Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

2

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

3

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

4

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

5

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

6

U.S. Total Natural Gas Underground Storage Capacity (Million Cubic ...  

U.S. Energy Information Administration (EIA)

U.S. Total Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1989: 8,119,368: 8,119,368: 8,119,368 ...

7

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

8

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

9

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

10

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

11

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Total Storage Capacity 984,768 980,691...

12

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

13

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

14

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

15

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

16

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

17

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

18

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

19

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

20

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

22

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

23

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

24

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA)

Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell ...

25

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

26

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

27

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

28

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

29

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

30

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

31

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

32

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

33

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

34

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

35

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

36

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

37

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

38

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

39

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

40

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

42

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

43

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

44

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

45

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

46

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

47

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

48

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

49

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

50

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

51

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

52

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

53

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

54

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

55

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

56

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

57

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

58

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

59

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

60

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

62

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

63

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

64

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

65

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

66

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

67

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

68

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

69

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

70

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

71

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

72

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

73

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

74

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

75

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

76

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

77

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

78

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

79

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

80

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

82

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

83

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

84

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

Revision to Working and Net Available Shell Storage Capacity as of September 30, 2010 . Crude oil storage capacity data at tank farms reported for PAD District 2 and ...

85

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

86

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

87

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

88

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

89

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

90

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

91

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

92

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

93

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

94

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

95

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,465 124,465 124,465 124,465 124,465 124,465 2002-2013 Total Working Gas Capacity 54,898 54,898 54,898 54,898 54,898 54,898 2012-2013 Total Number of Existing Fields 3 3 3 3 3...

96

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

577,944 577,944 577,944 577,944 577,944 577,944 2002-2013 Total Working Gas Capacity 230,350 228,030 228,030 228,030 228,030 230,828 2012-2013 Total Number of Existing Fields 24 24...

97

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

774,309 774,309 774,309 774,309 774,309 774,309 2002-2013 Total Working Gas Capacity 434,174 433,084 433,084 433,084 433,084 433,214 2012-2013 Total Number of Existing Fields 51 51...

98

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

29,565 29,565 29,565 29,565 29,565 29,565 2002-2013 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2013 Total Number of Existing Fields 7 7 7 7 7 7...

99

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

122,086 122,086 122,086 122,086 122,086 122,086 2002-2013 Total Working Gas Capacity 60,582 60,582 60,582 60,582 60,582 60,582 2012-2013 Total Number of Existing Fields 10 10 10 10...

100

Iowa Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

288,210 288,210 288,210 288,210 288,210 288,210 2002-2013 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2013 Total Number of Existing Fields 4 4 4 4 4 4...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 Total Working Gas Capacity 12,178 12,178 12,178 12,178 12,178 12,178 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

102

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

9,500 9,500 9,500 9,500 9,500 9,500 2002-2013 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

103

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

592,711 592,711 592,711 592,711 592,711 599,711 2002-2013 Total Working Gas Capacity 349,296 349,296 349,296 349,296 349,296 374,296 2012-2013 Total Number of Existing Fields 14 14...

104

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

376,301 376,301 376,301 376,301 376,301 376,301 2002-2013 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2013 Total Number of Existing Fields 5 5 5...

105

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

4,000 64,000 64,000 64,000 64,000 64,000 2002-2013 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2013 Total Number of Existing Fields 1 1 1 1 1 1...

106

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

110,749 110,749 110,749 110,749 110,749 110,749 2002-2013 Total Working Gas Capacity 33,024 33,024 33,024 33,024 33,024 33,024 2012-2013 Total Number of Existing Fields 22 22 22 22...

107

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

524,332 524,337 524,337 524,337 524,337 524,337 2002-2013 Total Working Gas Capacity 256,454 257,322 257,319 257,315 257,311 258,072 2012-2013 Total Number of Existing Fields 30 30...

108

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

999,931 999,931 999,931 999,931 999,931 1,000,281 2002-2013 Total Working Gas Capacity 302,962 302,962 302,962 302,962 302,962 303,312 2012-2013 Total Number of Existing Fields 28...

109

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

370,838 370,838 370,838 370,838 370,838 370,838 2002-2013 Total Working Gas Capacity 180,358 180,358 180,358 180,358 180,358 180,358 2012-2013 Total Number of Existing Fields 13 13...

110

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

245,579 245,579 245,779 245,779 245,779 245,779 2002-2013 Total Working Gas Capacity 129,026 129,026 129,221 129,221 129,221 129,551 2012-2013 Total Number of Existing Fields 26 26...

111

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

74,940 674,940 708,440 708,303 715,203 714,443 2002-2013 Total Working Gas Capacity 399,572 399,572 424,021 423,472 428,072 428,482 2012-2013 Total Number of Existing Fields 17 17...

112

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,937 124,937 124,937 157,985 157,985 157,985 2002-2013 Total Working Gas Capacity 48,705 48,705 48,705 73,705 73,705 73,705 2012-2013 Total Number of Existing Fields 9 9 9 9 9 9...

113

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,723 221,723 221,723 221,723 221,723 221,723 2002-2013 Total Working Gas Capacity 107,600 107,600 107,600 107,600 107,600 107,600 2012-2013 Total Number of Existing Fields 23 23...

114

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

1,078,979 1,078,979 1,078,979 1,079,424 1,079,424 1,079,424 2002-2013 Total Working Gas Capacity 673,200 673,200 674,010 674,455 674,455 674,967 2012-2013 Total Number of Existing...

115

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

116

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

117

Working crude oil storage capacity at Cushing, Oklahoma ...  

U.S. Energy Information Administration (EIA)

... coal in the United States? ... 2012 working crude oil storage capacity at the Cushing, Oklahoma storage and trading hub was 61.9 million barrels, ...

118

Gulf Coast (PADD 3) Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 4,376: 3,520: 3,565-----1982-2013: ... Notes: Shell storage capacity is the design capacity of the tank. See Definitions, Sources, ...

119

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

120

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

122

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

123

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

124

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

125

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

126

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

127

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

128

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

129

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

130

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

131

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

132

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

133

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

134

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

135

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

136

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

137

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

138

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

139

New Mexico Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) New Mexico Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

140

Maryland Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

64,000 64,000 64,000 64,000 64,000 64,000 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2011 Total Working Gas Capacity 17,300...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tennessee Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

1,200 1,200 1,200 1,200 0 1998-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,200 1,200 1,200 1,200 0 1999-2011 Total Working Gas Capacity 860 860 0 2008-2011...

142

Iowa Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

275,200 278,238 284,747 284,811 288,010 288,210 1988-2011 Aquifers 275,200 278,238 284,747 284,811 288,010 288,210 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity...

143

Washington Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

43,316 39,341 39,287 39,210 41,309 43,673 1988-2011 Aquifers 43,316 39,341 39,287 39,210 41,309 43,673 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity 23,033...

144

Nebraska Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

39,469 34,850 34,850 34,850 34,850 34,850 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 39,469 34,850 34,850 34,850 34,850 34,850 1999-2011 Total Working Gas Capacity 13,619...

145

Missouri Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

32,505 32,940 32,876 10,889 11,502 13,845 1988-2011 Aquifers 32,505 32,940 32,876 10,889 11,502 13,845 1999-2011 Total Working Gas Capacity 11,276 3,040 3,656 6,000 2008-2011...

146

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

13,845 13,845 13,845 13,845 13,845 13,845 2002-2013 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6...

147

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

7,000 7,000 7,000 7,000 7,000 7,000 2002-2013 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2...

148

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

149

Minnesota Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

7,000 7,000 7,000 7,000 7,000 7,000 1988-2011 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2011 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2008-2011 Aquifers 2,000...

150

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

151

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

152

Working and Net Available Shell Storage Capacity as of March...  

Gasoline and Diesel Fuel Update (EIA)

includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net...

153

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010.

154

Working and Net Available Shell Storage Capacity as of September ...  

U.S. Energy Information Administration (EIA)

Unfortunately, meaningful storage capacity utilization rates for operators of crude oil tank farms and pipelines, or for operators of products pipelines, ...

155

Alaska Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 17,902 17,902 83,592...

156

U.S. Working Natural Gas Underground Storage Acquifers Capacity...  

Gasoline and Diesel Fuel Update (EIA)

Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

157

New Mexico Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

158

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

159

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... (see Table 1), and why any given week's storage ... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of ...

160

Constrained flow control in storage networks: Capacity maximization and balancing  

Science Conference Proceedings (OSTI)

This paper studies the control of distributed storage networks with guarantees of constraints satisfaction and asymptotic stability. We consider two problems: network capacity maximization and network balancing. In the first part of the paper we describe ... Keywords: Capacity maximization, Load balancing, Model predictive control, Reachable sets, Storage networks

Claus Danielson, Francesco Borrelli, Douglas Oliver, Dyche Anderson, Tony Phillips

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

162

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

163

Nanocomposite for High Capacity Hydrogen Storage  

Researchers at Berkeley Lab have designed a new composite material for hydrogen storage. The nanocomposite materials rapidly absorbs and releases hydr ...

164

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of working gas observed in each facility over the previous 5-year ...

165

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Related Links: Storage Basics: ... natural gas consumption declined roughly 2 percent from the previous year a reflection of 2009's mild temperatures and weak ...

166

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/1989" 3,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGA_EPG0_SACW0_NUS_MMCF","NA1394_NUS_8" "Date","U.S. Total Natural Gas Underground Storage Capacity (MMcf)","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)","U.S. Natural Gas Count of Underground Storage Capacity (Count)"

167

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

168

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

169

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

170

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

171

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

172

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

173

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

174

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

175

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

176

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

177

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

178

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

179

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

180

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

182

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

183

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

184

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

185

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

186

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

187

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

188

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

189

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

190

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

191

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

192

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

193

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

194

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 5:36:07 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

195

Michigan Natural Gas Underground Storage Salt Caverns Capacity ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

196

,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:22 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NM2" "Date","New...

197

U.S. Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 8,402,216 8,498,535 8,655,740 8,763,798 8,849,125 8,991,335

198

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

513,416 536,702 528,442 531,456 531,480 524,324 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 513,416 536,702 528,442 531,456 531,480 524,324 1999-2011 Total Working Gas...

199

Arkansas Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

22,000 22,000 22,000 21,760 21,760 21,359 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 22,000 22,000 22,000 21,760 21,760 21,359 1999-2011 Total Working...

200

Oregon Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

26,703 29,415 29,415 29,565 29,565 29,565 1989-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 26,703 29,415 29,415 29,565 29,565 29,565 1999-2011 Total Working...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Colorado Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

98,068 98,068 95,068 105,768 105,768 105,858 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 98,068 98,068 95,068 105,768 105,768 105,858 1999-2011 Total...

202

New Mexico Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

82,652 78,424 80,000 80,000 84,300 84,300 1988-2011 Salt Caverns 0 1999-2011 Aquifers 4,227 0 1999-2011 Depleted Fields 78,424 78,424 80,000 80,000 84,300 84,300 1999-2011 Total...

203

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

response to climate change: capacity of deep saline aquifersO.M. , 2007. CO 2 storage capacity estimation: issues andF. , 2008. CO 2 storage capacity calculations for the Dutch

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

204

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 5:36:07 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","...

205

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

206

Natural gas storage working capacity grows 2% in 2012 - Today in ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... This lack of growth in natural gas storage capacity may be partly ...

207

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

208

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

DOE Green Energy (OSTI)

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

209

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

210

Global nuclear generation capacity totaled more than 370 gigawatts ...  

U.S. Energy Information Administration (EIA)

China—where plans for large increases in nuclear capacity had been announced—instituted a temporary moratorium on new approvals for nuclear power ...

211

U.S. Natural Gas Total Underground Storage Capacity (Million ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > Navigator Energy Glossary: View History: Annual : Download Data (XLS File) ... Contact Us · Feedback · Privacy/Security · Careers · About EIA.

212

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

213

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

214

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

215

Working and Net Available Shell Storage Capacity as of September 30, 2010 -  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2010 | Release Date: July 28, 2011 Working and Net Available Shell Storage Capacity as of September 30, 2010 is the Energy Information Administration's (EIA) first report containing semi-annual storage capacity data. It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010. EIA has reported weekly and monthly inventory levels of crude oil and petroleum products for decades. New storage capacity data can help analysts place petroleum inventory levels in context and better understand petroleum market activity and price movements, especially at key market centers such as Cushing, Oklahoma.

216

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update  

Reports and Publications (EIA)

This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

Information Center

2007-10-23T23:59:59.000Z

217

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

218

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

219

EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44: Melton Valley Storage Tanks Capacity Increase Project- Oak 44: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge, Tennessee, for liquid low-level radioactive waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 1995 EA-1044: Finding of No Significant Impact Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee May 25, 1995 EA-1044: Final Environmental Assessment

220

Storage and capacity rights markets in the natural gas industry  

E-Print Network (OSTI)

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Trends in natural gas storage capacity utilization vary by ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration, Form EIA-191, Monthly Underground Gas Storage Report and Short-Term Energy Outlook Note: Dashed lines indicate ...

222

Estimates of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

report presents three alternative ... All facilities have a design ... • Some facilities are not operated at design capacity because of operational guidelines ...

223

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

224

Hybrid simulation and optimization-based capacity planner for integrated photovoltaic generation with storage units  

Science Conference Proceedings (OSTI)

Unlike fossil-fueled generation, solar energy resources are geographically distributed and highly intermittent, which makes their direct control difficult and requires storage units. The goal of this research is to develop a flexible capacity planning ...

Esfandyar M. Mazhari; Jiayun Zhao; Nurcin Celik; Seungho Lee; Young-Jun Son; Larry Head

2009-12-01T23:59:59.000Z

225

Working natural gas storage capacity grows 3% year-over-year ...  

U.S. Energy Information Administration (EIA)

EIA estimates that the demonstrated peak working gas capacity for underground storage in the lower 48 states rose 3%, or 136 billion cubic feet (Bcf), to 4,239 Bcf in ...

226

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as of January 1 (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

227

Estimate of Maximum Underground Working Gas Storage Capacity in the United States  

Reports and Publications (EIA)

This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacityseems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. Thereport presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

Information Center

2006-09-19T23:59:59.000Z

228

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

FLORIDA SOLAR ENERGY CENTER FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute of the University of Central Florida HT Combinatorial Screening of HT Combinatorial Screening of Novel Materials for High Capacity Novel Materials for High Capacity Hydrogen Storage Hydrogen Storage Ali T Ali T - - Raissi Raissi Director, Hydrogen & Fuel Cell R&D Director, Hydrogen & Fuel Cell R&D Division Division High Throughput/Combinatorial Analysis of Hydrogen Storage High Throughput/Combinatorial Analysis of Hydrogen Storage Materials Workshop, Bethesda, MD Materials Workshop, Bethesda, MD 26 June 2007 26 June 2007 This presentation does not contain any proprietary or confidential information 2 Objectives Objectives Develop (i.e. design, build, test and verify) a high

229

Petroleum storage and transportation capacities. Volume III. Petroleum pipeline  

SciTech Connect

Capacity data as of December 31, 1978, are presented for common carrier crude lines, refined petroleum product lines, and liquified petroleum gas/natural gas liquids (LPG/NGL) lines in the form of maps and tables. The maps include: a United States map, including all lines, for crude lines, petroleum product lines, and LPG/NGL lines, each separately; and Petroleum Administration for Defense (PAD) maps for crude and petroleum product lines, each separately. Tables presenting more detailed information than contained on the maps and intended to be used as a supplement to them are included in the Appendices. Several significant trends have developed in the years since the 1967 report was published. The United States has imported increasing amounts of foreign crude oil to supplement its declining domestic production. This foreign crude oil is imported through water terminals and their associated facilities and distributed through petroleum pipelines to inland refineries. Major amounts of imported crude oil are transported by pipeline from the Gulf Coast to the Central and upper Midwest refineries. The trend at the present time is to mix these individual crude oils having similar qualities and deliver the mixes to the refineries. Also, it has become common to batch various combinations of crude oil, refined product, LPG, and petrochemicals through a single pipeline. This ability to ship various petroleum materials in a single pipeline has enhanced the flexibility of the pipeline network.

1979-01-01T23:59:59.000Z

230

,"Alaska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_sac_sal_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_sac_sal_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:57:12 PM"

231

,"Iowa Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (MMcf)" Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM"

232

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

233

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

234

,"U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Count)" Acquifers Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

235

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

236

,"U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

237

Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction  

SciTech Connect

Graphyne, consisting of sp- and sp{sup 2}-hybridized carbon atoms, is a new member of carbon allotropes which has a natural porous structure. Here, we report our first-principles calculations on the possibility of Li-decorated graphyne as a hydrogen storage medium. We predict that Li-doping significantly enhances the hydrogen storage ability of graphyne compared to that of pristine graphyne, which can be attributed to the polarization of H{sub 2} molecules induced by the charge transfer from Li atoms to graphyne. The favorite H{sub 2} molecules adsorption configurations on a single side and on both sides of a Li-decorated graphyne layer are determined. When Li atoms are adsorbed on one side of graphyne, each Li can bind four H{sub 2} molecules, corresponding to a hydrogen storage capacity of 9.26 wt. %. The hydrogen storage capacity can be further improved to 15.15 wt. % as graphyne is decorated by Li atoms on both sides, with an optimal average binding energy of 0.226 eV/H{sub 2}. The results show that the Li-decorated graphyne can serve as a high capacity hydrogen storage medium.

Zhang Hongyu; Zhang Meng; Zhao Lixia; Luo Youhua [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Zhao Mingwen; Bu Hongxia; He Xiujie [School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 Shandong (China)

2012-10-15T23:59:59.000Z

238

Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1  

SciTech Connect

This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

1995-04-14T23:59:59.000Z

239

,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2012" Monthly","12/2012" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Tennessee Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TN2" "Date","Tennessee Natural Gas Underground Storage Capacity (MMcf)" 37271,1200 37302,1200 37330,1200 37361,1200

240

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 32324,590248 32689,589780 33054,586502 33419,589018 33785,595229 34150,598782

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 32324,805394 32689,805393 33054,640938 33419,640938

242

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 32324,36147 32689,31447 33054,31277 33419,31277 33785,31277 34150,31277

243

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 37271,100227 37302,100227 37330,100227 37361,100227

244

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 37271,580037 37302,580037 37330,580037 37361,580037

245

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 32324,334925 32689,334925 33054,301199 33419,301199 33785,290571

246

,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Kentucky Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KY2" "Date","Kentucky Natural Gas Underground Storage Capacity (MMcf)" 37271,219914 37302,219914 37330,219914 37361,219914

247

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 37271,573784 37302,573784 37330,573784 37361,573784 37391,573784

248

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 37271,134012 37302,134012 37330,134012

249

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 32324,7000 32689,7000 33054,7000 33419,7000 33785,7000 34150,7000

250

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 37271,713818 37302,713818 37330,713818

251

,"Maryland Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Maryland Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MD2" "Date","Maryland Natural Gas Underground Storage Capacity (MMcf)" 32324,61978 32689,61978 33054,61978 33419,61978 33785,62400 34150,62400

252

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 37271,301502 37302,301502 37330,301502 37361,301502

253

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 37271,22000 37302,22000 37330,22000 37361,22000

254

,"Montana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Montana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MT2" "Date","Montana Natural Gas Underground Storage Capacity (MMcf)" 32324,373963 32689,373960 33054,373960 33419,373960 33785,375010

255

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:16 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 37271,7000 37302,7000 37330,7000 37361,7000

256

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 32324,114603 32689,112045 33054,97332 33419,102246 33785,106176

257

,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OK2" "Date","Oklahoma Natural Gas Underground Storage Capacity (MMcf)" 32324,377189 32689,364887 33054,362616 33419,362616 33785,359616

258

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 32689,9791 33054,9791 33419,9791 33785,11445 34150,11445 34515,11622

259

,"California Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2" "Date","California Natural Gas Underground Storage Capacity (MMcf)" 37271,388480 37302,475720 37330,475720 37361,475720

260

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 32324,114980 32689,114980 33054,114980 33419,114980 33785,114980 34150,114980

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 32324,88438 32689,88438 33054,143311 33419,93311 33785,93311

262

,"Utah Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:25 PM" "Back to Contents","Data 1: Utah Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290UT2" "Date","Utah Natural Gas Underground Storage Capacity (MMcf)" 37271,129480 37302,129480 37330,129480 37361,129480 37391,129480

263

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 32324,982362 32689,982362 33054,994542 33419,995181 33785,994281

264

,"Virginia Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290VA2" "Date","Virginia Natural Gas Underground Storage Capacity (MMcf)" 37271,4967 37302,4967 37330,4967 37361,4967 37391,4967

265

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:27 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 32324,103831 32689,103830 33054,106130 33419,106130 33785,105668

266

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 37271,699324 37302,698258 37330,699324 37361,699324

267

,"Oregon Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Oregon Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OR2" "Date","Oregon Natural Gas Underground Storage Capacity (MMcf)" 37271,17755 37302,21080 37330,21080 37361,21080 37391,21080

268

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 32324,559019 32689,559019 33054,550823 33419,559823 33785,539200

269

,"Indiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:11 PM" "Back to Contents","Data 1: Indiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290IN2" "Date","Indiana Natural Gas Underground Storage Capacity (MMcf)" 37271,109310 37302,109310 37330,109310 37361,109310

270

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 37271,5280 37302,5280 37330,5280 37361,5280 37391,5280

271

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:09 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 32324,82662 32689,82662 33054,98999 33419,98999 33785,105790

272

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 32324,108171 32689,108207 33054,108601 33419,114621 33785,114627

273

,"Michigan Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Michigan Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MI2" "Date","Michigan Natural Gas Underground Storage Capacity (MMcf)" 37271,1070717 37302,1070717 37330,1070717 37361,1070717

274

,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:19 PM" "Back to Contents","Data 1: Nebraska Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NE2" "Date","Nebraska Natural Gas Underground Storage Capacity (MMcf)" 37271,39469 37302,39469 37330,39469 37361,39469

275

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:20 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 32324,612547 32689,612547 33054,591494 33419,591494 33785,591494 34150,594644

276

,"Alabama Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AL2" "Date","Alabama Natural Gas Underground Storage Capacity (MMcf)" 34880,2600 35246,3280 35611,3280 35976,3280 36341,3280 36707,3280

277

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 37271,105869 37302,105869 37330,105869 37361,105869

278

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 32324,36400 32689,36400 33054,32100 33419,34100 33785,34100

279

,"Washington Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:26 PM" "Back to Contents","Data 1: Washington Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WA2" "Date","Washington Natural Gas Underground Storage Capacity (MMcf)" 37271,37300 37302,37300 37330,37300 37361,37300

280

,"U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

282

,"U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (Count)" Salt Caverns Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

283

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

284

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network (OSTI)

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

285

Task Force on CO2 Storage Capacity Estimation for the Technical Group (TG) of the Carbon Sequestration Leadership Forum (CSLF)  

E-Print Network (OSTI)

Force has previously issued a Phase I report (in August 2005) which served to document the nature of the problem such as the relationship between assessment scale and the level of detail and resolution of the storage capacity. This report of the Task Force’s Phase II activities summarizes the Phase I findings and provides suggested methodologies for the estimation of CO2 storage capacity in three types of geologic structures: uneconomic coal beds, oil and gas reservoirs, and deep saline aquifers. Estimation of CO2 Storage Capacity in Geological Media

Stefan Bachu (canada; Didier Bonijoly (france; John Bradshaw (australia; Robert Burruss (usa; Niels Peter Christensen (ec; Sam Holloway (uk

2007-01-01T23:59:59.000Z

286

New EIA data show total grid-connected photovoltaic solar capacity ...  

U.S. Energy Information Administration (EIA)

Using new information, EIA combines data on utility-scale solar photovoltaic (PV) capacity with customer-sited PV capacity, as reported in the graphic.

287

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

most of which from natural gas storage and groundwaterconducted in the Hudson natural gas storage field in 1969 (

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

288

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

12,"Annual",2012,"6/30/1988" 12,"Annual",2012,"6/30/1988" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393_NUS_2","NA1392_NUS_2","NA1391_NUS_2","NGA_EPG0_SACW0_NUS_MMCF","NGA_EPG0_SACWS_NUS_MMCF","NGA_EPG0_SACWA_NUS_MMCF","NGA_EPG0_SACWD_NUS_MMCF","NA1394_NUS_8","NA1393_NUS_8","NA1392_NUS_8","NA1391_NUS_8"

289

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

most of which from natural gas storage and groundwaterconducted in the Hudson natural gas storage field in 1969 (storage of carbon dioxide in unused aquifers and in depleted natural gas

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

290

A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations  

SciTech Connect

Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

2008-02-10T23:59:59.000Z

291

Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials  

DOE Green Energy (OSTI)

The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products amenable for regeneration, and direct catalytic hydrogenation of the decomposition products. Two different approaches of heating ammonia-borane are being investigated: (a) 'heat to material approach' in which a fixed compartmentalized ammonia-borane is heated by a carefully controlled heating pattern, and (b) 'material to heat approach' in which a small amount of ammonia-borane is dispensed at a time in a fixed hot zone. All stages of AB decomposition are exothermic which should allow the small 'hot zone' used in the second approach for heating to be self-sustaining. During the past year hydrogen release efforts focused on the second approach determining the amount of hydrogen released, kinetics of hydrogen release, and the amounts of impurities released as a function of AB decomposition temperature in the 'hot zone.'

Damle, A.

2010-02-03T23:59:59.000Z

292

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

293

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

294

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Storage Rate and Capacity and Insuring the Environmental Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon dioxide Sequestration in Geological Reservoirs L. A. Davis Lorne.Davis@coe.ttu.edu Department of Petroleum Engineering A. L. Graham Alan.Graham@coe.ttu.edu H. W. Parker** Harry.Parker@coe.ttu.edu Department of Chemical Engineering Texas Tech University Lubbock, Texas 79409 M. S. Ingber ingber@me.unm.edu A. A. Mammoli mammoli@me.unm.edu Department of Mechanical Engineering University of New Mexico Albuquerque, New Mexico 87131 L. A. Mondy lamondy@engsci.sandia.gov Energetic and Multiphase Processes Department Sandia National Laboratories Albuquerque, New Mexico 87185-0834 Quanxin Guo quan@advantekinternational.com Ahmed Abou-Sayed a.abou-sayed@att.net

295

High-Capacity Hydrogen-Based Green-Energy Storage Solutions for ...  

Science Conference Proceedings (OSTI)

Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks ...

296

Working natural gas storage capacity grows 3% year-over-year | U.S ...  

U.S. Energy Information Administration (EIA)

tags: natural gas storage. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site. Have a question, comment, or suggestion for a future article?

297

U.S. Electric Net Summer Capacity, 2004 - 2008 Provides total...  

Open Energy Info (EERE)

the nonrenewable total. 2010-11-19T21:48:42Z 2010-12-07T21:38:03Z www.eia.doe.govcneafsolar.renewablespagetrendstable19.xls I accessed this data set from a public site....

298

U.S. Natural Gas Salt Underground Storage - Total (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total (Million Cubic Feet) Total (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 84,650 74,817 80,243 89,252 99,008 97,724 105,227 105,831 112,197 115,062 116,865 113,229 1995 127,040 118,542 112,576 120,337 127,595 132,749 130,338 117,338 134,950 142,711 138,775 131,368 1996 121,867 110,621 100,667 120,036 125,710 134,937 130,796 135,916 145,249 148,410 151,210 149,245 1997 122,426 108,624 120,923 123,380 138,068 145,452 131,065 131,980 142,780 159,497 161,999 149,833 1998 136,305 135,263 131,302 148,739 151,004 149,079 156,601 157,940 150,855 183,160 186,058 171,088 1999 149,354 144,176 134,794 144,963 161,229 167,124 160,812 168,386 178,681 182,040 183,512 168,536

299

BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE  

E-Print Network (OSTI)

installed over 1.5 MW of rooftop PV [2]. These systems generate value primarily through the energy produced and the intermittent nature of the solar resource create challenges to realizing the capacity value of PV installations

Perez, Richard R.

300

Polymorphisms in the 5-httlpr gene mediate storage capacity of visual working memory  

Science Conference Proceedings (OSTI)

Working memory (WM) is a limited capacity system that permeates nearly all levels of cognition, ranging from perceptual awareness to intelligence. Through behavioral, electrophysiological, and neuroimaging work, substantial gains have been made in understanding ...

David E. Anderson; Theodore A. Bell; Edward Awh

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Graphene Enhances Li Storage Capacity of Porous Single-crystalline Silicon Nanowires  

SciTech Connect

We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO{sub 3} etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g{sup -1} that is much higher than the 1256 mAh g{sup -1} of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

Wang, X.; Han, W.

2010-12-01T23:59:59.000Z

302

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

303

Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage  

SciTech Connect

Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

2011-01-01T23:59:59.000Z

304

U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total (Million Cubic Feet) Total (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 5,842,438 5,352,874 5,220,483 5,427,454 5,807,019 6,150,408 6,523,428 6,855,588 7,153,329 7,314,086 7,214,150 6,852,919 1995 6,283,457 5,791,160 5,581,144 5,619,397 5,933,659 6,286,946 6,510,677 6,716,782 7,008,042 7,191,015 6,931,287 6,371,139 1996 5,694,851 5,258,703 4,947,685 5,046,305 5,367,004 5,734,954 6,102,705 6,440,727 6,797,354 6,997,046 6,737,406 6,364,016 1997 5,720,628 5,372,450 5,214,628 5,269,851 5,566,356 5,942,439 6,241,244 6,562,763 6,889,752 7,084,695 6,896,165 6,374,770 1998 5,923,228 5,632,905 5,393,111 5,576,347 5,963,201 6,299,655 6,649,456 6,879,896 7,117,737 7,350,123 7,312,560 6,884,476

305

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

306

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

307

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

308

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

309

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

310

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

311

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

312

U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,864,000 1974 NA NA NA NA NA NA NA NA NA 3,042,000 NA 2,912,000 1975 NA NA NA NA NA NA NA NA 3,085,000 3,107,000 3,150,000 3,162,000 1976 3,169,000 3,173,000 3,170,000 3,184,000 3,190,000 3,208,000 3,220,000 3,251,000 3,296,000 3,302,000 3,305,000 3,323,000 1977 3,293,000 3,283,000 3,286,000 3,286,000 3,293,000 3,300,000 3,317,000 3,346,000 3,364,000 3,373,000 3,403,000 3,391,000 1978 3,374,000 3,373,000 3,374,000 3,377,000 3,379,000 3,381,000 3,386,000 3,403,000 3,411,000 3,444,000 3,425,000 3,473,000

313

U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000 1,215,000 1,427,000 1,731,000 2,030,000 2,348,000 2,599,000 2,824,000 2,929,000 2,821,000 2,475,000 1978 1,819,000 1,310,000 1,123,000 1,231,000 1,491,000 1,836,000 2,164,000 2,501,000 2,813,000 2,958,000 2,927,000 2,547,000

314

Lower 48 States Total Natural Gas in Underground Storage (Base Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,302,792 4,302,341 4,302,108 4,303,570 4,304,364 4,301,779 4,300,139 4,300,269 4,301,291 4,301,737 4,299,727 4,301,752 2012 4,309,129 4,309,505 4,321,454 4,325,195 4,332,383 4,338,100 4,342,905 4,347,859 4,351,797 4,365,049 4,372,359 4,372,412 2013 4,365,146 4,365,297 4,363,812 4,363,259 4,367,088 4,370,387 4,351,118 4,348,089 4,348,899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Underground Base

315

Lower 48 States Total Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,693,215 2,088,293 1,709,624 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

316

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

P.L.Determeyer, Natural gas storage: Historical development2000. Total U.S. Natural Gas Storage Capacity – 1999, U.S.EIA) web page, U.S. natural gas storage, 2001. http://

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

317

New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems  

DOE Green Energy (OSTI)

Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

2006-05-01T23:59:59.000Z

318

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

319

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

320

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

Science Conference Proceedings (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

322

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

323

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

324

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

Science Conference Proceedings (OSTI)

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

2005-12-07T23:59:59.000Z

325

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

326

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

327

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

328

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

329

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

330

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

331

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

332

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

333

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

334

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

335

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

336

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

337

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

338

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network (OSTI)

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

339

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

340

Energy Storage for Use in Load Frequency Control  

E-Print Network (OSTI)

Certain energy storage technologies are well-suited to the high-frequency, high-cycling operation which is required in provision of load frequency control (LFC). To limit the total stored energy capacity required while ...

Leitermann, Olivia

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

342

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

343

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

344

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

between heat storage costs and capacity can be determineda given kWh of heat storage capacity is worth to a typicalequation (22) sets the heat storage capacity to the maximum

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

345

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

346

Natural Gas Aquifers Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1999-2012 Alabama 0 1999-2012 Arkansas 0 1999-2012 California 0 0 1999-2012 Colorado 0 1999-2012 Illinois 876,960 874,384 885,848 772,381 777,294 779,862 1999-2012 Indiana 81,490 81,991 81,328 81,268 81,310 80,746 1999-2012 Iowa 278,238 284,747 284,811 288,010 288,210 288,210 1999-2012 Kansas 0 1999-2012 Kentucky 9,567 9,567 9,567 9,567 9,567 9,567 1999-2012 Louisiana 0 1999-2012 Michigan 0 1999-2012 Minnesota 7,000 7,000 7,000 7,000 7,000 7,000 1999-2012 Mississippi 0 1999-2012 Missouri 32,940 32,876 10,889 11,502 13,845 13,845 1999-2012 Montana 0 1999-2012 New Mexico 0 1999-2012 New York 0 1999-2012 Ohio 0 1999-2012 Oklahoma 170 1999-2012 Oregon 0 1999-2012 Pennsylvania

347

The responses of net primary production (NPP) and total carbon storage for the continental United States to changes in atmospheric CO{sub 2}, climate, and vegetation  

Science Conference Proceedings (OSTI)

We extrapolated 3 biogeochemistry models (BIOME-BGC, CENTURY, and TEM) across the continental US with the vegetation distributions of 3 biogeography models (BIOME2, DOLY, and MAPSS) for contemporary climate at 355 ppmv CO{sub 2} and each of 3 GCM climate scenarios at 710 ppmv. For contemporary conditions, continental NPP ranges from 3132 to 3854 TgC/yr and total carbon storage ranges from 109 to 125 PgC. The responses of NPP range from no response (BIOME-BGC with DOLY or MAPSS vegetations for UKMO climate) to increases of 53% and 56% (TEM with BIOME2 vegetations for GFDL and OSU climates). The responses of total carbon storage vary from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to increases of 52% and 56% (TEM with BIOME2 vegetations for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are caused by both decreased forest area (from 44% to 38%) and photosynthetic water stress. The OSU and GFDL responses of TEM with BIOME2 vegetations are caused by forest expansion (from 46% to 67% for OSU and to 75% for GFDL) and increased nitrogen cycling.

McGuire, D.A. [Marine Biological Lab., Woods Hole, MA (United States)

1995-06-01T23:59:59.000Z

348

Individual working memory capacity is uniquely correlated with feature-based attention when combined with spatial attention  

E-Print Network (OSTI)

of mental storage capacity. 87-114. Zhang, W. , & Luck, S.of working memory capacity. Psychonomic Bulletin & Review,of mental storage capacity. The Behavioral and Brain

Bengson, Jesse J.; Mangun, George R.

2011-01-01T23:59:59.000Z

349

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Doubling combined heat and power capacity in the UnitedCost Savings from Heat Storage Capacity Figure 49. LargeR 2 = 0.6683 Heat Storage Capacity (kWh) Fig. 48 Weekday

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

350

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

351

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

352

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

353

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

354

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

355

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

356

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

357

2012 Storage Report: Progress and Prospects - EAC Recommendations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Worldwide ...20 Figure 6: Energy Storage Capacity (MW), Excluding Traditional Pumped Hydro, Worldwide ....21 Figure...

358

Applications of operation research to the analysis for the impacts of the transmission line capacity limitation on  

E-Print Network (OSTI)

of the wind power generated from wind turbines or released from its storage system out of the total power and the transmission line capacity. If the power supply from wind turbines cannot be transmitted online in real and the total wind power that can be captured by wind turbines at hour t. It is also impacted

359

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

360

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Taner Yildirim 1,2 1 Department of Materials Science and Eng. University of Pennsylvania Philadelphia, PA 19104 2 National Institute of Standards and Technology, NCNR Gaithersburg, MD 20899 Phone: (301) 975-6228 Email: taner@seas.upenn.edu DOE Program Manager: Dr. Thiyaga P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Use neutron scattering methods along with first- * principles computation to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. Study the effect of scaffolding, nanosizing, doping of *

362

Hydrogen Storage in Carbon Nanotubes  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li...

363

Total Working Gas Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

364

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

Science Conference Proceedings (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

365

Renewable Energy Interconnection and Storage - Technical Aspects | Open  

Open Energy Info (EERE)

Renewable Energy Interconnection and Storage - Technical Aspects Renewable Energy Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Interconnection_and_Storage_-_Technical_Aspects&oldid=514543"

366

Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays  

SciTech Connect

We report on the synthesis and electrochemical properties of oriented anatase TiO{sub 2} nanotube (NT) arrays as electrodes for Li-ion batteries. The TiO{sub 2} NT electrodes displayed both pseudocapacitive Li{sup +} storage associated with the NT surface and the Li{sup +} storage within the bulk material. The relative contribution of the pseudocapacitive and bulk storages depends strongly on the scan rate. While the charges are stored primarily in the bulk at low scan rates (<< 1 mV/s), the surface storage dominates the total storage capacity at higher scan rates (>1 mV/s). The storage capacity of the NT electrodes as a function of charge/discharge rates showed no dependence on the NT film thickness, suggesting that the Li{sup +} insertion/extraction processes occur homogeneously across the entire length of NT arrays. These results indicated that the electron conduction along the NT walls and the ion conduction within the electrolyte do not cause significant hindering of the charge/discharge kinetics for NT electrode architectures. As a result of the surface pseudocapacitive storage, the reversible Li{sup +} storage capacities for TiO{sub 2} NT electrodes were higher than the theoretical storage capacity for bulk anatase TiO{sub 2} materials.

Zhu, K.; Wang, Q.; Kim, J. H.; Pesaran, A. A.; Frank, A. J.

2012-06-07T23:59:59.000Z

367

High Capacity High Speed Optical Data Storage System Based on Diffraction-Free Nanobeam. Final Report, 09-02-98 to 03-17-99  

SciTech Connect

Physical Optics Corporation (POC) investigated the development of an optical data storage system built around a current well-engineered high-speed optical disk system with an innovative diffraction-free micro-optical element to produce a beam {approximately}250 nm wide with {approximately}4-5 mm depth of focus, allowing the system to address data at {approximately}100 Mbits/second and to store it 100 to 1,000 times more densely ({approximately}10 Gbit/in.{sup 2}) than in present systems. In Phase 1 of this project POC completed a thorough feasibility study by system design and analysis, successfully demonstrated fabrication of the key components, and conducted a proof-of-principle experimental demonstration. Specifically, production of a subwavelength ({approximately}380 nm) large depth of focus ({approximately}4-5 mm) addressing beam was demonstrated by fabricating a special microdiffractive optical element and recording this beam on a standard optical recording disk coated with a photopolymer material.

Tin Aye

1999-06-16T23:59:59.000Z

368

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

369

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

370

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

371

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

372

First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium (presentation had varying title: Accelerating Development of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations)  

DOE Green Energy (OSTI)

Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts.

Alapati, S.; Johnson, J.K.; Sholl, D.S.; Dai, B. (Univ. of Pittsburgh, Pittsburgh, PA)--last author not shown on publication, only presentation

2007-10-31T23:59:59.000Z

373

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

Science Conference Proceedings (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

374

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

375

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

376

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

377

Hydrogen Storage Properties of a Nanostructured Palladium Alloy ...  

Science Conference Proceedings (OSTI)

Additionally, results on hydrogen storage capacity and hydrogen absorption kinetics will ... Birnessite MnO2 Nanoflakes for Efficient Energy Storage at Elevated ...

378

Southern company energy storage study : a study for the DOE energy storage systems program.  

Science Conference Proceedings (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

379

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

380

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural gas storage - end user interaction. Final report, September 1992--May 1996  

Science Conference Proceedings (OSTI)

The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

NONE

1998-12-31T23:59:59.000Z

382

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

383

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

384

Natural Gas Salt Caverns Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

385

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

386

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

387

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

388

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

389

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

390

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

391

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

392

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

393

Natural Gas Salt Caverns Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 253,410 341,213 397,560 456,009 512,279 715,821 1999-2012 Alabama 8,300 15,900 15,900 21,900 21,900 21,900 1999-2012 Arkansas 0 1999-2012 California 0 1999-2012 Colorado 0 1999-2012 Illinois 0 1999-2012 Indiana 0 1999-2012 Kansas 931 931 931 931 931 931 1999-2012 Kentucky 0 1999-2012 Louisiana 61,660 88,806 123,341 142,253 161,668 297,020 1999-2012 Maryland 0 1999-2012 Michigan 3,851 3,827 3,821 3,834 3,834 3,834 1999-2012 Mississippi 45,383 62,424 62,301 82,411 90,452 139,627 1999-2012 Montana 0 1999-2012 Nebraska 0 1999-2012 New Mexico 0 1999-2012 New York 2,340 2,340 2,340 2,340 2,340 0 1999-2012 Ohio 0 1999-2012 Oklahoma 0 1999-2012 Oregon 0 1999-2012 Pennsylvania 0 1999-2012 Tennessee 0 1999-2012 Texas 124,686 160,786 182,725 196,140 224,955 246,310 1999-2012

394

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

395

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

396

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

397

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

398

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

399

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

400

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

402

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

403

Utah Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

129,480 129,480 129,480 129,480 129,480 124,465 1988-2011 Salt Caverns 0 1999-2011 Aquifers 11,980 11,980 11,980 11,980 11,980 4,265 1999-2011 Depleted Fields 117,500 117,500...

404

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Area: Period: Download ... 51: 1999-2011-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data ...

405

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern...

406

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

407

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

408

California Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

484,711 487,711 498,705 513,005 542,511 570,511 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 0 1999-2011 Depleted Fields 484,711 487,711 498,705 513,005 542,511 570,511 1999-2011...

409

California Natural Gas Underground Storage Capacity (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 459,673 466,818 1990's 291,678 467,678 472,108 472,108 472,108 472,908 469,695 396,430 388,370...

410

California Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 388,480 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 475,720 474,920 474,920 2003 474,920 474,920...

411

Ohio Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

572,477 572,477 572,477 580,380 580,380 580,380 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 572,477 572,477 572,477 580,380 580,380 580,380 1999-2011...

412

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

413

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

414

Pennsylvania Natural Gas Underground Storage Capacity (Million ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 805,394: 805,393: 1990's: 640,938: 640,938: 669,354: 664,693: 658,578: 654,570 ...

415

Natural Gas Depleted Fields Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

416

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

417

Mississippi Natural Gas Underground Storage Capacity (Million ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2002: 134,012: 134,012: 134,012: 134,012: 134,012: 134,012: 141,912: 141,912: 141,912: 141,912: 144,787: 144,787 ...

418

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

419

Mississippi Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

150,809 166,909 187,251 210,128 235,638 240,241 1988-2011 Salt Caverns 45,383 45,383 62,424 62,301 82,411 90,452 1999-2011 Aquifers 0 1999-2011 Depleted Fields 105,427 121,527...

420

Oklahoma Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

380,038 373,738 371,324 371,338 371,338 372,838 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 380,038 373,738 371,324 371,338 371,338 372,838 1999-2011...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Virginia Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

9,692 9,560 6,200 9,500 9,500 9,500 1998-2011 Salt Caverns 6,275 6,260 6,200 6,200 6,200 6,200 1999-2011 Aquifers 0 1999-2011 Depleted Fields 3,417 3,300 3,300 3,300 3,300...

422

Texas Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

690,061 690,678 740,477 766,768 783,579 812,394 1988-2011 Salt Caverns 126,026 124,686 160,786 182,725 196,140 224,955 1999-2011 Aquifers 0 1999-2011 Depleted Fields 564,035...

423

New York Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

213,225 229,013 228,613 245,579 245,579 245,579 1988-2011 Salt Caverns 2,340 2,340 2,340 2,340 2,340 2,340 1999-2011 Aquifers 0 1999-2011 Depleted Fields 210,885 226,673 226,273...

424

Alaska Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Feb-13 Mar-13 Apr-13 May-13 Jun-13...

425

Indiana Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

114,294 114,294 114,937 114,274 111,271 111,313 1988-2011 Salt Caverns 0 1999-2011 Aquifers 81,490 81,490 81,991 81,328 81,268 81,310 1999-2011 Depleted Fields 32,804 32,804 32,946...

426

Pennsylvania Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

750,054 759,365 759,153 776,964 776,822 776,845 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 750,054 759,365 759,153 776,964 776,822 776,845 1999-2011...

427

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

428

Louisiana Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

599,165 588,711 615,858 651,968 670,880 690,295 1988-2011 Salt Caverns 68,739 61,660 88,806 123,341 142,253 161,668 1999-2011 Aquifers 0 1999-2011 Depleted Fields 530,426 527,051...

429

Kentucky Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

18,394 220,359 220,359 220,368 221,751 221,751 1988-2011 Salt Caverns 0 1999-2011 Aquifers 9,567 9,567 9,567 9,567 9,567 9,567 1999-2011 Depleted Fields 208,827 210,792 210,792...

430

Kansas Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

288,383 288,926 282,221 282,300 284,821 284,731 1988-2011 Salt Caverns 1,088 931 931 931 931 931 1999-2011 Aquifers 0 1999-2011 Depleted Fields 287,295 287,996 281,291 281,370...

431

Montana Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

74,201 374,201 374,201 376,301 376,301 376,301 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 374,201 374,201 374,201 376,301 376,301 376,301 1999-2011...

432

Alabama Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

19,300 19,300 26,900 26,900 32,900 35,400 1995-2011 Salt Caverns 8,300 8,300 15,900 15,900 21,900 21,900 1999-2011 Aquifers 0 1999-2011 Depleted Fields 11,000 11,000 11,000 11,000...

433

Wyoming Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

114,096 114,067 111,167 111,120 111,120 106,764 1988-2011 Salt Caverns 0 1999-2011 Aquifers 10,000 10,000 10,000 10,000 10,000 6,733 1999-2011 Depleted Fields 104,096 104,067...

434

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

435

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

436

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

437

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

438

Michigan Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,031,290 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1988-2011 Salt Caverns 3,838 3,851 3,827 3,821 3,834 3,834 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,027,452...

439

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

440

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

442

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

443

Pumped storage provides grid reliability even with net generation ...  

U.S. Energy Information Administration (EIA)

tags: electricity generation capacity hydroelectric storage. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

444

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network (OSTI)

first used to represent short-run bidding and production games among power ...... capacity is dispatchable thermal plant and there is no significant storage (e.g.,.

445

High Capacity Lithium-Ion Battery Characterization for Vehicular Applications.  

E-Print Network (OSTI)

?? A lithium-ion battery is one of the key research topics in energy storage technologies. Major characterization tests such as static capacity, open circuit voltage… (more)

Ahmed, Sazzad Hossain

2012-01-01T23:59:59.000Z

446

1992 Annual Capacity Report. Revision 1  

SciTech Connect

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

447

PCM energy storage during defective thermal cycling.  

E-Print Network (OSTI)

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

448

Designing Nanostructured Hybrid Materials for Energy Storage ...  

Science Conference Proceedings (OSTI)

The resulting devices fabricated with low-cost materials through the scalable ... which can offer >5 times higher charge storage capacity than current technology.

449

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest ...

450

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

451

Forecourt Storage and Compression Options  

E-Print Network (OSTI)

pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology

452

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

453

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

454

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

455

Modeling Basin-and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment  

E-Print Network (OSTI)

, Lawrence Berkeley National Laboratory, University of California, MS 90- 1116, One Cyclotron Rd., Berkeley of Illinois, southwestern Indiana, and western Kentucky (Figure 1). The estimated total storage capacity Iowa Missouri Kentucky Illinois CincinnatiArch Kankakee Arch MississippiRiverArch Wisconsin Arch O zark

Zhou, Quanlin

456

An Experimental Study on the Longterm Stability of Particle Motion in Hadron Storage Rings  

E-Print Network (OSTI)

technologies (inching optical laser storage, super computers, multiprocessing computer arrays) were explored ............................................176 Storage Capacity: 2 Terabits Online ..........................176 Brief Inventory of Major

457

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

458

Table 40. Refiners' Total Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Table 40. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2005 Companies with Capacity Over 100,000 bbl/cd

459

Table 5. Refiners' Total Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2006 Companies with Capacity Over 100,000 bbl/cd

460

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Capture and Storage in Southern Africa | Open Energy Information  

Open Energy Info (EERE)

Southern Africa Southern Africa Jump to: navigation, search Name Carbon Capture and Storage in Southern Africa: An assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia Agency/Company /Organization Energy Research Centre of the Netherlands Topics Background analysis, Technology characterizations Resource Type Publications Website http://www.ecn.nl/docs/library Country Mozambique, Namibia, Botswana Eastern Africa, Southern Africa, Southern Africa References CCS in Southern Africa[1] Abstract "In April 2010, a series of workshops on CO2 capture and storage were held in Botswana, Mozambique and Namibia, attended by a total of about 100 participants. The objectives of the workshops were to provide a thorough

462

The control of ice storage systems  

SciTech Connect

The tradeoffs between chiller and tank capacity for different load profiles and two storage strategies are evaluated in this article. Air-conditioning systems that employ ice storage incorporate equipment that produces ice during one period and melts it in another period to provide cooling for the building. In designing such systems, there are two basic strategies to consider: full-load and partial-load. In a full-load strategy, the entire daytime cooling energy is met using only cooling supplied by the ice storage tank. In a partial-load strategy, the chiller and the storage are used simultaneously to meet the load. With a full-load strategy, the tank capacity must be sufficient to meet the entire energy requirement, and the chiller capacity must be sufficient to recharge the tank during the night-time. In a partial-load strategy, a smaller chiller and tank than that for a full-load strategy are required, and there are many combinations of the two that will meet a given building load. The design and sizing of the components of an ice storage system depend not only on the desired strategy and total daily cooling energy but also on other factors. The maximum load dictates the amount of cooling required at any time. The cooling rate provided by an ice filled tank is not constant, but decreases as the ice inventory drops, and the time that the maximum load occurs is important. Thus, there is an interaction between the building load profile and tank size. In addition, the flow rate of the circulating fluid through the tank and the cooling coil may limit the supply air temperatures that may be reached. Thus, the circulating fluid flow rate must be sufficient to provide the desired rates of cooling to the building. The challenge to the design engineer is to size the components to meet the building load at all times at the lowest system cost. Effective designs must acknowledge the dynamic performance of the ice storage system.

Carey, C.W. [Amana Corp., IA (United States); Mitchell, J.W.; Beckman, W.A. [Univ. of Wisconsin, Madison, WI (United States)

1995-05-01T23:59:59.000Z

463

Third Generation Flywheels for electric storage  

Science Conference Proceedings (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

464

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

465

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

466

Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage  

DOE Green Energy (OSTI)

A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

1980-01-01T23:59:59.000Z

467

NEDO Research Related to Battery Storage Applications for Integration of  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook.

468

Capsule: an energy-optimized object storage system for memory-constrained sensor devices  

E-Print Network (OSTI)

Recent gains in energy-efficiency of new-generation NAND flash storage have strengthened the case for in-network storage by data-centric sensor network applications. This paper argues that a simple file system abstraction is inadequate for realizing the full benefits of high-capacity low-power NAND flash storage in data-centric applications. Instead we advocate a rich object storage abstraction to support flexible use of the storage system for a variety of application needs and one that is specifically optimized for memory and energy-constrained sensor platforms. We propose Capsule, an energy-optimized log-structured object storage system for flash memories that enables sensor applications to exploit storage resources in a multitude of ways. Capsule employs a hardware abstraction layer that hides the vagaries of flash memories for the application and supports energy-optimized implementations of commonly used storage objects such as streams, files, arrays, queues and lists. Further, Capsule supports checkpointing and rollback of object states to tolerate software faults in sensor applications running on inexpensive, unreliable hardware. Our experiments demonstrate that Capsule provides platform-independence, greater functionality, more tunability, and greater energy-efficiency than existing sensor storage solutions, while operating even within the memory constraints of the Mica2 Mote. Our experiments not only demonstrate the energy and memory-efficiency of I/O operations in Capsule but also shows that Capsule consumes less than 15% of the total energy cost in a typical sensor application.

Gaurav Mathur; Peter Desnoyers; Deepak Ganesan; Prashant Shenoy

2006-01-01T23:59:59.000Z

469

Improved accounting of emissions from utility energy storage system operation  

Science Conference Proceedings (OSTI)

Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

Paul Denholm; Tracey Holloway [University of Wisconsin-Madison, Madison, WI (United States)

2005-12-01T23:59:59.000Z

470

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

471

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

472

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

473

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

474

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of ...

475

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

P.L.Determeyer, Natural gas storage: Historical developmentNatural Resources Canada, Natural Gas Storage: A CanadianU.S. underground natural gas storage working-gas capacity

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

476

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

477

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting 'green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policy is the same as the throughput optimal policy. We also obtain the capacity for the system with energy inefficiencies in storage and an achievable rate when energy conserving sleep-wake modes are supported.

Rajesh, R

2010-01-01T23:59:59.000Z

478

Use of Hybrid Nanoparticles to Enhance Thermal Energy Storage ...  

Science Conference Proceedings (OSTI)

Presentation Title, Use of Hybrid Nanoparticles to Enhance Thermal Energy Storage Capacity for Concentrated Solar Power. Author(s), Dileep Singh, Sreeram ...

479

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

480

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "total storage capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New Mexico Natural Gas Number of Underground Storage Acquifers...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

482

Hydrogen Storage in Metal-Organic Frameworks  

DOE Green Energy (OSTI)

Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

Omar M. Yaghi

2012-04-26T23:59:59.000Z

483

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

484

Table 5. Refiners' Total Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2011 Calendar Day

485

Table 5. Refiners' Total Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2009 Calendar Day

486

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

487

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

488

Microsoft Word - Geologic Storage - Table.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

of Factors Influencing Effective CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Advanced Resources International, Inc. VA08 Development and Test of a 1,000-Level 3C...

489

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

490

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

491

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

492

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

493

Case Study on Thermal Energy Storage: Gemasolar  

Science Conference Proceedings (OSTI)

The 19.9-MW Gemasolar plant is the first commercial concentrating-solar thermal power plant to use a central receiver tower and a two-tank molten-salt thermal energy storage system. The initial plant operation has demonstrated the feasibility of the technology to operate under commercial conditions at utility scale and verified continuous 24-hour operation. The storage capacity makes the plant output dispatchable and improves the plant’s capacity factor and profitability. This white paper ...

2012-10-23T23:59:59.000Z

494

Transient thermal analysis of three fast-charging latent heat storage configurations for a space-based power system  

DOE Green Energy (OSTI)

A space-based thermal storage application must accept large quantities of heat in a short period of time at an elevated temperature. A model of a lithium hydride phase change energy storage system was used to estimate reasonable physical dimensions for this application which included the use of a liquid metal heat transfer fluid. A finite difference computer code was developed and used to evaluate three methods of enhancing heat transfer in the PCM energy storage system. None of these three methods, inserting thin fins, reticulated nickel, or liquid lithium, significantly improved the system performance. The use of a 95% void fraction reticulated nickel insert was found to increase the storage capacity (total energy stored) of the system slightly with only a small decrease in the system energy density (energy storage/system mass). The addition of 10% liquid lithium was found to cause minor increases in both storage density and storage capacity with the added benefit of reducing the hydrogen pressure of the lithium hydride. 9 refs., 7 figs., 2 tabs.

Stovall, T.K.; Arimilli, R.V.

1988-01-01T23:59:59.000Z

495

Adaptive Online Battery Parameters/SOC/Capacity Co-estimation  

E-Print Network (OSTI)

Adaptive Online Battery Parameters/SOC/Capacity Co-estimation Habiballah Rahimi-Eichi and Mo parameters to characterize the performance and application of a battery. Although the nominal capacity and even storage ageing of the battery. Following our previous publications in which we developed an online

Chow, Mo-Yuen

496

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

497

Integrated Used Nuclear Fuel Storage, Transportation, and ...  

Researchers at ORNL have developed an integrated system that reduces the total life-cycle cost of used fuel storage while improving overall safety. This multicanister ...

498

Big storage facilities eyed in Texas, Louisiana  

SciTech Connect

Two large oil natural gas storage facilities are planned in U.S. Gulf Coast states. This paper reports that two Houston companies propose to construct a storage facility in Louisiana with more than 50 bcf of working gas capacity. And units of ARCO and Plains Resources have signed a letter of intent expected to lead to construction of a 600,000 bbl crude oil storage facility on the Houston ship channel.

Not Available

1992-03-09T23:59:59.000Z

499

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

500

Boosting CSP Production with Thermal Energy Storage  

Science Conference Proceedings (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z