connect

An alternative technology to produce CMC structural components with lower costs and shorter manufacturing times has been developed at the DLR. The process is based on liquid silicon infiltration (LSI) into porous carbon/carbon resulting in a C/C-SiC material whereby the load carrying fibres are internally protected against oxidation by SiC. The material`s adequate strength levels and the high reproducibility of the state-of-the-art process now allows the realization of CMC components. Representing a very complex structure of high integrity, an intake ramp for a hypersonic propulsion system has been designed, manufactured and tested, which is described in this paper.

Kochendoerfer, R.; Krenkel, W. [Institute of Structures and Design, Stuttgart, (Germany)

1995-12-01T23:59:59.000Z

53

Factors influencing food intake of Hispanic children  

Science Journals Connector (OSTI)

The diets of Hispanic children are high in fat and low in fruits and vegetables, which may contribute to their high rates of obesity. Research has revealed that environmental factors, such as household structure, family attitudes towards food and the social context of food messages influence children's food intake. Ethnicity or level of acculturation in Hispanic families may moderate these relationships, but additional research is needed to more fully understand the effects of the process of acculturation on children's diets. More importantly, intervention research is needed to develop and implement programs that may be used to shape public health practice and policies.

Donna Matheson

2008-01-01T23:59:59.000Z

54

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

55

Relationships between circadian rhythms and ethanol intake in mice  

E-Print Network (OSTI)

4.2.3. Ethanol Vapor Sessions . . . . . . . . .4.2.4.scheduling a?ects subsequent voluntary ethanol 2.1.of circadian period to ethanol intake . . . . . . . . . .

Trujillo, Jennifer L.

2009-01-01T23:59:59.000Z

56

Intake fraction of nonreactive vehicle emissions in US urban areas  

E-Print Network (OSTI)

transfer factors for air pollution health risk assessment.better understanding of air pollution health effects. IntakeFuel combustion, air pollution exposure, and health: The

Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

2006-01-01T23:59:59.000Z

57

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

58

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

59

E-Print Network 3.0 - assessing dietary intake Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

F1... intake (the intake target') for protein and carbohydrate, (ii) the nature of trade-offs between over... regulated their intake of protein and carbohydrate to a similar...

60

E-Print Network 3.0 - adequate intakes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in the metabolic processing of nutrient intake. Absolute model response... the accuracy of predicting the energetic efficiency of utilizing nutrient intake, as this is...

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The effect of post-exercise drink macronutrient content on appetite and energy intake  

Science Journals Connector (OSTI)

Abstract Carbohydrate and protein ingestion post-exercise are known to facilitate muscle glycogen resynthesis and protein synthesis, respectively, but the effects of post-exercise nutrient intake on subsequent appetite are unknown. This study aimed to investigate whether protein induced satiety that has been reported at rest was still evident when pre-loads were consumed in a post-exercise context. Using a randomised, double blind, crossover design, 12 unrestrained healthy males completed 30?min of continuous cycling exercise at ~60% VO2peak, followed by five, 3?min intervals at ~85% VO2peak. Ten min post-exercise, subjects consumed 500?ml of either a low energy placebo (15?kJ) (PLA); a 6% whey protein isolate drink (528?kJ) (PRO); or a 6% sucrose drink (528?kJ) (CHO). Sixty min after drink ingestion, a homogenous ad-libitum pasta lunch was provided and energy intake at this lunch was quantified. Subjective appetite ratings were measured at various stages of the protocol. Energy consumed at the ad-libitum lunch was lower after PRO (5831?±?960?kJ) than PLA (6406?±?492?kJ) (P??0.315). Considering the post-exercise drink, total energy intake was not different between trials (P?=?0.383). There were no differences between trials for any of the subjective appetite ratings. The results demonstrate that where post-exercise liquid protein ingestion may enhance the adaptive response of skeletal muscle, this may be possible without affecting gross energy intake relative to consuming a low energy drink.

David J. Clayton; David J. Stensel; Phillip Watson; Lewis J. James

2014-01-01T23:59:59.000Z

62

Sources of biological variation in residual feed intake in growing and finishing steers  

E-Print Network (OSTI)

measure of feed efficiency that does not attempt to partition feed intake into growth and maintenance components (Arthur et al., 1996; Hennessy and Arthur, 2004). Feed requirements for maintenance are estimated to account for 60-65% of the total feed.... In growing bulls, Fox (2004) reported that RGE was strongly correlated with ADG (r = 0.75), but was not correlated with DMI. Partial efficiency of growth. Partial efficiency of growth (PEG) is defined as the ratio of ADG to DMI expected for growth...

Brown, Erin Gwen

2006-04-12T23:59:59.000Z

63

The effects of a suboptimal intake of magnesium with soy protein concentrate on parturition, growth, and viability in the rat  

E-Print Network (OSTI)

no apparent hormonal homeostatic mechanism exists for regulation of serum magnesium, the normal range results from a balance between gastrointestinal absorption and renal excretion. Factors influencing absorption of magnesium include dietary intake... populations remains to be established. Another abnormality associated with magnesium deficiency concerns the parathyroid gland which is the primary homeostatic mechanism that controls the plasma calcium concentration. PTH release is related to the total...

Carson, Sonja D'Awn

2012-06-07T23:59:59.000Z

64

Vehicle Technologies Office Merit Review 2014: Intake Air Oxygen Sensor  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about intake air oxygen sensors.

65

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

66

Evaluation of intakes of transuranics influenced by chelation therapy  

SciTech Connect

Once an intake of transuranics occurs, there are only three therapeutic procedures available to the physician for reducing the intake and mitigating the dose: excision of material from wounds, removal of material from the lungs with lavage, and chelation therapy. The only chelation agents approved in the United States for the treatment of occupational intakes of transuranics are the zinc and calcium salts of diethylene-triamine-pentaacetic acid, better known as Zn-DTPA and Ca-DTPA. In the past 35 years, approximately 3000 doses of DTPA have been administrated to over 500 individuals who had intakes of transuranics. The drug is considered to be quiet safe and has few side effects. For the internal dosimetrist, perhaps the most important aspects of chelation therapy is that if enhances the excretion rate of a transuranic and perturbs the shape of the urinary excretion curve. These perturbations last for months and are so great that standard urinary excretion models cannot be used to evaluate the intake. We review here a method for evaluating intakes of transuranics influenced by chelation therapy that has been used with some degree of success at the Savannah River Site for over 20 years.

LaBone, T.R.

1994-02-01T23:59:59.000Z

67

On the heredity of water intake and feed efficiency in the Fowl  

E-Print Network (OSTI)

On the heredity of water intake and feed efficiency in the Fowl A. BORDAS, A. OBFIDAH P. MÃ?RAT variation of water intake and water /feed ratio and the effect of water /feed ratio on feed intake. The main for " polydipsia " in some individuals. There is a large mean difference for water intake between the two

Paris-Sud XI, Université de

68

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

69

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

70

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

71

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

72

Genetic Polymorphisms in Nitric Oxide Synthase Genes Modify the Relationship between Vegetable and Fruit Intake and Risk of Non-Hodgkin Lymphoma  

Science Journals Connector (OSTI)

...history of NHL, total energy intake (kcal), smoking...significant after false discovery rate adjustment for...primarily found in dark-green leafy vegetables...Controlling the false discovery rate: a practical and...regression model. The false discovery rate method was applied...

Xuesong Han; Tongzhang Zheng; Qing Lan; Yaqun Zhang; Briseis A. Kilfoy; Qin Qin; Nathaniel Rothman; Shelia H. Zahm; Theodore R. Holford; Brian Leaderer; and Yawei Zhang

2009-05-01T23:59:59.000Z

73

Association of Energy Intake and Energy Balance with Postmenopausal Breast Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial  

Science Journals Connector (OSTI)

...XO, et al. Energy balance and breast...cancer in western New York. Am J Epidemiol...Implication of total energy intake for epidemiologic...Epidemiology. New York (NY): Oxford...Koh YO. A new predictive equation for resting energy expenditure in...

Shih-Chen Chang; Regina G. Ziegler; Barbara Dunn; Rachael Stolzenberg-Solomon; James V. Lacey, Jr.; Wen-Yi Huang; Arthur Schatzkin; Douglas Reding; Robert N. Hoover; Patricia Hartge; and Michael F. Leitzmann

2006-02-01T23:59:59.000Z

74

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

75

Association of Coffee Drinking with Total and Cause-Specific Mortality  

Science Journals Connector (OSTI)

...of smoking cessation (status; presence or absence of diabetes; marital status; level of physical activity; total energy intake; consumption of fruits, vegetables, red meat, white meat, and saturated fat; and use of any vitamin... In this study involving long-term follow-up of more than 400,000 adults, coffee consumption was inversely associated with total mortality and mortality due to heart disease, respiratory disease, stroke, injuries and accidents, diabetes, and infections, but not cancer.

Freedman N.D.Park Y.Abnet C.C.Hollenbeck A.R.Sinha R.

2012-05-17T23:59:59.000Z

76

The optimal treatment method of water turbidity purification in tap-water plant.  

E-Print Network (OSTI)

??The main purpose of this study is to investigate the relationship between the water turbidity purification result with raw water turbidity, raw water pH value… (more)

Lin, Yi-Heng

2010-01-01T23:59:59.000Z

77

Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats  

E-Print Network (OSTI)

intake, by adult rats Kathleen S. Curtis, Eric G. Krause, Donna L. Wong, and Robert J. Contreras affect NaCl intake, but not stimulated water intake, by adult rats. Am J Physiol Regul Integr Comp examined body fluid regulation by weanling (21­25 days) and adult ( 60 days) male rats that were offspring

Hull, Elaine

78

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

79

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

80

ORISE: Dose Coefficients for Intakes of Radionuclides via Contaminated  

NLE Websites -- All DOE Office Websites (Extended Search)

Dose Coefficients for Intakes of Radionuclides via Contaminated Wounds Dose Coefficients for Intakes of Radionuclides via Contaminated Wounds Dose coefficients for 38 radionuclides based on NCRP Wound Model and ICRP biokinetic models This report is intended to assist health physics and medical staff in more rapidly assessing the potential dosimetric consequences of a contaminated wound. The National Council on Radiation Protection and Measurements Wound Model describing the retention of selected radionuclides at the site of a contaminated wound and their uptake into the transfer compartment has been combined with the International Commission on Radiological Protection element-specific systemic models for those radionuclides to derive dose coefficients for intakes via contaminated wounds. Examples are also provided on using the dose coefficients to generate derived reference

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Involving children in meal preparation. Effects on food intake  

Science Journals Connector (OSTI)

Abstract The question of how to promote healthy eating habits in children is relevant because most children do not meet the recommended vegetable intake. Involving children in food preparation could be an opportunity to develop healthy eating behaviors and to increase vegetable consumption. The purpose of this study was to examine the effect of children's involvement in meal preparation on their food and vegetable intake. A between-subject experiment was conducted with 47 children aged 6 to 10 years. In condition 1 (n?=?25), children prepared a lunch meal (pasta, breaded chicken, cauliflower, and salad) with the assistance of a parent. In condition 2 (n?=?22), the meal was prepared by the parent alone. Independent samples t-tests were conducted to compare intake in the “child cooks” and “parent cooks” conditions. Children in the child cooks condition ate significantly more salad 41.7?g (76.1%), more chicken 21.8?g (27.0%), and more calories 84.6 ?kcal (24.4%) than children in the parent cooks condition. Between before cooking and directly after cooking the meal, children in the child cooks condition reported significantly increased feelings of valence (feeling positive) and dominance (feeling in control). This study confirms that involving children in meal preparation can increase vegetable intake. Because of the potential effect on energy intake, parents need to be made aware of appropriate portion sizes for their children. Taking this into account, encouraging parents to involve their children in the preparation of healthy and balanced meals could be a valuable intervention strategy to improve the diets and vegetable intake of children.

Klazine van der Horst; Aurore Ferrage; Andreas Rytz

2014-01-01T23:59:59.000Z

82

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

83

Effects of exposure to television advertising for energy-dense/nutrient-poor food on children's food intake and obesity in South Korea  

Science Journals Connector (OSTI)

Abstract The aim of this study was to determine the effect of television food advertising on participant food intake and risk of obesity. A total of 2419 children aged 11–13?years were selected from 118 elementary schools in South Korea. All participants completed a self-administered questionnaire with questions about height, weight, television viewing times, food preferences, and food intakes. To estimate actual exposure to food advertising, we asked participants to specify the times at which they usually watched television. We then collected data on the various types of food advertisement broadcast on five different television networks during those viewing times over the course of the previous 7?months. The amount of television watched and exposure to energy-dense/nutrient-poor (EDNP) food advertising were associated with an increased risk of being overweight or obese. Exposure to television advertising for EDNP food was also significantly associated with higher EDNP food preference and intake and lower fruit and vegetable intake. However, these relationships disappeared for all foods after adjusting for the overall amount of television watched. Although it was not possible to conclude that exposure to television advertising for EDNP food was associated with an increased risk of obesity, preference for EDNP foods, or overall food intake due to the strong comprehensive effects of television viewing time, there was a reason to believe the evidence of the effects of advertising in this study. Future longitudinal studies are needed to determine the exclusive effects of exposure to television advertising for EDNP food.

Bora Lee; Hyogyoo Kim; Soo-Kyung Lee; Jihyun Yoon; Sang-Jin Chung

2014-01-01T23:59:59.000Z

84

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

85

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

86

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

87

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

88

Walk-in Intake Form First Year Advising & Exploration  

E-Print Network (OSTI)

Walk-in Intake Form First Year Advising & Exploration Student Development and Enrollment Services (Rev. 12/04/2012) Name: Current Major(s): PID: Current Minor(s): First Year Advising and Exploration process Course Withdrawal Other: 4. List any classes of concern and the reason(s) of your concern below: 5

Wu, Shin-Tson

89

ORIGINAL INVESTIGATION Inhibition of phosphodiesterase-4 decreases ethanol intake  

E-Print Network (OSTI)

ORIGINAL INVESTIGATION Inhibition of phosphodiesterase-4 decreases ethanol intake in mice Wei Hu Rationale Cyclic AMP (cAMP)­protein kinase A signal- ing has been implicated in the regulation of ethanol intracellular cAMP levels in the brain. However, the role of PDE4 in ethanol consumption remains unknown

90

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network (OSTI)

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

91

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

92

ASSOCIATION AMONG FLUID, GRAIN INTAKE AND WEIGHT GAIN IN HOLSTEIN BULL CALVES  

E-Print Network (OSTI)

. Water intake was increased by calves with fecal scores of 1 and 2. However, water intake was significantly different for calves with fecal scores of 3 or 4 with a (P scours and fecal score...

Gonzalez Ferreira, Marcelo A.

2010-07-14T23:59:59.000Z

93

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...Joint effects of body size, energy intake, and physical activity...Dunn B, et al. Association of energy intake and energy balance with postmenopausal breast...ease on response rates and data quality for two dietary questionnaires...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

94

E-Print Network 3.0 - acids wine intake Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Maternal fatty acid intake and fetal growth: evidence... studies suggest a benefit of seafood and n-3 Fatty Acids (FA) intake on fetal growth and infant... , . They showed1 -7 8 9...

95

E-Print Network 3.0 - acid intakes decrease Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Maternal fatty acid intake and fetal growth: evidence... studies suggest a benefit of seafood and n-3 Fatty Acids (FA) intake on fetal growth and infant... decrease in birthweight...

96

Effects of Physical Activity and Restricted Energy Intake on Chemically Induced Mammary Carcinogenesis  

Science Journals Connector (OSTI)

...Effects of Physical Activity and Restricted Energy Intake on Chemically Induced Mammary Carcinogenesis...little attention has been given to whether energy balance directed interventions designed to regulate body weight by increasing energy expenditure versus reducing energy intake...

Weiqin Jiang; Zongjian Zhu; Henry J. Thompson

2009-04-01T23:59:59.000Z

97

Fecal nitrogen and phosphorus as indicators of intake and quality of Angora goat diets  

E-Print Network (OSTI)

equations were used to evaluate relationships between fecal and urinary components and organic matter intake (OMI), In vlvo digestibility (OMD), ration crude protein (RCP), and ration phosphorus (RPhos). Daily feed Intake, fecal output, nitrogen balance... equations were used to evaluate relationships between fecal and urinary components and organic matter intake (OMI), In vlvo digestibility (OMD), ration crude protein (RCP), and ration phosphorus (RPhos). Daily feed Intake, fecal output, nitrogen balance...

Carter, Heidi Christina

2012-06-07T23:59:59.000Z

98

Fecal pats help to predict nutrient intake by cattle during summer on California's annual rangelands  

E-Print Network (OSTI)

Article t Fecal pats help to predict nutrient intake byof California rangelands will help to identify nutritional

Jinks, Angela D.; Oltjen, James W; Robinson, Peter H; Calvert, Chris C.

2010-01-01T23:59:59.000Z

99

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

100

Comparison of the Impact of Intake Oxygen Enrichment and Fuel Oxygenation on Diesel Combustion and Emissions  

Science Journals Connector (OSTI)

turbocharged, Intercooler?(air-air), electronically?controlled?EGR with?actuator ... Fumigation into the intake surge tank was chosen to allow thorough mixing of the oxygen?air mixture through the subsequent components of the intake system, such as the air filter, turbocharger, and intercooler, before entering the intake manifold. ...

Juhun Song; Vince Zello; André L. Boehman; Francis J. Waller

2004-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...obesity and excess energy intake are important...case-control studies|energy intake|exercise...there were an 4,600 new cases of kidney cancer...prevention. 2nd ed. New York: Oxford University...height, body mass, energy intake, and physical...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

102

Effect of a putative ER antagonist, MPP, on food intake in cycling and ovariectomized rats  

E-Print Network (OSTI)

Effect of a putative ER antagonist, MPP, on food intake in cycling and ovariectomized rats Jessica treatment alone is not sufficient to normalize food intake and weight gain in OVX rats, and progesterone plays a crucial role in controlling food intake in the female rat. Acting as an indirect control of meal

Hull, Elaine

103

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...Article Research Articles Obesity, High Energy Intake, Lack of Physical Activity, and...controls to assess the effect of obesity, energy intake, and recreational physical activity...by age, whereas the effect of excess energy intake was stronger among older people...

Sai Yi Pan; Marie DesMeules; Howard Morrison; Shi Wu Wen

2006-12-01T23:59:59.000Z

104

?-3 and ?-6 Polyunsaturated Fatty Acid Intakes and the Risk of Breast Cancer in Mexican Women: Impact of Obesity Status  

Science Journals Connector (OSTI)

...units), socioeconomic status, energy intake (continuous...no), and menopausal status. Linear trend tests...menopause, socioeconomic status, ever use of hormone...physical activity, energy intake (continuous...

Véronique Chajès; Gabriela Torres-Mejía; Carine Biessy; Carolina Ortega-Olvera; Angélica Angeles-Llerenas; Pietro Ferrari; Eduardo Lazcano-Ponce; and Isabelle Romieu

2012-02-01T23:59:59.000Z

105

Maternal feeding self-efficacy and fruit and vegetable intakes in infants. Results from the SAIDI study  

Science Journals Connector (OSTI)

Abstract Adequate consumption of fruits and vegetables (FV) is a characteristic of a healthy diet but remains a challenge in nutrition interventions. This cross-sectional study explored the multi-directional relationships between maternal feeding self-efficacy, parenting confidence, child feeding behaviour, exposure to new food and FV intake in a cohort of 277 infants. Mothers with healthy infants weighing ?2500?g and ?37?weeks gestation were recruited post-natally from 11 South Australian hospitals. Socio-demographic data were collected at recruitment. At 6?months postnatal, infants were weighed and measured, and mothers completed a questionnaire exploring their perceptions of child feeding behaviour and child exposure to new foods. The questionnaire also included the Short Temperament Scale for Infants, Kessler 10 to measure maternal psychological distress and 5 items measuring maternal feeding self-efficacy. The number of occasions and variety of FV (number of subgroups within food groups) consumed by infants were estimated from a 24-hour dietary recall and 2?days food record. Structural equation modelling was performed using Mplus version 6.11. Median (IQR) variety scores were 2 (1–3) for fruit and 3 (2–5) for vegetable intake. The most popular FV consumed were apple (n?=?108, 45.0%) and pumpkin (n?=?143, 56.3%). None of the variables studied predicted the variety of child fruit intake. Parenting confidence, exposure to new foods and child feeding behaviour were indirectly related to child vegetable intake through maternal feeding self-efficacy while total number of children negatively predicted child vegetable variety (p?

Gloria A. Koh; Jane A. Scott; Richard J. Woodman; Susan W. Kim; Lynne A. Daniels; Anthea M. Magarey

2014-01-01T23:59:59.000Z

106

WIPP air-intake shaft disturbed-rock zone study  

SciTech Connect

The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 {times} 10{sup {minus}21} m{sup 2} was less than 3.0 m.

Dale, T. [INTERA Inc., Austin, TX (United States); Hurtado, L.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

1996-12-01T23:59:59.000Z

107

Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas  

E-Print Network (OSTI)

area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

St. Clair, Lou Ann

2012-06-07T23:59:59.000Z

108

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

109

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

110

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

111

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

112

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

113

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

114

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

115

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

116

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

117

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

118

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

119

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

120

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

122

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

123

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

124

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

125

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

126

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

127

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

128

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

129

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

130

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

131

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

132

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

133

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

134

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

135

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

136

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

137

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

138

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

139

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

140

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

142

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

143

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

144

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

145

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

146

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

147

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

148

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

149

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

150

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

151

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

152

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

153

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

154

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

155

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

156

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

157

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

158

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

159

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

160

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

162

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

163

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

164

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

165

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

166

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

167

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

168

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

169

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

170

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

171

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

172

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

173

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

174

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

175

Total Sky Imager (TSI) Handbook  

SciTech Connect

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

176

E-Print Network 3.0 - assessing calcium intake Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: intake (Kcalday)). To assess interaction between protein and calcium for fracture risk, we then included... excretion (RNAE) estimate) and fracture risk vary according...

177

E-Print Network 3.0 - alcohol intake-induced myocardial Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and caffeine consumption; dietary intake... of saturated fat and n- 3 fatty acids from seafood; family history of myocardial infarction or sudden death... were older; were more...

178

Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors  

SciTech Connect

It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.

Han, Hwataik; Sullivan, Douglas P.; Fisk, William J.

2009-04-01T23:59:59.000Z

179

Effects of the GABAB receptor agonist baclofen administered orally on normal food intake and intraperitoneally on fat intake in non-deprived rats.  

Science Journals Connector (OSTI)

It has been previously reported that the GABAB receptor agonist baclofen decreases food intake after oral administration and fat intake after intraperitoneal administration. The aim of the study was to investigate the effects of baclofen (1–4 mg/ kg) administered orally (Experiment 1) on food intake in non-deprived rats (n=6) and intraperitoneally (Experiment 2) on fat intake in non-deprived rats (n=8) that were naïve to baclofen (1st set of trials) and in the same group of rats after they were sub-chronically exposed to baclofen (2nd set of trials). The results from Experiment 1 show that baclofen had no effects on food intake during the 1st set of trials, but the 2 and 4 mg/kg doses significantly increased food consumption during the 2nd set of trials. Baclofen produced sedation during the 1st set of trials, but tolerance occurred to this effect and was not apparent during the 2nd set of trials. These observations suggest that the motor effects may have competed with the hyperphagic effects of baclofen during the 1st set of trials. The data from Experiment 2 show that baclofen had no effects on fat intake during either the 1st or 2nd set of trials. The results of the study thus indicate that orally administrated baclofen increases food intake and intraperitoneal administration has no effect on fat intake in non-deprived rats under the conditions used in this study. These findings may have important implications for research on the use of baclofen in studies concerned with ingestive behaviours.

Rasneer S. Bains; Ivor S. Ebenezer

2013-01-01T23:59:59.000Z

180

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...modification of energy intake and physical...The respective ethics review boards of...classification of energy costs of human physical...factors affecting the development of renal cell cancer...family in cancer development and progression...Obesity, high energy intake, lack of...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PERFORMANCE ANALYSIS OF A 3D SCRAMJET INTAKE  

E-Print Network (OSTI)

26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PERFORMANCE ANALYSIS OF A 3D SCRAMJET INTAKE Birgit U. Reinartz CATS, RWTH Aachen University, Germany Keywords: scramjet, hypersonic, intake, CFD Abstract A combined experimental as well as computa- tional analysis of a complete scramjet

182

Obesity, High Energy Intake, Lack of Physical Activity, and the Risk of Kidney Cancer  

Science Journals Connector (OSTI)

...modification of energy intake and physical...information on education, average family income over...activity, alcohol consumption, diet (69-item...Assessment of obesity and energy intake Participants...per session, on average, they participated...gardening or yard work, home exercise or exercise...

Sai Yi Pan; Marie DesMeules; Howard Morrison; and Shi Wu Wen

2006-12-01T23:59:59.000Z

183

Behavioral Factors Influencing Fish Entrapment at Offshore Cooling-Water Intake Structures in Southern California  

E-Print Network (OSTI)

Behavioral Factors Influencing Fish Entrapment at Offshore Cooling-Water Intake Structures in Southern California MARK HELVEY Introduction Fish entrapment by offshore cooling-water intake structures. Based on con- comitant in-plant impingement monitoring, it was also learned that these same reef species

184

Tea Intake and Squamous Cell Carcinoma of the Skin: Influence of Type of Tea Beverages  

Science Journals Connector (OSTI)

...gender, with one control per household invited to participate using...including age, sex, and energy intake. Potential confounding...the final model. Age, sex, energy intake, inability to tan after...and diet in northern Kyushu, Japan. Jpn. J. Cancer Res...

Iman A. Hakim; Robin B. Harris; and Ute M. Weisgerber

2000-07-01T23:59:59.000Z

185

Electric Power Plant Cooling Water Intakes and Related Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Drought on U.S. Steam Impact of Drought on U.S. Steam Electric Power Plant Cooling Water Intakes and Related Water Resource Management Issues April 2009 DOE/NETL-2009/1364 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

186

{sup 210}Po and {sup 210}Pb intake by the Portuguese population: The contribution of seafood in the dietary intake of {sup 210}Po and {sup 210}Pb  

SciTech Connect

Through analysis of {sup 210}Po and {sup 210}Pb in the diet, the average ingestion rate for the Portuguese population is estimated at 1.2 and 0.47 Bq d{sup -1} per capita for {sup 210}Po and {sup 210}Pb, respectively. Detailed analysis of foods indicate that seafood alone contributes up to 70% of the {sup 210}Po ingestion rate, whereas cerals, vegetables, and meat altogether contribute 79% of the {sup 210}Pb ingestion rate. Consumption of seafood, both in terms of quantities (kg d{sup -1} per person) and preferential consumption of certain marine species, is the cause of the relatively high intake of {sup 210}Po and high {sup 210}Po:{sup 210}Pb ratio in the diet in comparison with other countries. Other {sup 210}Po and {sup 210}Pb sources, namely inhalation of surface air and cigarette smoke, contribute only a small percentage of the adsorption of these radionuclides in the blood. Estimated total body burdens of {sup 210}Po and {sup 210}Pb in adult men, 70 Bq, are 3.5 times higher than estimates for humans living in normal radioactivity regions and consuming a reference diet. Average whole body effective doses for the adult from the Portuguese population are estimated at about 85 {mu}Sv y{sup -1} from {sup 210}Po and 170 {mu}Sv y{sup -1} from {sup 210}Pb adsorbed with the diet. Effective dose from {sup 210}Po in the diet may vary from 25 {mu}Sv y{sup -1} in an heavy consumer of sardines, to 1,000 {mu}Sv y{sup -1} in an hypothetical heavy consumer of molluscs. 46 refs., 2 figs., 4 tabs.

Carvalho, F.P. [Instituto Nacional de Engenharia e Tecnolgia Industrial, Savavem (Portugal)

1995-10-01T23:59:59.000Z

187

DOE/EA-1602: Alternative Intake Project Transmission Line and Interconnection Final Environmental Assessment (November 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Intake Project Alternative Intake Project Transmission Line and Interconnection Final Environmental Assessment November 2008 DOE/EA-1602 DOE/EA-1602 Final Environmental Assessment for the Western Area Power Administration Alternative Intake Project Transmission Line and Interconnection As part of its comprehensive water quality strategy to protect and improve water quality for its customers, the Contra Costa Water District (CCWD) is implementing the Alternative Intake Project (AIP). The AIP will enable CCWD to relocate some of its existing diversions to Victoria Canal, a Delta location with higher-quality source water than is currently available at its Old River and Rock Slough intakes. The AIP project purpose is to protect and improve the quality of water delivered to CCWD's untreated-

188

Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts  

SciTech Connect

A silicon-chromium alloy frequently used for heavy-duty diesel engine intake valves was tested against eight different insert materials with a valve seat wear simulator. Wear resistance of these combinations was ranked. For each test, the valve seat temperature was controlled at approximately 510 C, the number of cycles was 864,000 (or 24 h), and the test load was 17,640 N. The combination of the silicon-chromium valve against a cast iron insert produced in the least valve seat wear, whereas a cobalt-base alloy insert produced the highest valve seat wear. In the overall valve seat recession ranking, however, the combination of the silicon-chromium valve and an iron-base chromium-nickel alloy insert had the least total seat recession, whereas the silicon-chromium valve against cobalt-base alloy, cast iron, and nickel-base alloy inserts had significant seat recession. Hardness and microstructure compatibility of valve and insert materials are believed to be significant factors in reducing valve and insert wear. The test results indicate that the mechanisms of valve seat and insert wear are a complex combination of adhesion and plastic deformation. Adhesion was confirmed by material transfer, while plastic deformation was verified by shear strain (or radial flow) and abrasion. The oxide films formed during testing also played a significant role. The prevented direct metal-to-metal contact and reduced the coefficient of friction on seat surfaces, thereby reducing adhesive and deformation-controlled wear.

Wang, Y.S.; Narasimhan, S.; Larson, J.M.; Schaefer, S.K. [Eaton Corp., Marshall, MI (United States). Engine Components Operations] [Eaton Corp., Marshall, MI (United States). Engine Components Operations

1998-02-01T23:59:59.000Z

189

Abstract 1277: The association between seasonality, vitamin D and calcium intake and mammographic density in Norwegian postmenopausal women  

Science Journals Connector (OSTI)

...Health Economic and Drug Unit, Oslo, Norway, Norway. Background: Mammographic density (MD...obtained, as well as vitamin D intake, energy and calcium intake in a population of women from Norway, a country with limited sunlight exposure...

Merete Ellingjord-Dale; Isabel dos Santos Silva; Tom Grotmol; Amrit Kaur Sakhi; Samera Qureshi; Solveig Hofvind; Marianne Skov Markussen; Elisabeth Couto; Lene Frost Andersen; Giske Ursin; and Giske Ursin

2014-10-01T23:59:59.000Z

190

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

191

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

192

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

193

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

194

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

195

Effects of ammoniation of wheat straw and supplementation with soybean meal or broiler litter on feed intake and digestion in yearling Spanish goat wethers  

Science Journals Connector (OSTI)

Eight yearling Spanish wethers (29.6±1.10 kg initial BW) were used in an experiment with a 2×4 factorial arrangement of treatments and two simultaneous 4×4 Latin squares to determine effects on feed intake and digestion of supplementing wheat straw treated (ammoniated) with urea (T) or untreated (U) with soybean meal or broiler litter. Supplements were C (ground corn-based and fed at 0.64% BW, DM), S (C plus 0.25% BW of soybean meal) and LL and HL (C plus 0.5 or 1.0% BW of broiler litter). The N concentration was 0.4 and 2.3% and in vitro digestibility was 48 and 63% in U and T, respectively. There were no significant interactions between straw type and supplement treatment except for NDF digestion and digestible NDF intake. Ruminal fluid ammonia N concentration was greater for T than for U (P<0.05) but was not influenced by supplement treatment (4.1, 7.9, 5.1, 3.8, 11.7, 12.4, 10.8 and 15.6 mg/dl; S.E.=1.53); plasma urea N concentration was greater for T vs. U (P<0.05) and lowest among treatments (P<0.05) for C (7.8, 17.1, 16.5, 18.9, 21.5, 25.1, 28.6 and 26.6 mg/dl for U-C, U-S, U-LL, U-HL, T-C, T-S, T-LL and T-HL, respectively; S.E.=1.71). Straw DM intake was not influenced by supplement treatment and tended to be greater (P<0.13) for U vs. T (212, 261, 274, 277, 406, 404, 432 and 423 g per day for U-C, U-S, U-LL, U-HL, T-C, T-S, T-LL and T-HL, respectively; S.E.=24.6). Total OM intake ranked (P<0.05) Ctotal tract OM digestibility was greater (P<0.10) for C and S vs. LL and HL (67.9, 68.3, 61.9 and 60.7% for C, S, LL and HL, respectively); digestible OM intake was lowest among treatments (P<0.05) for C, similar between S and LL and greater for HL than for S (P<0.05) and LL (P<0.13; 249, 331, 342, 386, 380, 423, 450 and 495 g per day for U-C, U-S, U-LL, U-HL, T-C, T-S, T-LL and T-HL, respectively). In summary, apparently with considerable N recycling by yearling Spanish goat wethers, improvements in digestible OM intake by supplementation were achieved through the additional consumption of digestible OM in soybean meal and broiler litter, without substitution for wheat straw intake. Effects of ammoniation and N supplementation on digestible OM intake were additive, with greater magnitude of change via ammoniation than addition of soybean meal or broiler litter to a moderate level of a grain-based supplement.

G Abebe; R.C Merkel; G Animut; T Sahlu; A.L Goetsch

2004-01-01T23:59:59.000Z

196

The CCKB antagonist CI988 reduces food intake in fasted rats via a dopamine mediated pathway  

Science Journals Connector (OSTI)

Studies have shown a reduction of food intake following peripheral and brain injection of CCK. However, it remains to be established whether endogenous central CCK is involved in the regulation of food intake. We investigated the role of central CCK in the regulation of food intake by pharmacological manipulation of the CCKB (CCK2) receptor system. Intracerebroventricularly (ICV) cannulated male Sprague Dawley rats were fasted for 24 h and received an ICV injection of the CCKB receptor antagonist CI988 at a dose of 10 nmol or 49 nmol or vehicle. Another group received two consecutive ICV injections consisting of the corticotropin-releasing factor (CRF) receptor-1 (CRF1) antagonist, CP376395 (3 nmol) or the CRF2 receptor antagonist, K41498 (2 nmol) alone, or followed by CI988 (49 nmol). Lastly, another group of rats received an intraperitoneal (IP) injection of the dopamine antagonist, flupentixol (?197 and ?493 nmol/kg) alone, or followed by CI988 (49 nmol, ICV). Cumulative food intake was assessed for 11 h. Vehicle injected rats showed a robust feeding response. CI988 at 49 nmol reduced food intake by 30% starting at 2 h post injection. CP376395 and K41498 had no effect on food intake. Flupentixol injected IP at a dose of 197 and 493 nmol/kg alone did not modulate food intake whereas the higher dose blocked the CI988-induced reduction of feeding. During the dark phase, CI988 had no effect on food intake in unfasted rats. In summary, CCKB signaling is involved in the regulation of food intake after a fast likely by downstream dopamine signaling.

Lisa Frommelt; Vanessa Lembke; Tobias Hofmann; Miriam Goebel-Stengel; Hubert Mönnikes; Bertram Wiedenmann; Burghard F. Klapp; Andreas Stengel; Peter Kobelt

2013-01-01T23:59:59.000Z

197

Plane of nutrition as influencing reaction of breeding cows to high salt intake  

E-Print Network (OSTI)

PLANE OF NUTR~T~ON AS INFTUENCTNG REACTION OF BREWING CONS TO HIGH SAT T INTAKE A Thesis Louis Vaughn Sells August 1951 PLANK OF NUTRITION AS INFI UvNCrNr. REACTION OF RREEDINO COWS TO HIGH SALT INTAKE A Thes1s I ou is Vaughn S e 1 1... s August 1951 Ap oved as to sty d content. C 1rman of Committe PLANE OF NUTRITION AS IN&LU:NCING REACTION OF 13REEDING COWS TO HIGH SALT INTAKE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulf11...

Sells, Louis Vaughn

2012-06-07T23:59:59.000Z

198

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

199

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

200

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

202

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

203

Examining the Relationship Between Plasma Choline Status and Dietary Intake of Choline in Pregnant Women  

E-Print Network (OSTI)

Background: Choline is an essential nutrient for maternal health and fetal development of which eggs are the richest source in the typical American diet. A single egg could make a significant difference in choline intake and ultimately plasma...

Mortimer, Deanna Vaughn

2012-05-31T23:59:59.000Z

204

E-Print Network 3.0 - air intake filter Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

results for: air intake filter Page: << < 1 2 3 4 5 > >> 1 Fault Tolerant Oxygen Control of a Diesel Engine Air System Summary: which is the oxygen concentration in the...

205

Effects of Physical Activity and Restricted Energy Intake on Chemically Induced Mammary Carcinogenesis  

Science Journals Connector (OSTI)

...induces a greater flux of energy through the system that could...stress, whereas restricted energy intake (RE) reduces oxidative...maltodextrin, cornstarch, corn oil, cellulose, minerals...and dl-methionine. The energy distribution was protein (20...

Weiqin Jiang; Zongjian Zhu; and Henry J. Thompson

2009-04-01T23:59:59.000Z

206

Population strategies to decrease sodium intake : a global cost-effectiveness analysis  

E-Print Network (OSTI)

Excessive sodium consumption is both prevalent and very costly in many countries around the world. Recent research has found that more than 90% of the world's adult population live in countries with mean intakes exceeding ...

Webb, Michael William, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

207

The relationship between residual feed intake and feeding behavior in growing heifers  

E-Print Network (OSTI)

The objective of this study was to determine if feeding behavior traits are correlated with performance and feed efficiency traits in growing heifers. Individual dry matter intake (DMI) was measured in Brangus heifers (n = 115) fed a roughage...

Bingham, Glenda Marie

2009-05-15T23:59:59.000Z

208

E-Print Network 3.0 - antioxidant nutrient intakes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

a person's energy & nutrient needs. How big is a serving? You don't need... of lemon, lime, or orange vTips for Increasing Water Intake: Yogurt smoothies String Cheese ......

209

Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation  

Energy.gov (U.S. Department of Energy (DOE))

Air handling system model for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators

210

Energy intake and utilisation by nursing bearded seal (Erignathus barbatus) pups from Svalbard, Norway  

Science Journals Connector (OSTI)

In this study we measure energy intake via milk in nursing bearded seal (Erignathus barbatus) pups and determine how this energy is allocated into metabolism and storage of new tissues. This was accomplished usin...

C. Lydersen; K. M. Kovacs; M. O. Hammill; I. Gjertz

1996-11-01T23:59:59.000Z

211

Assessment of age-dependent uranium intake due to drinking water in Hyderabad, India  

Science Journals Connector (OSTI)

......60 microg d1. The mean daily uranium intake through tap water, which...Dr A. K. Ghosh, Director, Health, Safety and Environment Group...colleagues. REFERENCES 1 US DOE. Depleted Uranium. Human Health Fact Sheet (2001) ANL. 2 Essien......

A. Y. Balbudhe; S. K. Srivastava; K. Vishwaprasad; G. K. Srivastava; R. M. Tripathi; V. D. Puranik

2012-03-01T23:59:59.000Z

212

Total Heart Transplant: A Modern Overview  

E-Print Network (OSTI)

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

213

An investigation into the use of biokinetic models when assessing intakes of plutonium  

E-Print Network (OSTI)

AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Health Physics AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted...

Hrycushko, Brian Andrew

2008-10-10T23:59:59.000Z

214

Magnesium and pyridoxine intake and mineral content of selected tissues and physical development in rats  

E-Print Network (OSTI)

MAGNESIUM AND PYRIDOXINE INTAKE MINERAL CONTENT OF SELECTED TISSUES PHYSICAL DEVELOPMENT IN RATS A Thesis by SU S AN ELA I NE EDGAR Submitted to the Graduate College of Texas A8rM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Nutrition MAGNESIUM AND PYRIDOXINE INTAKE MINERAL CONTENT OF SELECTED TISSUES PHYS ICAL DEVELOPMENT IN RATS A Thesis by SUSAN ELAINE EDGAR Approved as to style and content by: 'KAREN...

Edgar, Susan Elaine

2012-06-07T23:59:59.000Z

215

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

216

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

217

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

218

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network (OSTI)

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

219

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

220

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

222

Reconstruction of Long-Lived Radionuclide Intakes for Techa Riverside Residents: Cesium-137  

SciTech Connect

Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949–1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were 90Sr and 137Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The 90Sri ntake function was recently improved taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on 90Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of 137Cs by Techa Riverside residents. The 137Cs intake with river water used for drinking was reconstructed on the basis of the 90Sr intake-function and the concentration ratio 137Cs/90Sr in river water. Intake via 137Cs transfer from floodplain soil to grass and cows’ milk was evaluated for the first time. As a result, the maximal 137Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000–9,000 kBq). For villages located on the lower Techa River the 137Cs intake was significantly less (down to 300 kBq). Cows’ milk was the main source of 137Cs in diet in the upper-Techa.

Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.; Shagina, N. B.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

2013-05-01T23:59:59.000Z

223

The Association of Energy Intake with Body Mass in Children With and Without Probable Developmental Coordination Disorder.  

E-Print Network (OSTI)

??Objective To determine if there is an association between energy intake (EI) and overweight or obesity status (OWOB) in children with and without probable developmental… (more)

Pryzbek, Michael

2015-01-01T23:59:59.000Z

224

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

225

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

226

Team Total Points Beta Theta Pi 2271  

E-Print Network (OSTI)

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

227

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

228

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

229

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

230

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

231

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

232

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

233

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

234

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

235

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

236

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

237

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

238

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

239

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

240

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

242

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

243

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

244

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

245

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

246

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

247

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

248

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

249

Seafood intake and blood cadmium in a cohort of adult avid seafood consumers  

Science Journals Connector (OSTI)

Abstract Although the benefits of fish consumption are widely recognized, seafood may also be a source of exposure to heavy metals such as cadmium. Many types of seafood are rich in cadmium, but bioavailability and potential for toxicity after consumption is less clear. This study investigates the relationship between seafood intake and the level of cadmium (Cd) in the blood in a 252 person cohort of avid seafood consumers in the Long Island Study of Seafood Consumption (New York). Blood cadmium is an established biomarker of cadmium exposure, reflecting both recent and decade-long exposure. Data on the amounts and frequency of eating various types of seafood were self-reported by avid seafood consumers recruited in 2011–2012. After adjusting for age, BMI, sex, current smoking status, and income in a linear regression model, we found no association between regular seafood intake (? = ?0.01; p = 0.11) but did identify an association between salmon intake in cups/week (ln transformed) (? = 0.20; p = 0.001) and blood cadmium. After accounting for salmon, no other types of seafood were meaningfully associated with blood cadmium. No association was found between rice intake, blood zinc, or dietary iron or calcium and blood cadmium. Results suggest that seafood is not a major source of cadmium exposure, but that salmon intake does marginally increase blood cadmium levels. Given that cadmium levels in salmon are not higher than those in many other seafood species, the association with salmon intake is likely attributed to higher consumption of salmon in this population.

Stanford Guan; Tia Palermo; Jaymie Meliker

2015-01-01T23:59:59.000Z

250

Peanut, milk, and wheat intake during pregnancy is associated with reduced allergy and asthma in children  

Science Journals Connector (OSTI)

Background Maternal diet during pregnancy may affect childhood allergy and asthma. Objective We sought to examine the associations between maternal intake of common childhood food allergens during early pregnancy and childhood allergy and asthma. Methods We studied 1277 mother-child pairs from a US prebirth cohort unselected for any disease. Using food frequency questionnaires administered during the first and second trimesters, we assessed maternal intake of common childhood food allergens during pregnancy. In mid-childhood (mean age, 7.9 years), we assessed food allergy, asthma, allergic rhinitis, and atopic dermatitis by questionnaire and serum-specific IgE levels. We examined the associations between maternal diet during pregnancy and childhood allergy and asthma. We also examined the cross-sectional associations between specific food allergies, asthma, and atopic conditions in mid-childhood. Results Food allergy was common (5.6%) in mid-childhood, as was sensitization to at least 1 food allergen (28.0%). Higher maternal peanut intake (each additional z score) during the first trimester was associated with 47% reduced odds of peanut allergic reaction (odds ratio [OR], 0.53; 95% CI, 0.30-0.94). Higher milk intake during the first trimester was associated with reduced asthma (OR, 0.83; 95% CI, 0.69-0.99) and allergic rhinitis (OR, 0.85; 95% CI, 0.74-0.97). Higher maternal wheat intake during the second trimester was associated with reduced atopic dermatitis (OR, 0.64; 95% CI, 0.46-0.90). Peanut, wheat, and soy allergy were each cross-sectionally associated with increased childhood asthma, atopic dermatitis, and allergic rhinitis (ORs, 3.6 to 8.1). Conclusion Higher maternal intake of peanut, milk, and wheat during early pregnancy was associated with reduced odds of mid-childhood allergy and asthma.

Supinda Bunyavanich; Sheryl L. Rifas-Shiman; Thomas A. Platts-Mills; Lisa Workman; Joanne E. Sordillo; Carlos A. Camargo Jr.; Matthew W. Gillman; Diane R. Gold; Augusto A. Litonjua

2014-01-01T23:59:59.000Z

251

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

252

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

253

An Obesity-Associated FTO Gene Variant and Increased Energy Intake in Children  

Science Journals Connector (OSTI)

Childhood obesity is a major public health problem in most affluent countries, despite policies targeted toward reducing its prevalence. Impaired glucose tolerance and type 2 diabetes are currently being diagnosed in overweight children,, along with associated risk factors for cardiovascular... This study genotyped children for an obesity-associated variant of the FTO gene and measured adiposity, energy expenditure, and food intake in a subsample. This variant does not appear to be involved in the regulation of energy expenditure but may play a role in the control of food intake and food choice.

Cecil J.E.Tavendale R.Watt P.Hetherington M.M.Palmer C.N.A.

2008-12-11T23:59:59.000Z

254

Dietary intake of acrylamide and epithelial ovarian cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort  

Science Journals Connector (OSTI)

...questionnaire-based acrylamide intake and EOC risk. Acrylamide was energy-adjusted using the residual method, and was evaluated both...and no evidence for a dose-response were observed between energy-adjusted acrylamide intake and EOC risk (HR10microg/day...

Mireia Obón-Santacana; Petra H. Peeters; Heinz Freisling; Laure Dossus; Francoise Clavel-Chapelon; Laura Baglietto; Helena Schock; Renée T. Fortner; Heiner Boeing; Anne Tjonneland; Anja Olsen; Kim Overvad; Virginia Menéndez; Maria-Jose Sanchez; Nerea Larranaga; José María Huerta Castaño; Aurelio Barricarte; Kay-Tee Khaw; Nick Wareham; Ruth C. Travis; Melissa A. Merritt; Antonia Trichopoulou; Dimitrios Trichopoulos; Philippos Orfanos; Giovanna Masala; Sabina Sieri; Rosario Tumino; Paolo Vineis; Amalia Mattiello; H Bas Bueno-de-Mesquita; N. Charlotte Onland-Moret; Elisabet Wirfalt; Tanja Stocks; Annika Idahl; Eva Lundin; Guri Skeie; Inger T. Gram; Elisabete Weiderpass; Elio Riboli; Eric J. Duell

255

Dietary intake of acrylamide and epithelial ovarian cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort  

Science Journals Connector (OSTI)

...Health Sciences, The Arctic University of Norway 35 Community Medicine, Faculty of Health...acrylamide intake and EOC risk. Acrylamide was energy-adjusted using the residual method...dose-response were observed between energy-adjusted acrylamide intake and EOC risk...

Mireia Obón-Santacana; Petra H. Peeters; Heinz Freisling; Laure Dossus; Francoise Clavel-Chapelon; Laura Baglietto; Helena Schock; Renée T. Fortner; Heiner Boeing; Anne Tjonneland; Anja Olsen; Kim Overvad; Virginia Menéndez; Maria-Jose Sanchez; Nerea Larranaga; José María Huerta Castaño; Aurelio Barricarte; Kay-Tee Khaw; Nick Wareham; Ruth C. Travis; Melissa A. Merritt; Antonia Trichopoulou; Dimitrios Trichopoulos; Philippos Orfanos; Giovanna Masala; Sabina Sieri; Rosario Tumino; Paolo Vineis; Amalia Mattiello; H Bas Bueno-de-Mesquita; N. Charlotte Onland-Moret; Elisabet Wirfalt; Tanja Stocks; Annika Idahl; Eva Lundin; Guri Skeie; Inger T. Gram; Elisabete Weiderpass; Elio Riboli; and Eric J. Duell

256

The effects of ruminal and duodenal casein infusion on dry matter (DM) intake of red clover silage and rumen pool  

E-Print Network (OSTI)

The effects of ruminal and duodenal casein infusion on dry matter (DM) intake of red clover silage) infused continuously into rumen (R), duodenum (D) or both (RD) on forage intake, milk yield, chewing, J Anim Sci, 70, 3528-3540). Ruminal casein infusion tended to increase (P

Boyer, Edmond

257

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

258

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

259

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

260

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

262

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

263

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

264

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

265

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

266

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

267

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

268

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

269

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

270

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

271

ARM - Measurement - Shortwave spectral total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

272

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

273

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

274

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

275

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

276

Plasma Amino Acids and Insulin Luels in Obesity: Response to Carbohydrate Intake and Tryptophan Supplements  

E-Print Network (OSTI)

Plasma Amino Acids and Insulin Luels in Obesity: Response to Carbohydrate Intake and Tryptophan Supplements Benjamin Caballero, Nicholas Finer, and Richard J. Wurtman We assessed the plasma amino acids-tryptophan (Trp), offered as a capsule. The obese group exhibited elevated plasma levels of the branched

Wurtman, Richard

277

Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications  

DOE Patents (OSTI)

An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

1997-01-01T23:59:59.000Z

278

Effect of level of fish meal on intake and performance in calves grazing sorghum  

E-Print Network (OSTI)

) supplement intake protein (SIP, g/kg BW) while to daily digestible forage organic matter and potentially digestible fiber as well as daily gains were unrelated. Fecal crude protein excreted (FCP, g/kg BW) and concentration (g/kg fecal OM) were positively...

Scaglia Alonso, Guillermo

2012-06-07T23:59:59.000Z

279

ARTICLE IN PRESS Oxalate, calcium and ash intake and excretion balances in fat sand rats  

E-Print Network (OSTI)

chelates Ca2+ , reducing Ca2+ availability in food and plasma (Concon, 1988). However, fat sand rats canARTICLE IN PRESS Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys Fat sand rats Psammomys obesus feed exclusively on plants of the family Chenopodiaceae, which contain

Vatnick, Itzick

280

5-Hydroxy-L-tryptophan suppresses food intake in food-deprived and stressed rats  

E-Print Network (OSTI)

5-Hydroxy-L-tryptophan suppresses food intake in food-deprived and stressed rats Ahmed Amera , Jeff consumption and tissue 5-HTP levels among rats subjected to two different hyperphagic stimuli, food in a 1- h feeding test in food-deprived rats. In this study, both serotonin and 5-HTP exhibited anorectic

Wurtman, Richard

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Increasing Vegetable and Fruit Intake: Randomized Intervention and Monitoring in an At-Risk Population  

Science Journals Connector (OSTI)

...although the proportion of energy contributed by carbohydrates...1989-1991 Continuing Surveys of Food Intake by Individuals...national population-based survey, found that average...of fiber, and 15% of energy from fat. Similar to...one serving each of dark green vegetables, yellow-orange...

Stephanie A. Smith-Warner; Patricia J. Elmer; Theresa M. Tharp; Lisa Fosdick; Bryan Randall; Myron Gross; James Wood; and John D. Potter

2000-03-01T23:59:59.000Z

282

Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air  

DOE Patents (OSTI)

An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Stork, Kevin C. (Chicago, IL)

1997-01-01T23:59:59.000Z

283

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...Observing Protein and Energy Nutrition (OPEN...Human Nutrition Unit, Cambridge, United...biomarker to assess measurement error (ME) structure...Observing Protein and Energy Nutrition (OPEN...Schoeller DA .Measurement of energy expenditure in...

Nataša Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

284

Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function  

SciTech Connect

To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair, toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].

Ohno, Tomoko [Department of Environmental Health Sciences, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Sakamoto, Mineshi [Department of Epidemiology, National Institute for Minamata Disease, Minamata 867-0008 (Japan); Kurosawa, Tomoko [Department of Environmental Health Sciences, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Dakeishi, Miwako [Department of Environmental Health Sciences, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Iwata, Toyoto [Department of Environmental Health Sciences, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Murata, Katsuyuki [Department of Environmental Health Sciences, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan)]. E-mail: winestem@med.akita-u.ac.jp

2007-02-15T23:59:59.000Z

285

Age-dependent modulation of central ghrelin effects on food intake and lipid metabolism in rats  

Science Journals Connector (OSTI)

Abstract Ghrelin is an endogenous peptide potentially useful in therapy of anorexia and other age-related metabolic disturbances. We evaluated the influence of age on the orexigenic and lipid metabolism-altering effects of ghrelin. Peripubertal, young, adult and middle-aged rats (1, 2, 7 and 12 months old, respectively) were treated with 5 daily intracerebroventricular injections of ghrelin (0.15 nmol) or saline (control). The food intake was measured daily before treatment, while white adipose tissue and serum/plasma samples for detection of lipid metabolites/hormones were collected at the end of the experiment. The values of cumulative food intake and body weight gain declined, while the white adipose tissue deposits and blood concentrations of triglycerides, cholesterol and free fatty acids all increased with age. Ghrelin significantly increased all parameters, but the stimulatory effects on body weight gain and food intake were more pronounced in peripubertal/young rats, while the increase in white adipose mass, triglyceride and low-density lipoprotein cholesterol levels was more noticeable in adult/middle-aged animals. The decrease in sensitivity to ghrelin-mediated stimulation of food intake in older animals could not be explained by alterations in ghrelin's ability to reduce anorexigenic hormones insulin and leptin. However, the higher responsiveness of aged rats to ghrelin-mediated increase in lipid metabolites was accompanied by an increase in adrenocorticotropic hormone and corticosterone levels. These results indicate that aging, while reducing sensitivity to ghrelin-mediated increase in body weight gain and food intake, might enhance the responsiveness to the stimulatory effects of ghrelin on lipid metabolites and hypothalamic-pituitary-adrenal axis activity.

Dejan M. Nesic; Darko M. Stevanovic; Sanja D. Stankovic; Verica L. Milosevic; Vladimir Trajkovic; Vesna P. Starcevic; Walter B. Severs

2013-01-01T23:59:59.000Z

286

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network (OSTI)

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

287

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

288

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

289

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

290

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

291

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

292

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

293

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

294

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

295

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

296

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

297

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

298

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

299

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

300

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

302

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

303

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

304

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

305

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

306

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

307

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

308

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

309

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

310

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

311

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

312

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

313

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

314

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

315

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

316

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

317

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

318

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

319

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

320

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total synthesis and study of myrmicarin alkaloids  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

322

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

323

Provides Total Tuition Charge to Source Contribution  

E-Print Network (OSTI)

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

324

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network (OSTI)

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

325

A GENUINELY HIGH ORDER TOTAL VARIATION DIMINISHING ...  

E-Print Network (OSTI)

(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order .... where the total variation is measured by the standard bounded variation ..... interval Ij and into the jump discontinuities at cell interfaces, see [12].

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

328

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

329

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

330

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

331

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

332

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

333

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

334

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

335

| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments for  

E-Print Network (OSTI)

Laboratory | Total Scattering at the Lujan Center Neutron Powder Diffractometer (NPDF) High-Intensity Powder. Shoemaker, et al., Reverse Monte Carlo neutron scattering study of disordered crystalline materials neutron| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments

Magee, Joseph W.

336

Purine-Rich Foods, Dairy and Protein Intake, and the Risk of Gout in Men  

Science Journals Connector (OSTI)

Gout is the most common form of inflammatory arthritis in men, affecting as many as 3.4 million men in the United States. Patients with gout are typically advised to avoid habitual intake of purine-rich foods such as meats, seafood, purine-rich vegetables, and animal protein (as a proxy for purines... Purine-rich foods and protein intake have been proposed as risk factors for gout, and consumption of dairy products has been proposed as a protective factor. This study prospectively examined the relationship between purported dietary risk factors and the incidence of gout over a 12-year period among 47,150 men who did not have gout at base line; 730 new cases of gout were documented.

Choi H.K.Atkinson K.Karlson E.W.Willett W.Curhan G.

2004-03-11T23:59:59.000Z

337

Comparison of the intake and digestibility of different diets in Ilamas and sheep  

E-Print Network (OSTI)

conditions in llamas, which are more efficient in digesting plant cell walls than sheep. MATERIALS efficient than that of sheep. intake / digestibility / roughage / sheep / Ilama Résumé -Comparaison de l, lamas et moutons ont ingéré la même quantité de foin (17,4 glkg PV), mais les lamas ont ingéré 14% de

Paris-Sud XI, Université de

338

Evaluation of Postpartum Reproductive Performance in Brahman Females with Divergent Residual Feed Intake  

E-Print Network (OSTI)

- day trials have become the most common practice. Robinson et al. (1997) observed distinct differences between Bos taurus and Bos indicus cattle in feeding patterns when maintained in the same feedlot environment. Therefore, Archer and Bergh... by development of a functional corpus luteum (Short, 1984; Kinder et al., 1987). After this point, reproduction can occur and puberty is achieved (Robinson, 1977). Placement of heifers in an environment of limited dietary intake or on a low plane...

Poovey, Anna Kathryn

2011-10-21T23:59:59.000Z

339

Growth performance, voluntary intake and nutrient digestibility in horses grazing Bermudagrass pastures and fed Bermudagrass hay  

E-Print Network (OSTI)

Intake of Forages Digestibility of Cell-Wall Constituents Digestibility of Crude Protein in Forages Digestibility of Gross Energy in Forages Relationships Between Availability of Forage and Animal Production Relationships Between Forage IIuality... of growth to reach mature size, which places an importance on maximum production per animal. Research conducted with ruminants has utilized regression analyses to describe the relationship between average daily gain and stocking rate. Peterson et al...

Aiken, Glen Eris

2012-06-07T23:59:59.000Z

340

Copper intake and health threat by consuming seafood from copper-contaminated coastal environments in Taiwan  

SciTech Connect

The purpose of this paper is to describe the impact of copper pollution on the main aquaculture coast of Taiwan and the potential risk from eating the green oysters cultured along the polluted coast. The data show that the highest average concentration of copper in oysters was observed in the Erhjin Chi estuary from 1986 to 1990. The copper concentration in both the seawater and the sediment collected along the Erhjin Chi estuary was also the highest in all sampling locations. Copper concentration in oysters collected from Erhjin Chi, Hsiangshan, and Anping from 1988 to 1990 was, respectively, 61, 29, and 22 times higher than that of 10 years ago. The potential frisk from consuming oysters is relatively higher than that of other seafoods due the high bioaccumulation of oysters. The oysters in the Erhjin Chi estuary had an average concentration of copper of 3,075 [+-] 826 [mu]g/g during the past three years (1988--1990). The average copper intake from oysters for an adult with 70 kg body weight was 12.6 mg/d. The estimate indicated that the average copper intake from the oysters for female individuals is 14 times more than that of international limits. Based on the average value, long-term intake of copper through consumption of oysters cultured along the Erhjin Chi estuary be critical, especially for some high-risk groups.

Han, B.C. (Taipei Medical Coll. (Taiwan, Province of China). School of Public Health); Jeng, W.L.; Hung, T.C. (National Taiwan Univ., Taipei (Taiwan, Province of China). Inst. of Oceanography); Jeng, M.S. (Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Zoology)

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Association of Nut and Seed Intake with Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition  

Science Journals Connector (OSTI)

...Germany, Italy, Netherlands, Norway, Spain, Sweden, and United Kingdom...the top and bottom 1 of the ratio of energy intake to estimated energy requirement...Denmark, Italy, Netherlands, Norway, Spain, Sweden, and United Kingdom...

Mazda Jenab; Pietro Ferrari; Nadia Slimani; Teresa Norat; Corinne Casagrande; Kim Overad; Anja Olsen; Connie Stripp; Anne Tjønneland; Marie-Christine Boutron-Ruault; Françoise Clavel-Chapelon; Emmanuelle Kesse; Alexandra Nieters; Manuela Bergmann; Heiner Boeing; Androniki Naska; Antonia Trichopoulou; Domenico Palli; Vittorio Krogh; Egidio Celentano; Rosario Tumino; Carlotta Sacerdote; Hendrik B. Bueno-de-Mesquita; Marga C. Ocké; Petra H.M. Peeters; Dagrun Engeset; José R. Quirós; Carlos A. González; Carmen Martínez; Maria D. Chirlaque; Eva Ardanaz; Miren Dorronsoro; Peter Wallström; Richard Palmqvist; Bethany Van Guelpen; Sheila Bingham; Miguel A. San Joaquin; Rodolfo Saracci; Rudolf Kaaks; and Elio Riboli

2004-10-01T23:59:59.000Z

342

A Probabilistic Approach for Deriving Acceptable Human Intake Limits and Human Health Risks from Toxicological Studies: General Framework  

Science Journals Connector (OSTI)

The use of uncertainty factors in the standard method for deriving acceptable intake or exposure limits for humans, such as the Reference Dose (RfD), may be viewed as a conservative method of taking various un...

W. Slob; M. N. Pieters

1998-12-01T23:59:59.000Z

343

Laboratories for the 21st Century: Best Practices Guide: Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions.

344

Report of the Nuclear Energy Agency Expert Group on Gut Transfer Factors: Implications for Dose per Unit Intake  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Report of the Nuclear Energy Agency Expert Group on Gut Transfer Factors: Implications...transfer factors recommended by an Expert Group of the Nuclear Energy Agency for intakes of certain important elements in......

G.M. Kendall; J.D. Harrison; T.P. Fell

1988-09-01T23:59:59.000Z

345

The Combined Effects of Dietary Fat, Protein, and Energy Intake on Azoxymethane-induced Intestinal and Renal Carcinogenesis  

Science Journals Connector (OSTI)

...Dietary Fat, Protein, and Energy Intake on Azoxymethane-induced...doubled the percentage of energy provided by those sources...choline, and cellulose to energy were constant. The vitamin and mineral mix tures were those recommended...

Steven K. Clinton; Peter B. Imrey; Heather J. Mangian; Steve Nandkumar; and Willard J. Visek

1992-02-15T23:59:59.000Z

346

The effects of a marginal intake of magnesium with soy protein concentrate on growth, gestation, and lactation in the rat  

E-Print Network (OSTI)

) The factors that regulate the intestinal absorption of magnesium are poorly understood. In humans, magnesium is absorbed mainly in the jejunum and the ileum and through an active transport mechanism (9). The level of intake of magnesium rnfluences its... of magnesium (7) Homeostatic controls have been reported to maintarn magnesium balance by renal and to a lesser degree by gastrointestinal mechanisms (8, 9). When the intake of magnesium is decreased, the urinary excretion decreases. However...

McLaughlin, Cynthia Anne

2012-06-07T23:59:59.000Z

347

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

348

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

349

ARM - Measurement - Net broadband total irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

350

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Total Cross Sections for Neutron Scattering  

E-Print Network (OSTI)

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

352

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

353

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

354

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SÃ?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

355

Total Solar Irradiance Satellite Composites and their  

E-Print Network (OSTI)

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

356

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

357

ARM - Measurement - Shortwave broadband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

358

Total Neutron Scattering in Vitreous Silica  

Science Journals Connector (OSTI)

The structure of Corning superpure vitreous silica glass has been investigated with neutrons. A new method of analysis using variable neutron wavelengths and the measurement of total scattering cross sections from transmission experiments is developed and the results are compared with those from differential x-ray scattering. The total neutron scattering method permits a simple and direct structure analysis with resolution apparently superior to x-rays. The preliminary results compare well in a first approximation analysis with the basic structure model of Warren and others and in addition the neutron-determined atomic radial distribution curve exhibits some finer details than the x-ray results. Thermal inelastic scattering of neutrons was corrected for in an approximate way.

R. J. Breen; R. M. Delaney; P. J. Persiani; A. H. Weber

1957-01-15T23:59:59.000Z

359

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

360

Frustrated total internal reflection acoustic field sensor  

DOE Patents (OSTI)

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Improved selection in totally monotone arrays  

SciTech Connect

This paper's main result is an O(({radical}{bar m}lgm)(n lg n) + mlg n)-time algorithm for computing the kth smallest entry in each row of an m {times} n totally monotone array. (A two-dimensional A = a(i,j) is totally monotone if for all i{sub 1} < i{sub 2} and j{sub 1} < j{sup 2}, < a(i{sub 1},j{sub 2}) implies a(i{sub 2},j{sub 1})). For large values of k (in particular, for k=(n/2)), this algorithm is significantly faster than the O(k(m+n))-time algorithm for the same problem due to Kravets and Park. An immediate consequence of this result is an O(n{sup 3/2} lg{sup 2}n)-time algorithm for computing the kth nearest neighbor of each vertex of a convex n-gon. In addition to the main result, we also give an O(n lg m)-time algorithm for computing an approximate median in each row of an m {times} n totally monotone array; this approximate median is an entry whose rank in its row lies between (n/4) and (3n/4) {minus} 1. 20 refs., 3 figs.

Mansour, Y. (Harvard Univ., Cambridge, MA (United States). Aiken Computation Lab.); Park, J.K. (Sandia National Labs., Albuquerque, NM (United States)); Schieber, B. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Sen, S. (AT and T Bell Labs., Murray Hill, NJ (United States))

1991-01-01T23:59:59.000Z

362

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

High-Rate Seafood Consumers near Sellafield: Comparison of Conventional Assessments of 137Cs Intakes with the Results of Whole-Body Monitoring  

Science Journals Connector (OSTI)

...Radiation Protection Dosimetry Article High-Rate Seafood Consumers near Sellafield: Comparison of Conventional Assessments of 137Cs Intakes with the Results of Whole-Body Monitoring......

G.J. Hunt; D.R.P. Leonard; F.A. Fry

1989-03-01T23:59:59.000Z

364

Notices Total Estimated Number of Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

365

Total solar house description and performance  

SciTech Connect

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

366

Neutron Total Cross Sections at 20 Mev  

Science Journals Connector (OSTI)

With the T(d, n)He4 reaction as a monoenergetic source of neutrons of about 20 Mev, the total cross sections of 13 elements have been measured by a transmission experiment. These cross sections vary approximately as A23 as is to be expected from the continuum theory of nuclear reactions. The cross section for hydrogen at 19.93 Mev is 0.504±0.01 barn. This result, together with other results at lower energies, seems to require a Yukawa potential in both the singlet and triplet n-p states and a singlet effective range that is lower than that obtained from p-p scattering data.

Robert B. Day and Richard L. Henkel

1953-10-15T23:59:59.000Z

367

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

368

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

369

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

370

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

371

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

372

Total assessment audits (TAA) in Iowa  

SciTech Connect

Traditionally, energy, waste reduction and productivity audits are performed for a manufacturing facility independent of one another. Auditors generally deliver recommendations for improvement based on their specialized expertise (energy, waste reduction, productivity, etc.) without regard to how those recommendations may impact other, sometimes less obvious, subsystems or processes within the facility. The audits are typically performed in isolation from the plant upper management and commonly without adequate knowledge of how inherent interrelated operational constraints may directly or indirectly influence the success of audit recommendations. The Total Assessment Audit (TAA) concept originated from the belief that a manufacturing facility is better served using a holistic approach to problem solving rather than the more conventional isolated approach. The total assessment audit methodology partners the upper management team of a company with a multi-disciplined team of industry-specific specialists to collectively ascertain the core opportunities for improvement in the company and then to formulate a company oriented continuous improvement plan. Productivity, waste reduction, and energy efficiency objectives are seamlessly integrated into a single service delivery with the TAA approach. Nontraditional audit objectives that influence profitability and competitiveness such as business management practices, employee training, human resource issues, etc. are also subject to evaluation in a TAA. The underlying premise of this approach is that the objectives are interrelated and that simultaneous evaluation will province synergistic results. Ultimately, it is believed that the TAA approach can motivate a manufacturer to implement improvements it might not otherwise pursue if it were focused only on singular objectives.

Haman, W.G.

1999-07-01T23:59:59.000Z

373

Effects of Residual Feed Intake Classification on Temperament, Carcass Composition, and Feeding Behavior Traits in Growing Santa Gertrudis Heifers  

E-Print Network (OSTI)

individual animal feed intake and behavior in large groups remained difficult until RFID-based technology was developed in the mid-1970s (Eradus and Jansen, 1999). While the costs associated with measuring individual feed intake in cattle are expensive... traits in large groups of animals using radio frequency identification (RFID) tags. The antenna located within the rim of the feed bunk reads the RFID tag as the animal enters the bunk via the neck bars. A wireless signal is then sent to a data...

Ramirez, Justin A

2014-04-16T23:59:59.000Z

374

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

375

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

376

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

377

Provides Total Tuition Charge to Source Contribution  

E-Print Network (OSTI)

Contribution 10 4 * 1,914 1,550 364 15 6 3 2,871 2,326 545 20 8 4 3,828 3,101 727 25 10 5 4,785 3,876 909 30 12,752 1,818 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total,742 4,651 1,091 75 30 5 4,785 3,876 909 80 32 4 3,828 3,101 727 85 34 3 2,871 2,326 545 90 36 3 2,871 2

Kay, Mark A.

378

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for ‘small scale’ combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85°C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include ‘residential’ use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

379

Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

Siegel, Dustin S. (Dustin Scott), 1980-

2010-01-01T23:59:59.000Z

380

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

382

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

383

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

384

Exploring Total Power Saving from High Temperature of Server Operations  

E-Print Network (OSTI)

Air Temperature Total system power (%) Cooling power (%)Total system power (%) Cooling power (%) JunctionTo simulate the cooling power consumption at different

Lai, Liangzhen; Chang, Chia-Hao; Gupta, Puneet

2014-01-01T23:59:59.000Z

385

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

386

Association of Energy Intake and Energy Balance with Postmenopausal Breast Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial  

Science Journals Connector (OSTI)

...risk of women with a favorable energy balance. Our findings are compatible...nonsignificant, associations between energy intake and breast cancer (22, 23). In a study from Norway (22), women in the highest quartile of energy intake had an increased breast...

Shih-Chen Chang; Regina G. Ziegler; Barbara Dunn; Rachael Stolzenberg-Solomon; James V. Lacey, Jr.; Wen-Yi Huang; Arthur Schatzkin; Douglas Reding; Robert N. Hoover; Patricia Hartge; and Michael F. Leitzmann

2006-02-01T23:59:59.000Z

387

Internal Dose Magnitude Estimation Using Annual Limits on Intake (ALI) Comparisons  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal and External Dose Estimation (initial version: 08/2008, current version: 07/2013) Internal and External Dose Estimation (initial version: 08/2008, current version: 07/2013) Rapid Internal and External Dose Magnitude Estimation The Radiation Emergency Assistance Center/Training Site REAC/TS PO Box 117, MS-39 Oak Ridge, TN 37831 (865)576-3131 www.orise.orau.gov/reacts prepared by: Stephen L. (Steve) Sugarman, MS, CHP, CHCM Health Physics Project Manager Cytogenetic Biodosimetry Laboratory Coordinator Early Internal and External Dose Estimation (initial version: 08/2008, current version: 07/2013) Internal Dose Magnitude Estimation Using Annual Limits on Intake (ALI) Comparisons and Derived Reference Levels (DRLs) Assessing the radiological condition of injured personnel is an important part of the health physicist's job, although hopefully, one that is not done very often. There are many things to be

388

Effect of Intake Air Filter Condition on Vehicle Fuel Economy--ORNL/TM-2009/021  

NLE Websites -- All DOE Office Websites (Extended Search)

021 021 Effect of Intake Air Filter Condition on Vehicle Fuel Economy February 2009 Prepared by Kevin Norman Shean Huff Brian West DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

389

Reward, dopamine and the control of food intake: implications for obesity  

SciTech Connect

The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.

Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Baler, R.D.

2011-10-01T23:59:59.000Z

390

Performance Period Total Fee Paid FY2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

391

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

392

Gout, allopurinol intake and clinical outcomes in the hospitalized multimorbid elderly  

Science Journals Connector (OSTI)

AbstractBackground Increased serum uric acid has been considered a cardiovascular risk factor but no study has assessed its relation with hospital mortality or length of stay. On the basis of data obtained from a prospective registry, the prevalence of gout/hyperuricemia and its association with these and other clinical parameters was evaluated in an Italian cohort of elderly patients acutely admitted to internal medicine or geriatric wards. Methods While the prevalence of gout was calculated by counting patients with this diagnosis hyperuricemia was inferred in patients taking allopurinol at hospital admission or discharge, on the assumption that this drug was only prescribed owing to the finding of high serum levels of uric acid. A series of clinical and demographic variables were evaluated for their association with gout/hyperuricemia. Results Of 1380 patients, 139 (10%) had a diagnosis of gout or were prescribed allopurinol. They had more co-morbidities (7.0 vs 5.6; P gout/allopurinol intake. Moreover, this combined event was associated with an increased risk of adverse events during hospitalization (OR 1.66, 95% CI 1.16–2.36), but not with the risk of re-hospitalization, length of hospital stay or death. Conclusions Gout/allopurinol intake has a high prevalence in elderly patients acutely admitted to hospital and are associated with renal and cardiovascular diseases, an increased rate of adverse events and a high degree of drug consumption. In contrast, this finding did not affect the length of hospitalization nor hospital mortality.

Carlotta Franchi; Francesco Salerno; Alessio Conca; Codjo D. Djade; Mauro Tettamanti; Luca Pasina; Salvatore Corrao; Alessandra Marengoni; Maura Marcucci; Pier Mannuccio Mannucci; Alessandro Nobili

2014-01-01T23:59:59.000Z

393

Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant  

SciTech Connect

The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

Holt, R.M.; Powers, D.W. (IT Corporation (USA))

1990-12-01T23:59:59.000Z

394

Effects of undegraded intake protein supplementation on milk production, calf weight gain and reproductive performance in Brahman cows  

E-Print Network (OSTI)

Eighty multiparous and 51 primiparous Brahman females were allotted to one of three diets based on; parity, sex of calf and breed of calf sire (Angus, Brahman or Tuli). Diets contained either 38.1% Undegraded Intake Protein (UIP) (Low), 56.3% UIP...

Triplett, Brian Lee

2012-06-07T23:59:59.000Z

395

A trade-off between energy intake and exposure to parasites in oystercatchers feeding on a bivalve mollusc  

Science Journals Connector (OSTI)

...in size and, hence, in their energy content. When there are i size classes of cockle, the rate of energy intake E/T (g AFDM s 1 ; g...Q i , (1) where Ei is the energy content of prey type i, hi is the handling...

1999-01-01T23:59:59.000Z

396

Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive decline: findings of the  

E-Print Network (OSTI)

Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive,2 , Commenges Daniel1,2 , Helmer Catherine2,3 , Jean-François Dartigues2,3 . Abbreviations: Al, Aluminum; AD, Alzheimer's Disease; MMSE, Mini Mental State Examination; Si, Silica Running head: Aluminum, silica in water

Paris-Sud XI, Université de

397

THE RELATIONSHIP BETWEEN FOOD SECURITY STATUS AND DIETARY INTAKE AND WEIGHT FLUCTUATIONS WITHIN INDIVIDUALS WITH SERIOUS MENTAL ILLNESS  

E-Print Network (OSTI)

weekly, and dietary recalls were taken at the beginning and end of each month (at weeks 1, 4, 5, and 8). The healthy eating index (HEI) was used to determine diet quality. All dietary recalls were entered into NDSR and HEI, and energy intake...

Taylor, Lauren Olivia

2011-01-01T23:59:59.000Z

398

Weight Loss via Exercise with Controlled Dietary Intake May Affect Phospholipid Profile for Cancer Prevention in Murine Skin Tissues  

Science Journals Connector (OSTI)

...a major factor in energy expenditure has been...Community Health Survey showed that physical...between reduced dietary energy intake and decreased...12-h light/12-h dark cycle. They were...Community Health Survey. Cancer 2008;112...targets for dietary energy restriction prevention...

Ping Ouyang; Yu Jiang; Hieu M. Doan; Linglin Xie; David Vasquez; Ruth Welti; Xiaoyu Su; Nanyan Lu; Betty Herndon; Shie-Shien Yang; Richard Jeannotte; and Weiqun Wang

2010-04-01T23:59:59.000Z

399

Locating-total domination in claw-free cubic graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices of a graph G is a total dominating set of G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . A claw-free graph is a graph that does not contain K 1 , 3 as an induced subgraph. We show that the locating-total domination number of a claw-free cubic graph is at most one-half its order and we characterize the graphs achieving this bound.

Michael A. Henning; Christian Löwenstein

2012-01-01T23:59:59.000Z

400

Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.  

SciTech Connect

Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

2006-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Complete Embedded Minimal Surfaces of Finite Total David Hoffman  

E-Print Network (OSTI)

Complete Embedded Minimal Surfaces of Finite Total Curvature David Hoffman Department-5300 Bonn, Germany July 18, 1994 Contents 1 Introduction 2 2 Basic theory and the global Weierstrass representation 4 2.1 Finite total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2

402

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

403

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

404

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2012 (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

405

Connecticut Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

406

Connecticut Natural Gas % of Total Residential Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

% of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

407

Project Functions and Activities Definitions for Total Project Cost  

Directives, Delegations, and Requirements

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

1997-03-28T23:59:59.000Z

408

NON-CLOSED CURVES IN Rn WITH FINITE TOTAL FIRST  

E-Print Network (OSTI)

], and Kondo and Tanaka [14] have examined the global properties of the total curvature of a curveNON-CLOSED CURVES IN Rn WITH FINITE TOTAL FIRST CURVATURE ARISING FROM THE SOLUTIONS OF AN ODE P finite total first curvature. If all the roots of the associated characteristic polynomial are simple, we

Gilkey, Peter B

409

Total Cost of Ownership Considerations in Global Sourcing Processes  

E-Print Network (OSTI)

Total Cost of Ownership Considerations in Global Sourcing Processes Robert Alard, Philipp Bremen and microeconomic aspects which can also be largely used independently. Keywords: Global Supply Networks, Total Cost of Ownership, Global Total Cost of Ownership, Global Procurement, Outsourcing, Supplier Evaluation, Country

Paris-Sud XI, Université de

410

GLOBAL RIGIDITY FOR TOTALLY NONSYMPLECTIC ANOSOV BORIS KALININ  

E-Print Network (OSTI)

GLOBAL RIGIDITY FOR TOTALLY NONSYMPLECTIC ANOSOV Zk ACTIONS BORIS KALININ AND VICTORIA SADOVSKAYA by NSF grant DMS-0140513. Supported in part by NSF grant DMS-0401014. 1 #12;GLOBAL RIGIDITY FOR TOTALLY Abstract. We consider a totally nonsymplectic (TNS) Anosov action of Zk which is either uniformly

Sadovskaya, Victoria

411

Estimation of /sup 244/Cm intake by bioassay measurements following a contamination incident  

SciTech Connect

An employee was contaminated with radioactive material consisting primarily of /sup 244/Cm and /sup 246/Cm as a consequence of handling a curium nitrate solution at a reprocessing facility. In vivo gamma analysis and in vitro (urine and fecal) analysis were initiated soon after the incident. Further in vivo measurements were performed regularly through hour 528, and in vitro bioassay measurements were obtained through day 74. A sample of the curium solution from the workplace was obtained to confirm that the nitrate was the chemical form and to identify the curium isotopes present. The mass ratio of /sup 244/Cm:/sup 246/Cm was determined to be 91:7. Diethylenetriaminepentaacetate (DTPA) was administered on hours 33 and 71. Observed excretion rates were consistent with available information for curium in the literature. In this paper, the results of the in vivo and in vitro measurements are presented and intake estimates for the incident are developed using various excretion rate functions. 11 refs., 3 figs., 2 tabs.

Thein, M.; Bogard, J.S.; Eckerman, K.F.

1988-01-01T23:59:59.000Z

412

Laboratories for the 21st Century: Best Practices Guide: Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s Modeling exhaust dispersion for specifying acceptable exhaust/intake designs Introduction This guide provides general information on specify- ing acceptable exhaust and intake designs. It also offers various quantitative approaches (dispersion modeling) that can be used to determine expected concentration (or dilution) levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint pro- gram of the U.S. Environmental Protection Agency (EPA)

413

Impacts of Stable Element Intake on C and I Dose Estimates - Implications for Proposed Yucca Mountain Repository  

SciTech Connect

The purpose of this study was to evaluate the influence of the intake of stable isotopes of carbon and iodine on the committed doses due to the ingestion of {sup 14}C and {sup 129}I. This was accomplished through the application of two different computational approaches. The first was based on the assumption that ground (drinking) water was the only source of intake of both {sup 14}C and {sup 129}I and stable carbon and stable iodine. For purposes of the second approach, the intake of {sup 14}C and {sup 129}I was still assumed to be only that in the ground (drinking) water, but the intake of stable carbon and stable iodine was assumed to be that in the drinking water plus other components of the diet. The doses were estimated using either a conversion formula or the applicable dose coefficients in Federal Guidance Reports No. 11 and No. 13. Serving as input for the analyses was the estimated maximum concentration of {sup 14}C or {sup 129}I that would be present in the ground water due to potential releases from the proposed Yucca Mountain high-level radioactive waste repository during the first 10,000 years after closure. The estimated concentrations of stable carbon and iodine were based on analyses of ground water samples collected in the Amargosa Valley, NV. Based on the accompanying analyses, three conclusions were reached. First, no dose estimate, using a conversion formula in which the ratios of the stable to radioactive isotopes of an element serve as input, should ever be made without including the stable element intake contributions from all components of the diet. Second, the study suggests that the dose coefficients for {sup 129}I in Federal Guidance Reports No. 11 and No. 12 which, in turn, are based on publications of the ICRP, may not be appropriate for application in developed nations of the world, especially those in which relatively large amounts of seafood are consumed and the use of iodized salt is common. The estimated average daily intake of stable iodine by the adult U.S. population, for example, is 400 pg. This is twice the value listed by the ICRP for Reference Man. This leads to a dose estimate that is too high by a factor of two. Although the ICRP accounts for stable isotope contributions through the selection of a corresponding biological half-time for iodine, the selection in this case may need reevaluation especially with respect to assessments of potential {sup 129}I releases from the proposed Yucca Mountain high-level radioactive waste repository. The third conclusion, which confirms earlier studies, is that an increase in the intake of either {sup 14}C or {sup 129}I will not lead to an increase in the dose if there is a corresponding increase in the intake of stable carbon or iodine such that the ratio of {sup 14}C or {sup 129}I to stable carbon or iodine does not change.

D.W. Moeller; M.T. Ryan; Lin-Shen C. Sun; R.N. Cherry Jr.

2004-12-21T23:59:59.000Z

414

DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY  

SciTech Connect

A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

2011-11-11T23:59:59.000Z

415

Repeated cycles of restricted food intake and binge feeding disrupt sensory-specific satiety in the rat  

Science Journals Connector (OSTI)

The relationship between food restriction and subsequent dysregulation of food intake is complex, variable and long-lasting. The present study investigated in rats whether repeated cycles of food restriction and binge feeding opportunities may alter regulation of food intake by employing a test for sensory-specific satiety. Rats that experienced repeated food restriction-binge cycles maintained heavier body weights compared to rats that remained on continuous food restriction. In contrast to the control subjects, rats that alternated between food restriction and binge feeding failed to display sensory-specific satiety. During the first meal, there was a gradual decrease in the amount of food intake over a 40 min period. When presented with a second meal of the same food, these rats responded to the familiar food in a manner similar as to a novel food (i.e., comparable quantities of both types of food were consumed). Food restriction-binge feeding cycles may be considered as a form of stress, which in turn is associated with cross-sensitization to numerous behavioral responses. Therefore, we propose that stress-induced disruption of sensory-specific satiety reflects a sensitized response to food, in which the interaction between sensory and satiety factors are no longer the key regulators of food choice and meal cessation. Furthermore, a role for sensory-specific satiety in terminating food intake appeared to decline with the progression of the cycles, thereby contributing to a steady increase in body weight of rats that experienced restriction with bouts of binge feeding opportunities.

Soyon Ahn; Anthony G. Phillips

2012-01-01T23:59:59.000Z

416

Computing plasma focus pinch current from total current measurement  

Science Journals Connector (OSTI)

The total current I total waveform in a plasma focus discharge is the most commonly measured quantity contrasting with the difficult measurement of I pinch . However yield laws should be scaled to focus pinch current I pinch rather than the peak I total . This paper describes how I pinch may be computed from the I total trace by fitting a computed current trace to the measured current trace using the Lee model. The method is applied to an experiment in which both the I total trace and the plasma sheath current trace were measured. The result shows good agreement between the values of computed and measured I pinch .

S. Lee; S. H. Saw; P. C. K. Lee; R. S. Rawat; H. Schmidt

2008-01-01T23:59:59.000Z

417

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

418

Comparison Of Intake Gate Closure Methods At Lower Granite, Little Goose, Lower Monumental, And Mcnary Dams Using Risk-Based Analysis  

SciTech Connect

The objective of this report is to compare the benefits and costs of modifications proposed for intake gate closure systems at four hydroelectric stations on the Lower Snake and Upper Columbia Rivers in the Walla Walla District that are unable to meet the COE 10-minute closure rule due to the installation of fish screens. The primary benefit of the proposed modifications is to reduce the risk of damage to the station and environs when emergency intake gate closure is required. Consequently, this report presents the results and methodology of an extensive risk analysis performed to assess the reliability of powerhouse systems and the costs and timing of potential damages resulting from events requiring emergency intake gate closure. As part of this analysis, the level of protection provided by the nitrogen emergency closure system was also evaluated. The nitrogen system was the basis for the original recommendation to partially disable the intake gate systems. The risk analysis quantifies this protection level.

Gore, Bryan F.; Blackburn, Tyrone R.; Heasler, Patrick G.; Mara, Neil L.; Phan, Hahn K.; Bardy, David M.; Hollenbeck, Robert E.

2001-01-19T23:59:59.000Z

419

Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review  

E-Print Network (OSTI)

Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical ...

Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

2014-01-15T23:59:59.000Z

420

Meat and Heme Iron Intake and Risk of Squamous Cell Carcinoma of the Upper Aero-Digestive Tract in the European Prospective Investigation into Cancer and Nutrition (EPIC)  

Science Journals Connector (OSTI)

...countries: Denmark, Sweden, Norway, the United Kingdom, France...the distribution of the ratio of energy intake versus energy requirement (n = 9,601). In addition, the cohorts of Norway (n = 35,170) and Greece...

Annika Steffen; Manuela M. Bergmann; María-José Sánchez; Maria-Dolores Chirlaque; Paula Jakszyn; Pilar Amiano; J. Ramón Quirós; Aurelio Barricarte Gurrea; Pietro Ferrari; Isabelle Romieu; Veronika Fedirko; H. B(as). Bueno-de-Mesquita; Peter D. Siersema; Petra H.M. Peeters; Kay-Tee Khaw; Nick Wareham; Naomi E. Allen; Francesca L. Crowe; Guri Skeie; Göran Hallmanns; Ingegerd Johansson; Signe Borgquist; Ulrika Ericson; Rikke Egeberg; Anne Tjønneland; Kim Overvad; Verena Grote; Kuanrong Li; Antonia Trichopoulou; Despoina Oikonomidou; Menelaos Pantzalis; Rosario Tumino; Salvatore Panico; Domenico Palli; Vittorio Krogh; Alessio Naccarati; Traci Mouw; Anne-Claire Vergnaud; Teresa Norat; and Heiner Boeing

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Impact of System Level Factors on Treatment Timeliness: Utilizing the Toyota Production System to Implement Direct Intake Scheduling in a Semi-rural Community Mental Health Clinic  

Science Journals Connector (OSTI)

This study examined the effect of using the Toyota Production System (TPS) to change intake procedures...F(1,160)?=?4.9; p?=?.03) from an average of 11 to 8 days. The pattern of difference on treatment timeliness...

Addie Weaver PhD; Catherine G. Greeno PhD…

2013-07-01T23:59:59.000Z

422

Association of Energy Intake and Energy Balance with Postmenopausal Breast Cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial  

Science Journals Connector (OSTI)

...may also underreport energy intake and overreport...linked to breast cancer status, and our questionnaires...unmeasured components of energy balance, such as occupational...recreational activity, enabled us to consider all three energy balance variables concurrently...

Shih-Chen Chang; Regina G. Ziegler; Barbara Dunn; Rachael Stolzenberg-Solomon; James V. Lacey, Jr.; Wen-Yi Huang; Arthur Schatzkin; Douglas Reding; Robert N. Hoover; Patricia Hartge; and Michael F. Leitzmann

2006-02-01T23:59:59.000Z

423

Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum  

NLE Websites -- All DOE Office Websites (Extended Search)

6: July 16, 2012 6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing to someone by E-mail Share Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Facebook Tweet about Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Twitter Bookmark Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Google Bookmark Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Delicious Rank Vehicle Technologies Office: Fact #736: July 16, 2012 Total

424

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

425

Estimating Radiation Risk from Total Effective Dose Equivalent...  

National Nuclear Security Administration (NNSA)

and UNSCEAR 1988 in Radiation Risk Assessment - Lifetime Total Cancer Mortality Risk Estimates at Low Doses and Low Dose Rates for Low-LET Radiation, Committee on Interagency...

426

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

427

,"U.S. Total Refiner Petroleum Product Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

NUSDPG","EMAEPPRLPWGNUSDPG","EMAEPPRHPWGNUSDPG" "Date","U.S. Total Gasoline WholesaleResale Price by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline Wholesale...

428

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

429

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

430

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

431

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

432

California Natural Gas % of Total Commercial Delivered for the...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Delivered for the Account of Others (Percent) California Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2...

433

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

434

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

435

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

436

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

437

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

438

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

439

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2012 (EIA)

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

440

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2012 (EIA)

0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

442

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

443

Florida Master Money Mentor Program In-Take Form Basic Information  

E-Print Network (OSTI)

of the following best describes your ethnicity? _____ Hispanic or Latino _____ Not Hispanic or Latino How many children under 18 live in your household? ______ What is the total number of people living in your household? ______ Which of the following best describes your marital status? Please mark the best choice

Jawitz, James W.

444

Total dose radiation response of plasma-damaged NMOS devices  

SciTech Connect

Plasma-damaged NMOS devices were subjected to the X-ray total dose irradiation. Unlike the traditional hot-carrier or Fowler-Nordheim (F-N) stress where the hole trap generation is less pronounced, this study shows enhanced hole trap and interface trap generation on plasma-damaged devices after total dose irradiation.

Yue, J.; Lo, E.; Flanery, M. [Honeywell Solid-State Electronic Center, Plymouth, MN (United States)] [Honeywell Solid-State Electronic Center, Plymouth, MN (United States)

1997-11-01T23:59:59.000Z

445

Research grants Daniel Macdonald Total value: $9.4 million  

E-Print Network (OSTI)

Research grants ­ Daniel Macdonald Total value: $9.4 million Total value as first investigator: $6, M. Schubert and D Macdonald, `Time- and spectrally resolved photoluminescence for silicon solar cell characterisation', 2012-2015, $490,166. 2. ANU Major Equipment Grant. D Neshev, I Staude, L Fu, D Macdonald, M

446

Total Synthesis of Convex Polyhedral Hydrocarbons The Platonic Solids  

E-Print Network (OSTI)

O H H Total Synthesis of Convex Polyhedral Hydrocarbons The Platonic Solids O O t-BuO3C Br O O Br Br Ph PhPh Ph PhPh Ph Ph COOH HOOC Total Synthesis of Convex Polyhedral Hydrocarbons The Five Matter Icosahedron Water · Polyhedron: a closed surface made up of polygonal regions. · Regular

Stoltz, Brian M.

447

Total solar irradiance during the Holocene F. Steinhilber,1  

E-Print Network (OSTI)

Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

Wehrli, Bernhard

448

Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU)  

Science Journals Connector (OSTI)

Following the end of the Kosovo conflict, in June 1999, a study was instigated to evaluate whether there was a cause for concern of health risk from depleted uranium (DU) to German peacekeeping personnel serving in the Balkans. In addition, the investigations were extended to residents of Kosovo and southern Serbia, who lived in areas where DU ammunitions were deployed. In order to assess a possible DU intake, both the urinary uranium excretion of volunteer residents and water samples were collected and analysed using inductively coupled plasma-mass spectrometry (ICP-MS). More than 1300 urine samples from peacekeeping personnel and unexposed controls of different genders and age were analysed to determine uranium excretion parameters. The urine measurements for 113 unexposed subjects revealed a daily uranium excretion rate with a geometric mean of 13.9 ng/d (geometric standard deviation (GSD) = 2.17). The analysis of 1228 urine samples from the peacekeeping personnel resulted in a geometric mean of 12.8 ng/d (GSD = 2.60). It follows that both unexposed controls and peacekeeping personnel excreted similar amounts of uranium. Inter-subject variation in uranium excretion was high and no significant age-specific differences were found. The second part of the study monitored 24 h urine samples provided by selected residents of Kosovo and adjacent regions of Serbia compared to controls from Munich, Germany. Total uranium and isotope ratios were measured in order to determine DU content. 235U/238U ratios were within ± 0.3% of the natural value, and 236U/238U was less than 2 × 10? 7, indicating no significant DU in any of the urine samples provided, despite total uranium excretion being relatively high in some cases. Measurements of ground and tap water samples from regions where DU munitions were deployed did not show any contamination with DU, except in one sample. It is concluded that both peacekeeping personnel and residents serving or living in the Balkans, respectively, were not exposed to significant amounts of DU.

U. Oeh; N.D. Priest; P. Roth; K.V. Ragnarsdottir; W.B. Li; V. Höllriegl; M.F. Thirlwall; B. Michalke; A. Giussani; P. Schramel; H.G. Paretzke

2007-01-01T23:59:59.000Z

449

Total System Performance Assessment Peer Review Panel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

450

Total System Performance Assessment Peer Review Panel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

451

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

452

Determining biological sources of variation in residual feed intake in Brahman heifers during confinement feeding and on pasture  

E-Print Network (OSTI)

there was little decrease in the variation of RFI. Accuracy of measurements decreased when BW estimates were taken greater than two weeks apart. As would be expected, increasing the number of measurements taken decreases variability. Wang et al. (2006) supported... 56 d 79 d 70 d 70 d Simmental Bull 63 d 35 d 42 d 63 d Bos taurus Steers Wang et al. (2006) a FCR = Feed intake required to produce one unit of weight gain. b RFI = Difference in expected DMI for maintenance and growth at a given level...

Dittmar (III), Robert Otto

2009-05-15T23:59:59.000Z

453

Determining biological sources of variation in residual feed intake in Brahman heifers during confinement feeding and on pasture  

E-Print Network (OSTI)

there was little decrease in the variation of RFI. Accuracy of measurements decreased when BW estimates were taken greater than two weeks apart. As would be expected, increasing the number of measurements taken decreases variability. Wang et al. (2006) supported... 56 d 79 d 70 d 70 d Simmental Bull 63 d 35 d 42 d 63 d Bos taurus Steers Wang et al. (2006) a FCR = Feed intake required to produce one unit of weight gain. b RFI = Difference in expected DMI for maintenance and growth at a given level...

Dittmar (III), Robert Otto

2008-10-10T23:59:59.000Z

454

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

455

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

458

NREL: News - NREL's Economic Benefit to Colorado totals $814...  

NLE Websites -- All DOE Office Websites (Extended Search)

1413 NREL's Economic Benefit to Colorado totals 814.8 Million in FY 2012 Energy laboratory is one of Jefferson County's largest employers February 22, 2013 The net economic...

459

Enantioselective total Synthesis of the agelastatin and trigonoliimine alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of the (-)-Agelastatin Alkaloids The pyrrole-imidazole family of marine alkaloids, derived from linear clathrodin-like precursors, constitutes a diverse array of structurally complex natural products. ...

Han, Sunkyu, 1982-

2012-01-01T23:59:59.000Z

460

Abstracts of posters in Access for total parenteral nutrition  

Science Journals Connector (OSTI)

Out of 628 cases of central venous catheterization for total parenteral nutrition on surgical patients, 502 were performed through the internal jugular vein. In all cases catheterization of the internal jugula...

Gauke Kootstra MD; PhD; Paul J. G. Jörning MD; PhD

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Relationship of the HACCP system to Total Quality Management  

Science Journals Connector (OSTI)

Webster’s Dictionary (1989) defines quality as ‘a degree of excellence or superiority in kind’. The American Society for Quality Control (ASQC, 1987) specifies that quality is ‘the totality of feat...

N. B. Webb; J. L. Marsden

1995-01-01T23:59:59.000Z

462

California Natural Gas Total Liquids Extracted (Thousand Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Extracted (Thousand Barrels) California Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

463

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

464

Summary and recommendations: Total fuel cycle assessment workshop  

SciTech Connect

This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

NONE

1995-08-01T23:59:59.000Z

465

Bounding the total-dose response of modern bipolar transistors  

SciTech Connect

The base current in modern bipolar transistors saturates at large total doses once a critical oxide charge is reached. The saturated value of base current is dose-rate independent. Testing implications are discussed.

Kosier, S.L.; Wei, A.; Schrimpf, R.D. [Arizona Univ., Tucson, AZ (United States). Dept. of Electrical and Computer Engineering; Combs, W.E. [Naval Surface Warfare Center-Crane, Crane, IN (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); DeLaus, M. [Analog Devices, Inc., Wilmington, MA (United States); Pease, R.L. [RLP Research, Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

466

Amplified total internal reflection: theory, analysis, and demonstration of  

E-Print Network (OSTI)

and links 1. C. J. Koester, "Laser action by enhanced total internal reflection," IEEE J. Quantum Electron optical waveguide with lossless core and gainy cladding will experience growth [1]. Consider instead

Hagness, Susan C.

467

Studies directed towards the total synthesis of (+)-sieboldine A  

E-Print Network (OSTI)

Progress towards the total synthesis of sieboldine A is described. This synthetic approach uses a nickel-catalyzed alkyne-ketone reductive cyclization to form the hydrindane core of the natural product in good yield and ...

Gehling, Victor S. (Victor Scott)

2008-01-01T23:59:59.000Z

468

Rangeland Resource Management for Texans: Total Resource Management  

E-Print Network (OSTI)

The Total Resource Management approach helps ranchers make strategic, tactical and operational decisions for the best, most cost-effective use of resources. This publication offers step-by-step directions for implementing TRM for a profitable...

Hanselka, C. Wayne; Fox, William E.; White, Larry D.

2004-03-26T23:59:59.000Z

469

CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs  

Energy.gov (U.S. Department of Energy (DOE))

The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

470

Studies directed toward the total synthesis of salvilenone  

E-Print Network (OSTI)

Model studies on the total synthesis of salvilenone, a phenalenone diterpene found in the roots of Salvia miltiorrhiza Bunge, are reported via a double annulation strategy. The key steps in the proposed synthesis involve ...

Choi, HuiWon

2005-01-01T23:59:59.000Z

471

Developing a total replacement cost index for suburban office projects  

E-Print Network (OSTI)

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

472

Laboratories for the 21st Century: Best Practices; Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)  

SciTech Connect

This guide provides general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Geared toward architects, engineers, and facility managers, the guides contain information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories. Studies show a direct relationship between indoor air quality and the health and productivity of building occupants. Historically, the study and protection of indoor air quality focused on emission sources emanating from within the building. For example, to ensure that the worker is not exposed to toxic chemicals, 'as manufactured' and 'as installed' containment specifications are required for fume hoods. However, emissions from external sources, which may be re-ingested into the building through closed circuiting between the building's exhaust stacks and air intakes, are an often overlooked aspect of indoor air quality.

Not Available

2011-09-01T23:59:59.000Z

473

Photoproduction models for total cross section and shower development  

E-Print Network (OSTI)

A model for the total photoproduction cross section based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

Fernando Cornet; Carlos Garcia Canal; Agnes Grau; Giulia Pancheri; Sergio Sciutto

2014-11-19T23:59:59.000Z

474

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

475

Effect of feed intake and method of feeding and digestibility of nitrogen, amino acids and energy at the distal end of the small intestine and over the total tract in growing-finishing swine  

E-Print Network (OSTI)

and feed:gain ratios of the ad libi- tum fed pigs was similar to performance obtained in commercial pork pro- duction systems. Feeding level or feeding method did not affect (P&, 05) nutrient digestibilities determined at the distal end of the small in... EXPERIMENTAL PROCEDURE A 3x3 Latin Square designed trial was conducted in duplicate to de- termine if feeding level and method of feeding affects the availability of nitrogen, selected amino acids and energy at the end of the small in- testine and over...

Haydon, Keith Dale

2012-06-07T23:59:59.000Z

476

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

477

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

478

Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor  

SciTech Connect

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase?mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ? Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ? RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation. ? Translocation of p47phox and MAPKs phosphorylation are downstream effectors. ? Acute ethanol consumption increases the risk for acute vascular injury.

Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada)] [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil)] [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil)] [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil)] [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil)] [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada)] [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

2012-11-01T23:59:59.000Z

479

Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: Hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output  

Science Journals Connector (OSTI)

Abstract Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56–81% in GK rats. Fasting (48 h) and refeeding (2 h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity.

K. Zhao; Y. Ao; R.M. Harper; V.L.W. Go; H. Yang

2013-01-01T23:59:59.000Z

480

Optimization of enzyme extractions for total folate in cereals and determination of total folate in breakfast cereals and snack foods.  

E-Print Network (OSTI)

??The trienzyme digestion including protease, [alpha]-amylase, and conjugase for the extraction of total folate from cereals was optimized using response surface methodology. CRM121 wholemeal, oat,… (more)

Cho, Sungeun

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total tapwater intake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

482

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

483

Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization  

SciTech Connect

A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

Cecilia R. Hoffman; Yale D. Harker

2006-03-01T23:59:59.000Z

484

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

485

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

486

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

487

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

488

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"

489

"2012 Retail Power Marketers Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from form EIA-861 schedule 4B)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "3 Phases Renewables","CA","Power Marketer",354,148820,7268.5,4.8840882 "Calpine Power America LLC","CA","Power Marketer",1,1072508,54458,5.0776311 "City of Corona - (CA)","CA","Municipal",859,65933,5749.5,8.720216 "Commerce Energy, Inc.","CA","Power Marketer",23386,596604,37753,6.3279831 "Constellation NewEnergy, Inc","CA","Power Marketer",362,4777373,250287.4,5.2390173

490

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

491

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

492

Topological obstructions to a totally geodesic, Riemannian foliation  

E-Print Network (OSTI)

TOPOLOGICAL OBSTRUC, IONS TO A TOTAL' Y GEODFSIC, RIEMANNIAN FOLIATION A Thesis by YINCEI'JT ED'AARD COLL, OUNIOR Subm1tted to the Graduate College of Texas A8M University in partial fult1llment of the requirements for the degree of Ii...ASTER OF SCIENCE December 1983 Major Subject: Mathematics TOPOLOGICAL OBSTRUCTIONS TO A TOTALLY GEODESIC RIEMANNIAN FOLIATION A Thesis by VINCENT EDWARD COLL, JUNIOR Approved as to style and content by. D. L. Johnson (Chairman of Committee) D. K. Friesen...

Coll, Vincent Edward

1983-01-01T23:59:59.000Z

493

A Fast Delivery Protocol for Total Order Broadcasting  

SciTech Connect

The conclusions of this report are: (1) Fast delivery protocol reduces the latency of message ordering for idle systems and keep comparable performances with communication history algorithms for busy systems; (2) The protocol optimizes the total ordering process by waiting for messages only from a subset of the machines in the group; and (3) The fast acknowledgment aggressively acknowledges total order messages to reduce the latency for idle system, and it is smart enough to hold the acknowledgments when the network communication is heavy.

Ou, Li [Tennessee Technological University; He, X. [Tennessee Technological University; Engelmann, Christian [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

494

A versatile detector for total fluorescence and electron yield experiments  

SciTech Connect

The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

2012-09-15T23:59:59.000Z

495

Properties of solar gravity mode signals in total irradiance observations  

SciTech Connect

Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

Kroll, R.J.; Chen, J.; Hill, H.A.

1988-01-01T23:59:59.000Z

496

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

497

"2012 Utility Bundled Retail Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16180,399144,41820,10.477422 "Alaska Power and Telephone Co","AK","Investor Owned",6976,64788,18175,28.053035 "Alaska Village Elec Coop, Inc","AK","Cooperative",7923,73956,42708,57.74785 "Anchorage Municipal Light and Power","AK","Municipal",30747,1100665,100959.2,9.1725639 "Barrow Utils & Elec Coop, Inc","AK","Cooperative",1871,49580,5293,10.675676

498

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

499

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of China’s total energy consumption mix. However,about 19% of China’s total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

500

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network (OSTI)

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z