National Library of Energy BETA

Sample records for total storage capacity

  1. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable ... 9:47:20 AM" "Back to Contents","Data 1: U.S. Total Shell Storage Capacity at Operable ...

  2. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  3. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  4. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  5. Lower 48 States Total Natural Gas Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 States Total Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8,842,950 8,854,720 8,854,720 ...

  6. Pacific Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Pacific Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 2015 679,477 679,477 679,477 679,477 679,477 679,477 679,477 679,477 679,477 678,273 678,273 678,273 2016 678,273 678,273 678,273 678,273 678,273 678,273 - = No Data

  7. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  8. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,718,987 2,718,288 2,719,655 2,720,487 2,720,487 2016 2,720,487 2,720,487 2,720,487

  9. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 2016 2,634,512 2,644,516

  10. Mountain Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 904,787 904,787 904,787 904,787 904,787 904,787 909,887 912,887 912,887...

  11. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  12. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  13. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity ... 11:44:46 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity ...

  15. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  16. ,"Kansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Underground Storage Capacity ... 7:00:56 AM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity ...

  17. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity ... 7:00:58 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity ...

  18. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity ... 7:01:01 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity ...

  19. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  2. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:50:48 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" ...US8","NA1392NUS8","NA1391NUS8" "Date","U.S. Total Natural Gas Underground Storage ...

  3. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  4. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  5. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  6. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  7. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  8. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  9. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. ,"West Virginia Natural Gas Underground Storage Capacity (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Capacity ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Underground Storage Capacity ...

  13. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  15. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  7. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  12. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity May 2016 With Data as of March 31, 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of March 31, 2016 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  15. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2016 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2016 Total Number of Existing Fields 26 26 26 26 26 26

  16. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2016 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2016 Total Number of Existing Fields 24 24 24 24 24 24

  17. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    375,143 375,143 375,143 375,143 375,143 375,143 2002-2016 Total Working Gas Capacity 191,455 191,455 193,455 193,455 193,455 193,455 2012-2016 Total Number of Existing Fields 13 13 13 13 13 13

  18. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2016 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2016 Total Number of Existing Fields 7 7 7 7 7 7

  19. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 760,619 760,619 760,619 760,619 2002-2016 Total Working Gas Capacity 429,796 429,796 425,861 425,861 425,861 425,861 2012-2016 Total Number of Existing Fields 49 49 49 49 49 49

  20. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,509 124,509 124,509 124,509 124,509 124,509 2002-2016 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2016 Total Number of Existing Fields 3 3 3 3 3 3

  1. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2016 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  2. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,837 528,837 528,837 528,837 528,837 528,837 2002-2016 Total Working Gas Capacity 259,380 259,380 259,374 259,370 259,370 259,362 2012-2016 Total Number of Existing Fields 30 30 30 30 31 31

  3. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    11,581 111,581 111,581 111,581 111,581 111,581 2002-2016 Total Working Gas Capacity 33,592 33,592 33,592 33,592 33,592 33,592 2012-2016 Total Number of Existing Fields 21 21 21 21 21 21

  4. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2016 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2016 Total Number of Existing Fields 4 4 4 4 4 4

  5. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2016 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2016 Total Number of Existing Fields 17 17 17 17 17 17

  6. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,722 221,722 221,722 221,722 221,722 221,722 2002-2016 Total Working Gas Capacity 107,571 107,571 107,571 107,571 107,571 107,571 2012-2016 Total Number of Existing Fields 23 23 23 23 23 23

  7. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    743,067 743,067 743,067 743,067 743,067 743,067 2002-2016 Total Working Gas Capacity 453,929 453,929 453,929 453,929 454,529 454,529 2012-2016 Total Number of Existing Fields 19 19 19 19 19 19

  8. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2016 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2016 Total Number of Existing Fields 1 1 1 1 1 1

  9. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,071,630 1,071,630 1,071,630 1,071,630 1,071,630 1,071,630 2002-2016 Total Working Gas Capacity 685,726 685,726 685,726 685,726 685,726 685,726 2012-2016 Total Number of Existing Fields 44 44 44 44 44 44

  10. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    32,900 332,958 333,763 334,305 334,937 334,961 2002-2016 Total Working Gas Capacity 202,972 203,085 203,700 204,113 205,004 205,019 2012-2016 Total Number of Existing Fields 12 12 12 12 12 12

  11. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2016 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2016 Total Number of Existing Fields 5 5 5 5 5 5

  12. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2016 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2016 Total Number of Existing Fields 9 9 9 9 9 9

  13. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2016 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  14. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2016 Total Number of Existing Fields 5 5 5 5 5 5

  15. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    601,808 601,808 601,808 601,808 601,808 601,808 2002-2016 Total Working Gas Capacity 375,496 375,496 375,496 375,496 375,496 375,496 2012-2016 Total Number of Existing Fields 14 14 14 14 14 14

  16. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2016 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2016 Total Number of Existing Fields 10 10 10 10 10 10

  17. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,100 1,004,100 1,004,100 1,004,100 1,004,100 1,004,130 2002-2016 Total Working Gas Capacity 303,613 303,613 303,613 303,613 303,613 303,613 2012-2016 Total Number of Existing Fields 28 28 28 28 28 28

  18. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    834,965 844,911 848,671 851,541 851,541 851,541 2002-2016 Total Working Gas Capacity 534,539 544,485 546,285 546,285 546,285 546,285 2012-2016 Total Number of Existing Fields 36 36 36 36 36 36

  19. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update (EIA)

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  20. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Working Storage Capacity at Operable ... 9:47:30 AM" "Back to Contents","Data 1: U.S. Working Storage Capacity at Operable ...

  1. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2016 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  2. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  3. Tennessee Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0...

  4. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2016 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  5. Optimization of Storage vs. Compression Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100 200 300 400 500 600 700 800 900 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg) Pressure (bar) and Temperature (K) Time (Sec) Low Pressure Cascade Mid Pressure Cascade High Pressure Pressure Mass Temperature Temperature Temperature 2 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg)

  6. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  7. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 9,225,127 9,235,132 9,228,893 9,232,305 9,232,937 9,232,991 1989-2016 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Lower 48 States 9,141,535 9,151,540 9,145,301 9,148,713 9,149,345 9,149,399

  8. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Data 1","U.S. Underground Natural Gas Storage Capacity",3,"Monthly","22016","115...ngstorcapdcunusm.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  9. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  10. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  11. Iowa Natural Gas Underground Storage Capacity (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 273,200 273,200 273,200...

  12. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  13. Optimization of Storage vs. Compression Capacity

    Broader source: Energy.gov [DOE]

    This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

  14. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  15. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity hydrogen storage materials Savannah River National Laboratory Contact SRNL About This Technology Plot of Number of hydrogen atoms per lithium atom vs the Mol ratio of C<sub>60</sub>:Li.&nbsp; An ratio of 1:6

  16. High capacity hydrogen storage nanocomposite materials

    DOE Patents [OSTI]

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  17. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","NGAEP...

  18. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

  19. High capacity stabilized complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  20. Tennessee Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    2,400 2,400 2,400 2,400 2,400 2,400 2002-2016 Total Number of Existing Fields 1 1 1 1 2 2

  1. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total 240,288 185,342 508,324 13,435 69,585 1,016,974 440,966 43% Crude Oil Tank Farms (excludes pipeline fill) 2 Crude Oil (Excluding SPR) 6,212 142,222 240,879 17,383 28,273 ...

  2. Oregon Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total...

  3. Mountain Region Natural Gas Working Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 461,243 461,243 461,243 461,243 461,243 461,243 461,243 464,435 464,435...

  4. Pacific Region Natural Gas Working Underground Storage Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831...

  5. Working and Net Available Shell Storage Capacity as of September...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for PAD District 2 and the U.S. total have been revised to correct a processing error that caused some capacity data to be double counted in the original release of this...

  6. AGA Western Consuming Region Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446

  7. U.S. Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Total Storage

  8. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  9. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  10. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  11. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Greater than 500 ppm Sulfur 16,847 -- -- -- -- -- 2004-2015 Residual Fuel Oil 26,815 -- -- -- -- -- 1982-2015 Lubricants 15,024 -- -- -- -- -- 1982-2015 Asphalt and Road Oil 26,932 ...

  12. East Region Natural Gas Total Underground Storage Capacity (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    2,200,169 2,200,169 2,200,169 2015 2,197,282 2,197,282 2,197,282 2,197,282 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2016 2,195,132 ...

  13. U.S. Total Natural Gas Underground Storage Capacity (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    7,974,893 7,975,643 7,978,632 7,979,132 7,987,416 7,985,156 7,988,856 1994 ... 8,154,792 8,154,792 8,154,792 8,121,782 8,132,767 8,132,767 8,178,889 8,178,889 8,179,039 ...

  14. AGA totes up new U. S. gas-pipeline mileage, storage capacity

    SciTech Connect (OSTI)

    Not Available

    1994-07-04

    More than 8,000 miles of new US natural-gas transmission line or pipeline looping have been built, are under construction, or are proposed in 1993--94, the American Gas Association, Arlington, Va., states in its latest annual report on new construction. Additionally, AGA lists 47 proposed natural-gas storage projects in various stages of development to add more than 500 bcf of working-gas storage capacity and, if constructed, would increase total US working-gas storage capacity by nearly 20%. Throughout 1993 and 1994, more than $9 billion of new gas-pipeline construction projects have been in various stages of development. AGA classifies these projects as either built in 1993 or 1994 and operational, or currently under construction, or proposed and pending. In aggregate, the projects total 8,087 miles of new pipeline and pipeline looping, 1,098,940 hp of additional compression, and 15.3 bcfd of additional capacity. A table shows the regional breakout.

  15. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect (OSTI)

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  16. Connecticut Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " ... "Renewables",316,285,287,287,281 "Pumped Storage",4,29,29,29,29 "Other",27,27,27,27,27 ...

  17. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  18. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Underground Storage ... 8:29:33 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage ...

  19. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage ... 8:29:32 AM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage ...

  20. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  1. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  2. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  3. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  4. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  5. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 - Dataset | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Excel file and dataset for Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 fotw#937_web.xlsx (17.8 KB) More Documents &

  6. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 SUBSCRIBE to the Fact of the Week The number of battery packs sold for plug-in electric vehicles (PEV) declined by 3.4% from 2014 to 2015. However, the total battery capacity for all PEVs sold between

  7. A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage

    Broader source: Energy.gov [DOE]

    We present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that it explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.

  8. Illinois Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Illinois Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,077,139 957,254 1,004,281 2000's 1,030,604 951,616 1,049,878 998,486 953,207 969,642 893,997 965,591 1,000,501 956,068 2010's 966,678 986,867 940,367 1,056,826 1,092,999 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.86 2.58 2.98 2000's 4.52 5.20 3.57 5.81 6.24 9.67 7.32 7.19 10.03 4.30 2010's 4.85 W 3.09 4.14 4.74 3.06

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.46 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of Total Residential Deliveries

  10. Arkansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.69 2.29 2.59 2000's 4.46 4.44 3.59 4.37 6.19 8.59 6.38 7.04 9.23 4.14 2010's 5.11 W 3.19 4.32

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.84 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential Price 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Percentage of Total Residential Deliveries included in

  11. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect (OSTI)

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  12. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    SciTech Connect (OSTI)

    Kennedy, RD; Krungleviciute, V; Clingerman, DJ; Mondloch, JE; Peng, Y; Wilmer, CE; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK; Mirkin, CA

    2013-09-10

    A Cu-carborane-based metal organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm(3)/g and a gravimetric BET surface area of ca. 2600 m(2)/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the, unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m(2)/cm(3). CH4, CO2, and H-2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 v(STP)/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5-65 bar) is 170 v(STP)/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

  13. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  14. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  15. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    -level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  16. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ky2m.xls"

  17. ,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290la2m.xls"

  18. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290md2m.xls"

  19. ,"Michigan Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mi2m.xls"

  20. ,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ms2m.xls"

  1. ,"Missouri Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mo2m.xls"

  2. ,"Montana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mt2m.xls"

  3. ,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ne2m.xls"

  4. ,"Ohio Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290oh2m.xls"

  5. ,"Oregon Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290or2m.xls"

  6. ,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290pa2m.xls"

  7. ,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290tn2m.xls"

  8. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ut2m.xls"

  9. ,"Washington Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290wa2m.xls"

  10. ,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290wy2m.xls"

  11. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290al2m.xls"

  12. ,"Alaska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  13. ,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ar2m.xls"

  14. ,"California Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ca2m.xls"

  15. ,"Colorado Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290co2m.xls"

  16. ,"Illinois Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290il2m.xls"

  17. ,"Indiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290in2m.xls"

  18. ,"Iowa Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ia2m.xls"

  19. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of

  20. U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Depleted Fields Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 335 2000's 336 351 340 318 320 320 322 326 324 331 2010's 331 329 330 332 333 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  1. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  2. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working Gas

  3. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  4. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working

  5. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect (OSTI)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  6. "Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel

  7. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  8. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect (OSTI)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  9. U.S. Natural Gas Underground Storage Acquifers Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Acquifers Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,263,106 2000's 1,263,711 1,195,141 1,234,007 1,237,132 1,238,158 1,350,689 1,356,323 1,347,516 1,351,832 1,340,633 2010's 1,233,017 1,231,897 1,237,269 1,443,769 1,445,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,780,700 2000's 6,788,130 6,768,622 6,747,108 6,733,983 6,776,894 6,667,222 6,711,656 6,801,291 6,805,490 6,917,547 2010's 7,074,773 7,104,948 7,038,245 7,074,916 7,085,773 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 185,451 2000's 189,043 218,483 225,958 234,601 239,990 250,532 261,988 253,410 341,213 397,560 2010's 456,009 512,279 715,821 654,266 702,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. Table 8.11a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000

  13. Capacity Enhancement of Aqueous Borohydride Fuels for hydrogen storage in liquids

    SciTech Connect (OSTI)

    Schubert, David M.; Neiner, Doinita; Bowden, Mark E.; Whittemore, Sean M.; Holladay, Jamelyn D.; Huang, Zhenguo; Autrey, Thomas

    2015-10-05

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of Protonex Inc. for useful discussion regarding liquid hydrogen storage materials for portable power applications and the U.S. DoE Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office for their continued interest in liquid hydrogen storage carriers. Pacific Northwest National Laboratory is a multi

  14. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect (OSTI)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  15. U.S. Total Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,124,067 8,120,142 1990's 7,794,083 7,993,265 7,931,513 7,988,856 8,042,830 7,952,610 7,980,400 8,331,879 8,178,889 8,229,259 2000's 8,240,886 8,182,248 8,207,074 8,205,716 8,255,042 8,268,443 8,329,967 8,402,216 8,498,535 8,655,740 2010's 8,763,798 8,849,125 8,991,335 9,172,951 9,233,352

  16. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    586,953 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 327,105 341,365 340,182 284,838 318,431 355,472 1978

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's NA NA NA NA NA NA NA 1980's 155 176 145 132 110 126 113 101 101 107 1990's 123 113 118 119 111 110 109 103 102 98 2000's 90 86 68 68 60 64 66 63 61 65 2010's 65 60 61 55 60 59 - = No Data Reported; -- = Not

  17. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4,211,193 4,327,844 2010's 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669

  18. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 4,491,557 4,491,226 4,491,596 4,502,901 4,514,569 4,526,987 4,530,486 4,540,575 4,567,586 4,577,649 4,575,112 4,576,356 2013 4,567,566 4,628,787 4,652,018 4,640,880 4,665,310 4,669,698 4,699,349 4,717,265 4,745,659 4,750,673 4,748,937 4,748,636 2014 4,743,198 4,741,378 4,741,585 4,740,958 4,749,560 4,755,665 4,764,979 4,771,870 4,770,241 4,772,138 4,784,895 4,785,669 2015 4,795,497 4,794,695 4,794,425 4,794,612 4,794,656

  19. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  20. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  1. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  2. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  3. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  4. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  5. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  6. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  7. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  8. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  9. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  10. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000

  11. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,690,271 2,085,441 1,706,102 1,840,859

  12. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity global geologic CO2 storage capacity could be: 35,300 GtCO2 of theoretical capacity; 13,500 GtCO2 of effective capacity; 3,900 GtCO2, of practical capacity; and 290 GtCO2 of matched capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a lack of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  13. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect (OSTI)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  14. U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 5,842,438 5,352,874 5,220,483 5,427,454 5,807,019 6,150,408 6,523,428 6,855,588 7,153,329 7,314,086 7,214,150 6,852,919 1995 6,283,457 5,791,160 5,581,144 5,619,397 5,933,659 6,286,946 6,510,677 6,716,782 7,008,042 7,191,015 6,931,287 6,371,139 1996 5,694,851 5,258,703 4,947,685 5,046,305 5,367,004 5,734,954 6,102,705 6,440,727 6,797,354

  15. Permanent total enclosures for VOC emission control at a RCRA transfer and storage facility

    SciTech Connect (OSTI)

    Davidson, S.L.; Rozmus, G.F.; Mehta, J.; Ardzinski, E. |

    1997-12-31

    Rollins Environmental Services operates a Transfer and Storage facility at their Allworth site in Mt. Pleasant, Tennessee. VOC control was originally accomplished by the use of close capture vents routed through a Regenerative Thermal Oxidizer. Capture efficiencies at several locations in the plant where hazardous waste was sampled and processed had been inadequate to fully meet EPA Clean Air Act Amendments Best Available Control Technology (BACT) or the requirements of OSHA 1910 Subpart Z--Toxic and Hazardous Substances standards and OSHA 1910.120(p)(5)--New Technology Program without the use of high levels of personal protective equipment (PPE) and extensive Industrial Hygiene monitoring. Therefore, a program was instituted to install permanent total enclosures in these areas with the goal of 100% capture of VOC`s. This paper presents the methodology by which this program was conceived and managed and the findings of the Industrial Safety and Health monitoring studies performed before and after the installation of the Permanent Total Enclosures and balancing of air flows in the system.

  16. California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

  17. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  18. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  1. Spent fuel storage alternatives

    SciTech Connect (OSTI)

    O'Connell, R.H.; Bowidowicz, M.A.

    1983-01-01

    This paper compares a small onsite wet storage pool to a dry cask storage facility in order to determine what type of spent fuel storage alternatives would best serve the utilities in consideration of the Nuclear Waste Policy Act of 1982. The Act allows the DOE to provide a total of 1900 metric tons (MT) of additional spent fuel storage capacity to utilities that cannot reasonably provide such capacity for themselves. Topics considered include the implementation of the Act (DOE away-from reactor storage), the Act's impact on storage needs, and an economic evaluation. The Waste Act mandates schedules for the determination of several sites, the licensing and construction of a high-level waste repository, and the study of a monitored retrievable storage facility. It is determined that a small wet pool storage facility offers a conservative and cost-effective approach for many stations, in comparison to dry cask storage.

  2. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  3. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect (OSTI)

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  4. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mohamed, Eddaoudi; Zaworotko, Michael; Space, Brian; Eckert, Juergen

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  5. Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities

    SciTech Connect (OSTI)

    Gutov, OV; Bury, W; Gomez-Gualdron, DA; Krungleviciute, V; Fairen-Jimenez, D; Mondloch, JE; Sarjeant, AA; Al-Juaid, SS; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK

    2014-08-14

    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2)g(-1); to our knowledge, currently the highest published for Zr-based MOFs. CH4/CO2/H-2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 gg(-1), which corresponds to 43 gL(-1). The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 v(STP)/v and 0.27 gg(-1), respectively.

  6. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 4,327,844 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 2008-2014 Alaska 67,915 67,915 2013-2014 Alabama 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Arkansas 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 California 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  10. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    SciTech Connect (OSTI)

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  11. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  13. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  14. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  15. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  16. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  17. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect (OSTI)

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  18. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  19. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  20. Nuclear Cleanup, Storage, and Transportation

    Office of Environmental Management (EM)

    ... ***Total capacity if Panels 9 and 10 filled to proposed ... power plants? Should new nuclear plants provide adequate on-site spent fuel storage for all of the SNF that ...

  1. Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  2. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect (OSTI)

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  3. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  4. Aluminium doped ceriazirconia supported palladium-alumina catalyst with high oxygen storage capacity and CO oxidation activity

    SciTech Connect (OSTI)

    Dong, Qiang; Yin, Shu Guo, Chongshen; Wu, Xiaoyong; Kimura, Takeshi; Sato, Tsugio

    2013-12-15

    Graphical abstract: Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} possessed high OSC and CO oxidation activity at low temperature. - Highlights: A new OSC material of Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} is prepared via a mechanochemical method. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} showed high OSC even after calcination at 1000 C for 20 h. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} exhibited the highest CO oxidation activity at low temperature correlates with enhanced OSC. - Abstract: The Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst prepared by a mechanochemical route and calcined at 1000 C for 20 h in air atmosphere to evaluate the thermal stability. The prepared Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst was characterized for the oxygen storage capacity (OSC) and CO oxidation activity in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy and the BrunauerEmmetTeller (BET) technique were employed. The OSC values of all samples were measured at 600 C using thermogravimetric-differential thermal analysis. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst calcined at 1000 C for 20 h with a BET surface area of 41 m{sup 2} g{sup ?1} exhibited the considerably high OSC of 583 ?mol-O g{sup ?1} and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO{sub 2}/Pd-?-Al{sub 2}O{sub 3} and Ce{sub 0.5}Zr{sub 0.5}O{sub 2}/Pd-?-Al{sub 2}O{sub 3} for comparison.

  5. EERE Success Story—California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

  6. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  7. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  8. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  9. Optimizing accuracy of determinations of CO₂ storage capacity and permanence, and designing more efficient storage operations: An example from the Rock Springs Uplift, Wyoming

    SciTech Connect (OSTI)

    Bentley, Ramsey; Dahl, Shanna; Deiss, Allory; Duguid, Andrew; Ganshin, Yuri; Jiao, Zunsheng; Quillinan, Scott

    2015-12-01

    At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO₂ storage permanence. The assurance of safe and permanent storage of CO₂ at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic

  10. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    SciTech Connect (OSTI)

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  11. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, ismore » likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.« less

  12. A Field Study on Simulation of CO 2 Injection and ECBM Production and Prediction of CO 2 Storage Capacity in Unmineable Coal Seam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Qin; Mohaghegh, Shahab D.; Gholami, Vida

    2013-01-01

    CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches formore » both CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less

  13. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for ...

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  15. Natural Gas Aquifers Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    2,086 11,809 11,254 9,720 9,459 9,992 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,004 11,704 11,111 9,578 9,322 9,766 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 82 105 143 142 137 226 1979-2014 Dry Natural Gas 11,457 11,186 10,626 9,200 8,943 9,484 Separation

    2,004 11,704 11,111 9,578 9,322 9,766 1979-2014 Adjustments 263 120 179 49 42 310 1979-2014 Revision Increases 898 1,795 1,695 1,647 2,517 2,021 1979-2014 Revision Decreases 1,125

  16. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  17. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2016 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 2,062,300 Valero Refining Co Texas LP

  19. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  20. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  1. Fail-Safe Design for Large Capacity Li-Ion Battery Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Find More Like This Return to Search Fail-Safe Design for Large Capacity Li-Ion Battery Systems National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Fail Safe Design for Large Capacity Lithium-ion Batteries.pdf (2,324 KB) Technology Marketing Summary Lithium-ion batteries (LIBs) are a promising candidate for energy storage of electric drive vehicles due to their high power and energy density. The total electric

  2. Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays

    SciTech Connect (OSTI)

    Zhu, K.; Wang, Q.; Kim, J. H.; Pesaran, A. A.; Frank, A. J.

    2012-06-07

    We report on the synthesis and electrochemical properties of oriented anatase TiO{sub 2} nanotube (NT) arrays as electrodes for Li-ion batteries. The TiO{sub 2} NT electrodes displayed both pseudocapacitive Li{sup +} storage associated with the NT surface and the Li{sup +} storage within the bulk material. The relative contribution of the pseudocapacitive and bulk storages depends strongly on the scan rate. While the charges are stored primarily in the bulk at low scan rates (<< 1 mV/s), the surface storage dominates the total storage capacity at higher scan rates (>1 mV/s). The storage capacity of the NT electrodes as a function of charge/discharge rates showed no dependence on the NT film thickness, suggesting that the Li{sup +} insertion/extraction processes occur homogeneously across the entire length of NT arrays. These results indicated that the electron conduction along the NT walls and the ion conduction within the electrolyte do not cause significant hindering of the charge/discharge kinetics for NT electrode architectures. As a result of the surface pseudocapacitive storage, the reversible Li{sup +} storage capacities for TiO{sub 2} NT electrodes were higher than the theoretical storage capacity for bulk anatase TiO{sub 2} materials.

  3. First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium (presentation had varying title: Accelerating Development of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations)

    SciTech Connect (OSTI)

    Alapati, S.; Johnson, J.K.; Sholl, D.S.; Dai, B. --last author not shown on publication, only presentation

    2007-10-31

    Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts.

  4. Carbon dioxide power plant for total emission control and enhanced oil recovery. [Removal, storage, and use of CO/sub 2/

    SciTech Connect (OSTI)

    Horn, F L; Steinberg, M

    1981-08-01

    The design of a compact environmentally acceptable carbon dioxide diluted coal-oxygen fired power plant is described. The plant releases no combustion products to the atmosphere. The oxygen for combustion is separated in an air liquefaction plant and the effluent nitrogen is available for use in oil well production. Recycle carbon dioxide mixed with oxygen replaces the nitrogen for the combustion of coal in the burners. The carbon dioxide produced is used in enhanced oil recovery operations and injected into spent wells and excavated salt cavities for long-term storage. The recovery of CO/sub 2/ from a coal-burning power plant by this method appears to have the lowest energy expenditure and the lowest byproduct cost compared to alternative removal and recovery processes.

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,277,500 1,245,500 32,000 1,353,000 1,318,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  6. HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage | Department of Energy HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting ht_ucf_raissi.pdf (999.19 KB) More Documents & Publications DetecTape - A Localized Visual Detector for Hydrogen Leaks DetecTape - A Localized Visual Detector for Hydrogen Leaks Webinar

  7. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  8. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year

  9. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  10. Injections of Natural Gas into Storage (Annual Supply & Disposition...

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price ... By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base ...

  11. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    SciTech Connect (OSTI)

    1998-12-31

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  12. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground Storage ...

  13. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  14. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  15. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  16. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude reserves and production Refining and processing Imports/exports & movements Stocks Consumption/sales All petroleum & other liquids data reports Analysis & Projections Major Topics Most popular Consumption & sales Crude reserves & production Imports/exports & movements Prices Projections Recurring Refining & processing Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud

  17. Pennsylvania Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    714,417 714,417 714,417 714,417 714,417 714,217 714,097 2004 712,687 712,292 712,292 709,946 709,946 709,946 709,946 709,826 721,019 748,874 748,874 748,338 2005 748,338...

  18. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  19. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly...

  20. Working and Net Available Shell Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10,710 15,146 3 78,532 1,149 1,137,005 18,795 Crude Oil Tank Farms (excludes pipeline fill) 2 Crude Oil (Excluding SPR) 7,687 81 174,481 2,283 278,585 8,102 21,955 122 34,850 500 ...

  1. Virginia Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    9,500 9,500 9,500 9,500 9,500 9,500 1998-2014 Salt Caverns 6,200 6,200 6,200 6,200 6,200 6,200 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 3,300 3,300 3,300 3,300 3,300 3,300...

  2. Oklahoma Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    319,836 309,723 315,586 324,956 340,266 343,288 1990-2016 Base Gas 183,624 183,624 181,624 181,624 181,624 181,624 1990-2016 Working Gas 136,212 126,100 133,962 143,332 158,643 161,664 1990-2016 Net Withdrawals 26,725 10,070 -5,923 -9,402 -15,348 -3,069 1990-2016 Injections 2,701 4,518 10,606 11,696 17,060 8,283 1990-2016 Withdrawals 29,426 14,589 4,683 2,294 1,711 5,214 1990-2016 Change in Working Gas from Same Period Previous Year Volume 38,649 59,569 66,611 53,951 38,406 23,706 1990-2016

  3. West Virginia Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    91,056 355,390 343,819 357,455 384,746 410,685 1990-2016 Base Gas 270,042 269,935 270,125 269,945 269,945 270,137 1990-2016 Working Gas 121,014 85,455 73,694 87,511 114,801 140,547 1990-2016 Net Withdrawals 62,059 35,666 11,571 -14,238 -27,290 -25,941 1990-2016 Injections 734 2,318 4,083 17,376 27,487 27,482 1990-2016 Withdrawals 62,793 37,985 15,654 3,137 197 1,542 1990-2016 Change in Working Gas from Same Period Previous Year Volume 21,210 26,758 34,404 25,047 18,992 19,873 1990-2016 Percent

  4. Washington Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,720 37,720 2003 37,720 37,720 37,720 37,720...

  5. Utah Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500...

  6. Wyoming Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120...

  7. Ohio Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944...

  8. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    740,477 766,768 783,579 812,394 831,190 842,072 1988-2013 Salt Caverns 160,786 182,725 196,140 224,955 246,310 253,220 1999-2013 Aquifers 0 1999-2012 Depleted Fields 579,691...

  9. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    759,153 776,964 776,822 776,845 774,309 774,309 1988-2013 Salt Caverns 0 1999-2012 Aquifers 0 1999-2012 Depleted Fields 759,153 776,964 776,822 776,845 774,309 774,309 1999-2013...

  10. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Source: Energy Information Administration, Form EIA-813 "Monthly Crude Oil Report", Form EIA-815 "Monthly Bulk Terminal and Blender Report" PAD Districts 1 EIAWorking and Net ...

  11. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    283,879 317,647 348,809 322,670 353,994 388,841 1979-2014 Federal Offshore U.S. 12,856 12,120 10,820 9,853 8,567 8,968 1990-2014 Pacific (California) 740 725 711 652 264 243 1979-2014 Gulf of Mexico (Louisiana & Alabama) 9,665 9,250 8,555 7,704 6,795 7,280 1981-2014 Gulf of Mexico (Texas) 2,451 2,145 1,554 1,497 1,508 1,445 1981-2014 Alaska 9,183 8,917 9,511 9,667 7,383 6,805 1979-2014 Lower 48 States 274,696 308,730 339,298 313,003 346,611 382,036 1979-2014 Alabama 2,948 2,724 2,570 2,304

  12. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  13. Alabama Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    29,595 30,309 30,632 34,015 35,551 34,065 1995-2016 Base Gas 9,640 9,640 9,640 10,450 10,450 10,450 1995-2016 Working Gas 19,955 20,669 20,992 23,565 25,101 23,615 1995-2016 Net Withdrawals 4,787 -713 -323 -3,383 -1,536 1,486 1993-2016 Injections 1,260 3,081 2,222 3,807 3,036 1,576 1994-2016 Withdrawals 6,047 2,367 1,898 424 1,500 3,062 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,615 13,768 13,039 9,452 5,305 3,085 1996-2016 Percent 30.1 199.5 163.9 67.0 26.8 15.0

  14. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    38,492 38,987 39,438 40,879 42,836 44,158 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,295 24,790 25,241 26,682 28,639 29,961 2013-2016 Net Withdrawals -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Injections 496 748 752 1,540 2,065 1,970 2013-2016 Withdrawals 446 289 301 99 108 501 2013-2016 Change in Working Gas from Same Period Previous Year Volume -515 164 850 2,474 4,360 5,604 2013-2016 Percent -2.1 0.7 3.5 10.2 18.0 23.0 2013

    2013 2014 View

  15. Arkansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    13,037 12,709 12,271 12,715 13,517 14,240 1990-2016 Base Gas 11,664 11,652 11,652 12,091 12,542 12,970 1990-2016 Working Gas 1,374 1,057 619 625 974 1,270 1990-2016 Net Withdrawals 434 328 438 -444 -801 -724 1990-2016 Injections 127 208 68 574 808 724 1990-2016 Withdrawals 562 537 506 130 7 1990-2016 Change in Working Gas from Same Period Previous Year Volume -464 -214 -418 -321 -382 -444 1990-2016 Percent -25.3 -16.8 -40.3 -34.0 -28.2 -25.9

    1,760 21,760 21,359 21,853 21,853 21,853 1988-2014

  16. California Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    473,606 466,313 471,118 488,378 500,458 508,224 1990-2016 Base Gas 225,845 225,845 225,845 225,845 225,845 225,845 1990-2016 Working Gas 247,760 240,467 245,272 262,533 274,613 282,379 1990-2016 Net Withdrawals 40,217 7,203 -4,805 -17,261 -16,700 -7,766 1990-2016 Injections 5,046 7,694 14,460 19,176 20,553 12,383 1990-2016 Withdrawals 45,263 14,897 9,655 1,914 3,853 4,616 1990-2016 Change in Working Gas from Same Period Previous Year Volume 916 -8,951 -8,466 -7,672 -21,052 -23,626 1990-2016

  17. Colorado Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    90,208 87,796 84,108 82,774 88,322 94,164 1990-2016 Base Gas 58,435 58,428 58,429 58,436 58,440 58,446 1990-2016 Working Gas 31,772 29,368 25,679 24,338 29,882 35,718 1990-2016 Net Withdrawals 9,800 2,412 3,688 1,334 -5,548 -5,842 1990-2016 Injections 1,835 3,933 3,939 3,816 7,388 7,000 1990-2016 Withdrawals 11,635 6,345 7,627 5,149 1,841 1,157 1990-2016 Change in Working Gas from Same Period Previous Year Volume -434 2,740 2,493 3,043 3,547 2,566 1990-2016 Percent -1.3 10.3 10.8 14.3 13.5

  18. Illinois Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    841,442 791,168 765,076 760,530 786,818 818,890 1990-2016 Base Gas 701,925 701,925 701,214 700,778 701,417 702,443 1990-2016 Working Gas 139,517 89,243 63,862 59,753 85,401 116,447 1990-2016 Net Withdrawals 69,604 50,274 26,092 4,551 -26,284 -32,072 1990-2016 Injections 2,495 2,208 2,693 8,974 27,607 32,284 1990-2016 Withdrawals 72,099 52,482 28,785 13,525 1,324 212 1990-2016 Change in Working Gas from Same Period Previous Year Volume 4,759 12,589 8,399 4,856 1,676 3,856 1990-2016 Percent 3.5

  19. Indiana Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    97,724 92,441 90,746 90,218 93,116 95,432 1990-2016 Base Gas 77,171 77,164 77,161 77,161 77,159 77,158 1990-2016 Working Gas 20,553 15,277 13,584 13,057 15,957 18,274 1990-2016 Net Withdrawals 6,106 5,259 1,694 527 -2,905 -2,226 1990-2016 Injections 166 119 201 439 2,997 2,269 1990-2016 Withdrawals 6,272 5,378 1,894 966 92 42 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,736 3,953 4,911 4,051 4,056 3,433 1990-2016 Percent 22.2 34.9 56.6 45.0 34.1 23.1

    114,274 111,271

  20. Iowa Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    236,541 225,867 221,105 218,955 221,304 224,160 1990-2016 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897 1990-2016 Working Gas 38,644 27,970 23,208 21,059 23,407 26,264 1990-2016 Net Withdrawals 19,427 10,674 4,762 2,150 -2,349 -2,856 1990-2016 Injections 122 1 1 17 2,858 3,331 1990-2016 Withdrawals 19,548 10,675 4,763 2,167 509 474 1990-2016 Change in Working Gas from Same Period Previous Year Volume 78 534 2,156 548 -2,458 -6,563 1991-2016 Percent 0.2 1.9 10.2 2.7 -9.5 -20.0

  1. Kentucky Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    190,694 181,000 178,850 194,795 203,102 205,878 1990-2016 Base Gas 112,965 112,964 112,961 112,959 112,957 112,956 1990-2016 Working Gas 77,729 68,036 65,889 81,836 90,145 92,922 1990-2016 Net Withdrawals 19,675 9,656 2,150 -16,117 -8,262 -2,776 1990-2016 Injections 575 1,883 3,203 17,718 10,554 5,041 1990-2016 Withdrawals 20,250 11,540 5,354 1,601 2,292 2,265 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,014 21,500 21,915 22,918 21,339 18,578 1990-2016 Percent 16.5

  2. Louisiana Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    600,979 579,744 593,753 613,908 625,375 627,582 1990-2016 Base Gas 274,129 274,174 274,106 274,142 275,344 275,661 1990-2016 Working Gas 326,850 305,571 319,646 339,766 350,030 351,921 1990-2016 Net Withdrawals 56,058 21,175 -14,011 -20,296 -11,540 -2,585 1990-2016 Injections 10,677 23,206 38,091 36,480 30,639 23,795 1990-2016 Withdrawals 66,735 44,381 24,080 16,183 19,100 21,210 1990-2016 Change in Working Gas from Same Period Previous Year Volume 88,848 140,857 153,919 129,118 104,626 90,542

  3. Maryland Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    57,082 54,789 55,130 54,414 56,085 59,107 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 11,405 9,111 9,453 8,737 10,408 13,430 1990-2016 Net Withdrawals 3,991 2,294 -342 716 -1,671 -3,022 1990-2016 Injections 629 546 1,364 632 1,690 3,077 1990-2016 Withdrawals 4,620 2,840 1,022 1,347 19 55 1990-2016 Change in Working Gas from Same Period Previous Year Volume 393 2,976 4,288 3,318 2,443 2,887 1990-2016 Percent 3.6 48.5 83.0 61.2 30.7 27.4

    4,000 64,000

  4. Michigan Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    864,273 783,620 753,579 767,453 832,933 885,620 1990-2016 Base Gas 385,032 385,032 385,032 385,032 385,032 385,032 1990-2016 Working Gas 479,240 398,588 368,547 382,421 447,901 500,588 1990-2016 Net Withdrawals 108,415 80,654 30,025 -13,874 -65,480 -52,688 1990-2016 Injections 2,018 3,532 11,221 27,911 66,310 54,263 1990-2016 Withdrawals 110,433 84,187 41,246 14,037 831 1,576 1990-2016 Change in Working Gas from Same Period Previous Year Volume 125,998 221,529 252,480 223,347 206,679 176,879

  5. Minnesota Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    6,658 6,531 6,016 6,009 6,085 6,259 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,810 1,683 1,168 1,161 1,237 1,411 1990-2016 Net Withdrawals 315 127 515 7 -76 -174 1990-2016 Injections 76 174 1990-2016 Withdrawals 315 127 515 7 1990-2016 Change in Working Gas from Same Period Previous Year Volume 100 228 63 63 145 283 1990-2016 Percent 5.8 15.7 5.7 5.7 13.3 25

    7,000 7,000 7,000 7,000 7,000 7,000 1988-2014 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2014

  6. Mississippi Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    249,528 242,509 254,667 261,037 267,742 266,005 1990-2016 Base Gas 116,505 116,483 116,449 116,491 116,028 116,068 1990-2016 Working Gas 133,023 126,026 138,218 144,545 151,714 149,937 1990-2016 Net Withdrawals 36,129 6,944 -12,187 -6,394 -6,684 1,758 1990-2016 Injections 5,837 12,939 20,073 13,651 15,608 8,894 1990-2016 Withdrawals 41,966 19,883 7,886 7,256 8,924 10,651 1990-2016 Change in Working Gas from Same Period Previous Year Volume 27,861 60,981 73,599 49,163 35,750 22,932 1990-2016

  7. Missouri Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    13,891 14,044 13,908 13,881 13,864 13,848 1990-2016 Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,045 6,198 6,063 6,035 6,019 6,002 1990-2016 Net Withdrawals 433 -168 119 1990-2016 Injections 786 726 0 1990-2016 Withdrawals 1,219 557 119 1990-2016 Change in Working Gas from Same Period Previous Year Volume 137 1,572 458 446 447 447 1990-2016 Percent 2.3 34.0 8.2 8.0 8.0

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845 13,845 13,845

  8. Montana Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    193,997 191,940 192,710 196,653 201,855 206,763 1990-2016 Base Gas 178,501 178,501 178,501 178,501 178,501 178,501 1990-2016 Working Gas 15,496 13,439 14,209 18,153 23,354 28,262 1990-2016 Net Withdrawals 4,394 2,057 -770 -3,943 -5,202 -4,908 1990-2016 Injections 12 55 2,188 4,224 5,294 5,020 1990-2016 Withdrawals 4,406 2,112 1,418 281 92 113 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,391 4,649 5,247 7,840 10,497 12,277 1990-2016 Percent 28.0 52.9 58.5 76.0 81.6 76.8

  9. Natural Gas Depleted Fields Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Separation, as of Dec. 31 33,383 35,746 42,823 53,156 58,490 69,117 1979-2014 Federal Offshore U.S. 5,223 5,204 5,446 5,864 5,530 5,334 1990-2014 Pacific (California) 731 722 711 652 264 243 1979-2014 Louisiana & Alabama 3,863 3,793 4,196 4,358 4,293 4,253 1981-2014 Texas 629 689 539 854 973 838 1981-2014 Alaska 8,093 7,896 8,535 8,672 6,428 5,851 1979-2014 Lower 48 States 25,290 27,850 34,288 44,484 52,062 63,266 1979-2014 Alabama 29 38 48 100 46 141 1979-2014 Arkansas 20 29 46 82 135

  10. Natural Gas Salt Caverns Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    397,560 456,009 512,279 715,821 654,266 702,548 1999-2014 Alabama 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Arkansas 0 0 1999-2014 California 0 0 1999-2014 Colorado 0 0 1999-2014 Illinois 0 0 1999-2014 Indiana 0 0 1999-2014 Kansas 931 931 931 931 0 1999-2014 Kentucky 0 0 1999-2014 Louisiana 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Maryland 0 0 1999-2014 Michigan 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Mississippi 62,301 82,411 90,452 139,627 153,733 181,810

  11. Nebraska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    30,842 30,290 30,389 31,015 32,111 32,123 1990-2016 Base Gas 22,197 22,197 22,197 22,197 22,197 22,197 1990-2016 Working Gas 8,645 8,093 8,192 8,818 9,914 9,926 1990-2016 Net Withdrawals 1,788 549 -103 -630 -1,099 -16 1990-2016 Injections 442 589 741 1,108 404 1990-2016 Withdrawals 1,788 991 486 111 9 387 1990-2016 Change in Working Gas from Same Period Previous Year Volume -1,224 5 778 990 968 -359 1991-2016 Percent -12.4 0.1 10.5 12.6 10.8 -3.5

    4,850 34,850 34,850 34,850 34,850 34,850

  12. New Mexico Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    73,367 71,954 73,611 74,781 76,396 76,788 1990-2016 Base Gas 29,362 29,362 29,362 29,362 29,362 29,362 1990-2016 Working Gas 44,005 42,592 44,249 45,419 47,034 47,425 1990-2016 Net Withdrawals 1,568 1,413 -1,658 -1,170 -1,615 -391 1990-2016 Injections 104 382 1,901 1,256 1,750 906 1990-2016 Withdrawals 1,673 1,795 243 86 135 515 1990-2016 Change in Working Gas from Same Period Previous Year Volume 18,535 15,885 15,140 13,539 12,203 11,288 1990-2016 Percent 72.8 59.5 52.0 42.5 35.0 31.2

    80,000

  13. New York Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    202,549 188,208 183,548 185,119 196,365 203,711 1990-2016 Base Gas 114,956 114,913 114,853 114,603 114,779 114,826 1990-2016 Working Gas 87,594 73,296 68,695 70,516 81,586 88,885 1990-2016 Net Withdrawals 21,931 14,573 4,660 -1,571 -11,246 -7,422 1990-2016 Injections 351 2,066 5,092 7,990 11,932 9,211 1990-2016 Withdrawals 22,282 16,639 9,752 6,419 686 1,789 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,336 14,144 23,322 20,310 18,553 10,564 1990-2016 Percent 14.9 23.9

  14. Kansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    82,300 284,821 284,731 284,905 283,974 282,984 1988-2014 Salt Caverns 931 931 931 931 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 281,370 283,891 283,800 283,974 283,974...

  15. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    9,225,127 9,235,132 9,228,893 9,232,305 9,232,937 9,232,991 1989-2016 Alabama 43,600 43,600 43,600 43,600 43,600 43,600 2002-2016 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2016 California 601,808 601,808 601,808 601,808 601,808 601,808 2002-2016 Colorado 130,186 130,186 130,186 130,186 130,186 130,186 2002-2016 Illinois 1,004,100 1,004,100 1,004,100 1,004,100 1,004,100 1,004,130 2002-2016 Indiana 111,581 111,581 111,581

  16. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  17. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  18. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  19. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  20. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  1. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  2. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  3. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  4. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  5. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  6. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  7. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  8. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  9. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  10. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  11. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  12. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  13. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  14. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 ...

  15. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  16. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  17. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  18. Renewable Energy Interconnection and Storage - Technical Aspects...

    Open Energy Info (EERE)

    Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy...

  19. Operational Benefits of Meeting California's Energy Storage Targets

    SciTech Connect (OSTI)

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2015-12-18

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014 version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation

  20. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  1. Sorbent Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's sorbent storage materials research focuses on increasing the dihydrogen binding energies and improving the hydrogen volumetric capacity by optimizing the material's pore size, pore volume, and surface area, as well as investigating effects of material densification.

  2. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful

  3. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  4. Optimization of compression and storage requirements at hydrogen refueling stations.

    SciTech Connect (OSTI)

    Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M.

    2008-01-01

    The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

  5. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  6. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  7. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful information for states, municipalities, project developers, and end users to

  8. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  9. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  10. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  11. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

  12. Energy Department Awards $4.6 Million to Advance Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-capacity silicon-based borohydridegraphene composite hydrogen storage materials ... to develop novel new high-capacity hydrogen sorbents based on high surface area graphene. ...

  13. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  14. Net Withdrawals of Natural Gas from Underground Storage (Summary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease ... Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series ...

  15. Stationary High-Pressure Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary High-Pressure Hydrogen Storage Zhili Feng Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure Gaseous Hydrogen Delivery Pathway * Bulk storage in hydrogen delivery infrastructure * * Needed at central production plants, geologic storage sites, terminals, and refueling sites * Important to provide surge capacity for hourly, daily, and seasonal demand variations Technical challenges

  16. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage DOE-EERE Deputy Assistant Secretary for Renewable Power, Douglas Hollett. (DOE photo) Permalink Gallery DOE-EERE Deputy Assistant Secretary Hollett Visits Sandia Concentrating Solar Power, Customers & Partners, Cyber, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Global Climate & Energy, Global Climate & Energy, Grid Integration, Highlights - Energy Research, Microgrid, National Solar Thermal Test

  17. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  18. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The growth in the number of files stored is less than the growth in the number of bytes stored as the average file size has increased over time. The average file size as of August 2003 is about 30 MB. The median file size is closer to 1 MB. Number of Files Monthly I/O The growth rate of I/O is roughly the same as the

  19. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  20. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  1. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  2. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  3. Spatiotemporal Distribution of NOx Storage: a Factor Controlling...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of commercial Ba-based LNT (CLEERS benchmark catalyst; containing oxygen storage capacity) in a bench flow reactor under fast-cycling conditions, varying reductant type, ...

  4. NEDO Research Related to Battery Storage Applications for Integration...

    Open Energy Info (EERE)

    NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity...

  5. Carbon Capture and Storage in Southern Africa | Open Energy Informatio...

    Open Energy Info (EERE)

    assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia AgencyCompany Organization Energy Research...

  6. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measure the thermophysical properties of heat transfer fluids and storage materials to ... measure the melting point, boiling point, heat capacity, density, viscosity, and phase- ...

  7. Hydrogen Storage in Metal-Organic Frameworks

    SciTech Connect (OSTI)

    Omar M. Yaghi

    2012-04-26

    Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up

  8. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect (OSTI)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  9. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  10. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage NM-electric-car-challenge_web Permalink Gallery Electric Car Challenge Sparks Students' STEM Interest Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Electric Car Challenge Sparks Students' STEM Interest Aspiring automotive engineers from 27 NM middle schools competed in the New Mexico Electric Car Challenge on Saturday, November 22nd at Highland High School in Albuquerque. Forty-six teams participated in a race, a design

  11. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy Storage The contemporary grid limits renewable energy and other distributed energy sources from being economically and reliably integrated into the grid. While a national renewable energy portfolio standard (RPS) has yet to be established, 35 states have forged ahead with their own RPS programs and policies. As this generation becomes a larger portion of a utility's [...] By Tara Camacho-Lopez|

  12. Electricity storage using a thermal storage scheme

    SciTech Connect (OSTI)

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  13. The Basics of Underground Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be...

  14. SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES

    SciTech Connect (OSTI)

    Koenig, R.

    2013-07-02

    In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

  15. Tennessee Total Electric Power Industry Net Summer Capacity,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13051,12974,12999,12982,13517 ... " Other Gases","-","-","-","-","-" "Nuclear",3398,3397,3397,3401,3401 ...

  16. Missouri Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18197,18099,18126,18101,18861 ... " Other Gases","-","-","-","-","-" "Nuclear",1190,1190,1190,1190,1190 ...

  17. Virginia Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 ... " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 ...

  18. Wyoming Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " ... " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" ...

  19. New Jersey Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14363,13741,13771,13759,13676 " ... " Other Gases",44,44,44,44,44 "Nuclear",3984,3984,4108,4108,4108 ...

  20. Wisconsin Total Electric Power Industry Net Summer Capacity,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14000,13926,15015,14928,14964 ... " Other Gases","-","-","-","-","-" "Nuclear",1582,1582,1582,1583,1584 ...

  1. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  2. Nebraska Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5478,5423,5459,6123,6169 " ... " Other Gases","-","-","-","-","-" "Nuclear",1238,1240,1252,1252,1245 ...

  3. Washington Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4436,4343,5130,5145,5183 " ... " Other Gases","-","-","-","-","-" "Nuclear",1131,1131,1131,1131,1097 ...

  4. Vermont Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",108,101,101,100,100 " ... " Other Gases","-","-","-","-","-" "Nuclear",620,620,620,620,620 ...

  5. Texas Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " ... " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 ...

  6. West Virginia Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,1... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  7. Mississippi Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,142... " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 ...

  8. Montana Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " ... " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" ...

  9. Illinois Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural ...

  10. Florida Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48044,50280,50166,53733,53791 " Coal",10333,10297,10265,10261,9975 " Petroleum",11677,11671,13128,12602,12033 " Natural ...

  11. Arizona Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural ...

  12. Alabama Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural ...

  13. Iowa Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural ...

  14. Arkansas Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural ...

  15. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural ...

  16. Indiana Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26899,26922,26850,26808,26186 " Coal",19718,19759,19721,19757,19096 " Petroleum",503,503,503,503,504 " Natural ...

  17. Alaska Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " ...

  18. California Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural ...

  19. Idaho Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other ...

  20. Colorado Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9644,9979,10229,10545,11204 " Coal",4939,4961,4965,5010,5702 " Petroleum",181,182,184,178,178 " Natural ...

  1. Connecticut Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " Coal",551,551,553,564,564 " Petroleum",2926,2709,2741,2749,2989 " Natural ...

  2. Hawaii Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2208,2209,2208,2223,2196 " Coal",180,180,180,180,180 " Petroleum",2019,2020,2019,2034,2007 " Natural Gas","-","-","-","-",...

  3. Georgia Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28238,28096,28078,28103,28087 " Coal",13438,13275,13256,13211,13230 " Petroleum",2182,2169,2187,2188,2189 " Natural ...

  4. New Hampshire Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural ...

  5. New Mexico Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6520,6620,7366,7308,7312 " Coal",3957,3957,3957,3977,3990 " Petroleum",28,28,28,28,24 " Natural Gas",2535,2634,3381,3302,3...

  6. OEM Perspective on Cryogenic H2 Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    compressed Hydrogen Storage. Tobias Brunner February 15 th , 2011, Washington D.C. BMW Hydrogen. Hydrogen Storage Workshop. BMW EfficientDynamics Less emissions. More driving pleasure. BMW Hydrogen Washington DC 02/15/2011 Page 2 BMW Hydrogen Technology Strategy. Advancement of key components. Source: BMW Advanced key components Next vehicle & infrastructure Hydrogen 7 small series LH 2 StorageCapacity   Safety   Boil-off loss   Pressure supply   Complexity 

  7. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  8. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  9. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  10. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011 Annual Progress Report for Energy Storage R&D

  11. File Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage File Storage Disk Quota Change Request Form Carver File Systems Carver has 3 kinds of file systems available to users: home directories, scratch directories and project directories, all provided by the NERSC Global File system. Each file system serves a different purpose. File System Home Scratch Project Environment Variable Definition $HOME $SCRATCH or $GSCRATCH No environment variable /project/projectdirs/ Description Global homes file system shared by all NERSC systems except

  12. File storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File storage File storage Disk Quota Change Request Form Euclid File Systems Euclid has 3 kinds of file systems available to users: home directories, scratch directories and project directories, all provided by the NERSC Global File system. Each file system serves a different purpose. File System Home Scratch Project Environment Variable Definition $HOME $SCRATCH or $GSCRATCH No environment variable /project/projectdirs/ Description Global homes file system shared by all NERSC systems except

  13. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Northrop-Grumman, GE Partnerships Tap a Wide Range of Sandia Labs Experience Sandia has signed a pair of umbrella cooperative research and development agreements (CRADAs) with Northrop Grumman Information Systems and General Electric Global Research that will broadly add to the Labs' research. "These strategic agreements envision long-term partner-ships," said Brooke Garcia, a Sandia business

  14. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting I/O Resources for Scientific Applications at NERSC Optimizing I/O performance on the Lustre file system I/O Formats Science Databases Sharing Data Transferring Data Unix Groups at NERSC Unix File Permissions Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Home » For Users

  16. Development of design basis capacity for SNF project systems

    SciTech Connect (OSTI)

    Pajunen, A.L.

    1996-02-27

    An estimate of the design capacity for Spent Nuclear Fuel Project systems producing Multi-Canister Overpacks is developed based on completing fuel processing in a two year period. The design basis capacity for systems relates the desired annual processing rate to potential operating inefficiencies which may be actually experienced to project a design capacity for systems. The basis for estimating operating efficiency factors is described. Estimates of the design basis capacity were limited to systems actually producing the Multi-Canister Overpack. These systems include Fuel Retrieval, K Basin SNF Vacuum Drying, Canister Storage Building support for Staging and Storage, and Hot Vacuum conditioning. The capacity of other systems are assumed to be derived from these system capacities such that systems producing a Multi-Canister Overpack are not constrained.

  17. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  18. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity New Insights into Oxygen's Role in Lithium Battery Capacity Print Monday, 11 July 2016 00:00 Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain

  19. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  20. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  1. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  2. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  3. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  4. Table 8.11b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000 [10] NA

  5. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  6. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  7. Concentrated Solar Power with Thermal Energy Storage Can Help Utilities'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom Line, Study Shows - News Releases | NREL Concentrated Solar Power with Thermal Energy Storage Can Help Utilities' Bottom Line, Study Shows December 20, 2012 The storage capacity of concentrating solar power (CSP) can add significant value to a utility company's optimal mix of energy sources, a new report by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) suggests. The report found that CSP with a six-hour storage capacity can lower peak net loads when the

  8. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  9. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Capacity Concerns in the Modern Grid - EAC Report (December 2008) | Department of Energy Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's

  10. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  13. Hydrogen Storage

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  14. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  15. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  17. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  18. Report on interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  19. Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,438 88,438 1990's 143,311 93,311 93,311 93,311 93,311 39,468 39,468 39,468 39,468 39,468 2000's 39,468 39,000 39,468 39,469 39,469 39,469 39,469 34,850 34,850 34,850 2010's

  20. New Mexico Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94,600 94,600 1990's 94,600 94,600 94,600 94,600 94,600 94,600 96,600 96,600 96,600 96,600 2000's 96,600 97,000 89,800 83,800 83,800 83,124 82,652 78,424 80,000 80,000 2010's 84,300 84,3

  1. New York Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 156,259 156,259 1990's 147,618 150,538 167,834 173,463 173,463 173,463 173,979 175,479 175,479 175,129 2000's 175,495 166,000 190,156 200,545 204,765 204,855 213,225 229,013 228,613 245,579 2010's 245,579 245,579 245,5

  2. Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 612,547 612,547 1990's 591,494 591,494 591,494 594,644 595,008 620,544 557,452 573,434 575,234 575,384 2000's 573,784 574,000 573,709 572,404 572,404 572,477 572,477 572,477 572,477 580,380 2010's 580,380 580,380 577,944 577,944 577,94

  3. Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 377,189 364,887 1990's 362,616 362,616 359,616 359,616 363,593 364,593 395,087 396,087 394,827 394,827 2000's 378,137 382,000 389,767 384,838 383,638 378,738 380,038 373,738 371,324 371,338 2010's 371,338 372,838 370,838 370,535 375,935

  4. Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 9,791 1990's 9,791 9,791 11,445 11,445 11,622 11,622 11,622 11,622 11,622 11,622 2000's 16,035 21,000 23,675 23,796 24,480 24,034 26,703 29,415 29,415 29,565 2010's 29,565 29,565 28,750

  5. Pennsylvania Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 805,394 805,393 1990's 640,938 640,938 669,354 664,693 658,578 654,570 680,006 684,842 684,842 684,842 2000's 684,518 717,070 714,216 748,074 749,018 748,792 750,054 759,365 759,153 776,964 2010's 776,822 776,845 774,309 774,309 774,30

  6. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 2003 5,280 5,280 5,280 5,280 5,280 8,520 8,520 8,520 8,520 8,520 8,520 8,520 2004 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 11,015 11,015 11,015 2005 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2006 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2007 11,015 11,015 11,015 11,015

  7. Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 25,907 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 2014 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 2015 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 83,592 2016 83,592 83,592 83,592 83,592

  8. Ohio Natural Gas Underground Storage Capacity (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    594,644 595,008 620,544 557,452 573,434 575,234 575,384 2000's 573,784 574,000 573,709 572,404 572,404 572,477 572,477 572,477 572,477 580,380 2010's 580,380 580,380 577,944...

  9. Texas Natural Gas Underground Storage Capacity (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    2008 679,449 679,449 679,449 679,449 679,449 679,449 679,449 679,449 679,449 698,449 709,678 709,678 2009 709,678 709,678 709,678 709,678 709,678 709,678 709,678 709,678...

  10. Colorado Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 48,709 48,709 48,709 60,209 60,209 60,209 60,209 60,209 60,209 60,209 60,582 60,582 2013...

  11. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,600 3,280 3,280 3,280 3,280 2000's 3,280 5,000 8,520 11,015 11,015 11,015 19,300 19,300 26,900 26,900 2010's 32,900 35,400 35,400 35,4

  12. Arkansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 2003 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 2004 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 2005 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 2006 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000 22,000

  13. California Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 388,480 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 474,920 474,920 2003 474,920 474,920 474,920 474,920 474,920 478,995 478,995 478,995 478,995 478,995 478,995 478,995 2004 478,995 478,995 478,995 478,995 478,995 478,995 486,095 446,095 446,095 454,095 454,095 454,095 2005 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 474,095 2006 474,095 474,095 474,095 474,095

  14. Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 100,227 2003 100,227 100,227 100,227 100,227 100,227 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2004 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2005 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 101,055 2006 101,055 101,055 101,055 101,055

  15. Illinois Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 898,565 898,565 898,565 898,565 898,565 898,565 898,565 898,565 898,565 898,565 898,565 898,565 2003 898,565 898,565 898,565 898,565 898,565 901,274 901,274 901,274 945,307 945,307 945,307 945,307 2004 959,244 959,244 959,244 959,244 959,112 959,112 959,112 959,112 959,112 972,388 972,388 972,388 2005 972,388 972,388 972,388 972,388 972,388 972,388 972,388 972,388 972,388 972,388 972,388 972,388 2006 972,388 972,388 972,388 972,388

  16. Indiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 109,310 109,310 109,310 109,310 109,310 109,310 109,310 109,310 109,310 109,310 111,556 111,556 2003 112,088 129,968 112,095 112,095 112,095 111,095 111,095 111,095 111,095 111,095 111,095 111,095 2004 111,680 111,680 111,680 111,680 111,680 111,680 111,680 111,680 111,680 113,597 113,397 113,397 2005 113,397 113,397 113,397 113,397 113,397 113,397 113,397 113,397 113,397 113,397 113,397 113,397 2006 113,397 113,397 113,397 113,397

  17. Kansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 301,502 2003 301,502 301,502 301,502 301,502 301,502 299,474 299,474 299,474 299,474 299,474 299,474 299,474 2004 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 293,574 288,197 288,197 288,197 2005 288,197 288,197 288,197 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 289,259 2006 289,259 289,259 289,259 289,259

  18. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 220,597 220,597 2003 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 2004 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,804 220,804 220,804 2005 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 2006 220,804 220,804 220,804 220,804

  19. Virginia Natural Gas Underground Storage Capacity (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 2,992 2,992 2003 2,992 2,992 2,992 2,992 2,992 5,100 5,100...

  20. Tennessee Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2003 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2004 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2005 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2006 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2007 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200

  1. Texas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 699,324 698,258 699,324 699,324 699,324 699,324 699,324 699,324 700,324 700,324 723,922 723,922 2003 723,922 723,922 723,922 723,922 723,922 699,472 699,472 699,472 699,472 699,472 699,472 699,472 2004 700,769 700,769 700,769 700,769 675,769 675,769 675,769 675,769 675,769 665,730 665,730 665,730 2005 665,730 665,730 665,730 665,730 665,730 665,730 665,730 665,730 665,730 665,730 665,730 665,730 2006 665,730 665,730 665,730 665,730

  2. Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 114,980 114,980 1990's 114,980 114,980 114,980 114,980 122,498 122,498 121,980 121,980 121,980 121,980 2000's 129,480 129,000 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2010's 129,480 124,465 124,465 124,465 124,465

  3. Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,668 4,668 2000's 4,967 5,000 5,100 6,720 8,100 9,035 9,692 9,560 6,200 9,500 2010's

  4. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,400 36,400 1990's 32,100 34,100 34,100 34,100 33,900 33,900 37,300 37,300 37,300 37,300 2000's 37,300 37,000 39,627 40,247 41,263 42,191 43,316 39,341 39,287 39,210 2010's 41,309 43,673

  5. Indiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 114,603 112,045 1990's 97,332 102,246 106,176 106,676 108,621 113,121 113,209 113,209 113,209 113,209 2000's 113,210 113,000 111,095 113,597 113,397 114,080 114,294 114,294 114,937 114,274 2010's 111,271 111,313 110,749 110,749 110,749

  6. Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 311,000 311,000 1990's 229,700 279,700 279,700 279,700 270,200 270,200 270,200 408,200 273,200 273,200 2000's 273,200 273,000 273,200 273,200 273,200 273,200 275,200 278,238 284,747 284,811 2010's 288,0

  7. Kansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 334,925 334,925 1990's 301,199 301,199 290,571 289,797 290,148 283,603 285,201 304,065 301,101 301,101 2000's 300,401 300,000 299,473 288,197 289,450 289,747 288,383 288,926 282,221 282,300 2010's 284,821 284,731 284,905 283,97

  8. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 206,572 206,603 1990's 312,061 307,235 210,242 210,242 209,753 215,351 216,351 219,907 219,907 219,907 2000's 219,913 220,000 220,596 220,804 220,844 218,927 218,394 220,359 220,359 220,368 2010's 221,751 221,751 221,751 221,723 221,723

  9. Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 559,019 559,019 1990's 550,823 559,823 539,200 542,900 551,580 549,436 554,872 559,012 563,867 564,062 2000's 569,187 580,000 587,115 591,673 593,740 593,740 599,165 588,711 615,858 651,968 2010's 670,880 690,295 699,646 733,939 745,029

  10. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61,978 61,978 1990's 61,978 61,978 62,400 62,400 62,000 62,000 62,000 62,000 62,000 62,000 2000's 62,000 62,000 62,000 62,000 62,000 62,000 64,000 64,000 64,000 64,000 2010's

  11. Michigan Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982,362 982,362 1990's 994,542 995,181 994,281 1,043,781 1,046,582 1,053,814 1,052,236 992,933 1,021,674 1,071,699 2000's 1,070,716 1,071,000 1,034,429 1,028,344 1,010,034 1,021,622 1,031,290 1,060,558 1,062,339 1,069,405 2010's 1,069,898 1,075,472 1,078,979 1,079,424 1,079,462

  12. Mississippi Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108,171 108,207 1990's 108,601 114,621 114,627 114,627 124,138 124,114 134,012 134,012 134,012 134,012 2000's 134,012 134,000 144,787 143,887 146,287 150,947 150,809 166,909 187,251 210,128 2010's 235,638 240,241 289,416 303,522 331,469

  13. Missouri Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,025 29,791 1990's 29,791 29,791 30,564 30,564 30,564 30,564 31,125 31,273 31,273 31,273 2000's 31,878 32,000 32,098 32,080 32,004 32,146 32,505 32,940 32,876 10,889 2010's 11,502

  14. Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 373,963 373,960 1990's 373,960 373,960 375,010 375,010 375,010 375,010 375,010 342,785 371,510 371,510 2000's 371,510 372,000 374,201 374,201 374,201 374,201 374,201 374,201 374,201 376,301 2010's

  15. Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  16. Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0

  17. Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 3 2 3 3 4 4 4 4 4 4 3 2 1997 3 2 3 3 4 4 4 5 4 4 4 4 1998 3 3 3 3 4 4 4 4 4 4 4 4 1999 4 4 4 4 4 4 4 4 4 5 4 4 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  18. Tennessee Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  19. Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,073 14,081 15,757 15,821 14,757 15,209 15,209 15,665 12,137 14,694 14,486 14,329 1992 15,221 13,656 13,168 11,390 11,537 11,941 11,954 11,375 11,617 10,161 10,609 9,069 1993 9,234 8,048 8,426 10,843 10,044 9,739 10,136 9,860 9,381 8,310 7,236 7,372 1994 7,057 6,684 6,978 6,450 6,086 6,183 6,058 6,000 5,912 4,935 5,287 5,167 1995 4,736 3,880 3,400 3,383 3,441 1,323 1,293 1,492 1,056 1,076 907 886 1996 762 708 215 187 210 167 165 169 163

  20. West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  1. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,127 4,605 8,610 8,415 7,743 8,318 8,211 8,971 7,226 10,425 7,920 4,894 1992 7,886 7,507 4,809 7,021 7,608 15,649 4,881 7,665 4,623 4,660 4,544 4,859 1993 6,544 6,120 6,276 6,226 10,323 6,573 21,075 10,246 9,455 6,476 10,110 10,620 1994 6,371 7,194 5,976 7,649 8,952 7,896 8,341 12,156 7,771 13,020 12,298 12,440 1995 11,460 10,137 13,117 10,183 9,733 10,159 10,446 11,174 11,080 11,833 11,224 11,348 1996 11,440 9,821 11,800 11,600 10,739

  2. Ecosystem carbon storage capacity as affected by disturbance...

    Office of Scientific and Technical Information (OSTI)

    and tausub 1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance...

  3. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 5.54 W 7.00 6.28 W 6.35 5.61 5.30 W W 4.75 6.48 2004 5.76 W W 6.12 6.88 6.56 6.28 6.08 5.44 W W 7.50 2005 6.67 W W W W 7.61 7.80 9.49 13.52 14.90 12.76 14.05 2006 10.47 9.13 7.73 7.96 6.98 6.81 7.12 7.74 6.56 6.25 6.99 7.37 2007 6.75 8.00 6.97 7.38 7.45 7.76 6.81 7.01 6.44 6.77 7.75 7.64 2008 8.83 10.01 W W W 13.64 12.44 9.52 9.16 6.03 8.45 7.29 2009 5.89 5.20 4.46 3.93 4.03 4.00 3.69

  4. Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W 2.57 2.77 2.46 2.38 2.40 2.12 2.12 2.11 2.02 2.02 1.98 2003 2.02 2.03 2.02 2.11 W 2.07 2.57 2.58 2.50 2.65 2.64 2.64 2004 2.78 2.78 2.81 2.85 2.80 2.81 2.69 2.77 2.78 2.78 2.78 2.78 2005 3.11 3.12 3.17 3.31 3.38 3.32 3.54 3.54 3.53 3.59 3.58 3.66 2006 3.52 3.52 3.42 3.68 3.63 3.74 3.51 3.38 3.72 3.79 3.94 3.88 2007 3.75 3.54 3.59 3.64 3.56 3.48 3.57 3.57 3.64 3.51 3.57 3.49 2008 W W W W W W W W W W W W 2009 W W

  5. Arkansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,010 4,633 4,752 1970's 2,073 995 0 0 0 3,963 10,387 17,507 20,293 17,546 1980's 15,494 38,991 24,278 25,376 25,359 26,036 20,329 24,779 22,994 23,837 1990's 20,165 4,722 8,056 7,773 7,426 7,815 2,354 2,139 1,293 1,150 2000's 8 0 0 0 0 0 439 516 511 520 2010's 414 4,051 0

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 854 748 874 377 368 398 320 289 301 116 43 35 1992 714 638 688 663 660 639 651

  6. California Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.42 3.23 3.71 4.01 3.84 3.55 3.51 3.48 3.75 4.22 4.52 4.93 2003 5.17 5.84 6.93 5.31 W 5.87 5.48 5.25 5.25 5.06 4.96 5.62 2004 5.91 5.71 5.36 5.78 6.19 6.47 6.36 6.05 5.28 5.73 7.01 6.82 2005 6.29 6.33 6.83 7.14 6.53 6.49 7.06 7.86 9.61 11.10 9.46 11.55 2006 8.78 7.42 6.63 6.53 6.23 6.20 6.44 7.16 5.97 5.52 7.26 7.30 2007 6.70 7.39 6.91 6.67 7.09 7.13 6.72 6.28 5.74 6.56 6.70 7.35 2008 7.66 8.40 9.23 9.91 10.47

  7. Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 14,966 15,278 13,652 8,580 5,694 3,947 2,778 2,279 2,601 3,750 6,975 11,066 1990 15,699 13,559 12,631 9,873 7,248 4,191 2,478 2,357 2,331 3,450 7,142 10,956 1991 17,902 15,114 11,686 9,187 7,108 3,600 2,569 2,283 2,367 3,541 8,076 14,007 1992 16,198 14,400 11,499 8,789 5,005 3,963 2,809 2,438 2,644 3,547 7,607 15,715 1993 18,551 15,981 15,025 9,897 6,505 3,996 2,851 2,391 3,027 4,451 8,984 14,527 1994 16,252 15,391 13,500 9,732 6,819

  8. Illinois Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 74,796 76,868 64,320 40,575 24,582 12,602 10,775 9,958 13,627 26,027 51,490 94,362 1990 71,107 64,322 52,008 37,441 23,464 12,361 10,424 10,802 12,633 30,333 40,903 76,365 1991 92,323 62,627 54,680 32,273 18,197 11,041 10,168 10,122 16,099 27,231 61,099 71,109 1992 80,315 63,013 59,187 40,752 22,488 12,963 10,391 11,171 13,758 28,742 54,950 77,632 1993 85,860 74,466 67,993 42,426 18,258 12,716 10,373 9,728 15,193 31,937 51,226 75,134 1994

  9. Indiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,677 23,164 24,258 19,456 18,831 18,369 17,553 20,171 17,971 21,014 20,330 22,971 2002 24,441 23,170 23,714 20,750 18,770 17,297 19,398 20,664 19,688 22,268 23,322 25,579 2003 27,047 24,384 21,994 19,376 18,238 16,652 16,774 17,813 18,398 20,589 22,780 24,621 2004 28,155 25,447 25,012 21,558 19,052 18,264 18,325 19,767 19,514 20,781 22,067 24,940 2005 28,069 24,575 27,661 22,009 19,346 18,322 17,340 19,005 18,711 20,639 21,908 26,437

  10. Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 232 179 329 365 534 479 1,124 1,278 449 259 247 279 2002 366 291 364 323 325 587 1,032 637 551 281 264 229 2003 247 276 270 241 195 316 559 1,008 244 226 447 221 2004 388 177 332 213 324 704 788 657 770 1,086 1,395 1,457 2005 1,307 1,096 2,541 1,671 1,351 2,257 2,620 2,885 1,817 977 920 1,841 2006 681 489 909 707 1,672 1,780 3,166 2,467 1,181 2,639 2,393 1,544 2007 2,694 3,549 1,450 1,928 2,649 2,181 2,202 2,574 684 1,875 1,471

  11. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145 9,198 4,989 1,908 1,710 1,289 1,137 1,410 3,858 7,612 11,510 1994 15,487 10,560 8,417 3,601 2,314 1,260 1,178 1,211

  12. Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W 3.61 3.49 3.34 W W W W 2003 5.86 7.31 7.89 5.81 W 6.47 5.74 5.45 5.29 5.20 4.92 W 2004 6.74 6.22 5.99 6.14 6.81 6.91 6.51 6.17 5.49 6.77 7.11 7.48 2005 6.74 6.70 7.20 7.78 7.15 7.46 7.96 9.15 13.07 W 12.25 13.64 2006 11.64 8.69 8.11 7.77 7.25 6.97 6.83 7.95 6.96 5.94 7.94 9.06 2007 6.80 8.49 7.98 8.14 8.25 8.35 7.26 7.07 6.30 7.26 7.76 7.79 2008 8.36 8.95 9.93 10.78 12.26 13.21 12.68 9.71 8.70 7.78 7.20

  13. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    from All Countries (Million Cubic Feet) Maryland Natural Gas Imports from All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66,078 209,294 221,689 116,613 148,231 25,894 72,339 2010's 43,431 13,981 2,790 5,366 11,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  14. Michigan Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 55,928 52,459 51,163 34,224 20,415 9,803 8,052 7,957 9,726 19,994 31,679 60,266 1990 55,931 48,164 43,437 31,606 19,275 11,093 7,779 8,253 9,336 17,937 29,517 45,069 1991 61,349 49,685 43,914 29,081 18,655 10,014 7,555 6,594 9,297 18,491 33,409 49,160 1992 56,513 52,668 46,640 36,421 21,545 11,927 8,773 8,655 9,435 20,856 34,278 50,376 1993 59,618 57,465 54,627 35,109 18,269 11,464 8,589 7,199 10,020 22,363 34,389 50,690 1994 72,958

  15. Minnesota Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 545 650 611 788 866 791 1,941 2,026 513 866 469 543 2002 715 815 1,155 652 648 1,310 2,991 1,526 1,304 830 605 629 2003 885 881 540 1,029 481 844 2,220 3,812 1,498 1,734 1,560 1,269 2004 2,209 1,317 987 957 991 703 1,652 402 1,492 626 612 826 2005 1,279 997 1,027 1,984 931 3,602 4,476 3,729 2,169 1,953 1,934 1,944 2006 907 737 833 443 1,060 1,912 5,845 3,518 1,213 3,451 2,423 2,568 2007 2,268 4,022 2,376 2,697 1,428 2,870 4,081

  16. Mississippi Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,995 4,030 4,077 2,195 1,282 929 864 829 894 1,043 1,933 4,241 1990 6,060 3,307 2,793 2,205 1,266 922 850 809 798 948 2,070 3,018 1991 4,628 4,348 3,390 1,903 1,117 882 846 811 824 1,024 2,357 3,625 1992 4,724 4,551 2,850 2,440 1,287 963 896 817 856 979 1,927 4,198 1993 4,474 4,388 4,396 2,961 1,465 947 830 788 815 933 2,518 3,832 1994 6,163 5,192 3,481 2,254 1,088 883 845 784 834 921 1,542 3,098 1995 5,027 4,997 3,800 1,770 1,178 892

  17. Missouri Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8,526 7,720 5,601 5,511 4,509 4,386 4,772 4,809 4,386 4,954 5,329 7,342 2002 7,089 5,945 6,709 5,703 5,620 4,458 4,410 4,486 4,255 6,007 5,966 6,319 2003 7,084 6,868 6,028 4,820 4,273 3,942 3,396 4,833 4,317 4,659 5,254 6,070 2004 7,377 6,846 5,989 5,220 4,565 4,624 4,193 4,543 4,470 4,690 5,183 6,783 2005 7,534 6,457 6,449 5,350 4,758 4,701 4,433 4,709 4,733 4,965 5,487 6,775 2006 6,869 6,415 6,259 5,168 4,767 4,659 4,611 4,994 4,640

  18. Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,803 2,778 2,544 1,666 965 680 426 435 568 1,084 1,728 2,518 1990 2,625 2,421 1,900 1,459 1,104 701 389 392 450 1,040 1,694 2,673 1991 3,533 2,139 2,087 1,585 1,244 608 455 382 559 977 2,218 2,626 1992 2,529 2,180 1,620 1,371 837 541 485 421 727 1,106 1,792 3,065 1993 3,658 2,509 2,611 1,686 1,005 644 608 530 741 1,172 2,236 2,961 1994 2,722 2,915 2,180 1,600 1,005 614 461 396 535 1,184 2,115 2,986 1995 3,072 2,398 2,441 1,796 1,264 704

  19. Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,350 3,088 2,887 3,230 2,646 2,637 5,283 3,782 3,414 2,746 3,947 3,135 2002 3,374 3,222 2,416 2,786 2,840 1,919 5,602 4,879 4,369 2,846 2,950 3,224 2003 3,384 3,125 2,517 2,548 2,640 1,816 4,392 4,190 4,005 3,644 2,863 2,991 2004 3,428 3,291 2,458 2,973 2,584 3,188 4,366 4,402 2,170 2,830 3,472 3,704 2005 3,450 3,453 2,623 2,975 2,545 2,597 4,393 4,914 3,613 3,175 3,696 3,514 2006 4,851 4,406 3,758 4,299 3,657 4,541 5,326 5,689 4,415

  20. Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,577 13,137 12,277 5,784 3,043 2,169 1,858 1,654 1,886 2,571 4,798 11,039 1990 14,092 10,213 8,262 6,640 4,024 2,206 1,679 1,599 1,563 2,416 4,675 8,248 1991 15,898 11,165 8,216 4,711 2,853 1,985 1,747 1,573 1,741 2,327 6,915 10,069 1992 12,164 10,656 7,235 5,961 3,219 2,549 1,949 1,712 1,775 2,236 4,722 11,635 1993 14,565 12,460 12,131 8,019 3,907 2,331 1,832 1,612 1,729 2,317 6,783 10,675 1994 13,551 13,450 9,884 5,919 3,639 2,014

  1. Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,971 7,343 5,742 5,695 5,456 6,550 6,621 8,791 7,952 8,062 6,832 7,527 2002 7,332 5,748 6,225 2,355 2,073 3,093 2,066 4,899 5,614 5,579 5,330 5,541 2003 7,862 5,409 4,352 1,994 1,537 3,203 9,285 9,064 9,436 8,083 7,783 6,392 2004 8,070 7,672 5,888 5,633 4,756 4,199 8,724 9,401 8,320 8,314 9,292 8,464 2005 8,480 8,335 8,641 7,944 1,561 2,690 6,970 9,097 8,251 8,661 8,210 9,159 2006 3,510 5,417 6,304 588 711 2,700 9,740 9,646

  2. Pennsylvania Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 42,523 40,317 37,886 26,310 15,825 8,128 6,400 6,014 6,716 13,222 22,442 44,960 1990 46,618 34,274 31,872 24,487 13,211 8,393 5,973 5,697 6,665 10,603 20,874 31,349 1991 42,638 38,146 32,729 22,324 11,101 6,704 5,716 5,399 6,792 13,403 23,637 34,139 1992 44,113 41,812 36,068 26,243 13,989 8,047 6,134 5,902 6,950 15,853 24,806 36,609 1993 41,969 45,019 42,350 24,988 11,007 8,560 5,614 5,688 6,754 15,261 24,357 37,429 1994 55,091 47,970

  3. Tennessee Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 8,323 8,151 7,961 4,311 2,220 1,347 1,041 961 1,044 1,683 3,555 8,601 1990 11,556 6,514 5,575 4,407 2,119 1,304 993 963 1,017 1,582 4,018 6,293 1991 9,950 8,803 6,940 3,245 1,629 1,128 1,034 961 1,069 1,898 5,085 7,616 1992 10,132 8,849 6,002 4,859 2,186 1,437 1,120 1,051 1,100 1,885 4,473 9,125 1993 10,319 9,273 10,041 5,755 2,317 1,365 1,109 1,011 1,111 1,839 5,774 9,003 1994 13,829 11,693 7,753 4,606 2,027 1,350 1,133 1,081 1,145 1,668

  4. Texas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.65 2.36 2.96 3.57 3.52 3.39 3.37 3.21 3.49 3.95 4.09 4.28 2003 5.11 6.91 7.20 5.20 W 5.97 5.27 5.06 4.91 4.62 4.49 5.39 2004 5.92 5.41 5.22 5.54 6.14 6.45 6.07 5.86 5.13 5.85 6.57 6.59 2005 6.01 6.04 6.47 7.07 6.66 6.88 7.29 8.41 10.43 11.30 9.32 10.72 2006 8.48 7.48 6.76 6.82 6.34 6.08 6.06 7.03 5.83 5.09 6.87 6.92 2007 6.42 7.34 6.90 7.29 7.51 7.48 6.55 6.19 5.88 6.68 6.58 7.00 2008 7.73 8.08 8.92 9.95 10.48

  5. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 103,831 103,830 1990's 106,130 106,130 105,668 105,668 105,668 105,668 105,868 105,868 105,868 105,868 2000's 105,868 106,000 115,068 114,187 114,160 114,160 114,096 114,067 111,167 111,120 2010's 111,120 106,764 124,937

  6. Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2003 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2004 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2005 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2006 129,480 129,480 129,480 129,480

  7. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,720 37,720 2003 37,720 37,720 37,720 37,720 37,720 38,969 38,969 38,969 39,628 39,628 39,628 39,628 2004 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 39,628 40,247 40,247 40,247 2005 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 2006 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 42,191 42,191 42,191

  8. West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 733,126 733,126 733,126 733,126 733,126 733,126 496,796 496,796 496,796 496,796 497,996 497,996 2003 497,996 497,996 497,996 497,996 497,996 509,836 509,836 509,836 509,836 509,758 494,458 494,458 2004 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 492,025 510,827 510,827 510,827 2005 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 510,827 2006 510,827 510,827 510,827 510,827

  9. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 2003 105,869 105,869 105,869 105,869 105,869 115,069 115,069 115,069 115,069 115,069 115,069 115,069 2004 115,069 115,069 115,069 115,069 115,069 115,069 115,069 115,069 115,069 114,187 114,187 114,187 2005 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 2006 114,187 114,187 114,187 114,187

  10. U.S. Working Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Greater than 500 ppm Sulfur 15,284 -- -- -- -- -- 2004-2015 Residual Fuel Oil 22,769 -- -- -- -- -- 1982-2015 Lubricants 13,858 -- -- -- -- -- 1982-2015 Asphalt and Road Oil 24,515 ...

  11. Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 8,316 8,290 5,786 3,585 2,215 1,763 1,374 1,235 1,322 1,718 3,640 5,923 1990 7,169 6,949 5,699 3,287 2,576 1,880 1,314 1,236 1,222 1,932 3,699 6,463 1991 9,582 7,276 5,715 4,514 3,544 2,041 1,348 1,269 1,347 1,802 4,293 7,841 1992 8,422 7,132 4,869 3,184 1,986 1,524 1,406 1,255 1,321 1,802 3,844 7,957 1993 8,919 8,045 6,589 4,375 3,055 1,845 1,533 1,353 1,449 2,322 4,676 7,619 1994 7,251 7,329 4,831 3,524 1,577 1,404 1,369 1,306 1,457

  12. Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,554 5,924 4,623 4,388 5,348 3,437 6,230 5,204 4,911 3,420 8,820 7,375 2002 6,351 6,083 4,656 5,588 6,276 6,159 7,390 7,330 6,500 6,162 5,866 5,613 2003 6,484 6,550 6,373 4,408 7,190 6,196 4,980 4,068 5,070 5,399 5,457 6,916 2004 6,111 5,660 6,190 5,642 5,534 6,983 5,094 5,890 7,489 5,437 5,551 6,670 2005 6,697 5,856 6,173 5,965 5,488 4,756 6,408 7,055 6,543 6,643 5,498 6,659 2006 5,642 6,035 6,404 6,039 4,705 5,879 5,758 7,264 6,022

  13. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,896 8,729 9,248 9,179 8,961 7,013 8,652 7,236 5,871 5,763 4,277 4,358 2002 3,915 3,853 5,065 2,048 1,168 981 1,848 3,219 3,934 4,011 3,821 5,690 2003 5,000 5,051 5,173 1,890 1,140 1,121 6,914 6,789 6,675 6,771 7,268 4,089 2004 5,717 6,676 4,023 3,768 3,523 1,511 7,909 9,321 6,539 5,953 5,921 5,207 2005 6,588 5,392 5,018 4,463 1,988 2,690 7,363 9,648 5,998 4,052 4,764 7,844 2006 2,717 3,652 1,403 1,089 970 1,956 6,853

  14. West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,838 5,621 5,179 3,608 2,263 1,001 741 695 824 1,738 3,240 6,382 1990 6,858 4,690 4,174 3,403 1,747 1,055 724 696 800 1,353 3,031 4,069 1991 5,561 5,527 4,858 2,876 1,372 707 629 622 765 1,738 3,210 4,722 1992 6,183 6,231 4,328 4,038 2,076 1,105 683 661 819 1,899 3,120 4,146 1993 5,220 5,960 5,767 3,560 1,608 962 533 620 740 1,818 3,347 5,072 1994 7,397 6,344 5,136 3,281 1,841 926 541 625 789 1,511 2,462 4,348 1995 5,783 6,546 4,592

  15. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,923 1,964 1,597 1,180 743 517 344 259 350 518 973 1,412 1990 1,832 1,692 1,511 1,140 849 585 320 288 256 484 973 1,556 1991 2,238 1,668 1,340 1,124 922 463 293 259 274 568 1,179 1,665 1992 1,876 1,492 1,146 951 613 431 323 278 360 551 1,071 1,803 1993 2,142 1,797 1,653 1,164 809 506 366 292 380 641 1,181 1,731 1994 1,849 1,790 1,371 1,121 652 352 276 257 333 662 1,210 1,690 1995 2,037 1,496 1,453 1,200 1,006 681 347 271 361 611 1,125

  16. Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.74 1.80 1.59 2000's 1.77 2.36 2.27 2.29 2.79 3.42 3.65 3.58 W W 2010's W 5.04 4.32 4.73 5.06 5.4

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.17 1967-2010 Exports Price 12.19 12.88 15.71 -- 15.74 1989-2014 Pipeline and Distribution Use Price 1970-2005 Citygate Price 6.67 6.53 6.14 6.02 6.34 6.57 1988-2015 Residential Price 8.89 8.77 8.47 8.85 9.11 9.68 1967-2015

  17. California Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,315 5,658 6,757 6,471 6,507 6,127 6,736 6,497 6,688 7,419 7,161 6,900 1992 7,314 6,701 7,119 7,071 7,197 6,573 6,884 6,683 6,498 6,759 6,244 6,286 1993 7,750 6,919 7,484 7,167 7,241 6,955 7,081 7,093 6,997 7,570 7,597 7,950 1994 7,447 6,648 7,191 6,887 6,958 6,683 6,804 6,816 6,723 7,273 7,300 7,639 1995 8,960 7,999 8,653 8,286 8,372 8,041 8,187 8,201 8,089 8,751 8,783 9,192 1996 9,703 9,320 9,579 9,504 9,323 9,273 9,490 9,132 8,872

  18. Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949 922 936 879 982 976 1,016 1994 1,024 885 999 948 553 949 969 999 1,000 1,003 1,010 1,009 1995 1,594 931 2,253 893 1,451 1,976 976 958 1,256 830 929 993 1996 954 931 858 862 907 849 880 865 762 1,028 957 863 1997 543 530 578 485 612 618 588 623 609 609 712 664 1998 594 589 751 704 764 400 626 641 604 677 588 306 1999 556

  19. Indiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  20. Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not