Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

2

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

3

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

4

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

5

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

6

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

7

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

8

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

9

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu

2009-04-01T23:59:59.000Z

10

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

11

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

12

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

13

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

14

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

15

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

16

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

17

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

18

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

19

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

20

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

22

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

23

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

24

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

25

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

26

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

27

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

28

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

29

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

30

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

31

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

32

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

33

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

34

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

35

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

36

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

37

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

38

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

39

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

40

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/1989" 3,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGA_EPG0_SACW0_NUS_MMCF","NA1394_NUS_8" "Date","U.S. Total Natural Gas Underground Storage Capacity (MMcf)","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)","U.S. Natural Gas Count of Underground Storage Capacity (Count)"

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimization of Storage vs. Compression Capacity  

Broader source: Energy.gov [DOE]

This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

42

Structural Capacity of Light Gauge Steel Storage Rack Uprights.  

E-Print Network [OSTI]

??Master of Engineering (Research)%%%This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the (more)

Koen, Damien Joseph

2008-01-01T23:59:59.000Z

43

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

44

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

45

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents [OSTI]

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

46

U.S. Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 8,402,216 8,498,535 8,655,740 8,763,798 8,849,125 8,991,335

47

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

48

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

Broader source: Energy.gov [DOE]

Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting

49

Hydrogen storage capacity in single-walled carbon nanotubes  

Science Journals Connector (OSTI)

Molecular-dynamics simulations were used to investigate the storage capacity of hydrogen in single-walled carbon nanotubes (SWNTs) and the strain of nanotube under the interactions between the stored hydrogen molecules and the SWNT. The storage capacities inside SWNTs increase with the increase of tube diameters. For a SWNT with diameter less than 20 , the storage capacity depends strongly on the helicity of a the SWNT. The maximal radial strain of SWNT is in the range of 11%18%, and depends on the helicity of the SWNT. The maximal strain of armchair SWNTs is less than that of zigzag SWNTs. The tensile strengths of SWNTs decrease with increasing diameters, and approach that of graphite (20 GPa) for larger-diameter tubes.

Yuchen Ma; Yueyuan Xia; Mingwen Zhao; Minju Ying

2002-04-11T23:59:59.000Z

50

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

51

Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates  

Science Journals Connector (OSTI)

The storage capacity of hydrogen in the tetrahydrothiophene and furan hydrates was investigated by means of pressurevolumetemperature measurement. The hydrogenabsorption rate of tetrahydrothiophene and furan hydrates is much larger than that of tetrahydrofuran hydrate in spite of same crystal structure (structure-II). The storage amount of hydrogen at 275.1K is about 1.2mol (hydrogen)/mol (tetrahydrothiophene or furan hydrate) (?0.6mass%) at 41.5MPa, which is coincident with that of tetrahydrofuran hydrate.

Takaaki Tsuda; Kyohei Ogata; Shunsuke Hashimoto; Takeshi Sugahara; Masato Moritoki; Kazunari Ohgaki

2009-01-01T23:59:59.000Z

52

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

53

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

SciTech Connect (OSTI)

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

54

Capacity of a 3-D multi-layer optical data storage system , Edwin P. Walkera  

E-Print Network [OSTI]

Capacity of a 3-D multi-layer optical data storage system Yi Zhanga* , Edwin P. Walkera , Wenyi) Emcore Fiber Optics Components, 1600 Eubank Blvd. SE, Albuquerque, NM 87123 ABSTRACT Storage capacity of a 3-D multi-layer optical data storage system is analyzed. Theoretical analysis of recorded bit size

Esener, Sadik C.

55

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

56

Working and Net Available Shell Storage Capacity as of September 30, 2010 -  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2010 | Release Date: July 28, 2011 Working and Net Available Shell Storage Capacity as of September 30, 2010 is the Energy Information Administration's (EIA) first report containing semi-annual storage capacity data. It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010. EIA has reported weekly and monthly inventory levels of crude oil and petroleum products for decades. New storage capacity data can help analysts place petroleum inventory levels in context and better understand petroleum market activity and price movements, especially at key market centers such as Cushing, Oklahoma.

57

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

58

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

59

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

60

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

44: Melton Valley Storage Tanks Capacity Increase Project- Oak 44: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge, Tennessee, for liquid low-level radioactive waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 1995 EA-1044: Finding of No Significant Impact Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee May 25, 1995 EA-1044: Final Environmental Assessment

62

High-Capacity Hydrogen Storage in Metal-Free Organic Molecular Crystals  

E-Print Network [OSTI]

High-Capacity Hydrogen Storage in Metal-Free Organic Molecular Crystals Mina Yoon1, 2 and Matthias donor and acceptor molecules as a promising new class of hydrogen storage materials. Using quantum(Tetrathiafulvalene)/TCNQ(7,7,8,8-tetracyanoquinodimethane) become very efficient hydrogen storage media of high gravimetric

63

Storage and capacity rights markets in the natural gas industry  

E-Print Network [OSTI]

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

64

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

65

Hydrogen storage capacities of nanoporous carbon calculated by density functional and Mller-Plesset methods  

Science Journals Connector (OSTI)

The hydrogen storage capacities of nanoporous carbons, simulated as flat graphene slit pores, have been calculated using a quantum-thermodynamical model. The model is applied for several interaction potentials between the hydrogen molecules and the graphitic walls that have been generated from density functional theory (DFT) and second-order Mller-Plesset (MP2) calculations. The hydrogen storage properties of the pores can be correlated with the features of the potential. It is shown that the storage capacity increases with the depth of the potential, De. Moreover, the optimal pore widths, yielding the maximum hydrogen storage capacities, are close to twice the equilibrium distance of the hydrogen molecule to one graphene layer. The experimental hydrogen storage capacities of several nanoporous carbons such as activated carbons (ACs) and carbide-derived carbons (CDCs) are well reproduced within the slit pore model considering pore widths of about 4.95.1? for the DFT potential and slightly larger pore widths (5.35.9?) for the MP2 potentials. The calculations predict that nanoporous carbons made of slit pores with average widths of 5.86.5? would yield the highest hydrogen storage capacities at 300 K and 10 MPa.

I. Cabria; M. J. Lpez; J. A. Alonso

2008-08-13T23:59:59.000Z

66

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FLORIDA SOLAR ENERGY CENTER FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute of the University of Central Florida HT Combinatorial Screening of HT Combinatorial Screening of Novel Materials for High Capacity Novel Materials for High Capacity Hydrogen Storage Hydrogen Storage Ali T Ali T - - Raissi Raissi Director, Hydrogen & Fuel Cell R&D Director, Hydrogen & Fuel Cell R&D Division Division High Throughput/Combinatorial Analysis of Hydrogen Storage High Throughput/Combinatorial Analysis of Hydrogen Storage Materials Workshop, Bethesda, MD Materials Workshop, Bethesda, MD 26 June 2007 26 June 2007 This presentation does not contain any proprietary or confidential information 2 Objectives Objectives Develop (i.e. design, build, test and verify) a high

67

,"Alaska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_sac_sal_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_sac_sal_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:57:12 PM"

68

,"Iowa Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM"

69

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

70

,"U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Count)" Acquifers Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

71

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

72

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

73

,"U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

74

Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties  

SciTech Connect (OSTI)

In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

2007-02-07T23:59:59.000Z

75

Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction  

SciTech Connect (OSTI)

Graphyne, consisting of sp- and sp{sup 2}-hybridized carbon atoms, is a new member of carbon allotropes which has a natural porous structure. Here, we report our first-principles calculations on the possibility of Li-decorated graphyne as a hydrogen storage medium. We predict that Li-doping significantly enhances the hydrogen storage ability of graphyne compared to that of pristine graphyne, which can be attributed to the polarization of H{sub 2} molecules induced by the charge transfer from Li atoms to graphyne. The favorite H{sub 2} molecules adsorption configurations on a single side and on both sides of a Li-decorated graphyne layer are determined. When Li atoms are adsorbed on one side of graphyne, each Li can bind four H{sub 2} molecules, corresponding to a hydrogen storage capacity of 9.26 wt. %. The hydrogen storage capacity can be further improved to 15.15 wt. % as graphyne is decorated by Li atoms on both sides, with an optimal average binding energy of 0.226 eV/H{sub 2}. The results show that the Li-decorated graphyne can serve as a high capacity hydrogen storage medium.

Zhang Hongyu; Zhang Meng; Zhao Lixia; Luo Youhua [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Zhao Mingwen; Bu Hongxia; He Xiujie [School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 Shandong (China)

2012-10-15T23:59:59.000Z

76

Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1  

SciTech Connect (OSTI)

This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

1995-04-14T23:59:59.000Z

77

,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2012" Monthly","12/2012" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Tennessee Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TN2" "Date","Tennessee Natural Gas Underground Storage Capacity (MMcf)" 37271,1200 37302,1200 37330,1200 37361,1200

78

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 32324,590248 32689,589780 33054,586502 33419,589018 33785,595229 34150,598782

79

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 32324,805394 32689,805393 33054,640938 33419,640938

80

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 32324,36147 32689,31447 33054,31277 33419,31277 33785,31277 34150,31277

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 37271,100227 37302,100227 37330,100227 37361,100227

82

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 37271,580037 37302,580037 37330,580037 37361,580037

83

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 32324,334925 32689,334925 33054,301199 33419,301199 33785,290571

84

,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Kentucky Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KY2" "Date","Kentucky Natural Gas Underground Storage Capacity (MMcf)" 37271,219914 37302,219914 37330,219914 37361,219914

85

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 37271,573784 37302,573784 37330,573784 37361,573784 37391,573784

86

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 37271,134012 37302,134012 37330,134012

87

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 32324,7000 32689,7000 33054,7000 33419,7000 33785,7000 34150,7000

88

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 37271,713818 37302,713818 37330,713818

89

,"Maryland Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Maryland Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MD2" "Date","Maryland Natural Gas Underground Storage Capacity (MMcf)" 32324,61978 32689,61978 33054,61978 33419,61978 33785,62400 34150,62400

90

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 37271,301502 37302,301502 37330,301502 37361,301502

91

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 37271,22000 37302,22000 37330,22000 37361,22000

92

,"Montana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Montana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MT2" "Date","Montana Natural Gas Underground Storage Capacity (MMcf)" 32324,373963 32689,373960 33054,373960 33419,373960 33785,375010

93

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:16 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 37271,7000 37302,7000 37330,7000 37361,7000

94

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 32324,114603 32689,112045 33054,97332 33419,102246 33785,106176

95

,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OK2" "Date","Oklahoma Natural Gas Underground Storage Capacity (MMcf)" 32324,377189 32689,364887 33054,362616 33419,362616 33785,359616

96

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 37271,699324 37302,698258 37330,699324 37361,699324

97

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 37271,17755 37302,21080 37330,21080 37361,21080 37391,21080

98

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 32324,559019 32689,559019 33054,550823 33419,559823 33785,539200

99

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 37271,109310 37302,109310 37330,109310 37361,109310

100

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 37271,5280 37302,5280 37330,5280 37361,5280 37391,5280

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 32324,82662 32689,82662 33054,98999 33419,98999 33785,105790

102

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 32324,108171 32689,108207 33054,108601 33419,114621 33785,114627

103

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 37271,1070717 37302,1070717 37330,1070717 37361,1070717

104

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:19 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 37271,39469 37302,39469 37330,39469 37361,39469

105

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:20 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 32324,612547 32689,612547 33054,591494 33419,591494 33785,591494 34150,594644

106

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 34880,2600 35246,3280 35611,3280 35976,3280 36341,3280 36707,3280

107

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 37271,105869 37302,105869 37330,105869 37361,105869

108

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 32324,36400 32689,36400 33054,32100 33419,34100 33785,34100

109

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 32689,9791 33054,9791 33419,9791 33785,11445 34150,11445 34515,11622

110

,"California Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2" "Date","California Natural Gas Underground Storage Capacity (MMcf)" 37271,388480 37302,475720 37330,475720 37361,475720

111

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 32324,114980 32689,114980 33054,114980 33419,114980 33785,114980 34150,114980

112

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 32324,88438 32689,88438 33054,143311 33419,93311 33785,93311

113

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 37271,129480 37302,129480 37330,129480 37361,129480 37391,129480

114

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 32324,982362 32689,982362 33054,994542 33419,995181 33785,994281

115

,"Virginia Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290VA2" "Date","Virginia Natural Gas Underground Storage Capacity (MMcf)" 37271,4967 37302,4967 37330,4967 37361,4967 37391,4967

116

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:27 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 32324,103831 32689,103830 33054,106130 33419,106130 33785,105668

117

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 37271,37300 37302,37300 37330,37300 37361,37300

118

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network [OSTI]

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

119

Strain induced lithium functionalized graphane as a high capacity hydrogen storage material  

E-Print Network [OSTI]

Strain effects on the stability, electronic structure, and hydrogen storage capacity of lithium-doped graphane (CHLi) have been investigated by stateof-the art first principle density functional theory (DFT). Molecular dynamics MD) simulations have confirmed the stability of Li on graphane sheet when it is subject to 10% of tensile strain. Under biaxial asymmetric strain, the binding energy of Li of graphane (CH) sheet increases by 52% with respect to its bulk's cohesive energy. With 25% doping concentration of Li on CH sheet,the gravimetric density of hydrogen storage is found to reach up to 12.12wt%. The adsorption energies of H2 are found to be within the range of practical H2 storage applications.

Hussain, Tanveer; Ahuja, Rajeev

2012-01-01T23:59:59.000Z

120

,"U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

122

,"U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (Count)" Salt Caverns Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

123

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

124

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

SciTech Connect (OSTI)

Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.

Birkholzer, J.T.; Zhou, Q.

2009-04-02T23:59:59.000Z

125

Effect of specific surface area on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO2  

Science Journals Connector (OSTI)

It was found from the work that the specific surface area of ceria presents an important role on the oxygen storage capacity (OSC), the reactivity toward methane steam reforming, and the resistance toward carbon ...

W. Sutthisripok; S. Sattayanurak; L. Sikong

2008-10-01T23:59:59.000Z

126

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon  

Science Journals Connector (OSTI)

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon ... A neutron scattering methodology is proposed to simultaneously determine the total hydrogen adsorption, the excess hydrogen adsorption, and hydrogen gas confined in the porous sample. ... It can be combined with an in situ small-angle neutron scattering to study the hydrogen spillover effect in the kinetic adsorption process. ...

Cheng-Si Tsao; Yun Liu; Mingda Li; Yang Zhang; Juscelino B. Leao; Hua-Wen Chang; Ming-Sheng Yu; Sow-Hsin Chen

2010-04-29T23:59:59.000Z

127

Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium  

SciTech Connect (OSTI)

Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ?6.30wt.%.

Tian, Zi-Ya; Dong, Shun-Le, E-mail: dongshunle2013@hotmail.com [Department of Physics, Ocean University of China, Qingdao 266100 (China)] [Department of Physics, Ocean University of China, Qingdao 266100 (China)

2014-02-28T23:59:59.000Z

128

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

12,"Annual",2012,"6/30/1988" 12,"Annual",2012,"6/30/1988" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393_NUS_2","NA1392_NUS_2","NA1391_NUS_2","NGA_EPG0_SACW0_NUS_MMCF","NGA_EPG0_SACWS_NUS_MMCF","NGA_EPG0_SACWA_NUS_MMCF","NGA_EPG0_SACWD_NUS_MMCF","NA1394_NUS_8","NA1393_NUS_8","NA1392_NUS_8","NA1391_NUS_8"

129

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

130

A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations  

SciTech Connect (OSTI)

Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

2008-02-10T23:59:59.000Z

131

Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level  

Science Journals Connector (OSTI)

Abstract High wind power penetration in power system leads to a significant challenge in balancing power production and consumption due to the intermittence of wind. Introducing energy storage system in wind energy system can help offset the negative effects, and make the wind power controllable. However, the power spectrum density of wind power outputs shows that the fluctuations of wind energy include various components with different frequencies and amplitudes. This implies that the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. In this paper, we proposed a preliminary scheme for capacity allocation of hybrid energy storage system for power system peak shaving by using spectral analysis method. The unbalance power generated from load dispatch plan and wind power outputs is decomposed into four components, which are outer-day, intra-day, short-term and very short-term components, by using Discrete Fourier Transform (DFT) and spectral decomposition method. The capacity allocation can be quantified according to the information in these components. The simulation results show that the power rating and energy rating of hybrid energy storage system in partial smoothing mode decrease significantly in comparison with those in fully smoothing mode.

Pan Zhao; Jiangfeng Wang; Yiping Dai

2015-01-01T23:59:59.000Z

132

Correlation between Some Nutritional Components and the Total Antioxidant Capacity Measured with Six Different Assays in Eight Horticultural Crops  

Science Journals Connector (OSTI)

The contents of antioxidant nutritional compounds, total soluble phenolics (TSP), vitamin C, vitamin E, ?-carotene, and total carotenoids (TC), were correlated with the total antioxidant capacity (AOC) of hydrophilic (HPE) and lipophilic extracts (LPE) from eight horticultural crops, namely, guava, avocado, black sapote, mango, papaya, prickly pear fruit, cladodes, and strawberry. ... The homogenate was sonicated for 5 min in a Bransonic 2510 sonicator (Bransonic Ultrasonic Co., Danbury, CT) and then centrifuged at 19000g for 15 min at 2 C. ... This was further increased to 50 mL with HPLC-grade water and filtered through a 0.45 ?m membrane, and aliquots were taken for analysis. ...

Rene D. Corral-Aguayo; Elhadi M. Yahia; Armando Carrillo-Lopez; Gustavo Gonzlez-Aguilar

2008-10-28T23:59:59.000Z

133

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Storage Rate and Capacity and Insuring the Environmental Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon dioxide Sequestration in Geological Reservoirs L. A. Davis Lorne.Davis@coe.ttu.edu Department of Petroleum Engineering A. L. Graham Alan.Graham@coe.ttu.edu H. W. Parker** Harry.Parker@coe.ttu.edu Department of Chemical Engineering Texas Tech University Lubbock, Texas 79409 M. S. Ingber ingber@me.unm.edu A. A. Mammoli mammoli@me.unm.edu Department of Mechanical Engineering University of New Mexico Albuquerque, New Mexico 87131 L. A. Mondy lamondy@engsci.sandia.gov Energetic and Multiphase Processes Department Sandia National Laboratories Albuquerque, New Mexico 87185-0834 Quanxin Guo quan@advantekinternational.com Ahmed Abou-Sayed a.abou-sayed@att.net

134

Potential Urban Forest Carbon Sequestration and Storage Capacities in Burnside Industrial Park, Nova Scotia.  

E-Print Network [OSTI]

??Urban and industrial settings represent potential areas for increased carbon (C) sequestration and storage through intensified tree growth. Consisting of an estimated 1270 ha of (more)

Walsh, Alison

2012-01-01T23:59:59.000Z

135

U.S. Natural Gas Salt Underground Storage - Total (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total (Million Cubic Feet) Total (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 84,650 74,817 80,243 89,252 99,008 97,724 105,227 105,831 112,197 115,062 116,865 113,229 1995 127,040 118,542 112,576 120,337 127,595 132,749 130,338 117,338 134,950 142,711 138,775 131,368 1996 121,867 110,621 100,667 120,036 125,710 134,937 130,796 135,916 145,249 148,410 151,210 149,245 1997 122,426 108,624 120,923 123,380 138,068 145,452 131,065 131,980 142,780 159,497 161,999 149,833 1998 136,305 135,263 131,302 148,739 151,004 149,079 156,601 157,940 150,855 183,160 186,058 171,088 1999 149,354 144,176 134,794 144,963 161,229 167,124 160,812 168,386 178,681 182,040 183,512 168,536

136

California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

137

RESPONSES OF PRIMARY PRODUCTION AND TOTAL CARBON STORAGE TO CHANGES IN CLIMATE AND ATMOSPHERIC CO2 CONCENTRATION  

E-Print Network [OSTI]

Model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total. For contemporary climate with 315 ppmv CO2, TEM estimated that global NPP is 47.9 PgC/yr and global total carbon-q climate and +20.6% (9.9 PgC/yr) for the GISS climate. The responses of global total carbon storage are +17

138

U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total (Million Cubic Feet) Total (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 5,842,438 5,352,874 5,220,483 5,427,454 5,807,019 6,150,408 6,523,428 6,855,588 7,153,329 7,314,086 7,214,150 6,852,919 1995 6,283,457 5,791,160 5,581,144 5,619,397 5,933,659 6,286,946 6,510,677 6,716,782 7,008,042 7,191,015 6,931,287 6,371,139 1996 5,694,851 5,258,703 4,947,685 5,046,305 5,367,004 5,734,954 6,102,705 6,440,727 6,797,354 6,997,046 6,737,406 6,364,016 1997 5,720,628 5,372,450 5,214,628 5,269,851 5,566,356 5,942,439 6,241,244 6,562,763 6,889,752 7,084,695 6,896,165 6,374,770 1998 5,923,228 5,632,905 5,393,111 5,576,347 5,963,201 6,299,655 6,649,456 6,879,896 7,117,737 7,350,123 7,312,560 6,884,476

139

U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,864,000 1974 NA NA NA NA NA NA NA NA NA 3,042,000 NA 2,912,000 1975 NA NA NA NA NA NA NA NA 3,085,000 3,107,000 3,150,000 3,162,000 1976 3,169,000 3,173,000 3,170,000 3,184,000 3,190,000 3,208,000 3,220,000 3,251,000 3,296,000 3,302,000 3,305,000 3,323,000 1977 3,293,000 3,283,000 3,286,000 3,286,000 3,293,000 3,300,000 3,317,000 3,346,000 3,364,000 3,373,000 3,403,000 3,391,000 1978 3,374,000 3,373,000 3,374,000 3,377,000 3,379,000 3,381,000 3,386,000 3,403,000 3,411,000 3,444,000 3,425,000 3,473,000

140

U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000 1,215,000 1,427,000 1,731,000 2,030,000 2,348,000 2,599,000 2,824,000 2,929,000 2,821,000 2,475,000 1978 1,819,000 1,310,000 1,123,000 1,231,000 1,491,000 1,836,000 2,164,000 2,501,000 2,813,000 2,958,000 2,927,000 2,547,000

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lower 48 States Total Natural Gas in Underground Storage (Base Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,302,792 4,302,341 4,302,108 4,303,570 4,304,364 4,301,779 4,300,139 4,300,269 4,301,291 4,301,737 4,299,727 4,301,752 2012 4,309,129 4,309,505 4,321,454 4,325,195 4,332,383 4,338,100 4,342,905 4,347,859 4,351,797 4,365,049 4,372,359 4,372,412 2013 4,365,146 4,365,297 4,363,812 4,363,259 4,367,088 4,370,387 4,351,118 4,348,089 4,348,899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Underground Base

142

Lower 48 States Total Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,693,215 2,088,293 1,709,624 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

143

Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity  

SciTech Connect (OSTI)

Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF

2013-05-08T23:59:59.000Z

144

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

145

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

146

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

147

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

148

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

149

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

150

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

12,178 2012-2014 California 374,296 374,296 374,296 374,296 374,296 374,296 2012-2014 Colorado 60,582 60,582 60,582 60,582 60,582 63,774 2012-2014 Illinois 303,312 303,312...

151

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

SciTech Connect (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

152

Hydrogen storage capacity of Ti-doped boron-nitride and B?Be-substituted carbon nanotubes  

Science Journals Connector (OSTI)

We investigate the hydrogen absorption capacity of two tubular structures, namely, B?Be-substituted single-wall carbon nanotube (SWNT) and Ti covered single-wall boron nitride nanotube (SWBNT) using first-principles plane wave method. The interaction of H2 molecules with the outer surface of bare SWBNT, which is normally very weak, can be significantly enhanced upon functionalization by Ti atoms. Each Ti atom adsorbed on SWBNT can bind up to four H2 molecules with an average binding energy suitable for room temperature storage. While the substitution process of Be atom on SWNT is endothermic, the substituted Be strengthens the interaction between tube surface and H2 to hold one H2 molecule.

E. Durgun; Y.-R. Jang; S. Ciraci

2007-08-27T23:59:59.000Z

153

Optimization of an atmospheric air volumetric central receiver system: Impact of solar multiple, storage capacity and control strategy  

Science Journals Connector (OSTI)

Abstract Portugal has a high potential for concentrated solar power and namely for atmospheric air volumetric central receiver systems (CRS). The solar multiple and storage capacity have a significant impact on the power plant levelized electricity cost (LEC) and their optimization and adequate control strategy can save significant capital for the investors. The optimized proposed volumetric central receiver system showed good performance and economical indicators. For Faro conditions, the best 4MWe power plant configuration was obtained for a 1.25 solar multiple and a 2h storage. Applying control strategy #1 (CS#1) the power plant LEC is 0.234/kWh with a capital investment (CAPEX) of 22.3million. The capital invested has an internal rate of return (IRR) of 9.8%, with a payback time of 14 years and a net present value (NPV) of 7.9million (considering an average annual inflation of 4%). In the case of better economical indicators, the power plant investment can have positive contours, with an NPV close to 13million (annual average inflation of 2%) and the payback shortened to 13 years.

Bruno Coelho; Szabolcs Varga; Armando Oliveira; Adlio Mendes

2014-01-01T23:59:59.000Z

154

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

155

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

156

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

157

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

158

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

159

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

160

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

162

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

163

Electrochemistry: Metal-free energy storage  

Science Journals Connector (OSTI)

... % of total energy capacity will require electric-energy storage systems to be deployed. For grid-scale applications and remote generation sites, cheap and flexible storage systems are needed, but ... level as a source of potential energy) or expensive (for example, conventional batteries, flywheels and superconductive electromagnetic storage). On page 195 of this issue, Huskinson et al. ...

Grigorii L. Soloveichik

2014-01-08T23:59:59.000Z

164

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

165

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

166

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

167

Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity  

Science Journals Connector (OSTI)

The adsorption of molecular hydrogen on a metal-organic framework (MOF) material, MOF-5, has been studied using the density-functional formalism. The calculated potential-energy surface shows that there are two main adsorption regions: both near the OZn4 oxide cores at the vertices of the cubic skeleton of MOF-5. The adsorption energies in those regions are between 100 and 130 meV/molecule. Those adsorption regions have the shape of long, wide, and deep connected trenches and passage of the molecule between regions needs to surpass small barriers of 3050 meV. The shape of these regions, and not only the presence of metal atoms, explains the large storage capacity measured for MOF-5. The elongated shape explains why some authors have previously identified only one type of adsorption site, associated to the Zn oxide core, and others identified two or three sites. One should consider adsorption regions rather than adsorption sites. A third region of adsorption is near the benzenic rings of the MOF-5. We have also analyzed the possibility of dissociative chemisorption. The chemisorption energy with respect to two separated H atoms is 1.33 eV/H atom; but, since dissociating the free molecule costs 4.75 eV, the physisorbed H2 molecule is more stable than the dissociated chemisorbed state by about 2 eV. Dissociation of the adsorbed molecule costs less energy, but the dissociation barrier is still high.

I. Cabria; M. J. Lpez; J. A. Alonso

2008-11-24T23:59:59.000Z

168

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

169

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

170

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

171

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

172

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network [OSTI]

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

173

Improved hydrogen storage capacity by hydrogen spillover and fine structural characterization of MIL-100 metal organic frameworks  

Science Journals Connector (OSTI)

The MIL-100 metal organic framework was synthesized through solvothermal route, modified with Pt-loaded active carbon and H2 adsorption capacity was evaluated. The maximum specific surface area of MIL-100 was obt...

Abhijit Krishna Adhikari; Kuen-Song Lin

2014-11-01T23:59:59.000Z

174

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

175

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

176

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network [OSTI]

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

177

Commercial Storage and Handling of Sorghum Grain.  

E-Print Network [OSTI]

percent divided-among storage operators attempt to keep merchandising space TABLE 6. STORAGE SPACE BY SPECIFIED MATERIAL AND TYPE OF STRUCTURE1 Area and con- Storage built prior to 1956 Storage built 1956-60 inclusive 'ruttion material Flat structures...,000 bushels Percent 17.1 81.3 1.6 90.5 9.5 100.0 40.7 58.2 1.1 iomple proportions were applied to total storage capacities by areas to obtain estimates of quantities in the table. ntludes wood, steel and concrete and steel and wood structures...

Brown, Charles W.; Moore, Clarence A.

1963-01-01T23:59:59.000Z

178

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

179

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Broader source: Energy.gov (indexed) [DOE]

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

180

A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities  

E-Print Network [OSTI]

published for Zr-based MOFs. CH4/CO2/H2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g/g which...

Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.; Krungleviciute, Vaiva; Fairen-Jimenez, David; Sarjeant, Amy A.; Snurr, Randall Q.; Hupp, Joseph T.; Yildirim, Taner; Farha, Omar K.

2014-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion  

E-Print Network [OSTI]

advantages, only compressed air energy storage (CAES) has the storage capacity of pumped hydro, but with

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

182

Continuous Commissioning(SM) of a Thermal Storage System  

E-Print Network [OSTI]

shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

Turner, W. D.; Liu, M.

2001-01-01T23:59:59.000Z

183

Natural Gas Aquifers Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1999-2012 Alabama 0 1999-2012 Arkansas 0 1999-2012 California 0 0 1999-2012 Colorado 0 1999-2012 Illinois 876,960 874,384 885,848 772,381 777,294 779,862 1999-2012 Indiana 81,490 81,991 81,328 81,268 81,310 80,746 1999-2012 Iowa 278,238 284,747 284,811 288,010 288,210 288,210 1999-2012 Kansas 0 1999-2012 Kentucky 9,567 9,567 9,567 9,567 9,567 9,567 1999-2012 Louisiana 0 1999-2012 Michigan 0 1999-2012 Minnesota 7,000 7,000 7,000 7,000 7,000 7,000 1999-2012 Mississippi 0 1999-2012 Missouri 32,940 32,876 10,889 11,502 13,845 13,845 1999-2012 Montana 0 1999-2012 New Mexico 0 1999-2012 New York 0 1999-2012 Ohio 0 1999-2012 Oklahoma 170 1999-2012 Oregon 0 1999-2012 Pennsylvania

184

Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine:? CUPRAC Method  

Science Journals Connector (OSTI)

The antioxidant polyphenolic compounds tested demonstrate that the highest capacities in the CUPRAC method were observed for epicatechin gallate, epigallocatechin gallate, quercetin, fisetin, epigallocatechin, catechin, and caffeic acid in this order, in accordance with theoretical expectations, because the number and position of the hydroxyl groups as well as the degree of conjugation of the whole molecule are important. ...

Re?at Apak; Kubilay Gl; Mustafa zyrek; Saliha Esin Karademir

2004-11-25T23:59:59.000Z

185

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

186

Renewable Energy Interconnection and Storage - Technical Aspects | Open  

Open Energy Info (EERE)

Renewable Energy Interconnection and Storage - Technical Aspects Renewable Energy Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Interconnection_and_Storage_-_Technical_Aspects&oldid=514543"

187

High-performances carbonaceous adsorbents for hydrogen storage  

Science Journals Connector (OSTI)

Activated carbons (ACs) with controlled microporosity have been prepared and their H2 storage performances have been tested in a gravimetric device. Such adsorbents are natural Chinese anthracites chemically activated with alkaline hydroxides, NaOH or KOH. Outstanding total storage capacities of hydrogen, as high as 6.6wt.% equivalent to excess capacity of 6.2 wt.%, have been obtained at 4MPa for some of these adsorbents. These values of hydrogen adsorption are among the best, if not the highest, ever published so far in the open literature. They are well above those of some commercial materials, e.g. Maxsorb-3, considered as a reference of high-performance adsorbent for hydrogen adsorption. Such exceptional storage capacities may be ascribed to a higher volume of micropores (

Weigang Zhao; Vanessa Fierro; E Aylon; M T Izquierdo; Alain Celzard

2013-01-01T23:59:59.000Z

188

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

189

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

190

A unit commitment study of the application of energy storage toward the integration of renewable generation  

Science Journals Connector (OSTI)

To examine the potential benefits of energy storage in the electric grid a generalized unit commitment model of thermal generating units and energy storage facilities is developed. Three different storage scenarios were testedtwo without limits to total storage assignment and one with a constrained maximum storage portfolio. Given a generation fleet based on the City of Austins renewable energy deployment plans results from the unlimited energy storage deployment scenarios studied show that if capital costs are ignored large quantities of seasonal storage are preferred. This operational approach enables storage of plentiful wind generation during winter months that can then be dispatched during high cost peak periods in the summer. These two scenarios yielded $70 million and $94 million in yearly operational cost savings but would cost hundreds of billions to implement. Conversely yearly cost reductions of $40 million can be achieved with one compressed air energy storage facility and a small set of electrochemical storage devices totaling 13?GWh of capacity. Similarly sized storage fleets with capital costs service lifetimes and financing consistent with these operational cost savings can yield significant operational benefit by avoiding dispatch of expensive peaking generators and improving utilization of renewable generation throughout the year. Further study using a modified unit commitment model can help to clarify optimal storage portfolios reveal appropriate market participation approaches and determine the optimal siting of storage within the grid.

Chioke Harris; Jeremy P. Meyers; Michael E. Webber

2012-01-01T23:59:59.000Z

191

From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Taner Yildirim 1,2 1 Department of Materials Science and Eng. University of Pennsylvania Philadelphia, PA 19104 2 National Institute of Standards and Technology, NCNR Gaithersburg, MD 20899 Phone: (301) 975-6228 Email: taner@seas.upenn.edu DOE Program Manager: Dr. Thiyaga P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Use neutron scattering methods along with first- * principles computation to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. Study the effect of scaffolding, nanosizing, doping of *

192

Effect of manganese addition on hydrogen storage performance of vanadium-based BCC hydrogen storage alloys  

Science Journals Connector (OSTI)

The effect of manganese addition on hydrogen storage performance of vanadium-based BCC alloys was ... plateau pressure and a reverse effect on maximum hydrogen storage capacity. However, an effective hydrogen storage

Chan-Yeol Seo; Zhao-Liang Zhang; Jin-Ho Kim

2002-07-01T23:59:59.000Z

193

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

194

Storage Sub-committee  

Broader source: Energy.gov (indexed) [DOE]

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

195

Total Natural Gas Gross Withdrawals (Summary)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity...

196

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

197

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Broader source: Energy.gov (indexed) [DOE]

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

198

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

199

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

200

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total solar house description and performance  

SciTech Connect (OSTI)

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

202

Natural gas storage - end user interaction. Final report, September 1992--May 1996  

SciTech Connect (OSTI)

The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

NONE

1998-12-31T23:59:59.000Z

203

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

204

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Ldding

2013-01-01T23:59:59.000Z

205

Evaluation of Storage Reallocation and Related Strategies for Optimizing Reservoir System Operations  

E-Print Network [OSTI]

necessity to use limited storage capacity as effectively as possible warrants periodic re-evaluations of operating policies. Reallocation of storage capacity between purposes represents a general strategy for optimizing the beneficial use of limited storage...

Wurbs, Ralph A.; Carriere, Patrick E.

206

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

207

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

208

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

209

PCM energy storage during defective thermal cycling:.  

E-Print Network [OSTI]

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named the (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

210

Metal supported carbon nanostructures for hydrogen storage.  

E-Print Network [OSTI]

??Carbon nanocones are the fifth equilibrium structure of carbon, first synthesized in 1997. They have been selected for investigating hydrogen storage capacity, because initial temperature (more)

Matelloni, Paolo

2012-01-01T23:59:59.000Z

211

Natural Gas Salt Caverns Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

212

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

213

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

214

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

215

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

216

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

217

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

218

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

219

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

220

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Salt Caverns Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

222

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

223

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

224

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

225

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

226

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

227

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

228

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

229

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

230

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

231

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

232

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

233

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

234

Alaska Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

235

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

236

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

237

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

238

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

239

Alaska Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

240

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

242

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

243

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download...

244

California: Conducting Polymer Binder Boosts Storage Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

method. National Labs Leading Charge on Building Better Batteries California: Heliotrope Technologies Wins R&D 100 Award for Universal Smart Window Coating that Saves Energy...

245

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

246

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

247

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

248

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

249

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

250

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

251

1992 Annual Capacity Report. Revision 1  

SciTech Connect (OSTI)

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

252

Molecular Simulation of Hydrogen Storage in SWNT ? Shigeo MARUYAMAa  

E-Print Network [OSTI]

Molecular Simulation of Hydrogen Storage in SWNT ? Shigeo MARUYAMAa , Tatsuto KIMURAb a Eng. Res efficiency storage of hydrogen with single walled nanotubes (SWNTs) by Dillon et al. [1], experimental determinations of the storage capacity and mechanism of storage have been extensively studied. Hydrogen storage

Maruyama, Shigeo

253

Safety of interim storage solutions of used nuclear fuel during extended term  

SciTech Connect (OSTI)

In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

2013-07-01T23:59:59.000Z

254

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

255

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network [OSTI]

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

256

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

257

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

258

Hydrogen storage in aligned carbon nanotubes and David T. Shaw  

E-Print Network [OSTI]

Hydrogen storage in aligned carbon nanotubes Yan Chena) and David T. Shaw Department of Electrical and thermogravimetric analysis show a hydrogen storage capacity of 5­7 wt% was achieved reproducibly at room temperature the samples to 300 °C and removing of the catalyst tips, can increase the hydrogen storage capacity up to 13

Chung, Deborah D.L.

259

Carbon Capture and Storage in Southern Africa | Open Energy Information  

Open Energy Info (EERE)

Southern Africa Southern Africa Jump to: navigation, search Name Carbon Capture and Storage in Southern Africa: An assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia Agency/Company /Organization Energy Research Centre of the Netherlands Topics Background analysis, Technology characterizations Resource Type Publications Website http://www.ecn.nl/docs/library Country Mozambique, Namibia, Botswana Eastern Africa, Southern Africa, Southern Africa References CCS in Southern Africa[1] Abstract "In April 2010, a series of workshops on CO2 capture and storage were held in Botswana, Mozambique and Namibia, attended by a total of about 100 participants. The objectives of the workshops were to provide a thorough

260

Grid Applications for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

262

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

263

NEDO Research Related to Battery Storage Applications for Integration of  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook.

264

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

265

A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China  

SciTech Connect (OSTI)

Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal Grant S.

2013-01-01T23:59:59.000Z

266

Thermal Storage Options for HVAC Systems  

E-Print Network [OSTI]

this method is based on the specific heat of water rather than the latent 'heat of fusion of ice as in ice storage, it requires about 4 times the storage capacity of an equivalent ice storage system. ? Salt Storage: This system utilizes eutectic salts... which freeze and melt around 47 o F. Exist ing chillers can be easily retrofitted for salt storage or chilled water storage. For ice stor age systems, a direct refrigerant system or glycol chillers are suitable. This paper discusses the details...

Weston, R. F.; Gidwani, B. N.

267

Doped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan  

E-Print Network [OSTI]

Doped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan Savannah River Technology Center Savannah-capacity hydrogen storage material. The final product should have favorable thermodynamics and kinetics- board hydrogen storage for transportation applications. One of the candidates for solid hydrogen storage

268

MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES  

E-Print Network [OSTI]

of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

Paris-Sud XI, Université de

269

Dependability of Wind Energy Generators with Short-Term Energy Storage  

Science Journals Connector (OSTI)

...ca-pacity must be enlarged, or storage facili-ties must be added...re-gions where reservoirs for pumped water storage are available, the wind...Examples of possible storage systems are batteries, flywheels, pumped water, compressed air...

BENT SRENSEN

1976-11-26T23:59:59.000Z

270

Hydrogen Storage Materials Database Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

271

Rapidly solidified magnesium: nickel alloys as hydrogen storage materials.  

E-Print Network [OSTI]

??Due to high hydrogen capacity, good reversibility and low cost, magnesium hydride is one of the most promising hydrogen storage materials. However, the high desorption (more)

Yi, Xiaodong

2014-01-01T23:59:59.000Z

272

Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 1: H capacity and Role of Al  

SciTech Connect (OSTI)

Lithium-based complex hydrides, including lithium aluminum hydrides (LiAlH4, Li3AlH6) and lithium borohydride (LiBH4), are some of the most attractive materials for hydrogen storage due to their high hydrogen contents. In the present work, we investigated the hydrogen storage properties of combined systems of Li3AlH6-LiBH4 and Al-LiBH4, both of which exhibit favorable hydrogen storage properties owing to the formation of AlB2 during dehydrogenation. TGA data showed that TiCl3-doped Li3AlH6/2LiBH4 and 0.5Al/LiBH4 release ~ 8.8 and ~ 8.4 wt.% H2, respectively, with ~ 3.8 and ~ 5.8 wt.% release after rehydrogenation of the dehydrogenation product. XRD results identified LiH and AlB2 phases in the dehydrogenated products, which has suggested a mechanism by which Al contributes to the remarkable improvement of the reversible storage properties of LiBH4 in terms of the temperature and pressure for H2 release/uptake.

Choi, Young Joon; Lu, Jun; Sohn, Hong Yong; Fang, Zhigang Zak

2011-04-07T23:59:59.000Z

273

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

274

NETL: Carbon Storage - Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

275

Hydrogen Storage in Metal-Organic Frameworks  

SciTech Connect (OSTI)

Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

Omar M. Yaghi

2012-04-26T23:59:59.000Z

276

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

277

Chemical Hydrogen Storage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a new type of liquid-phase material has been developed. This material, developed by Air Products and Chemicals, Inc., has shown 5-7 wt.% gravimetric hydrogen storage capacity...

278

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

279

Spent fuel storage requirements 1993--2040  

SciTech Connect (OSTI)

Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

Not Available

1994-09-01T23:59:59.000Z

280

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES  

SciTech Connect (OSTI)

In support of the Department of Energys continued plans to de-inventory and reduce the footprint of Cold War era weapons material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOEs material consolidation mission. During the facilitys growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

Koenig, R.

2013-07-02T23:59:59.000Z

282

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

283

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

284

Energy Storage and Solar Power: An Exaggerated Problem  

Science Journals Connector (OSTI)

...capac-ity in an electric grid. The data base for wind correlation...intermittent sources through a grid to circumvent storage is particularly...com-pressed-air systems, flywheels, and su-perconducting magnets...compressed-air systems, flywheels, and superconducting storage...

WILLIAM D. METZ

1978-06-30T23:59:59.000Z

285

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

286

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

287

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect (OSTI)

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

288

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

289

Instrumentation & control architecture applied for a hydrogen isotopes storage system  

Science Journals Connector (OSTI)

The properties of hydrogen storage used materials refers to their ability to high "connect" hydrogen, to have a large storage capacity, to be easily achievable and, if necessary, to allow its easy recovery. The metals and intermetallic compounds are ... Keywords: architecture, control system, hydrogen, isotopes, storage

Eusebiu Ilarian Ionete; Bogdan Monea

2011-09-01T23:59:59.000Z

290

Multi-resolution Storage and Search in Sensor Deepak Ganesan  

E-Print Network [OSTI]

of sensor data to internet gateways which can quickly drain battery-operated nodes. Constructing a storage such summaries, and (c) efficient use of network storage capacity through load-balancing and progressive agingMulti-resolution Storage and Search in Sensor Networks Deepak Ganesan Department of Computer

Ganesan, Deepak

291

Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node  

E-Print Network [OSTI]

there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission. Keywords: Energy harvesting, sensor networks, fading chan- nel, Shannon capacity, inefficiencies in storage) and converts them to electrical energy. Common energy harvesting devices are solar cells, wind turbines

Sharma, Vinod

292

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation  

E-Print Network [OSTI]

and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

Goddard III, William A.

293

NREL: Learning - Energy Storage Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

294

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

295

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

296

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

297

Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage  

Science Journals Connector (OSTI)

The effect of storage temperature, storage time and total soluble solid (TSS) on the total sugar (TS), sucrose, glucose, fructose, total amino acid (TAA), pH, 5-hydroxymethylfurfural (HMF) and browning degree (BD...

Hou-yin Wang; Xiao-song Hu; Fang Chen; Ji-hong Wu

2006-06-01T23:59:59.000Z

298

Increasing the renewable energy sources absorption capacity of the Macedonian energy system  

Science Journals Connector (OSTI)

Macedonian energy sector is the main emitter of greenhouse gases with share of about 70% in the total annual emissions. Also 70%75% of emissions are associated with the electricity generation due to the predominant role of the lignite fuelled power plants. Recently the government has adopted a strategy for the use of renewable energy sources (RES) which identifies a target of 21% of final energy consumption from RES by 2020. In this paper analyses are conducted in order to investigate to which extent and in which way the absorption capacity of the power system for RES electricity can be improved. For this purpose combining various conventional and RES technologies including pump storage hydro power plant and revitalisation of the existing lignite power plants six scenarios for the power system expansion are developed by making use of EnergyPLAN model. Critical excess of electricity analyses are conducted in order to identify the maximal penetration of wind electricity. The results have shown that in the exiting capacities maximal penetration of wind electricity in 2020 is 13% of total electricity consumption. The revitalization of the existing lignite power plants and building of pump storage power plant would increase the wind penetration. Furthermore the developed scenarios are comparatively assessed in terms of the associated greenhouse gases emissions and import of electricity.

2013-01-01T23:59:59.000Z

299

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

300

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimized LNG Storage Tanks for Fleet-Size Refueling Stations with Local LNG Liquefiers  

Science Journals Connector (OSTI)

The capacity of a liquid natural gas (LNG) storage tank in a LNG fleet-size refueling station is determined in ... . These considerations drive the selection of the LNG storage tank size upwards. On the other han...

J. A. Barclay; A. J. Corless; E. H. Nelson

1998-01-01T23:59:59.000Z

302

Development of magnesium-based multilayer PVD coatings for hydrogen storage applications.  

E-Print Network [OSTI]

??On the long list of solid-state hydrogen storage materials, magnesium hydride stands out for its relatively high hydrogen storage capacity of 7.7 wt%, combined with (more)

Fry, Christopher

2013-01-01T23:59:59.000Z

303

Ethylene capacity tops 77 million mty  

SciTech Connect (OSTI)

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

304

Numerical aperture influence on 3-D multi-layer optical data storage systems , Edwin P. Walkera  

E-Print Network [OSTI]

Numerical aperture influence on 3-D multi-layer optical data storage systems Yi Zhanga* , Edwin P storage system is analyzed. Keywords: NA, multi-layer data storage, two-photon recording, capacity) 550-0596, Fax: (858) 550-0917 #12;Numerical aperture influence on 3-D multi-layer optical data storage

Esener, Sadik C.

305

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

306

Theoretical and experimental study of solid state complex borohydride hydrogen storage materials.  

E-Print Network [OSTI]

??Materials that are light weight, low cost and have high hydrogen storage capacity are essential for on-board vehicular applications. Some reversible complex hydrides are alanates (more)

Choudhury, Pabitra

2009-01-01T23:59:59.000Z

307

System design and manufacturability of concrete spheres for undersea pumped hydro energy or hydrocarbon storage .  

E-Print Network [OSTI]

??Offshore wind and energy storage have both gained considerable attention in recent years as more wind turbine capacity is installed, less attractive/economical space remains for (more)

Fennell, Gregory E. (Gregory Edmund)

2011-01-01T23:59:59.000Z

308

Design and hydraulic characteristics of the hydromechanical equipment of an energy-storage hydroelectric station  

Science Journals Connector (OSTI)

1. The energy-storage hydroelectric station (ESHES) can provide a 1.52-fold increase in peak capacity with a si...

P. R. Khlopenkov

1976-03-01T23:59:59.000Z

309

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

310

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

311

FAFCO Ice Storage test report  

SciTech Connect (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-11-01T23:59:59.000Z

312

Summary of On-Board Storage Models and Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-Board Storage On-Board Storage Models and Analyses R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc) 1. On-Board System Configuration 2. Dehydrogenation Reactor Dehydrogenation kinetics Trickle bed hydrodynamics Dehydrogenation reactor model Reactor performance with pelletized and supported catalysts 3. System Performance Storage efficiency Storage capacity On-Board Hydrogen Storage System with a Liquid Carrier 3 Fuel Cell System with H 2 Stored in a Liquid Carrier Enthalpy Wheel Spent H 2 Fuel cell Stack Stack Coolant

313

pumped storage | OpenEI  

Open Energy Info (EERE)

pumped storage pumped storage Dataset Summary Description These two datasets include energy statistics for the European Union (EU). The statistics are available from the European Commission. The data includes detailed information about: production, net imports, gross inland consumption, and electricity generation for the EU as a whole, as well as the individual member countries, for the period between 1990 and 2007. Source European Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption biomass coal crude oil Electricity Generation EU gas geothermal Hydro pumped storage PV renewable energy generating capacity wind Data application/vnd.ms-excel icon EU Energy Figures 2010 (Excel file, multiple tabs) (xls, 2 MiB) application/vnd.ms-excel icon EU Electricity Generation from Renewables (xls, 190.5 KiB)

314

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

315

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

316

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

317

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

SciTech Connect (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

318

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

319

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

320

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Panama Canal capacity analysis  

SciTech Connect (OSTI)

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

322

Appendix E: Underground Storage Annual Site Environmental Report  

E-Print Network [OSTI]

Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

323

HYDROGEN STORAGE IN CARBON NANOTUBES JOHN E. FISCHER  

E-Print Network [OSTI]

HYDROGEN STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li INSERTION of Li+. AND: van der Waals interaction NANOTUBES CAPILLARITY: metals

324

Storage of hydrogen in floating catalytic carbon nanotubes after graphitizing  

Science Journals Connector (OSTI)

Hydrogen storage under moderate pressure (?10 MPa) and ... catalyst method is investigated. The capacity of hydrogen adsorption is evaluated based on both the ... diameter and morphology. Indirect evidence indica...

Hongwei Zhu; Xuesong Li; Lijie CI; Cailu Xu

2002-10-01T23:59:59.000Z

325

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

326

The Silver Bullet: Storage!  

Broader source: Energy.gov (indexed) [DOE]

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

327

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect (OSTI)

The Intergovernmental Panel on Climate Changes (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

328

Kansas Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 2003 301,502 301,502 301,502 301,502 301,502 299,474 299,474 299,474 299,474 299,474 299,474 299,474 2004 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 288,197 288,197 288,197 2005 288,197 288,197 288,197 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 2006 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,747 289,747 289,747 2007 289,747 289,747 289,747 289,747 289,747 289,747 289,747 289,747 288,383 288,383 288,383 288,383 2008 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,383 288,926 288,926

329

U.S. Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View

330

Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 576,841 576,841 2003 576,841 576,841 576,841 576,841 576,841 587,116 563,590 587,116 587,116 587,116 587,116 587,116 2004 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 591,673 591,673 591,673 2005 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 2006 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 593,740 593,740 593,740 2007 593,740 593,740 593,740 593,740 593,740 593,740 593,740 593,740 599,165 599,869 599,869 599,869 2008 599,869 599,869 599,869 599,869 599,869 599,869 599,869 599,869 599,869 606,369 605,361 605,361

331

Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 17,755 21,080 21,080 21,080 21,080 21,080 21,080 21,080 22,042 22,042 22,042 22,042 2003 22,042 22,042 22,042 22,042 22,042 23,676 23,676 23,676 23,676 23,676 23,676 23,676 2004 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,796 23,796 23,796 2005 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 2006 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,034 24,034 24,034 2007 24,034 24,034 24,034 24,034 24,034 24,034 24,034 24,034 26,703 26,703 26,703 29,165 2008 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 22,310 29,415 29,415

332

Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 2,992 2,992 2003 2,992 2,992 2,992 2,992 2,992 5,100 5,100 6,344 6,344 6,344 6,344 6,344 2004 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 8,024 8,024 8,024 2005 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 2006 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 9,035 9,035 9,035 2007 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,692 9,692 9,692 9,692 2008 9,692 9,692 9,692 6,260 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 2009 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,677 9,500

333

Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2003 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2004 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2005 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2006 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2007 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 64,000 64,000 64,000 64,000 2008 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000 64,000

334

Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2003 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2004 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2005 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2006 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2007 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2008 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480

335

New York Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 175,496 189,267 189,267 2003 189,267 189,267 189,267 189,267 189,267 190,157 190,157 190,157 190,157 190,157 190,157 190,157 2004 190,157 190,157 190,157 190,157 190,157 190,157 190,157 190,157 190,157 203,265 203,265 203,265 2005 203,265 203,265 203,265 203,265 203,265 203,265 203,265 204,265 204,265 204,265 204,265 204,265 2006 204,265 204,265 204,265 204,265 212,165 212,165 212,165 212,165 212,165 212,755 212,755 212,755 2007 212,755 212,755 212,755 212,755 212,755 212,755 212,755 212,755 213,225 213,225 213,225 213,225 2008 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 213,225 229,013 229,013

336

Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,720 37,720 2003 37,720 37,720 37,720 37,720 37,720 38,969 38,969 38,969 39,628 39,628 39,628 39,628 2004 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 40,247 40,247 40,247 2005 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 2006 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 42,191 42,191 42,191 2007 42,191 42,191 42,191 42,191 42,191 42,191 42,191 42,191 43,316 43,316 43,316 43,316 2008 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 43,316 39,341 39,341

337

California Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 388,480 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 474,920 474,920 2003 474,920 474,920 474,920 474,920 474,920 478,995 478,995 478,995 478,995 478,995 478,995 478,995 2004 478,995 478,995 478,995 478,995 478,995 478,995 486,095 446,095 446,095 454,095 454,095 454,095 2005 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 2006 474,095 474,095 474,095 474,095 474,095 474,095 481,095 481,095 481,095 484,726 484,726 484,726 2007 484,726 484,726 484,726 484,726 484,726 484,726 484,726 484,726 484,711 476,711 476,711 476,711 2008 476,711 476,711 476,711 476,711 476,711 476,711 476,711 476,711 476,711 477,911 488,911 488,911

338

Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2003 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2004 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2005 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2006 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2007 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2008 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 34,850 34,850

339

Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 2003 100,227 100,227 100,227 100,227 100,227 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2004 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2005 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2006 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 98,068 98,068 98,068 2007 93,474 93,474 93,474 93,474 93,474 93,474 93,474 93,474 98,068 98,068 98,068 98,068 2008 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068 98,068

340

Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 374,125 374,125 2003 374,125 374,125 374,125 374,125 374,125 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2004 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2005 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2006 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2007 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2008 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 2003 5,280 5,280 5,280 5,280 5,280 8,520 8,520 8,520 8,520 8,520 8,520 8,520 2004 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 11,015 11,015 11,015 2005 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2006 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2007 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 19,300 19,300 19,300 19,300 2008 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 2009 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 19,300 26,900

342

Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 575,959 575,959 2003 575,959 575,959 575,959 575,959 575,959 573,709 573,709 573,709 573,709 573,709 573,709 573,709 2004 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 572,404 572,404 572,404 2005 572,404 572,404 572,329 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 2006 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,477 572,477 572,477 2007 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 2008 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477 572,477

343

West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 733,126 733,126 733,126 733,126 733,126 733,126 496,796 496,796 496,796 496,796 497,996 497,996 2003 497,996 497,996 497,996 497,996 497,996 509,836 509,836 509,836 509,836 509,758 494,458 494,458 2004 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 510,827 510,827 510,827 2005 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 2006 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 512,377 512,377 512,377 2007 512,377 512,377 541,977 541,977 541,977 541,977 541,977 541,977 543,016 543,016 543,016 543,016 2008 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 543,016 536,702 536,702

344

Colorado Natural Gas Underground Storage Capacity (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,662 82,662 1990's 98,999 98,999 105,790 105,790 105,583 108,837 99,599 99,599 99,599 99,599...

345

Flood control reservoir operations for conditions of limited storage capacity  

E-Print Network [OSTI]

: ______________________________ ______________________________ Ralph Wurbs Anthony Cahill (Chair of Committee) (Member) ______________________________ ______________________________ Francisco Olivera Patricia Haan... to perform the computations to develop risk-based EOS. The computational algorithm in REOS is divided in three major components: (1) synthetic streamflow generation, (2) mass balance computations, and (3) frequency analysis. The methodology computes...

Rivera Ramirez, Hector David

2005-02-17T23:59:59.000Z

346

U.S. Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico...

347

Working and Net Available Shell Storage Capacity as of September...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

92 Strategic Petroleum Reserve - - - - 727,000 - - - - - 727,000 - RRevised. 1 Idle tanks and caverns are those that were not capable of being used to hold stocks on the report...

348

Arkansas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-8 Year-9 1980's 36,147 31,447 1990's 31,277 31,277 31,277 31,277 31,277 38,347 31,871 31,871 24,190 24,190 2000's 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000...

349

Carbon Sequestration Kinetic and Storage Capacity of Ultramafic Mining Waste  

Science Journals Connector (OSTI)

Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO2 sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-...

Julie Pronost; Georges Beaudoin; Joniel Tremblay; Faal Larachi; Jose Duchesne; Rjean Hbert; Marc Constantin

2011-09-15T23:59:59.000Z

350

Estimating the Capacity Value of Concentrating Solar Power Plants: A Case Study of the Southwestern United States  

SciTech Connect (OSTI)

We estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2012-05-01T23:59:59.000Z

351

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

352

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

353

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

354

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Broader source: Energy.gov (indexed) [DOE]

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

355

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

356

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

357

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

358

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

359

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network [OSTI]

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

360

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

362

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

363

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

364

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

365

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

366

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

367

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Payko; S. Kaka

1987-01-01T23:59:59.000Z

368

Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships  

E-Print Network [OSTI]

1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

Johansen, Tor Arne

369

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications  

E-Print Network [OSTI]

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications on complex hydrides for hydrogen storage applications in connection with the « Fast, reliable and cost effective boron hydride based high capacity solid state hydrogen storage materials» project co

370

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

371

Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma, Shuang Liu, and E. G. Wanga)  

E-Print Network [OSTI]

Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma as hydrogen adsorbent. A hydrogen storage capacity up to 8 wt % was achieved reproducibly under ambient pressure and at temperature of 300 °C. The high hydrogen storage capacity under the moderate conditions

Zhang, Guangyu

372

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect (OSTI)

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than todays best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durationsgenerally less than a few minutes. ABBs system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

373

Evaluation Model for Safety Capacity of Chemical Industrial Park Based on Acceptable Regional Risk  

Science Journals Connector (OSTI)

Abstract The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose to explore the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity for chemical industrial park, and then by combining with the safety storage capacity,a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized the regional risk control to the Park effectively.

Guohua Chen; Shukun Wang; Xiaoqun Tan

2014-01-01T23:59:59.000Z

374

OEM Perspective on Cryogenic H2 Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compressed compressed Hydrogen Storage. Tobias Brunner February 15 th , 2011, Washington D.C. BMW Hydrogen. Hydrogen Storage Workshop. BMW EfficientDynamics Less emissions. More driving pleasure. BMW Hydrogen Washington DC 02/15/2011 Page 2 BMW Hydrogen Technology Strategy. Advancement of key components. Source: BMW Advanced key components Next vehicle & infrastructure Hydrogen 7 small series LH 2 StorageCapacity   Safety   Boil-off loss   Pressure supply   Complexity   Infrastructure  Technology leap storage & drive train Efficient long-range mobility:  Zero Emission  Focus on vehicles with high energy demand.  Range > 500 km (6-8 kg H 2 )  Fast refueling (< 4 min / 6 kg)  Optimized safety oriented vehicle package & component

375

Carbon Capture and Storage  

SciTech Connect (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

376

Total Number of Existing Underground Natural Gas Storage Fields  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 400 401 409 411 410 414 1989-2012 Alabama 2 2 2 2 2 2 1995-2012 Arkansas 2 2 2 2 2 2 1989-2012 California 12 12 13 13 13 14 1989-2012 Colorado 8 8 9 9 9 10 1989-2012 Illinois 29 28 28 28 28 28 1989-2012 Indiana 22 22 22 22 22 22 1989-2012 Iowa 4 4 4 4 4 4 1989-2012 Kansas 19 19 19 19 19 19 1989-2012 Kentucky 23 23 23 23 23 23 1989-2012 Louisiana 15 17 18 18 18 18 1989-2012 Maryland 1 1 1 1 1 1 1989-2012 Michigan 45 45 45 45 45 45 1989-2012 Minnesota 1 1 1 1 1 1 1989-2012

377

Hydrogen Storage by Polylithiated Molecules and Nanostructures  

Science Journals Connector (OSTI)

Hydrogen Storage by Polylithiated Molecules and Nanostructures ... (3) Physisorption offers the possibility of storing hydrogen in molecular form. ... Also given in Table 1 are the hydrogen binding energies, which are calculated by subtracting the total energy of the hydrogenated polylithiated molecules from the sum of the total energies of the isolated polylithiated molecules and the hydrogen molecules, divided by the number of hydrogen molecules. ...

Sleyman Er; Gilles A. de Wijs; Geert Brocks

2009-04-29T23:59:59.000Z

378

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

379

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Title Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Publication Type Journal Article LBNL Report Number LBNL-6114E Year of Publication 2013 Authors Sherman, Max H., and Erin L. Hult Journal Atmospheric Environment Volume 72 Start Page 41 Pagination 41-49 Date Published 01/2013 Keywords Buffering capacity, formaldehyde, moisture Abstract A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

380

1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.  

SciTech Connect (OSTI)

Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - accurate heat capacity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test on concrete (called the QAB test) requires accurate knowledge of both the total heat loss... coefficient and heat capacity of the calorimeters introduced, with these...

382

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

383

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

384

Porous polymeric materials for hydrogen storage  

DOE Patents [OSTI]

Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

Yu, Luping (Hoffman Estates, IL); Liu, Di-Jia (Naperville, IL); Yuan, Shengwen (Chicago, IL); Yang, Junbing (Westmont, IL)

2011-12-13T23:59:59.000Z

385

Dish Stirling Advanced Latent Storage Feasibility  

Science Journals Connector (OSTI)

Abstract Dish-Stirling systems have been demonstrated to provide high-efficiency solar-only electrical generation, holding the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. Current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports on the technical advantages and challenges of dish Stirling with storage, to make a preliminary estimate as to the technical feasibility of such a system. The proposed system with storage incorporates high temperature latent transport and latent storage, providing an exergetic match to the isothermal input of the Stirling cycle. The transport from the receiver to the storage, and from storage to the engine, is accomplished with advanced sodium heat pipes. The storage is in a solid-liquid phase change material (PCM), likely a metallic eutectic to reduce exergy losses in thermal conduction. We model a dish Stirling system at a block level, using a combination of real data from several dish systems with and without heat pipe transport, and determine annual energy production and revenue streams based on Barstow California weather data and Southern California Edison Time of Day pricing. We optimize the system on solar multiple, capacity of storage, and several operational strategies. We find that a storage system using metallic eutectic phase change storage results in a feasible physical embodiment, with mass, volume, and complexity suitable for 25kWe dish Stirling systems. The results indicate a system with 6hours of storage and a solar multiple of 1.25 provides the optimum impact to LCOE and profit for the range of cases studied. A storage system applied to dish Stirling will leverage the current high performance systems, increasing the value to the utilities and transmission entities. A feasible embodiment has been proposed, which with sufficient development will re-establish dish Stirling as a leading energy option.

C.E. Andraka

2014-01-01T23:59:59.000Z

386

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

387

Scalable I/O Systems via Node-Local Storage: Approaching 1 TB/sec File I/O  

SciTech Connect (OSTI)

The growth in the computational capability of modern supercomputing systems has been accompanied by corresponding increases in CPU count, total RAM, and total storage capacity. Indeed, systems such as Blue-Gene/L [3], BlueGene/P, Ranger, and the Cray XT series have grown to more than 100k processors, with 100 TeraBytes of RAM and are attached to multi-PetaByte storage systems. However, as part of this design evolution, large supercomputers have lost node-local storage elements, such as disks. While this decision was motivated by important considerations like overall system reliability, it also resulted in these systems losing a key level in their memory hierarchy, with nothing to fill the gap between local RAM and the parallel file system. While today's large supercomputers are typically attached to fast parallel file systems, which provide tens of GBs/s of I/O bandwidth, the computational capacity has grown much faster than the storage bandwidth capacity. As such, these machines are now provided with much less than 1GB/s of I/O bandwidth per TeraFlop of compute power, which is below the generally accepted limit required for a well-balanced system [8] [16]. The result is that today's limited I/O bandwidth is choking the capabilities of modern supercomputers, specifically in terms of limiting their working sets and making fault tolerance techniques, such as checkpointing, prohibitively expensive. This paper presents an alternative system design oriented on using node-local storage to improve aggregate system I/O bandwidth. We focus on the checkpointing use-case and present an experimental evaluation of SCR, a new checkpointing library that makes use of node-local storage to significantly improve the performance of checkpointing on large-scale supercomputers. Experiments show that SCR achieves unprecedented write speeds, reaching 700GB/s on 8,752 processors. Our results scale such that we expect a similarly structured system consisting of 12,500 processors to achieve aggregate I/O bandwidth of 1 TB/s.

Moody, A; Bronevetsky, G

2008-05-20T23:59:59.000Z

388

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

389

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

390

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Broader source: Energy.gov (indexed) [DOE]

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

391

Underground Natural Gas Storage by Storage Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

392

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

393

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

394

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

395

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

396

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

397

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

398

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

399

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

400

First mideast capacity planned  

SciTech Connect (OSTI)

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

402

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

403

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

404

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect (OSTI)

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

405

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

406

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

407

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

408

Adaptive capacity and its assessment  

SciTech Connect (OSTI)

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

409

Demo Abstract: A Storage-centric Camera Sensor Network Gaurav Mathur, Paul Chukiu, Peter Desnoyers, Deepak Ganesan, Prashant Shenoy  

E-Print Network [OSTI]

-centric sensor networks using an instance of a storage-centric camera sensor network that is more energy-efficient from the sensor as required. The use of high-capacity energy-efficient flash storage at the sensor-time of the battery and consequently, the life of the storage-centric camera sensor network. Categories and Subject

Shenoy, Prashant

410

Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption  

E-Print Network [OSTI]

of a true hydrogen storage capacity, thus it would be also true that some results of rather high storage storage material or not. Our previous study6 showed that the pristine CNT is not an effective hydrogenTheoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II

Goddard III, William A.

411

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

412

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Printable Version 2006 Annual Progress Report IV. Storage This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, Storage Team Lead, DOE Hydrogen Program (PDF 298 KB) A. Metal Hydrides High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides, Dan Mosher, United Technologies Research Center (PDF 763 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David Lesch, UOP LLC (PDF 780 KB) Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Dan Mosher, United Technologies Research Center (PDF 678 KB)

413

Adapting Dry Cask Storage for Aging at a Geologic Repository  

SciTech Connect (OSTI)

A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.

C. Sanders; D. Kimball

2005-08-02T23:59:59.000Z

414

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

415

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Broader source: Energy.gov (indexed) [DOE]

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

416

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Broader source: Energy.gov (indexed) [DOE]

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

417

STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS  

SciTech Connect (OSTI)

This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

JOel D. Dieland; Kirby D. Mellegard

2001-11-01T23:59:59.000Z

418

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect (OSTI)

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

419

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

420

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Micro gas turbine cogeneration system with latent heat storage at the University: Part III: Temperature control schedule  

Science Journals Connector (OSTI)

Abstract The latent heat storage system is a novel heat storage system. At the University under service conditions, it was demonstrated with a micro gas turbine (MGT) cogeneration system (CGS). Expanding the latent heat storage system into new applications is expected to save energy economically with high density energy storage and reduce exhaust emissions and reduce operational costs. This is the first demonstration of using a latent heat storage system with CGS under service condition and its characteristics are very important. In Part I, a fixed operating schedule of the system was planned and demonstrated at the University. The charge/discharge cycles of the latent heat storage system were repeated for 407 times. The energy flow test of the system shows the importance of the heat release source and total system design. In Part II, an irregular charge case of the latent heat storage system was discussed when the prime mover of the system was operated at a part load and thermal priority mode. A highly sophisticated system design that solves these problems was necessary for extending the applications of the latent heat storage system. In Part III, a temperature control schedule of the system was demonstrated during winter mornings using a new programmable logic controller (PLC). Using a fixed schedule, the MGT-CGS with latent heat storage reduced the CO2 emission when the energy utilization factor was above 50%. The temperature control schedule was considered to be better than the fixed schedule, both in terms of the operational efficiency of the overall system and CO2 reduction. The temperature control schedule was executed using an empirical formula for the temperature rise in a classroom. The restriction on the operation time by the contract with the gas supplier and the low heating capacity of the CGS affected the heating time and temperature rise. The temperature rise in the classroom was almost proportional to the integrated temperature difference across the hot water header of the heating system. On cold days, the rate of temperature rise produced by the CGS was very slow, therefore, additional heat supplied by the original boiler was used to increase the temperature rise. If larger latent heat storage systems will be developed in future, it will be expected that the temperature of the classrooms are kept more comfortable with less energy consumptions and lower CO2 emission.

Osamu Kurata; Norihiko Iki; Takayuki Matsunuma; Tetsuhiko Maeda; Satoshi Hirano; Katsuhiko Kadoguchi; Hiromi Takeuchi; Hiro Yoshida

2014-01-01T23:59:59.000Z

422

System design and manufacturability of concrete spheres for undersea pumped hydro energy or hydrocarbon storage  

E-Print Network [OSTI]

Offshore wind and energy storage have both gained considerable attention in recent years as more wind turbine capacity is installed, less attractive/economical space remains for onshore wind, and load-leveling issues make ...

Fennell, Gregory E. (Gregory Edmund)

2011-01-01T23:59:59.000Z

423

Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage  

E-Print Network [OSTI]

by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important...

Mani Biswas, Mousumi

2012-02-14T23:59:59.000Z

424

Hydrogen storage of multiwalled carbon nanotubes coated with Pd-Ni nanoparticles under moderate conditions  

Science Journals Connector (OSTI)

A type of novel material with a high hydrogen storage capacity was prepared by supporting PdNi18 alloy nanoparticles, which were synthesized by using a new colloid method, on the surface of pretreated multiwalled...

Jianwei Ren; Shijun Liao; Junmin Liu

2006-12-01T23:59:59.000Z

425

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

426

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

427

NERSC HPSS Storage Trends and Summaries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summaries Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The growth in the number of files stored is less than the growth in the number of bytes stored as the average file size has increased over time. The average file size as of August 2003 is about 30 MB. The median file size is closer to 1 MB. Number of Files Monthly I/O The growth rate of I/O is roughly the same as the growth rate of the number of bytes stored. As a rough rule of thumb, the amount of I/O per month is about 10% to 14% of the amount of data residing in the storage systems. Additional graphs show the last 30 days of activity for the amount of I/O and the number of files transferred.

428

Optimization of Ice Thermal Storage Systems Design for HVAC Systems  

E-Print Network [OSTI]

Ice thermal storage is promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper discusses the optimal design of ice thermal storage and its impact on energy consumption, demand, and total...

Nassif, N.; Hall, C.; Freelnad, D.

2013-01-01T23:59:59.000Z

429

Prediction of Novel Hydrogen Storage Reactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kazutoshi Kazutoshi Miwa Computational Physics Lab. Toyota Central R&D Labs., Inc. Theory Focus Session on Hydrogen Storage Materials, 18 MAY 2006 Prediction of Novel Hydrogen Storage Reactions 0 40 80 120 160 200 0 5 10 15 20 mass%H kgH 2 NaBH 4 Li H MgH 2 MgCaH 3.7 Mg 2 FeH 6 (Ti,Cr,V)H 1.9 Mg 2 NiH 4 Zr(CrFe) 2 H 3.4 TiFeH 1.7 (Ti,Cr,V)H 1.1 LaNi 5 H 6 /m 3 Hydrogen storage alloys Complex hydrides LiBH 4 NaAlH 4 Mg(NH 2 ) 2 +4LiH 2003- NEDO project of "Development for Safe Utilization and Infrastructure of Hydrogen" LiNH 2 LiAlH 4 Hydrogen Storage Materials Target: 5.5 mass %, < 150℃ (2010), 9 mass % < 150 ℃ (2020) Lithium Borohydride, LiBH 4 Advantages ☆ light weight ☆ high capacity of hydrogen storage (14 mass %) Disadvantages ★ thermodynamically too stability (> 600 K) ★ poor reaction kinetics

430

Hydrogen fuel closer to reality because of storage advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

431

DOE Partner Begins Carbon Storage Test | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Partner Begins Carbon Storage Test Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration Consortium (MGSC). The project is part of the RCSP's "validation phase," where field tests are being conducted nationwide to assess the most promising sites to deploy carbon capture and storage technologies. This project is expected to create 13 full time jobs which will be

432

Free-cooling: A total HVAC design concept  

SciTech Connect (OSTI)

This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration: This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.

Janeke, C.E.

1982-01-01T23:59:59.000Z

433

Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station  

SciTech Connect (OSTI)

To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve.

Vera, A. (Comision Federal de Electricidad, Veracruz, Ver. (Mexico))

1992-01-01T23:59:59.000Z

434

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

435

Carbon Capture and Storage Experiences Limited Growth in 2011  

Science Journals Connector (OSTI)

Funding for large-scale carbon capture and storage (CCS) projects remained relatively...1 (See Figure 1.) Overall, the number of active and planned largescale CCS projects declined in 2011, although the total ope...

Matt Lucky

2013-01-01T23:59:59.000Z

436

10 Carbon Capture and Storage in the UK Yasmin E. Bushby Scottish Centre for Carbon Storage, School  

E-Print Network [OSTI]

10 Carbon Capture and Storage in the UK Yasmin E. Bushby � Scottish Centre for Carbon Storage fossil fuels which in turn produces approximately one third of total UK CO2 emissions. Carbon Capture stations and industrial facilities. Existing power stations can be retrofitted with carbon capture

437

Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window  

E-Print Network [OSTI]

We study the bandwidth and multiplexing capacity of an erbium-doped optical memory for quantum storage purposes. We concentrate on the protocol ROSE (Revival of a Silenced Echo) because it has the largest potential multiplexing capacity. Our analysis is applicable to other protocols that involve strong optical excitation. We show that the memory performance is limited by instantaneous spectral diffusion and we describe how this effect can be minimised to achieve optimal performance.

Dajczgewand, Julian; Bttger, Thomas; Louchet-Chauvet, Anne; Gout, Jean-Louis Le; Chanelire, Thierry

2014-01-01T23:59:59.000Z

438

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

439

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

440

High Capacity Immobilized Amine Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

442

Sorption Storage Technology Summary  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

443

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

444

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

445

Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

90246.00 90246.00 Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals Presentation for DOE Workshop on Hydrogen Storage August 14-15, 2002 1/16 WPT MR 90246.00 In the development of attractive hydrogen storage options, fundamental materials properties and their impact on system design are both critical. * Compact, light, and efficient hydrogen storage technology is a key enabling technology for fuel cell vehicles and the use of renewable energy in vehicles * Due to system-level limitations current hydrogen storage systems meet some of the requirements but none meet all of the requirements - Current storage materials do not offer clear advantages over compressed or liquid hydrogen storage - Improving storage capacity will require improvement in material performance such

446

High levels of alkali-metal storage in thin films of hexa-peri-hexabenzocoronene  

E-Print Network [OSTI]

the potential use of these graphene materials in lithium-ion batteries with a high charge-storage capacity community.1 Rechargeable batteries, in particular ``lithium-ion'' batteries, are one of the most important com- mercialized energy storage devices. The most common struc- ture of lithium-ion batteries involves

Peters, Achim

447

Hydrogen Storage Materials Discovery via High Throughput Ball Milling and Gas Sorption  

Science Journals Connector (OSTI)

The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in ...

Bin Li; Steven S. Kaye; Conor Riley; Doron Greenberg; Daniel Galang; Mark S. Bailey

2012-05-22T23:59:59.000Z

448

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network [OSTI]

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J present higher hydrogen storage capacity and higher discharge capacity, eg. 356mAh/g for LaCaMgNi9 [4 in the huge market of hybrid electric vehicles (HEV) and Emergency Light Units (ELU). Hydrogen

Boyer, Edmond

449

Appendix C: Underground Storage Annual Site Environmental Report  

E-Print Network [OSTI]

Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

450

Cryogenic Propellant Storage and Distribution for Space Exploration Applications  

E-Print Network [OSTI]

SBIR SBIR 46 47 I Cryogenic Propellant Storage and Distribution for Space Exploration Applications program, Creare will develop an advanced, high efficiency turbine optimized for a high-capacity cryocooler. The advanced turbine will enable a landmark reduction in cryocooler input power and overall cooling system mass

451

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect (OSTI)

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

452

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

453

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

454

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

455

Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea  

E-Print Network [OSTI]

to store CO2, particularly in its oil and gas fields. Its storage capacity was evaluated because it is well capacity in the oil and gas fields of the East Irish Sea Basin is approximately 1047 million tonnes, the fact that they do not contain hydrocarbons suggests the possibility that they may not be gas- tight

Watson, Andrew

456

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

457

Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411  

SciTech Connect (OSTI)

EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of the CSF. Stage 1 requires only a cask storage pad and railroad interface to be constructed, and the CSF can then receive the UNF that is in transportable storage casks. Stage 2 adds a canister handling facility, a storage cask fabrication facility and an expanded storage pad, and enables the receipt of all canistered UNF from both operating and shutdown sites. Stage 3 provides a repackaging facility with a water-filled pool that provides flexibility for a range of repackaging scenarios. This includes receiving and repackaging 'bare' UNF into suitable canisters that can be placed into interim storage at the CSF, and enables UNF that is being received, or already in storage onsite, to be repackaged into canisters that are suitable for disposal at a geologic repository. The study used the 'Total System Model' (TSM) to analyze a range of CSF capacities and operating scenarios with differing parameters covering UNF pickup orders, one or more CSF sites, CSF start dates, CSF receipt rates and geologic repository start dates. The TSM was originally developed to model movement of UNF to the Yucca Mountain repository and was modified for this study to enable the CSF to become the 'gateway' to a future geologic repository. The TSM analysis enabled costs to be estimated for each scenario and showed how these are influenced by each of the parameters. This information will provide essential underpinning for a future Conceptual Design preparation. (authors)

Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)] [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

2013-07-01T23:59:59.000Z

458

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

459

Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application  

Science Journals Connector (OSTI)

Abstract In order to harvest solar energy, thermal energy storage (TES) system with Phase Change Material (PCM) has been receiving greater attention because of its large energy storage capacity and isothermal behavior during charging and discharging processes. In the present experimental study, shell and tube TES system using paraffin wax was used in a water heating system to analyze its performance for solar water heating application. Energy and exergy including their cost analyses for the TES system were performed. Accordingly, total life cycle cost was calculated for different flow rates of the Heat Transfer Fluid (HTF). With 0.033kg/min and 0.167kg/min flow rates of water as HTF, energy efficiencies experienced were 63.88% and 77.41%, respectively, but in exergy analysis, efficiencies were observed to be about 9.58% and 6.02%, respectively. Besides, the total life cycle cost was predicted to be $ 654.61 for 0.033kg/min flow rate, which could be reduced to $ 609.22 by increasing the flow rate to 0.167kg/min. Therefore it can be summarized that total life cycle cost decreases with the increase of flow rate.

M.H. Mahfuz; M.R. Anisur; M.A. Kibria; R. Saidur; I.H.S.C. Metselaar

2014-01-01T23:59:59.000Z

460

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (120.75)m3 size was designed and constructed. The...

F. mez; R. Oskay; A. ?. er

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon storage and sequestration by trees in urban and community areas of the United States  

E-Print Network [OSTI]

Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

462

Power-Saving in Storage Systems for Internet Hosting Services with Data Access Prediction  

E-Print Network [OSTI]

percentage of the total computing energy is consumed by the storage systems, various attempts at reducingPower-Saving in Storage Systems for Internet Hosting Services with Data Access Prediction Jumpei@cs.tsukuba.ac.jp Abstract--We present a power-saving method for storage systems in Internet hosting services, particularly

Banbara, Mutsunori

463

Power-Aware Autonomous Distributed Storage Systems for Internet Hosting Service Platforms  

E-Print Network [OSTI]

percentage of the total computing system's energy is used by the data storage systems, various attemptsPower-Aware Autonomous Distributed Storage Systems for Internet Hosting Service Platforms Jumpei@osss.,hasebe@,kato@}cs.tsukuba.ac.jp Abstract. We present a power-saving method for large-scale distributed storage systems of Internet hosting

Banbara, Mutsunori

464

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

465

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

466

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

467

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

468

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

469

The impact of new short season rice varieties on drying and storage of rough rice in Texas  

E-Print Network [OSTI]

-Values are shown below Coefficients) 28 6. The Comparison of Size D stribution of On-farm Drying and Storage Facilities in 1955 and 1965 39 7. The Comparison of Size Distribution of Commercial and Cooperative Drying and Storage Facilities in 1955 and 1965 42..., On-farm and Off-farm, Coast Prairie of Texas, 1955-65 40 5. Comparison of Rice Production and Storage Capacity at State Level, 1955-65 47 6. Comparison of Rice Production and Storage Capacity at Sector Level, 1955-65 51 7. Comparison of Highest...

Bhagia, Gobind Shewakram

2012-06-07T23:59:59.000Z

470

Polylithiated (OLi2) functionalized graphane as a potential hydrogen storage material  

E-Print Network [OSTI]

Hydrogen storage capacity, stability, bonding mechanism and the electronic structure of polylithiated molecules (OLi2) functionalized graphane (CH) has been studied by means of first principle density functional theory (DFT). Molecular dynamics (MD) have confirmed the stability, while Bader charge analysis describe the bonding mechanism of OLi2 with CH. The binding energy of OLi2 on CH sheet has been found to be large enough to ensure its uniform distribution without any clustering. It has been found that each OLi2 unit can adsorb up to six H2 molecules resulting into a storage capacity of 12.90 wt% with adsorption energies within the range of practical H2 storage application.

Hussain, Tanveer; De Sarkar, Abir; Ahuja, Rajeev

2012-01-01T23:59:59.000Z

471

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

472

Report on the evening discussion: Hydrogen storage in carbon materials  

Science Journals Connector (OSTI)

Hydrogen may be the most important energy carrier of the future as soon as the problem of hydrogen storage is solved. Storing of hydrogen under high pressure or as liquid costs much energy. Furthermore a high pressure or liquid hydrogen tank in a fuel cell driven vehicle would be much larger and heavier compared to a typical gasoline tank. In metal hydride tanks the stored hydrogen density is higher but the tank would be much too heavy (for a comparison see Fig. 1). Since the first promising results of Heben et al. in 1997 on hydrogen storage in single walled carbon nanotubes and the spectacularly large storage capacities in carbon nanofibers from the Baker and Rodriguez group in 1998 considerable research activity has been started all over the world to investigate hydrogen storage in carbon materials. Especially car industry is very interested and is waiting for a material with a reversible hydrogen storage capacity above 6.5 wt%. In this report the evening discussion on Hydrogen storage in carbon materials is summarized.

Andrea Quintel

2000-01-01T23:59:59.000Z

473

Extended storage of low-level radioactive waste: an update  

SciTech Connect (OSTI)

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1986-01-01T23:59:59.000Z

474

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

475

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

476

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

477

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset