Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

2

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

3

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

4

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

5

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

6

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

7

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

8

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

9

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

10

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

11

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

12

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

13

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

14

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

15

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

16

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

17

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

18

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

19

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

20

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

22

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

23

Steam Turbine Materials and Corrosion  

Science Conference Proceedings (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

24

Steam Turbine Materials and Corrosion  

E-Print Network (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60 % efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Gordon R. Holcomb; Derek Hsu

2007-01-01T23:59:59.000Z

25

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

26

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

27

IMPROVEMENTS IN AND RELATING TO STEAM CONDENSER INSTALLATIONS FOR STEAM TURBINE POWER PLANT  

SciTech Connect

A steam condenser arrangement for turbine power plants which have excess steam at times is described. A dump condenser with cooling water connections in parallel with steam turbine condensers receives surplus steam. Cooling water from the turbine condensers is mixed with coolant from the dump condenser so that a predetermined maximum temperature is not exceeded. The quantity of cooling water passing through the dump condenser is a proportion of the total circulating water requirements of the condenser installation, and the pressure drop across it is less than that across the main condensers. (T.R.H.)

1960-05-18T23:59:59.000Z

28

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

29

Major Corrosion Problems in Steam Turbines  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

30

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

31

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

32

Designing an ultrasupercritical steam turbine  

Science Conference Proceedings (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

33

The economics of repowering steam turbines  

SciTech Connect

Repowering is defined as displacing steam presently generated in an existing fossil fuel fired boiler with a gas turbine-heat recovery steam generator (HRSG) system. The steam generated in the HRSG is expanded in the existing steam turbine generator. Repowering advantages include a significant increase in power output at an improved heat rate relative to the base value for the existing steam turbine cycle being repowered. In addition, the reduction in emissions can be advantageous in most locations. This paper discusses application and economic considerations associated with repowering. In addition, an illustration will show how repowering coal fired steam turbine systems may prove economic relative to retrofit scrubbers and/or low sulfur coal fuel substitution that may be part of the forthcoming acid rain legislation.

Kovacik, J.M.; Stoll, H.G. (General Electric Co., Schenectady, NY (United States))

1990-01-01T23:59:59.000Z

34

Steam Turbine Electronic Overspeed Protection System  

Science Conference Proceedings (OSTI)

BackgroundThe risk of turbine-generator destructive overspeed can be mitigated by employing protection systems that act to rapidly isolate the steam supply in the event of separation from the grid. These systems are the final line of defense against overspeed, and they are deployed separately from the systems used to control turbine load and speed during synchronized operation. Most steam turbines in operation today were commissioned with a mechanical trip device that ...

2013-12-23T23:59:59.000Z

35

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

36

Steam Turbine Hydraulic Control system Maintenance Guide  

Science Conference Proceedings (OSTI)

Steam turbine hydraulic control system maintenance problems have been a significant factor in plant power reductions, shutdowns, and lost generation. This guide provides recommendations to improve the reliability of the hydraulic components and fluid.

1996-12-31T23:59:59.000Z

37

Remote NDE Technology for Steam Turbines  

Science Conference Proceedings (OSTI)

Remote nondestructive evaluation technology (NDE) for steam turbines has potential for use as an alternative to inspections requiring extensive machine disassembly and for use during short-term outages, to provide an interim look at machine operability.

2002-11-21T23:59:59.000Z

38

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

39

Corrosion of Low Pressure Steam Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). The development of an effective localized corrosion damage prediction technology is essential for the successful avoidance of unscheduled outages of steam

2000-11-28T23:59:59.000Z

40

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

42

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

43

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

44

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

45

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

46

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

47

Steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

48

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

49

A small pelton turbine for steam turbocharger  

SciTech Connect

The use of exhaust gas turbocharger for internal combustion engines is usually accompanied by mechanical loss. This loss is due to the raise of exhaust gas back pressure with the increase of engine speed. This back pressure prevents the discharge of the exhaust gas from the engine and causes mechanical loss. To avoid this undesirable phenomenon, a Clausius-Rankine cycle is used. In this case the thermal energy in the exhaust gas is used to vaporise water in a steam generator. The generated steam expands in a steam turbocharger which supercharges the engine. A small Pelton steam turbine has been designed and fabricated. The expected output for this small turbine is 10 kW. A computer program has been prepared to estimate the values of optimum cycle parameters.

Rautenberg, M.; Abdelkader, M.; Malobabic, M.; Mobarak, A.

1984-08-01T23:59:59.000Z

50

Steam turbine upgrading: low-hanging fruit  

Science Conference Proceedings (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

51

Turbine Steam Path Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-18T23:59:59.000Z

52

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

53

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

54

Proceedings: Steam Turbine Stress Corrosion Workshop  

Science Conference Proceedings (OSTI)

A recent survey of utilities commissioned by EPRI indicated that cracking of steam turbine disk rims by stress corrosion was a pervasive problem in both fossil and nuclear power plants. There is a clear need to document industry experience in this area so that guidelines can be provided to utilities on managing the problem.

1997-11-03T23:59:59.000Z

55

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

56

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

57

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbine cogeneration is a well established technology which is widely used in industry. However, smaller previously unfeasible applications can now be cost effective due to the packaged system approach which has become available in recent years. The availability of this equipment in a packaged system form makes it feasible to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per kW of capacity. Simple system paybacks between one and three years are common.

Ewing, T. S.; Di Tullio, L. B.

1991-06-01T23:59:59.000Z

58

Oxidation of alloys for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

2005-01-01T23:59:59.000Z

59

International Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report reviews the state of the art in materials usage for steam turbine valves manufactured and used in Europe and looks at materials options for the higher-temperature applications now being considered for advanced high-efficiency power plants. The emphasis is on valves for extreme service conditions (high temperatures, pressures, and flow rates), of which bypass valves represent a good example. Some consideration is also given to degradation and failure mechanisms. In focusing on practices outsid...

2011-09-27T23:59:59.000Z

60

Overspeed protection method for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes a method for achieving overspeed protection in a combined cycle gas and steam turbine power plant. It comprises solidly coupling together to rotate at all times as a single rotor unit, including during sudden loss of load occurrences, the rotating members of a gas turbine with its associated combustor and air compressor, a high pressure steam turbine at least one lower pressure stream turbine and an electrical generator; transferring heat from the gas turbine exhaust to steam exhausted from the high pressure steam turbine in a steam reheater before it is input to the at least one lower pressure steam turbine; connecting an output of the steam reheater with an input of the lower pressure steam turbine via a valveless steam conduit; and using a single overspeed control to detect a sudden loss of load occurrence and, in response, simultaneously reducing steam input to the high pressure steam turbine and reducing fuel input to the gas turbine combustor while permitting residual reheater output to continue to expand freely through the at least one lower pressure steam turbine.

Moore, J.H.

1991-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

62

Cam-driven valve system for steam turbines  

SciTech Connect

This patent describes, in a steam turbine system including a source of motive steam and a turbine adapted to operate at less than a full load, the turbine including an improved cam-driven valve system for activating a varying number of steam control valves to permit transferring between a maximum arc-admission mode and a minimum arc-admission mode. It comprises: a steam chest for receiving the motive steam from the source, the steam chest including a plurality of valves connected to a corresponding turbine section and set for a minimum admission of motive steam into the turbine below 100 percent; a first cam lift means for actuating a portion of the valves and second cam lift means for actuating the remainder of the valves.

Silvestri, G.J. Jr.

1990-02-27T23:59:59.000Z

63

System and method for individually testing valves in a steam turbine trip control system  

SciTech Connect

This patent describes a steam turbine power plant. It comprises: a steam generator; a steam turbine adapted to receive steam form the steam generator; a throttle valve for regulating the flow of the steam received by the steam turbine; and an electro-hydraulic trip control system for causing the throttle valve to close when a predetermined condition has been reached.

Hurley, J.D.

1992-07-28T23:59:59.000Z

64

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

65

Apparatus and methods of reheating gas turbine cooling steam ...  

... cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG.

66

Materials Selection for Steam Turbine Components in Advanced ...  

Science Conference Proceedings (OSTI)

Presentation Title, Materials Selection for Steam Turbine Components in Advanced ... Co-Production of Pure Hydrogen and Electricity from Coal Syngas via the ...

67

U.S. Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the metallurgical aspects of the steam turbine valve components used in U.S. power plants.

2009-03-30T23:59:59.000Z

68

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

69

Superalloys for ultra supercritical steam turbines--oxidation behavior  

Science Conference Proceedings (OSTI)

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

70

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

71

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

72

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

73

State-of-the-art gas turbine and steam turbine power plant  

SciTech Connect

A state-of-the-art power plant in which the heat from solid or low quality fuels is utilized to heat indirectly a motive stream composition of a mixture of steam and gases to drive a gas turbine. The thermal energy from the burning of the solid or low quality fuels is also utilized to generate steam which powers a steam turbine. Excess steam may be generated to be utilized as process steam.

Willyoung, D. M.; Anand, A. K.

1985-03-12T23:59:59.000Z

74

Reconstruction of steam turbine blade twisted based on NURBS surface  

Science Conference Proceedings (OSTI)

NURBS (Non-Uniform Rational B-Spline) is the most popular mathematical descriptor for surface modeling. To construct steam turbine blade efficiently and accurately, 2´3 NURBS was obtained to fitted blade surface as its cross-section is different tangent ... Keywords: steam turbine blade, surface modeling, NURBS surfac, reconstruction

Yue Ying; Wang Zhangqi; Han Qingyao

2010-06-01T23:59:59.000Z

75

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

76

Adaptive temperature control system for the supply of steam to a steam turbine  

SciTech Connect

A combined-cycle steam turbine power generating plant is described including a heat recovery steam generator for outputting steam at an instantaneous temperature and pressure, and a steam turbine having rotor expanding steam therethrough from the steam generator; means providing a signal representative of the temperature of the rotor of the turbine; and means for controlling the generation of steam by the steam generator to control the temperature of steam in accordance with a predetermined temperature gradient, the combination of: function generator means responsive to a signal representative of steam turbine throttle pressure for providing a throttle pressure related steam limit temperature according to a constant enthalpy characteristic; bias means responsive to the rotor temperature representative signal for providing a bias signal in excess of the rotor temperature signal by a predetermined amount; means responsive to the larger of the limit temperature signal and the bias signal for controlling the generation of steam by the steam generator to control the temperature of steam to iteratively raise the temperature of the rotor in accordance with the constant enthalpy characteristic and the bias signal during soaking.

Martens, A.; Myers, G.A.

1986-05-20T23:59:59.000Z

77

Dongfang Steam Turbine Works DFSTW | Open Energy Information  

Open Energy Info (EERE)

Dongfang Steam Turbine Works DFSTW Dongfang Steam Turbine Works DFSTW Jump to: navigation, search Name Dongfang Steam Turbine Works (DFSTW) Place Deyang, Sichuan Province, China Zip 618000 Sector Wind energy Product Manufacturer of several kinds of steam turbines and accessory equipment. Manufactures wind turbines under licence from REpower. Coordinates 31.147209°, 104.375023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.147209,"lon":104.375023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Apparatus and method for controlling steam turbine operating conditions during starting and loading  

SciTech Connect

A steam turbine-generator system is described which consists of: a high-pressure steam turbine; a reheat turbine; a boiler including means for heating stem for delivery to the high-pressure steam turbine and a boiler reheat portion for reheating an exhaust steam from the high-pressure steam turbine for delivery to the reheat turbine; main valve means for admitting steam from the boiler to the high-pressure steam turbine; an intercept control valve for admitting steam from the boiler reheat portion to the reheat turbine; means for maintaining at least a selectable predetermined pressure in the boiler reheat portion; a reheater bypass assembly connected between a high-pressure turbine exhaust line of the high-pressure steam turbine and a reheat turbine inlet line of the reheat turbine, the reheater bypass assembly bypassing the reheat portion and the intercept control valve; a check valve in the high-pressure turbine exhaust line downstream of the reheater bypass assembly; and the check valve including means for preventing a flow of steam from the high-pressure turbine exhaust line to the reheat portion while an exhaust pressure of steam from the high-pressure steam turbine is less than the selectable predetermined pressure, whereby exhaust steam from the high pressure steam turbine passes through the reheater bypass assembly directly to the reheat turbine without passing through and reheat portion during at least a portion of a startup cycle.

Dimitroff, V.T. Jr.; Wagner, J.B.

1986-07-08T23:59:59.000Z

79

Steam Turbine Casing and Valve Body Repair Guidelines  

Science Conference Proceedings (OSTI)

Today’s flexible mode of operation can result in damage to heavy-section components, such as steam turbine and valve casings. Thus, owners and operators are often faced with repairing a critical component. This report is part of a set of documents that address the key areas in the asset management of steam turbine casings and valve bodies—nondestructive evaluation and damage detection, repair, and life ...

2013-12-14T23:59:59.000Z

80

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Architecting a plug-in based steam turbine design tool  

Science Conference Proceedings (OSTI)

At a leading manufacturer of equipment for power generation, the engineers currently design a steam turbine, a key component of a power plant, using a large number of disjoint legacy tools written mostly in Fortran; These tools encapsulate significant ... Keywords: dynamic graph, eclipse rcp, osgi, turbine engineering

Stefanos Zachariadis; Tim Cianchi

2011-05-01T23:59:59.000Z

82

Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud  

SciTech Connect

A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

2002-01-01T23:59:59.000Z

83

Steam Turbines for Critical Applications and Emergency or Standby Drives  

E-Print Network (OSTI)

Steam turbines are frequently preferred over electric motors where operational continuity is important. This often imposes extreme premiums in operating cost. The parameters affecting relative economics are explored and a range of alternatives are discussed. Some light is shed on the often controversial (and even emotional) topics of automatic quick-start turbine drives, “slow” rolling of standby turbines, and the use of other types of emergency drives.

Waterland, A. F.

1986-06-01T23:59:59.000Z

84

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

85

Steam Turbine Blade Failure Root Cause Analysis Guide  

Science Conference Proceedings (OSTI)

Steam Turbine Blade Failure Root Cause Analysis Guide is a concise reference written for operators to plan and conduct an investigation into the most probable causes of a steam turbine blade (bucket) failure. The report provides both an overview and step-by-step approach to identifying the damage mechanisms most common to turbine blade failures. It proceeds to show how damage mechanisms are related to the operating history prior to the blades failure and how they are evaluated to establish their role as ...

2008-03-31T23:59:59.000Z

86

Compatibility of gas turbine materials with steam cooling  

DOE Green Energy (OSTI)

Objective is to investigate performance of gas turbine materials in steam environment and evaluate remedial measures for alleviating the severity of the problem. Three superalloys commonly used in gas turbines were exposed to 3 steam environments containing different impurity levels for 2 to 6 months. Results: Cr2O3-forming alloys containing 1-4% Al such as IN 738 are susceptible to heavy internal oxidation of Al. High Al (>5%) alloys in which continuous Al2O3 scale can be formed, may not be susceptible to such attack. Deposition of salts from steam will accentuate hot corrosion problems. Alloys with higher Cr content such as X-45 are generally less prone to hot corrosion. The greater damage observed in IN 617 make this alloy less attractive for gas turbines with steam cooling. Electrochemical impedance spectroscopy is a good nondestructive method to evaluate microstructural damage.

Desai, V.; Tamboli, D.; Patel, Y. [University of Central Florida, Orlando, FL (United States). Dept. of Mechanical and Aerospace Engineering

1995-12-31T23:59:59.000Z

87

Solid particle magnetic deflection system for protection of steam turbine plants  

SciTech Connect

A method for removing metallic particles from a flow of steam supplied by a steam generator through a supply path to a steam turbine, the metallic particles being entrained in the flow of steam and, at least in part, having defoliated from boiler pipes of the steam generator is described comprising: defining an axial section of a predetermined axial direction, circumferential configuration and length, in the steam flow path from the steam generator to the steam turbine; producing a magnetic field in the defined section of the steam flow path; and trapping and collecting the deflected metallic particles, thereby to remove same from the flow of steam supplied to the turbine.

Viscovich, P.W.

1988-02-23T23:59:59.000Z

88

Control system for single shaft combined cycle gas and steam turbine unit  

SciTech Connect

This patent describes a method for starting and controlling a combined cycle turbine of the type having a gas turbine with a fuel flow control valve and a steam turbine with at least one steam control valve both disposed on a single shaft and having a heat recovery steam generator heated by the gas turbine and connected to supply steam to the steam control valve, the combined cycle turbine having a unified control system and driving a load, and also having an auxiliary steam source connected to the steam control valve. It comprises controlling of steam from the auxiliary steam source with the steam control valve to crank the combined cycle turbine for starting, initiating and controlling fuel flow to the gas turbine with the fuel flow control valve and initiating combustion, controlling initial acceleration of the combined cycle turbine with the steam control valve on auxiliary steam, coordinating control of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine to the fuel flow control valve and gradually reducing the opening of the steam control valve to a minimum value when the turbine reaches rated speed.

Moore, J.H.; Kure-Jensen, J.; Rowen, W.I.

1991-08-27T23:59:59.000Z

89

Centrifugal exhauster driven by steam turbine achieves 55% energy savings  

SciTech Connect

A steam turbine/centrifugal exhauster system is being used in a felt dewatering operation in a Michigan pulp and papermill at a hp energy savings of 55%. The system operates at 170 bhp, replacing 375 hp used for conventional liquid ring vacuum pumps. The steam turbine utilizes 450 psig steam into the turbine with a 50 psig back pressure on the discharge side. The mill has also installed an additional felt dewatering box that was never employed before the exhauster system was installed. Since operation first began, the mill reports equal or improved dewatering compared to the previous liquid ring system. The hot air discharge is utilized to heat the machine room wet end area, replacing some space heater requirements.

Bonady, F.M.

1984-05-01T23:59:59.000Z

90

Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine  

SciTech Connect

The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

91

Steam as turbine blade coolant: Experimental data generation  

DOE Green Energy (OSTI)

Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

92

Infrared Probe for Application to Steam Turbine Blade Vibration Detection  

Science Conference Proceedings (OSTI)

Technology for non-contacting steam turbine blade tip vibration measurement has advanced to the point of being a viable tool for risk management in situations where turbine blade high-cycle vibration occurs as a result of operating parameters or blade condition. This report describes the development and prototype testing of a new type of blade tip time-of-arrival sensing system for use with commercial signal processing systems.

2004-12-16T23:59:59.000Z

93

Introduction to Nuclear Plant Steam Turbine Control Systems  

Science Conference Proceedings (OSTI)

Since Nuclear Power Plants produce their power through the use of Steam Turbine Generators, any problems associated with the Turbine Control System has a direct effect on power generation. Although considerable effort has been expended in improving control system reliability, failures resulting in lost generation and high maintenance cost still plague the industry. On an individual basis, improvements have been made through maintenance techniques, modifications and upgrades. Unfortunately, this informati...

1995-03-02T23:59:59.000Z

94

Steam Turbine Valve Actuator Condition Assessment: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators. It covers the actuators that are typically found on the turbines of the two major U.S. original equipment manufacturers (OEMs), as well as those of several non-U.S. OEMs. The scope encompasses both mechanical hydraulic control (MHC) and electronic hydraulic control (EHC) types of hydraulic ...

2013-07-25T23:59:59.000Z

95

On H8Robust Control for Hydraulic Servo System of Steam Turbine  

Science Conference Proceedings (OSTI)

Digital Electrical Hydraulic Servo System (DEH )of steam turbine has perfect performance, but it is difficult to format mathematical model accurately. Due to complexity of steam turbine and hydraulic servo system and the complex factors of applying field, ... Keywords: component, Steam turbine, hydraulic Servo System, H8 Robust control, hybrid Sensitiveness, disturbance

Lian-yu Chen

2010-06-01T23:59:59.000Z

96

Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater  

SciTech Connect

An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

Luongo, M.C.

1975-08-12T23:59:59.000Z

97

Steam Turbine Rotor Life Assessment: Volumes 1-5  

Science Conference Proceedings (OSTI)

To assess the integrity and residual life of an in-service steam turbine rotor, utilities need to know the rotor's current creep and/or fatigue damage. This series of reports presents procedures for non-destructively estimating this damage using hardness, replication, and X-ray based approaches.

1994-05-21T23:59:59.000Z

98

Automatic Identification of Shaft Orbits for Steam Turbine Generator Sets  

Science Conference Proceedings (OSTI)

The shaft orbits and dynamic characteristics of the shaft centre orbit contain abundant information for the fault diagnosis of rotating machinery and reflect different faults of rotating machine. Therefore the shaft orbits recognition plays an important ... Keywords: shaft orbit, steam turbine generator sets, morphological filter, invariant moment, BP neural network

Changfeng Yan; Hao Zhang; Hui Li; Li Yang; Wen Huang

2009-05-01T23:59:59.000Z

99

Shutdown Protection of Steam Turbines Using Dehumidified Air  

Science Conference Proceedings (OSTI)

EPRI research has determined that proper protection of the steam turbine during shutdown periods is essential to the prevention of damage by stress corrosion cracking and corrosion fatigue. This report provides information on both the incipient damage of improper shutdown and techniques for assessing and applying dehumidified air for shutdown protection.

2008-03-26T23:59:59.000Z

100

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network (OSTI)

Consider the following questions: 1. Which is bigger, a nickel or a dime? 2. Which weighs more? 3. Which is worth more? The answers are obvious: a nickel is bigger and it weighs more, but a dime is worth more. So size and weight are the wrong measurements of a coin's value. The real value of a coin is how much it will buy. In much the same way, enthalpy (Btu/lb) is the wrong measurement for the value of steam. It tells what the heat content of the steam is, but heat content is not the same as value. The real value of steam is how much work can be obtained from it. This paper deals with some of the interesting conclusions that can be drawn when ability to do work is substituted for enthalpy as the primary system efficiency measurement.

Nelson, K. E.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas turbine row #1 steam cooled vane  

DOE Patents (OSTI)

A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

Cunha, Frank J. (Longwood, FL)

2000-01-01T23:59:59.000Z

102

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

103

Bore tube assembly for steam cooling a turbine rotor  

SciTech Connect

An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

104

Turbine Steam Path Damage: Theory and Practice, Volume 1: Turbine Fundamentals  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-20T23:59:59.000Z

105

Gas turbine bottoming cycles: Triple-pressure steam versus Kalina  

SciTech Connect

The performance of a triple-pressure steam cycle has been compared with a single-stage Kalina cycle and an optimized three-stage Kalina cycle as the bottoming sections of a gas turbine combined cycle power plant. A Monte Carlo direct search was used to find the optimum separator temperature and ammonia mass fraction for the three-stage Kalina cycle for a specific plant configuration. Both Kalina cycles were more efficient than the triple pressure steam cycle. Optimization of the three-stage Kalina cycle resulted in almost a two percentage point improvement.

Marston, C.H. [Villanova Univ., PA (United States); Hyre, M. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

1995-01-01T23:59:59.000Z

106

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

107

Method of optimizing the efficiency of a steam turbine power plant  

SciTech Connect

A method is disclosed for improving the operational efficiency of a steam turbine power plant by governing the adjustment of the throttle steam pressure of a steam turbine at a desired power plant output demand value. In the preferred embodiment, the impulse chamber pressure of a high pressure section of the steam turbine is measured as a representation of the steam flow through the steam turbine. At times during the operation of the plant at the desired output demand value, the throttle pressure is perturbed. The impulse chamber pressure is measured before and after the perturbations of the throttle pressure. Because changing thermodynamic conditions may occur possibly as a result of the perturbations and provide an erroneous representation of the steam flow through the turbine, the impulse chamber pressure measurements are compensated for determined measurable thermodynamic conditions in the steam turbine. A compensated change in impulse chamber pressure measurement in a decreasing direction as a result of the direction of perturbation of the steam throttle pressure may indicate that further adjustment in the same direction is beneficial in minimizing the steam flow through the steam turbine at the desired plant output demand value. The throttle steam pressure adjustment may be continually perturbed in the same direction until the compensated change in impulse chamber pressure before and after measurements falls below a predetermined value, whereby the steam flow is considered substantially at a minimum for the desired plant output demand value.

Silvestri, G.J.

1981-11-03T23:59:59.000Z

108

System for minimizing valve throttling losses in a steam turbine power plant  

SciTech Connect

A system which integrates the controls of a steam turbine power plant for minimizing power plant energy losses substantially caused by steam flow valve throttling is disclosed. The steam turbine power plant includes boiler pressure controls for controlling the boiler throttle pressure of a steam producing boiler and turbine-generator controls for positioning a plurality of turbine steam admission values to regulate the steam flow conducted through a steam turbine which governs the electrical energy generated by an electrical generator at a desired power generation level. The turbine-generator controls predetermine a plurality of valve position states to establish a predetermined valve grouping sequential positioning pattern for the steam admission valves to regulate steam flow through the steam turbine across the range of power generation, each predetermined state substantially corresponding to a minimum of valve throttling losses. The steam admission valves may be positioned at a present valve position state, which is other than one of the predetermined states, as a result of a change in desired power generation level. The disclosed system responds to this condition by governing the boiler pressure controls to adjust the boiler throttle pressure at a desired rate and in a direction to cause steam admission valves to be repositioned according to the sequential positioning pattern to a selected one of the predetermined efficient valve position states. The repositioning of the steam admission valves is performed by maintaining the generated energy substantially at the new desired power generation level.

Stern, L.P.; Johnson, S.J.

1979-12-18T23:59:59.000Z

109

Oxidation of alloys targeted for advanced steam turbines  

Science Conference Proceedings (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

110

The Economics of Back-Pressure Steam Turbines  

E-Print Network (OSTI)

Recently, back-pressure steam turbines have become the focal point in many cogeneration applications. This is a result of the savings in operating costs associated with the generation of electrical or mechanical power coincident with the economical use of available thermal energy. The benefits and constraints of back-pressure systems, however, are not always readily apparent and may result in the misapplication of this technology. This paper, therefore, will examine new turbine installations and backpressure retrofits and will determine the most economical back-pressure turbine applications. A generalized methodology is highlighted, allowing the reader to readily evaluate and determine the economic justification of back-pressure turbines in many cogeneration applications. The impact on plant energy use and cost is calculated, and the effects of load variation and the value of high-efficiency turbines are discussed. The specific process plant case studies reviewed involve back-pressure turbines of 100 to 5000 hp for mechanical drives, for generator drives, and as pressure reducing station replacements.

Wagner, J. R.; Choroszylow, E.

1982-01-01T23:59:59.000Z

111

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

112

Development of forgeable Ni-base alloys for USC steam turbine ...  

Science Conference Proceedings (OSTI)

stationary power plants. In the first phase of the ... growth resistance) of these alloys were investigated with respect to their applications for steam turbines above ...

113

Blade-Vortex Interactions in High Pressure Steam Turbines  

E-Print Network (OSTI)

A detailed experimental and numerical investigation of the transport of streamwise (passage) vortices in high-pressure axial turbines and their interaction with the downstream blade rows was performed. The results indicate large variations in the downstream flow field, notably the development of the secondary flows. The mechanism of passage vortex transport was studied in two differently configured high-pressure turbine stages. In the first configuration, the blades are radially stacked while the second configuration features three-dimensionally stacked high-pressure steam turbine blading. The stator hub passage vortex is chopped by the downstream blade row in a similar way to the wake. The bowed vortex tube near the inlet to the rotor appeared to develop two counter-rotating legs extending back to the leading edges of the adjacent blades. These were termed the suction side leg and the pressure side leg. The two legs of the incoming passage vortex then convect with the respective velocities on the blade surfaces. The results are discussed for the radially stacked turbine and the 3-D turbine separately.

Venkata Siva Prasad Chaluvadi

2000-01-01T23:59:59.000Z

114

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On-Line Disturbance Data  

E-Print Network (OSTI)

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On technique to estimate and model rotor- body parameters of a large steam turbine-generator from real time

115

Demonstration of EPRI STEEM Optical Probe for LP Turbine Steam Quality Measurement  

Science Conference Proceedings (OSTI)

EPRI has developed the STEEM system, which contains an optical probe for measurement of saturated steam quality that is deployed at the exhaust of low-pressure (LP) turbines. As part of EPRI's development effort, tests of the probe's performance have been conducted in operating turbines, and the results compared with standard measurements of the steam cycle.

2001-11-07T23:59:59.000Z

116

Steam Turbine Mechanical Hydraulic Control System - Operation, Inspection, Setup, Troubleshooting, and Maintenance Guide, Revision 1  

Science Conference Proceedings (OSTI)

This report describes the components of General Electric and Westinghouse steam turbine mechanical hydraulic control systems and provides typical drawings. It focuses on systems located on the front standards and valve enclosures of utility-sized fossil and nuclear steam turbines manufactured by General Electric and Westinghouse. The report is intended to assist in maintaining, calibrating, and troubleshooting these systems.

2009-06-25T23:59:59.000Z

117

Electrostatic Charge and Its Influence on the Condensation of Steam in a Turbine  

Science Conference Proceedings (OSTI)

Some major contributors to efficiency loss in a fossil or nuclear plant are associated with nucleation of moisture from superheated steam, formation and release of liquid films on turbine surfaces, and flow of moist steam into the turbine exhaust and condenser. This document provides a state-of-knowledge report on the various electrostatic processes involved.

2001-09-28T23:59:59.000Z

118

ANN Models for Steam Turbine Power Output Toward Condenser Circulating Water Flux  

Science Conference Proceedings (OSTI)

Aimed the costliness and the complex process of performance test for steam turbine power output toward circulating water flux and in view of the non—linear advantage about neural network, it brings forward predicting the performance using artificial ... Keywords: Artificial neural network, steam turbine power output, performance prediction

Jia Ruixuan; Xu Hong

2010-05-01T23:59:59.000Z

119

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

120

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FAST 1.0 - Flow Path Analysis for Steam Turbines, Version 1.0  

Science Conference Proceedings (OSTI)

FAST Software Flow Analysis of Steam Turbines is a tool for performance engineers, designers and financial analysts. This tool is for industry use by utilities and manufacturers to evaluate thermal performance characteristics of existing and proposed turbine steam-path modifications/upgrades. Description The FAST software diagnoses performance problems and facilitates the economic evaluation of steam-path upgrade options. FAST software is used primarily by the thermal performance engineer in both fossil ...

2007-05-30T23:59:59.000Z

122

Nuclear steam-generator transplant total rises  

Science Conference Proceedings (OSTI)

Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

Smock, R.

1982-09-01T23:59:59.000Z

123

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network (OSTI)

This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas turbine. Several modifications to the gas turbine (Brayton Cycle) and the effects of cycle parameters such as pressure ratio and turbine inlet temperature are discussed. Steams injected cycles are examined and the concept of the ECSI gas turbine is introduced. The discussion includes criteria for selecting a suitable heat exchanger and considerations for start-up cycles. The feasibility of the concept and discussion of problem areas in the prototype are discussed.

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

124

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

125

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

126

Method and apparatus for set point control for steam temperatures for start-up of the turbine and steam generator in unit power plants  

SciTech Connect

A method and apparatus are described for controlling the set point for steam temperatures for cold start-up of a steam generator-turbine unit wherein inlet steam temperature and turbine load absorption are steadily and substantially simultaneously increased in accordance with a predetermined relationship so as to reach their final values substantially synchronously.

Bloch, H.; Salm, M.

1978-05-23T23:59:59.000Z

127

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network (OSTI)

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed by installed condenser surface area and the steam space characteristics. Since the steam rate and shaft power costs are dependent on the available enthalpy drop across the machine, the steam must condense at the lowest practical thermal state. Thus, air presence and cooling rate must be controlled. The condensing turbine is not an isolated system. It directly affects the use of boiler fuel and the purchase of power. Its condensate requires reheating to feedwater temperature: steam is used, backpressure power is made, for example. Its performance affects the entire steam system and must be monitored persistently. Because of the complexities (and advantages) of systems analyses, computer modeling is demonstrated in this paper to fully evaluated the network effects and the financial impact of good condenser vacuum.

Viar, W. L.

1984-01-01T23:59:59.000Z

128

Steam turbine system installation with protection of piping against seismic loading  

SciTech Connect

A steam turbine system installation is described with protection against seismic loading for piping between parts of the system comprising: at least one steam turbine rigidly mounted on a substantially fixed turbine foundation; an auxiliary part of the turbine system mounted by a selectively yielding mounting system on a substantially fixed auxiliary foundation spaced from the turbine foundation; piping connected between the steam turbine and the auxiliary part for fluid flow therebetween; the mounting system for the auxiliary part comprising means for allowing horizontal movement of the auxiliary part in relation to the auxiliary foundation in response to thermal expansion and contraction of the piping and means for resisting movement of the auxiliary part in relation to the auxiliary foundation due to seismic loading.

Pankowiecki, J.

1986-06-10T23:59:59.000Z

129

Effect of thermal barrier coatings on the performance of steam- and water-cooled gas turbine: steam turbine combined cycle systems  

SciTech Connect

An analytical study was made of the performance of air-, steam-, and water-cooled gas-turbine/steam-turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal-barrier coatings permit an increase in the turbine inlet temperature from 1205/sup 0/C to 1370/sup 0/C, resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4% when the turbine inlet temperature is increased from 1425/sup 0/C to 1675/sup 0/C and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683/sup 0/C and the maximum specific power improvement is 36.6% by increasing the turbine inlet temperature from 1425/sup 0/C to 1730/sup 0/C and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air-cooling at a turbine inlet temperature of 1205/sup 0/C. The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

Nainiger, J.J.

1978-12-01T23:59:59.000Z

130

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

131

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

132

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

133

Proceedings: Workshop on Corrosion of Steam Turbine Blading and Disks in the Phase Transition Zone  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). EPRI's Workshop on Corrosion of Steam Turbine Blading and Disks in the PTZ critically reviewed the state of knowledge of corrosion fatigue and stress corrosion cracking of LP blade and disk materials, with particular emphasis on the influence of the local environment.

1998-12-17T23:59:59.000Z

134

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

135

Applications of an Improved Wavelet Network in the Low Pressure Cylinder of Turbine Steam Exhaust Enthalpies Calculation  

Science Conference Proceedings (OSTI)

this paper applies the principle of the immune system adjustment to optimize the structure parameters of wavelet network, so as to establish a new type of wavelet neural network model which will be applied to turbine exhaust steam enthalpies. The calculation ... Keywords: steam turbine, wavelet network Vector distance Eexhaust, steam enthalpy

Zhang Liping; Sun Quanhong; Xu Qi

2011-01-01T23:59:59.000Z

136

Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply  

SciTech Connect

A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

Braytenbah, A.S.; Jaegtnes, K.O.

1977-02-15T23:59:59.000Z

137

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

138

Steam Turbine Efficiency and Corrosion: Effects of Surface Finish, Deposits, and Moisture  

Science Conference Proceedings (OSTI)

The causes of steam turbine losses have been recognized for over 50 years. In practice, deposits and surface finish account for major losses during turbine blade path audits. This report presents new experimental information on the effects of surface finish, moisture removal, and deposits.

2001-10-31T23:59:59.000Z

139

Stress and Fracture Analysis of Shrunk-On Steam Turbine Disks  

Science Conference Proceedings (OSTI)

Utilities spend millions of dollars each year to repair or replace cracked shrunk-on disks in low-pressure steam turbines. One reason for cracking, this project concludes, is that stress approaches the yield strength of disks in many current turbine designs.

1984-01-01T23:59:59.000Z

140

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Heat Recovery Steam Generator Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the heat recovery steam generator at a combustion gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and ...

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

142

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

143

Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

2002-01-01T23:59:59.000Z

144

Documentation of Steam Turbine-Generator Failures—2010  

Science Conference Proceedings (OSTI)

This technical update report presents a review of turbine-generator failures that occurred during 2010.

2011-02-28T23:59:59.000Z

145

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

146

Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles  

SciTech Connect

Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

Rice, I.G. [Rice (I.G.), Spring, TX (United States)

1997-04-01T23:59:59.000Z

147

A Computer Program for Simulating Transient Behavior in Steam Turbine Stage Pressure of AHWR  

SciTech Connect

It is proposed to couple the Advanced Heavy water reactor (AHWR), which is being developed by Bhabha Atomic Research Centre, India, with a desalination plant. The objective of this coupling is to produce system make-up and domestic water. The proposed desalination plant needs about 1.9 kg/sec of steam and the minimum pressure requirement is 3 bars. The desalination plant can be fed with bled steam extracted from a suitable stage in low pressure turbine. As the turbine stage pressure changes with the load, it is essential to know the availability of bled steam at aforesaid pressure for various load condition. The objective of the present study is to identify a suitable extraction point so as to ensure availability of steam at desired condition for desalination plant, even at part load conditions. In order to fulfill the above objective a steam and feed system analysis code was developed which incorporates the mathematical formulation of different components of the steam and feed system such as, high pressure (HP) and low pressure (LP) turbines, re-heater, feed heaters etc. The dynamic equations are solved simultaneously to obtain the stage pressure at various load conditions. Based on the results obtained, the suitable extraction stage in LP turbine was selected. This enables to determine the lowest possible part load operation up to which availability of desalination plant could be ensured. (authors)

Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

2006-07-01T23:59:59.000Z

148

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

149

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

Exchanger 1 . 3. The Condensers . Reboiler . . . . BoilerNet Power Waste Heat Trimmer Dist. Condenser Turbine SteamLeaks LP Turbine Condenser Misc. Heat Losses Total Waste

Dayan, J.

2011-01-01T23:59:59.000Z

150

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

151

Evaluation of 2 Percent CrMoWV HP/LP Rotor Gap Forging for Single Cylinder Steam Turbine Use  

Science Conference Proceedings (OSTI)

There has been considerable industry interest in developing a single shaft rotor configuration that uses the same rotor in the high-pressure (HP) as well as the Low Pressure (LP) sections of a steam turbine. This report evaluates an HP/LP rotor forging for single cylinder steam turbines.

1998-11-24T23:59:59.000Z

152

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Abstract Scope, The proposed steam inlet temperature in the Advanced Ultra ... 15 - The Effect of Primary ?' Distribution on Grain Growth Behavior of GH720Li ...

153

Turbine Steam Path Damage: Theory and Practice, Volume 2: Damage Mechanisms  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-20T23:59:59.000Z

154

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Subsector and Industry","Establishments(b)","in...

155

Program on Technology Innovation: Wireless Vibration Measurement of Low-Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

This report describes Phase 2 of a research and development effort to define a turbine blade vibration sensor (TBVS) system for measuring the mechanical vibrational spectrum of large steam turbine blades as they rotate. In Phase 1, the design concept and a number of alternative system components were considered for a wireless electronic device called a mote. In the Phase 2 research covered in this report, the final design of a custom accelerometer capable of operating under very high sustained centrifuga...

2010-12-22T23:59:59.000Z

156

Steam Turbine Supervisory Instrumentation Systems, Volume 1: Reducing Spurious Trips While Maintaining Machine Protection  

Science Conference Proceedings (OSTI)

Recently, personnel at a number of utilities operating steam turbine generators have expressed concern with regard to spurious or unnecessary unit trips caused by turbine supervisory instrumentation (TSI). Spurious trips can be costly, and they can cause unnecessary challenges to safety equipment, especially at nuclear units. A better understanding of the function and design basis surrounding TSI as well as how to appropriately use the instrumentation can help the industry to mitigate risks of false ...

2013-11-25T23:59:59.000Z

157

Metallurgical Guidebook for Steam Turbine Rotors and Discs, Volume 1: Chemistry, Manufacturing, Service Degradation, Life Assessment , and Repair  

Science Conference Proceedings (OSTI)

This guide is a compilation of information concerning steam turbine rotors and discs. Due to the variety of operating temperatures and conditions involved, factors such as material composition, manufacturing and heat treatment condition methods, and property requirements may differ from one steam turbine to another. Specifically, this guide addresses turbine rotor and disc materials used, vintages, manufacturing history, quality conditions, and chemical and mechanical properties, and it provides utility ...

2009-12-23T23:59:59.000Z

158

Program on Technology Innovation: Wireless Vibration Measurement of Low Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

Large turbine blades in the low pressure section of a steam turbine occasionally fatigue over time and break free of the turbine shaft. The damage is often substantial and the cost of an event, including the cost of the downtime, ranges from $3 million to $30 million--and in rare cases can reach hundreds of millions of dollars. Incipient failure can often be detected by monitoring changes in the vibration spectrum of the blades. This report describes the preliminary design and analysis of a wireless ele...

2010-03-18T23:59:59.000Z

159

Program on Technology Innovation: Erosion Resistant Coatings for Gas and Steam Turbines - Advanced Nano-Coatings and Vendor Evaluati on Results  

Science Conference Proceedings (OSTI)

Erosion of steam turbine blades and gas turbine compressor blades costs power producers millions of dollars each year. Improved mitigation techniques to reduce erosion damage will improve turbine efficiency and reduce maintenance downtime.

2009-03-31T23:59:59.000Z

160

Research on Maintenance Optimization for Steam Turbine Digital Electro-Hydraulic Control System  

Science Conference Proceedings (OSTI)

As the substitute of mechanical hydraulic governing system, steam turbine digital electro-hydraulic control system presents different maintenance characteristics. If the traditional maintenance strategy is still adopted, that is the replacement or inspection ... Keywords: DEH control system, maintenance optimization, risk evaluation, fault tree

Zhenhe Wang; Shaocong Guo

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Steam Turbine-Generator Torsional Vibration Interaction With the Electrical Network  

Science Conference Proceedings (OSTI)

This Tutorial Report deals with steam turbine-generator torsional vibration arising from interaction with the electrical systems that connect to the generator. Besides providing background material on torsional vibration and fatigue, it reviews operating experience and machine torsional duty mitigation strategies and provides information on torsional vibration measurement, monitoring, diagnostic procedures, and non-destructive evaluation (NDE).

2005-11-14T23:59:59.000Z

162

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

Lack of materials with the necessary fabricability and resistance to creep, oxidation, corrosion, and fatigue at the higher steam temperatures and pressures currently limits adoption of advanced ultra supercritical (USC) steam conditions in pulverized coal-fired plants. A major five-year national effort sponsored by the Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) to develop materials for USC boilers for operation at 760C (1400F), 35 MPa (5000 psi) has been in progress and is be...

2007-06-20T23:59:59.000Z

163

Modification of Alloy 706 for High Temperature Steam Turbine Rotor ...  

Science Conference Proceedings (OSTI)

Alloy706 is a gas-turbine disk material. However, since Alloy706 suffers from a solidification defect (freckle defect) due to segregation of Nb, it is difficult to make  ...

164

Test results of a steam injected gas turbine to increase power and thermal efficiency  

Science Conference Proceedings (OSTI)

The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

Messerlie, R.L.; Tischler, A.O.

1983-08-01T23:59:59.000Z

165

Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor  

SciTech Connect

The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

Choo, Y.K.; Burns, R.K.

1982-02-01T23:59:59.000Z

166

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

167

Program on Technology Innovation: State-of-Knowledge Review of Erosion-Resistant Coatings for Steam and Gas Turbine Applications  

Science Conference Proceedings (OSTI)

Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components, such as gas turbine compressor blades and vanes as well as steam turbine control stage and later stage low-pressure blades. This report will provide a comprehensive knowledge base to turbine users on erosion coating properties, methods of application, details about the various vendors and their experience as well as the tests conducted to evaluate and qualify erosion-resistant coatings.

2008-08-15T23:59:59.000Z

168

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

Lack of materials that can be readily fabricated and that are resistant to creep, oxidation, corrosion, and fatigue at higher steam temperatures and pressures limits adoption of advanced ultrasupercritical (USC) steam conditions in pulverized coal-fired plants. An ongoing major five-year national effort8212sponsored by the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO)8212to develop materials for USC boilers for operation at 760C (1400F), 35 MPa (5000 psi) is being carried ou...

2008-03-04T23:59:59.000Z

169

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

170

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

171

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

for additional usage of coal, natural gas, or electricitya gas turbine for power generation before further usage. TheGas Turbine (MW) Steam Turbine (MW) Total Plant Electricity Usage (

Lu, Xiaoming

2012-01-01T23:59:59.000Z

172

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

173

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

174

Low-Pressure Steam Turbine Corrosion Mechanisms and Interactions: State of Knowledge 2010  

Science Conference Proceedings (OSTI)

Corrosion, corrosion fatigue (CF), and stress corrosion cracking (SCC) are known issues that affect the service lives of various low-pressure (LP) steam turbine components. Considerable work has been performed to understand the individual mechanisms and the environmental conditions that lead to each of them. However, little progress has been made in understanding the interactions between these damage processes. In particular, little is known about the transition of pits to cracks and the early stages of ...

2010-07-08T23:59:59.000Z

175

Short-Term Shutdown Guidance for Steam Turbine-Generators and Auxiliary Systems  

Science Conference Proceedings (OSTI)

This report provides guidelines on the methods that utilities should consider to protect operating equipment when it is removed from service for short periods of time. The equipment and systems considered in this report include the steam turbine, generator, exciter, feedwater heaters, and related auxiliaries. The timeframe for this report includes outage periods from a weekend to six months. Improper layup can cause long-term equipment damage and premature failure. Increased shutdown frequency and durati...

2010-11-12T23:59:59.000Z

176

Program on Technology Innovation: Development of a Corrosion-Fatigue Prediction Methodology for Steam Turbines – Test Results for 12% Cr Blade Steel (403/410 Stainless Steel)  

Science Conference Proceedings (OSTI)

The useful life of a steam turbine and the establishment of turbine outage schedules are often determined by corrosion to the low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective corrosion damage prediction methodology is an important step to successfully reduce the number of unscheduled steam turbine outages. This report provides test data and a methodology to assess risk for failure associated with corrosion-fatigue of Type 403 stainless steel steam ...

2013-02-19T23:59:59.000Z

177

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-12-31T23:59:59.000Z

178

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-01-01T23:59:59.000Z

179

Cooling circuit for steam and air-cooled turbine nozzle stage  

SciTech Connect

The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

2002-01-01T23:59:59.000Z

180

Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander  

DOE Green Energy (OSTI)

A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

Demuth, O.J.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam Turbine Rotor Life Assessment and Extension: Evaluation of Retired Rotors: Volume 1: Quantification of NDE Uncertainty  

Science Conference Proceedings (OSTI)

In the past, uncertainty in defect sizing during boresonic inspection has been a major source of inaccuracy in assessing the remaining life of steam turbine rotors. This report provides correlations between the boresonically reported defect sizes and the measured metallurgical sizes for

1994-05-14T23:59:59.000Z

182

Dynamic Analysis and Stability of the Load Frequency Control in Two Area Power System with Steam Turbine  

Science Conference Proceedings (OSTI)

The aim of this paper is to model, analysis and simulation of load frequency control in two area power system and parameters variation effects. State equations of a LFC in two area power system for a steam turbine are proposed. Then by examining some ... Keywords: load frequency control, dynamic analysis, integral controller

Ghazanfar Shahgholian; Serareh Yazdekhasti; Pegah Shafaghi

2009-12-01T23:59:59.000Z

183

SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator  

Science Conference Proceedings (OSTI)

The steam turbine generator faults not only damage the generator itself, but also cause outages and loss of profits, for this reason, many researchers work on the fault diagnosis. But misdiagnosing may also lead to serious losses. In order to improve ... Keywords: SVM, multiclass, cost-sensitive, fault diagnosis, reject option

Chao Zou; En-hui Zheng; Hong-wei Xu; Le Chen

2010-02-01T23:59:59.000Z

184

An optical technique for characterizing the liquid phase of steam at the exhaust of an LP turbine  

SciTech Connect

Optical observation of velocity and size of water droplets in powerplant steam has several applications. These include the determination of steam wetness fraction, mass flow rate, and predicting erosion of turbine blades and pipe elbows. The major advantages of optical techniques are that they do not interfere with the flow or perturb the observation. This paper describes the measurement of the size and velocity of particles based on the observation and analysis of visibility patterns created by backscattered circularly polarized light. The size of latex particles in a dry nitrogen stream was measured in the laboratory. Visibility patterns of water droplets were observed in the low pressure turbine of Unit 6 of Alabama Power`s Gorgas Steam Plant.

Kercel, S.W.; Simpson, M.L. [Oak Ridge National Lab., TN (US); Azar, M. [Tennessee Technological Univ., Cookeville, TN (US); Young, M. [Alabama Power, Parrish, AL (US)

1993-06-01T23:59:59.000Z

185

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

186

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

187

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

188

Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator  

E-Print Network (OSTI)

In today' s equipment market more and more projects are turning toward existing equipment to justify a project. New equipment's delivery time and/or capital cost can keep a good project "grounded". In the turbomachinery industry, a few companies have developed the expertise to identify candidates of existing machines that can be adopted for many new applications. These companies can inspect, modify, recondition and rerate the equipment as needed, which helps bring in a project within budget and on time. This paper is the history of such an application. The delivery schedule requirements and limited capital made the project feasible only through the technology of reapplying existing machines to a new service. The project involves a plant that extracts landfill gas and converts it to diesel fuel, naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear and generator were selected, along with the highlights of the engineering work required to insure the mechanical operation of the string of equipment.

Smith, S.

1991-06-01T23:59:59.000Z

189

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

190

Metallurgical Guidebook for Steam Turbine Rotors and Discs, Volume 2: Materials Property Database for HP-IP and LP Rotors  

Science Conference Proceedings (OSTI)

As the power plants are aging, many of the components have either surpassed or are nearing their intended design lives. Due to the range of temperatures the steam turbine components areexposed to, material composition, manufacturing and heat treatment methods, and property requirements vary widely. Having the proper knowledge about the vintage, manufacturing history, quality conditions, chemical and mechanical properties, etc., of the rotors and discs become vital when decisions about run, repair, or rep...

2010-12-23T23:59:59.000Z

191

Soft computing based multi-objective optimization of steam cycle power plant using NSGA-II and ANN  

Science Conference Proceedings (OSTI)

In this paper a steam turbine power plant is thermo-economically modeled and optimized. For this purpose, the data for actual running power plant are used for modeling, verifying the results and optimization. Turbine inlet temperature, boiler pressure, ... Keywords: Artificial Neural Network, NSGA-II, Steam turbine cycle, Thermal efficiency, Total cost rate

Farzaneh Hajabdollahi; Zahra Hajabdollahi; Hassan Hajabdollahi

2012-11-01T23:59:59.000Z

192

Interim Guidelines for In-Situ Inspection and Monitoring Techniques for Steam Turbines: Volume 1: An Overview of Remote Visual Inspe ction  

Science Conference Proceedings (OSTI)

Steam turbine overhauls are expensive, time-consuming, and labor intensive and are usually carried out at intervals specified by the equipment manufacturer. The conservative nature of these recommendations often means that turbines are inspected more frequently than is warranted, thus incurring unnecessary costs. If some of these inspections could be performed with the turbine in situ, or even while on-load, this information could help decide whether further inspections involving full removal of the turb...

1999-11-17T23:59:59.000Z

193

Design and evaluation of a two-phase turbine for low quality steam--water mixtures  

DOE Green Energy (OSTI)

A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

Comfort, W.J. III

1977-05-16T23:59:59.000Z

194

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

195

Demonstration of a Videoprobe Delivery Device for In Situ Inspection of Steam Turbine and Combustion Turbine Machines  

Science Conference Proceedings (OSTI)

In situ inspection of turbine rotors provides the potential advantages of minimized length of planned outages, increased intervals between outages, reduced numbers of turbine-related outages, and minimal machine disassembly to effect simple inspections. Two previous EPRI reports have identified industry experiences with in situ inspection and provided guidance for development of hardware and techniques for future efforts. Following those recommendations, this report describes the development and demonstr...

2002-04-18T23:59:59.000Z

196

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

197

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

198

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

199

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

in a Heat Recovery Steam Generator (HRSG) to make additionalAuxiliary Power Block Steam turbine generator using steam

Lu, Xiaoming

2012-01-01T23:59:59.000Z

200

Use of Hydrogen for Economy of Fuel in Steam Turbine Plants  

Science Conference Proceedings (OSTI)

... The first method [1] is based on mixing of steam, exiting from the boiler's super-heater, with products of combustion of methane or hydrogen in ...

2006-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

202

Processing of High Performance Alloys for A-USC Steam Turbine ...  

Science Conference Proceedings (OSTI)

Fracture Toughness Evaluation of Polymeric Materials for Wind Turbine Blades Using the Spiral Notch Torsion Test · High Performance Alloys for Advanced ...

203

Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles  

SciTech Connect

A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

Burdgick, Steven Sebastian (Schenectady, NY); Burns, James Lee (Schenectady, NY)

2002-01-01T23:59:59.000Z

204

Generation Maintenance Application Center: Combined-Cycle Combustion Turbine Steam Turbine Stop and Control Valve Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, ...

2013-03-27T23:59:59.000Z

205

Flexibility and economics of combustion turbine-based cogeneration systems  

SciTech Connect

The major objective of this paper is to discuss various options that affect the efficiency of combustion turbine cogeneration plants and the commensurate net worth impact to the firm. Topics considered include technical evaluation parameters, an efficiency definition, a cogeneration heat rate definition, the qualitative value of efficiency and the cogeneration heat rate, economic evaluation techniques, industrial processes suitable for cogeneration, equipment requirements, the combustion turbine package, the heat recovery steam generator package, balance of plant equipment, engineering and construction, the total cost of incorporating the cogeneration plant, cogeneration with the basic combustion turbine/heat recovery steam generator (CT/HRSG) cycle, cogeneration-steam production increase by ductburning, dual-pressure HRSG, the backpressure steam turbine, supercharging, separating electrical power generation from steam demand, and incorporating a backup source of steam generation.

Wohlschlegel, M.V.; Marcellino, A.; Myers, G.

1983-01-01T23:59:59.000Z

206

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

207

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Steam Bypass Model Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various systems and components that are unique to this type of power generation plants and are not typically found in a nuclear or fossil power plant. As such, current CTCC facility owners’ use of the Electric Power ...

2013-12-14T23:59:59.000Z

208

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

209

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Steam Valves Maintenance Guide  

Science Conference Proceedings (OSTI)

 BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, the ...

2013-05-14T23:59:59.000Z

210

Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation  

DOE Green Energy (OSTI)

This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

1994-05-01T23:59:59.000Z

211

Early Identification of Steam Turbine Performance Issues via Real-Time Diagnostics:Concepts to Advance the State-of-the-Art  

Science Conference Proceedings (OSTI)

This report describes initial work performed to demonstrate how advanced analytics, coupled with existing monitoring tools, could be used to better identify the cause and location of steam turbine performance problems. Developing a full-fledged diagnostic system that incorporates this approach is potentially a multi-year project, but the payoff could be significant.BackgroundThe importance of power plant performance is well recognized since improving ...

2013-12-13T23:59:59.000Z

212

Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines  

Science Conference Proceedings (OSTI)

The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

2011-02-27T23:59:59.000Z

213

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

214

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

215

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

216

Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials  

SciTech Connect

Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface.

Lee, M.K.; Kim, W.W.; Rhee, C.K.; Lee, W.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Materials Science and Engineering

1999-04-01T23:59:59.000Z

217

Axial seal system for a gas turbine steam-cooled rotor  

DOE Patents (OSTI)

An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

218

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

Dayan, J.

2011-01-01T23:59:59.000Z

219

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

220

Evaluation of boride diffusion coatings to alleviate erosion of steam turbine components  

Science Conference Proceedings (OSTI)

This report describes a research program to evaluate boride diffusion coatings for protection on Types 403 and 422 martensitic stainless steel turbine components against solid particle erosion. Several commercial coating vendors supplied stainless steel specimens with simple iron boride, chromium enriched iron boride, and silicon-enriched iron boride coatings. These specimens were characterized as to microstructure, composition, and hardness. They were then exposed in a stream of abrasive particulates at 1000{degrees}F and 500 ft/sec for up to 100 hours with intermediate specimen weighing and examination at 20 hour intervals. After the tests the microstructures and thickness of the remaining coating and substrate of each specimen were determined and measured. The tests showed that the chromium- and silicon-enriched iron boride coatings had erosion rates up to 2 to 4 times lower than those of simple iron borides. Coating microstructures was found to be an important factor influencing erosion resistance; while through thickness microcracking had no apparent effect on coating performance, fine networks of surface cracking were observed to make a coating much more susceptible to loss.

Christman, T.K.; Martin, C.J.; Wright, I.G (Battelle, Columbus, OH (United States)); Shalvoy, R.S. (General Electric Co., Schenectady, New York (USA). General Eletric Power Generation)

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

222

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

223

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

to drive a secondary steam turbine – thus increasing theW501G turbines – incorporating closed-loop steam cooling –turbine cost for the MS7001FA stems from the additional cost of heat recovery steam

Ishii, Jun

2004-01-01T23:59:59.000Z

224

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

225

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would ...

226

Fault diagnosis of steam turbine-generator sets using CMAC neural network approach and portable diagnosis apparatus implementation  

Science Conference Proceedings (OSTI)

Based on the vibration spectrum analysis, this paper proposed a CMAC (Cerebellar Model Articulation Controller) neural network diagnosis technique to diagnose the fault type of turbine-generator sets. This novel fault diagnosis methodology contains an ... Keywords: CMAC, PIC, fault diagnosis, microcontroller, neural network, turbine-generator sets

Chin-Pao Hung; Wei-Ging Liu; Hong-Zhe Su

2009-09-01T23:59:59.000Z

227

Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation  

Science Conference Proceedings (OSTI)

In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

Souza Dos Santos, R. [Instituto de Engenharia Nuclear CNEN/IEN, Cidade Universitaria, Rua Helio de Almeida, 75 - Ilha do Fundiao, 21945-970 Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores / CNPq (Brazil)

2012-07-01T23:59:59.000Z

228

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

229

Turbine protection system for bypass operation  

SciTech Connect

In a steam turbine installation having a high pressure turbine, a steam generator is described for providing steam to the turbine, at least a lower pressure turbine, a reheater in the steam path between the high and lower pressure turbines, and a steam bypass path for bypassing the turbines, the high pressure turbine having a one-way check valve in its output steam line to prevent bypass steam from entering its output. The improvement described here consists of: (A) a second bypass path for passing steam around the high pressure turbine; (B) the second bypass path including, (i) steam jet compressor means including two input sections and an output section, with one input section being connected to the high pressure turbine output, the other input section being connected to receive steam from the steam generator and the output section being connected to the input of the reheater, (ii) valving means for controlling the steam supply from the steam generator to the steam jet compressor means; and (C) control means responsive to an output condition at the high pressure turbine output for controlling the valving means.

Silvestri, G.J. Jr.

1986-03-18T23:59:59.000Z

230

Non-pollutant fuel generator and fuel burner with a non-pollutant exhaust and supplementary dc generator. [for use in MHD generator, steam turbine, gas turbine, or fuel cell  

SciTech Connect

A system for generating non-polluting fuel and a burner for using such fuel to produce energy in the form of heat with a non-polluting exhaust, together with means for utilizing such exhaust to produce supplementary direct current power is disclosed. An electrolyzer is operated to produce hydrogen and oxygen in gaseous form which is then stored in suitable fuel tanks. As needed, the fuel is combined with air and supplied under pressure to a combustion chamber where the mixture is burned, producing heat and a pollution free exhaust. The heat so produced may be used as a conventional heat source to generate steam, drive a turbine, or the like, while the combustion gases are directed to a magnetohydrodynamic generator to produce an electrical current which is usable in any desired manner.

Barros, M.J.

1976-12-21T23:59:59.000Z

231

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

SciTech Connect

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

232

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

Science Conference Proceedings (OSTI)

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

233

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

234

Drag-disc turbine transducer data evaluation methods for dynamic steam-water mass flow measurements. [PWR  

SciTech Connect

The mechanical design of a two-phase mass flow rate transducer for a highly corrosive, high temperature (651 K) hot water environment is presented. Performance data for transient steam-water flows are presented. Details of the applications of the device during loss-of-coolant experiments in a pressurized water reactor environment are discussed.

Winsel, C.E.; Fincke, J.R.; Deason, V.A.

1979-01-01T23:59:59.000Z

235

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network (OSTI)

In 1983 Frito-Lay embarked on building a new 160,000 sq. ft. manufacturing facility in Kern County California. Based upon an estimated steam load between 5,000 and 50,000 lb/hr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine cogeneration system was the best overall option. This system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. When steam is injected into the turbine combustor, electrical output increases due to the increased mass flow and specific heat of the steam/air mixture. Electrical output ranges from 3.5 KW without injection to a theoretical 6.0 KW at maximum injection. Despite the volatility of nuclear power in California, project risk was low because the implementation of nuclear power would increase retail rates whereas the avoidance of nuclear power would increase avoided costs (buyback rates). When Frito-Lay decided, in 1983, to build a new snack food plant in Kern County, Calif., its main concern was to minimize the plant's total energy costs. The company therefore evaluated the various cogeneration options available and, for each option, conducted an energy-cost analysis. However, plant performance was not to be sacrificed in order to reduce the overall energy costs. After technical and economic analysis had been completed, Frito-Lay chose a cogeneration system using the Cheng Cycle---a gas-turbine system using steam injection that allows for efficient thermal tracking and simultaneous electrical generation. The company began construction of the Kern County plant to produce corn, tortilla, and potato chips in October 1984. Preliminary operation began in April 1986. The plant encompasses 160,000 ft, and is located just outside the city of Bakersfield. Steam is used for space heating as well as process applications. Total steam demand is expected to vary between 5000 and 55,000 lb/hr, depending on production and seasonal variations. The electrical usage of the plant is anticipated to fall between 1000 and 2500 kW, again depending on plant operations. Current utility energy costs are on the order of 50˘/therm for natural gas and 9˘/kWh for electricity. Cogeneration technology involves the simultaneous production of thermal and electrical energy. In Frito-Lay's case, the cogeneration system supplies steam for plant process needs and generates electricity for plant consumption and sale to the local utility. The modified gas turbine used in the plant is a Cheng Cycle Series Seven, Figure 1. It is a product of International Power Technology (IPT) of Palo Alto, Calif., which has patented the steam injection and control systems. The system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. This steam injection process increases the electrical output of the turbine and improves cycle performance compared to traditional gas turbine systems.

Keller, D. C.; Bynum, D.; Kosla, L.

1987-09-01T23:59:59.000Z

236

Combined cycle total energy system  

SciTech Connect

A system is described for the co-generation of steam and electricity comprising: a source of gaseous fuel, a source of air, means for mixing the fuel and air to form a relatively lean fuel/air mixture, a gas turbine, a first fuel/air mixture compressor directly driven by the turbine, a second fuel/air mixture compressor driven by the turbine for further compressing the fuel/air mixture, a catalytic burner between the second compressor and gas turbine, a motor/generator, a steam turbine, means coupling the gas turbine, motor/generator, first and second compressors and steam turbine to one another, a source of water, a steam boiler connected to the source of water and to the exhaust system of the gas turbine, a steam economizer connected to the boiler, a steam superheater in heat exchange relationship with the exhaust system of the gas turbine disposed between the economizer and the steam turbine, and controllable means for bypassing superheated steam from the superheater around the steam turbine to maximize steam or electric power output of the system selectively.

Joy, J.R.

1986-06-17T23:59:59.000Z

237

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

238

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

239

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

240

Castability of 718Plus® Alloy for Structural Gas Turbine Engine ...  

Science Conference Proceedings (OSTI)

This technology will be implemented for the manufacture of gas turbine structural components ... Cast Alloys for Advanced Ultra Supercritical Steam Turbines.

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

242

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

243

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

244

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

245

Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report  

DOE Green Energy (OSTI)

The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

Not Available

1980-05-01T23:59:59.000Z

246

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Year Total Hydro Turbines Steam Turbines Gas Turbines DieselGW Total Hydro Turbines Steam Turbines Gas Turbines DieselTotal Hydro Turbines Steam Turbines Gas Turbines of total:

Fridley, Ed., David

2008-01-01T23:59:59.000Z

247

Combined cycle electric power plant with coordinated steam load distribution control  

SciTech Connect

A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g., water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Loading and unloading of the steam turbine is accomplished automatically in coordinated plant control as a function of steam throttle pressure.

Uram, R.

1979-09-25T23:59:59.000Z

248

Change steam tapping to save energy  

SciTech Connect

Induction turbines are common in large plants. They use both high pressure (HP) and low pressure (LP) steam and exhaust into a surface condenser operating under vacuum. Induction turbines are especially useful since they use maximum available LP steam with a balanced amount of HP steam and thus, achieve the best overall thermodynamic efficiency. LP steam is generally available as flash steam for boiler blow down, exhausts from back pressure turbines, process waste-heat recovery, etc. Typically, an LP steam header is routed around the plant with several connections to receive and supply steam. Therefore, it is common to connect each steam user/supplier to the nearest point on the main header. The portion of the header where steam turbine exhausts are connected has superheated LP steam and the header portion which receives steam from waste heat recovery, boiler blow down, etc., has saturated LP steam. Some portion of the header has mixed steam. Thus, the temperature of LP steam in the header varies over its length.

Antony, S.M.; Joshi, G.C.

1987-07-01T23:59:59.000Z

249

Apparatus and methods for supplying auxiliary steam in a combined cycle system  

SciTech Connect

To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

250

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

251

Analysis of a radial-outflow reaction turbine concept for geothermal application  

SciTech Connect

The radial-outflow reaction turbine, a pure-reaction turbine designed to improve the conversion efficiency of geothermal energy into electrical power is described. It also has potential as a total-flow turbine for low-temperature water. The principle of incomplete expansion can be used to obtain a reduction in turbine size when the turbine exhausts into a low-pressure condenser. And, by adding this turbine to single- and two-stage flashed-steam systems, the conversion efficiency of systems utilizing low- and high-energy wellhead sources, respectively can be improved. The Appendix outlines the analysis of the radial-outflow reaction turbine and leads to an expression for engine efficiency.

House, P.A.

1978-05-25T23:59:59.000Z

252

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A nuclear power plant is designed using a heavy-watermoderated, steam- cooled reactor. In this plant, feed water is heated by the moderator and reactor steam to form feed steam, which is then superheated by superheated reactor steam and expanded through a nozzle. The feed steam issuing from the nozzie has added to it the superheated reactor steam, and the resulting steam is compressed, heated further in the reactor, and part of it passed to the turbine. (D.L.C.)

Bauer, S.G.; Jubb, D.H.

1962-10-10T23:59:59.000Z

253

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network (OSTI)

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

254

IMPROVEMENTS IN OR RELATING TO STEAM-OPERATED POWER PLANT  

SciTech Connect

A nuclear power plant is designed in which the reactor is steam-cooled and radioactivity is removed from the steam before entering the turbine. The plant has a steam circuit in which the steam from the reactor is passed through one flow path of a heat exchanger and then part of this steam is passed through contact washing equipment before being reheated in a second flow path of the heat exchanger and being led to the turbine. (D.L.C.)

Bauer, S.G.; Kendon, M.H.

1962-09-19T23:59:59.000Z

255

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

256

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

257

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

258

Multiple boiler steam blending control system for an electric power plant  

SciTech Connect

A steam blending control is provided for two or more boilers in an electric power plant. To blend an oncoming boiler with an online boiler, the oncoming boiler is fired to a pressure ramp setpoint and outlet steam is isolated from the plant turbine and directed through position controlled bypass valve means. When steam temperature and pressure conditions are matched, the oncoming boiler isolation valve is opened and the bypass flow then existing is stored in a memory. The oncoming boiler bypass flow is cut back with total oncoming boiler steam flow controlled to the memorized flow valve as a setpoint. Flow from the on-line boiler is cut back under load control as the oncoming boiler flow to the plant turbine is increased. Deblending is implemented in a similar manner.

Binstock, M.H.; Criswell, R.L.

1981-12-22T23:59:59.000Z

259

Single condenser arrangement for side exhaust turbine  

SciTech Connect

This patent describes a large-scale power generating apparatus for converting steam energy into electrical energy. It comprises: a large turbine capable of converting steam energy into mechanical energy; a large generator for converting mechanical energy into electrical energy; a shaft disposed in and axially connecting the turbine and the generator, the shaft capable of being turned by steam energy in the turbine; a single condenser connected to the turbine and capable of drawing steam out of the turbine and condensing steam to water, the single condenser disposed alongside the turbine; and a low foundation which supports the turbine and the generator and a slab which supports the low foundation and the single condenser.

Stock, A.L.

1989-09-19T23:59:59.000Z

260

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

262

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

263

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

264

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

265

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

266

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

267

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

268

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

269

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

270

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

271

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

272

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

273

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

274

POWER PLANT USING A STEAM-COOLED NUCLEAR REACTOR  

SciTech Connect

A method of providing efficient and economic means for obtaining reheat from nuclear heat is described. A steamcooled steam-moderated reactor produces high-pressure, high-temperature steam. A multi-stage steam turbine partially expands the high-pressure steam, which is then withdrawn and reheated, and then further expanded for producing useful power. The saturated steam is superheated by leading it through tubular passages provided in the fuel assemblies of a nuclear reactor, leading the useful part of the superheated steam into a steam turbine in which it expands to a predetermined intermediate pressure, leading the steam at that reduced pressure from the turbine back into the reactor where it is reheated by flowing through other tubular passages in the fuel assemblies, and returning the reheated steam to the turbine for further expansion. (M.C.G.)

Nettel, F.; Nakanishi, T.

1963-10-29T23:59:59.000Z

275

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

276

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

277

Advanced high performance steam systems for industrial cogeneration: Final report  

SciTech Connect

Advanced steam conditions of 1500/sup 0/F and 1500 psig have been shown to offer a major positive economic impact and a dramatic improvement in cogeneration system performance. In a back pressure steam turbine system, electricity production increases by 80%, and the return on investment improves by 60%. For a 35% extraction turbine, the electricity production increases 28% and the return increases by 34%. Designs of a 1500/sup 0/F modular steam generator and two sizes of matching steam turbines have been completed. The steam generator module uses all Alloy 800 tubes except for two superheater rows of Inconel 617. Its design is based on current production Alloy 800 once-through steam generators currently being introduced into cogeneration combined cycles. A test loop is currently evaluating candidate steam generator tube materials and steam turbine materials at 1500/sup 0/F and 1500 psig. To date, 4000 hours of operation of this loop have been accumulated. The candidate metals after operation in 1500/sup 0/F and 1500 psig steam showed no surface distress. Trade-off studies have been completed on the high temperature steam turbine. Tangential, radial, and axial turbine configurations have been designed and evaluated. The stress analyses of the 1500/sup 0/F steam turbines show that the machine can be operated at 1500/sup 0/F and 1500 psig for over ten years without component replacement when using rotor hub cooling to maintain disk bore temperatures in the 900/sup 0/F range. When applied in back pressure steam, extraction steam, and combined cycle systems the ''1500/sup 0/F steam technology building blocks'' provide full coverage of industrial cogeneration from 4 MW to 25 MW in a single gas turbine and steam turbine installation. A twelve-inch diameter tangential flow turbine has also been designed which is optimum in the 1 to 3 MW power range.

Duffy, T.E.; Schneider, P.H.; Campbell, A.H.; Evensen, O.E.

1987-01-01T23:59:59.000Z

278

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

279

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

280

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

282

Torsional Torques and Fatigue Life Expenditure for Large-Scale Steam Turbine-Generator Shafts and Blades Due to Power System Harmonics.  

E-Print Network (OSTI)

??During the three decades, the torsional impact on turbine-generator sets due to power system disturbances has been extensively discussed in many research works. However, most… (more)

Tsai, Jong-ian

2004-01-01T23:59:59.000Z

283

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

284

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

285

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

286

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

287

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

288

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

289

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

290

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

291

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

292

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure.

Hopkinson, J.

1982-10-01T23:59:59.000Z

293

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

294

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

295

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

296

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

297

Ukraine Steam Partnership  

SciTech Connect

The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

Gurvinder Singh

2000-02-15T23:59:59.000Z

298

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

299

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

300

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher, is lowered toward a value substantially equal to that of the first setpoint.

Martz, L.F.; Plotnick, R.J.

1976-08-17T23:59:59.000Z

302

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

303

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

ON VAP,+DIST. STEAM lP TOTAL FLOW TOTAL CONDENSATE 29731U 1+DIST. STEAM LP TOTAL FLOW TOTAL CONDENSATE POWER GENERATED

Dayan, J.

2011-01-01T23:59:59.000Z

304

Extraction Steam Controls at EPLA-W  

E-Print Network (OSTI)

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site from ful

Brinker, J. L.

2004-01-01T23:59:59.000Z

305

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z

306

The Applicability of Supercritical Topping Cycles for Repowering Subcritical Steam-Electric Power Plants  

Science Conference Proceedings (OSTI)

Steam cycle efficiency of existing plants is limited by the steam temperatures and pressures to which the plant has been designed. Capacity and efficiency might be increased at subcritical steam-electric plants by adding a supercritical topping cycle that exhausts at the inlet steam conditions of the existing steam turbine. Implementation of such a topping cycle will require a new steam generator that might be a low-cost solution if the existing steam generator and its associated air quality control syst...

2010-12-31T23:59:59.000Z

307

HTGR power plant turbine-generator load control system  

SciTech Connect

A control system is disclosed for a high temperature gas cooled reactor power plant, wherein a steam source derives heat from the reactor coolant gas to generate superheated and reheated steam in respective superheater and reheater sections that are included in the steam source. Each of dual turbine-generators includes a high pressure turbine to pass superheated steam and an associated intermediate low pressure turbine to pass reheated steam. A first admission valve means is connected to govern a flow of superheated steam through a high pressure turbine, and a second admission valve means is connected to govern a flow of reheated steam through an intermediate-low pressure turbine. A bypass line and bypass valve means connected therein are connected across a second admission valve means and its intermediate-low pressure turbine. The second admission valve means is positioned to govern the steam flow through the intermediate-low pressure turbine in accordance with the desired power output of the turbine-generator. In response to the steam flow through the intermediate-low pressure turbine, the bypass valve means is positioned to govern the steam flow through the bypass line to maintain a desired minimum flow through the reheater section at times when the steam flow through the intermediate-low pressure turbine is less than such minimum. The power output of the high pressure turbine is controlled by positioning the first admission valve means in predetermined proportionality with the desired power output of the turbine-generator, thereby improving the accuracy of control of the power output of the high pressure turbine at low load levels.

Braytenbah, A.S.; Jaegtnes, K.O.

1976-12-28T23:59:59.000Z

308

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

309

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

310

Topping Turbines: Adding New Life to Older Plants  

E-Print Network (OSTI)

An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high pressure, non-condensing turbine (topping turbine) . The high pressure steam generated in the new boilers is supplied to the throttle of the high pressure turbine and exhausted at the pressure required by the existing, old, low pressure, condensing turbines. The exhaust from the topping turbine is then supplied to the throttle of the existing turbines. The additional capacity results from the kilowatts generated in the topping turbine while reducing the steam pressure from the throttle to the exhaust conditions. Also, because this steam is not condensed, there is no loss of the latent heat of condensation of the steam to the condenser circulating water. Consequently, the thermal efficiency of the cycle is considerably enhanced.

Cadrecha, M.

1984-01-01T23:59:59.000Z

311

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion.

Hopkinson, J.; Passell, T.

1982-10-01T23:59:59.000Z

312

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

313

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

314

Cost Benefit Evaluation of HP Turbine Admission Schemes  

Science Conference Proceedings (OSTI)

The scheme used to position the control valves that admit steam to high-pressure turbines has a direct effect on the turbine’s performance. This report describes the two most common admission schemes, partial and full arc, and discusses their effects on heat rate, reliability, and cost versus benefit under different loading conditions and modes of operation.BackgroundHistorically, most steam turbines in coal-fired power plants operated in a ...

2012-12-14T23:59:59.000Z

315

High performance steam cogeneration (proof-of-concept phases). Phase 2, HRSG 500-hour test report: Final report  

SciTech Connect

Recent advances in small once-through Alloy 800 steam generators, improved materials technology, and application of small industrial gas turbine technology to steam turbine cogeneration offers the potential to make a step increase in steam temperature from around 1000{degree}F, where industry has been for almost fifty years, to 1500{degree}F. In small cogeneration systems, it is economically practical to introduce new technology and make a step change in temperature where it may not be possible (given the regulatory environment and economic risk) for a major change in steam temperature to be introduced in the hundreds of megawatt size of an electric utility. Increasing the peak steam temperature in a steam turbine cycle allows more work to be extracted or electrical power to be generated from a given quantity of heat input. Figure 1 plots steam efficiency as a function of superheat steam temperature and pressure for a turbine-back pressure of 166 psia. This figure clearly shows that increasing the steam conditions from the typical current practice of 900{degree}F and 900 psia to 1500{degree}F and 1500 psia will increase the steam cycle efficiency by 53%. The combination of higher cycle efficiency with an advanced high efficiency steam turbine design provides a substantial increase in turbine output power for a given steam flowrate. The output of this advanced high temperature steam turbine is approximately twice that of a current industrial practive turbine for the same turbine flowrate as seen in Figure 2.

Campbell, A.H.

1992-12-01T23:59:59.000Z

316

Steam Pressure Reduction, Opportunities, and Issues  

Science Conference Proceedings (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

317

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

318

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

319

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

320

Apparatus for removing noncondensable gases from cogenerated process steam in dual fluid cheng cycle engines  

SciTech Connect

An apparatus is described for removing noncondensable gases from process steam cogenerated in a steam-injected gas turbine engine. The engine consists of: (a) a chamber; (b) compressor means for introducing air into the chamber; (c) means for introducing steam within the chamber, the steam introducing means including an automatically controlled steam injector valve and steam injection line, (d) means for heating the air and steam in the chamber, including means for combustion; (e) turbine means responsive to a mixture of air, combustion products and steam for converting the energy associated with the mixture to mechanical energy; (f) counterflow heat exchanger means, including at least superheater and evaporator sections, for transferring residual thermal energy from a mixture of air, combustion products and steam exhausted from the turbine means to incoming water and steam.

Cheng, D.Y.

1987-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FM12 & rus Steam - Steam Users' Forums  

U.S. Energy Information Administration (EIA)

STORE COMMUNITY ABOUT SUPPORT Steam Users' Forums > Steam Game Discussions > D - G > Football Manager series

322

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

323

Significant Silica Solubility in Geothermal Steam  

DOE Green Energy (OSTI)

Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

James, Russell

1986-01-21T23:59:59.000Z

324

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

325

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

326

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

327

DOE's BestPractices Steam End User Training Steam EndUser Training  

E-Print Network (OSTI)

is that the industrial plant has a need for thermal energy as well as shaft power. The industrial plant can make use that is passed through turbines. Therefore, let's examine a typical coalfired power plant. Steam End User words, the power plant turbine will be 85 percent of perfect. The generator that converts shaft power

Oak Ridge National Laboratory

328

Derwent cogeneration renews steam supply to Courtauld`s  

SciTech Connect

A 220 MW gas turbine CHP scheme replaces coal-fired boilers at Courtauld`s power station, near Derby, England. It provides steam both to processes and to drive the three existing back-pressure turbines. The scheme that has evolved comprises four MS6001B gas turbines, with fired dual-pressure heat recovery boilers and a 58 MW condensing steam turbine. The plant is of outdoor construction, sited next to the existing Spondon H. With the original coal-fired boilers now decommissioned, the three back-pressure turbines bridge across the HP and LP steam outputs of the new plant. The plant is designed for dual-fuel operation, but in practice will burn only gas. The plant was completed in March this year and was available as an emergency steam supply to cover outages in the coal-fired plant. 6 figs.

Jeffs, E.

1995-05-01T23:59:59.000Z

329

Creep Rupture Behaviour of Nickel Base Alloys for 700°C – Steam ...  

Science Conference Proceedings (OSTI)

Nickel base alloys are important for future steam turbines operating at 700 "C or ..... appropriated to calculate the time dependent stress and strain distribution of ...

330

Turbine Technologies for High Performance Light Water Reactors  

SciTech Connect

Available turbine technologies for a High Performance Light Water Reactor (HPLWR) have been analysed. For the envisaged steam pressures and temperatures of 25 MPa and 500 deg. C, no further challenges in turbine technologies have to be expected. The results from a steam cycle analysis indicate a net plant efficiency of 43.9% for the current HPLWR design. (authors)

Bitterman, D. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

2004-07-01T23:59:59.000Z

331

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

332

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

333

IMPROVEMENTS IN STEAM GENERATING AND SUPERHEATING PLANT AND AN IMPROVED METHOD OF PRODUCING LOW PRESSURE SUPERHEATED STEAM  

SciTech Connect

A steam supply arrangement is described which generates high-pressure steam and superheats steam from a low-pressure source. Inus, in operations cteam at 350 to 600 psi from a nuciear reactor is superheated in a heat exehanger anu later in gas-heated equipment to 1100 F and passed to a stage of a pluralstage steam turbine. When the reactor ls shut downs steam generated in the steam generator section may be passed directly to the gas-fired superheater. (T.R.H.)

1959-02-18T23:59:59.000Z

334

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

335

Steam Pricing  

E-Print Network (OSTI)

Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different efficiencies. It is then distributed throughout the plant to the various users in steam distribution systems, each one operating at a different pressure and temperature. This paper examines various ways to cost steam and discusses the importance of proper costing. Specifically it addresses three types of steam costs; Marginal Costs, Project Evaluation Costs and Financial Costs.

Jones, K. C.

1986-06-01T23:59:59.000Z

336

IMPROVEMENTS IN OR RELATING TO STEAM RAISING PLANT  

SciTech Connect

A scheme is given for a dual pressure steam raising plant for reactor power plants, especially those of the Calder Hall type in which heat transfer fluid (CO/sub 2/) can be circulated by steam. In the scheme, the gaseous coolant is passed through the steam raising unit and then is passed back into the reactor via a gas blower. The unit employs a dual pressure cycle in which water is passed into two steel drums connected to evaporators and superheaters in the unit; steam from one drum is high-pressure steam (HP). while steam from the other is low-pressure steam (LP). HP drives the gas blower by means of a back pressure turbine and then is discharged into the LP cycle in the unit. HP and LP from the superheaters are fed into a distant turbo-alternator which comprises two turbines, a small one for HP and a large one for LP. (D.L.C.)

Mitchell, J.M.

1960-08-10T23:59:59.000Z

337

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

338

Guidelines for Turbine Deposit Collection and Analysis  

Science Conference Proceedings (OSTI)

Steam impurities can deposit throughout the steam path, causing a variety of performance issues. Deposits can result in efficiency losses and component failures through stress corrosion cracking (SCC) or corrosion fatigue (CF) initiated by corrosive deposits. The potential for each of these mechanisms can be exacerbated by the reduced frequency of turbine overhauls or opportunities to conduct an inspection. Sampling and deposit analysis is an integral part of a steam path audit, as well as a reflection o...

2011-12-14T23:59:59.000Z

339

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

340

Design of a heat recovery steam generator  

SciTech Connect

A gas turbine in the size range of 20,000 hp (14.9 MW) was retrofitted with a heat recovery steam generator (HRSG). The HRSG produces high pressure superheated steam for use in a steam turbine. Supplementary firing is used to more than double the steam production over the unfired case. Because of many unusual constraints, an innovative design of the HRSG was formulated. These design constraints included: a wide range of operating conditions was to be accommodated; very limited space in the existing plant; and a desire to limit the field construction work necessary in order to provide a short turnaround time. This paper discusses the design used to satisfy these conditions.

Logeais, D.R.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enhanced Chloride Monitoring for Steam Condensate Samples  

Science Conference Proceedings (OSTI)

The objective of this project was to develop to the proof-of-concept stage a system that enables the quantification of chloride (Cl) in turbine steam condensate samples. The chloride quantification system is intended to serve as an alternative to online chromatography for chloride concentration monitoring. The conceptual approach was to concentrate the ions in the steam condensate, by a predetermined factor, to a level that allowed accurate detection of chloride by ion selective electrodes (ISEs). The ab...

2012-01-31T23:59:59.000Z

342

Steam electric plant factors, 1978. [48 states  

SciTech Connect

Fossil-fuel steam electric generation increased 5.8% in 1977 to 1,612.2 million MWh as compared to 1976. Thirty-four new fossil-fuel steam electric units and 7 new nuclear units became operational in 1977. Detailed data are reported for 748 plants, accounting for more than 99% of the total steam generation capacity, in the contiguous US.

1978-01-01T23:59:59.000Z

343

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

344

Preliminary study of a frame for a two module turbine system.  

E-Print Network (OSTI)

?? The development of steam turbines is continuously moving forward and the aim is oftento develop configurations with higher power output. Siemens Industrial Turbomachinery AB… (more)

Lundberg, Anders

2011-01-01T23:59:59.000Z

345

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

346

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

347

Open cycle ocean thermal energy conversion steam control and bypass system  

DOE Patents (OSTI)

Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

Wittig, J. Michael (West Goshen, PA); Jennings, Stephen J. (Radnor Township, Delaware County, PA)

1980-01-01T23:59:59.000Z

348

Biphase turbine bottoming cycle for a diesel engine  

SciTech Connect

Application of a two-phase turbine system to waste heat recovery was examined. Bottoming cycle efficiencies ranging from 15 to 30% were calculated for a 720/sup 0/F diesel exhaust temperature. A single stage demonstration unit, designed for non-toxic fluids (water and DowTherm A) and for atmospheric seals and bearings, had a cycle efficiency of 23%. The net output power was 276 hp at 8,100 rpm, increasing the total shaft power from 1,800 hp for the diesel alone, to 2,076 hp for the combined system. A four stage organic turbine, for the same application, had a rotational speed of 14,700 rpm while a four stage steam turbine had 26,000 rpm. Fabrication drawings were prepared for the turbine and nozzle. The major improvement leading to higher cycle efficiency and lower turbine rpm was found to be the use of a liquid component with lower sensible heat. A reduction in capital cost was found to result from the use of a contact heat exchanger instead of tube-fin construction. The cost for a contact heat exchanger was only $35-52/kWe compared to $98/kWe for a tube-fin heat exchanger. Design drawings and materials list were prepared. A program resulting in the demonstration of a two-phase bottoming system was planned and the required cost estimated. The program would result in a feasibility test of the nozzle and turbine at the end of the first year, a laboratory performance test of the bottoming system by the end of the second year and a field demonstration test and laboratory endurance test of the bottoming system during the third year. The blowdown test rig for the first year's program and test turbine were designed.

Ahmad, S.; Hays, L.

1977-02-15T23:59:59.000Z

349

Enhancing gas-turbine performance  

SciTech Connect

According to one report, around 80% of the large frame-size industrial and utility gas turbines (GTs) in service throughout the world were installed between 1965 and 1975. Because of substantial technology advancements since their commissioning, these older units make ideal candidates for capacity enhancements through such options as steam or water injection, inlet-air cooling, steam-cycle addition, hot-gas-path component uprates, and in the case of combined-cycles, supplementary firing of the heat-recovery steam generator (HRSG). This article reports that many gas-turbine owners are searching for upgrades that will enhance capacity or thermal efficiency--or both. Uprating hot-gas-path components is perhaps the most popular option, but economic evaluations must account for shortened hot-section life and higher O and M costs.

Swanekamp, R.

1995-09-01T23:59:59.000Z

350

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

351

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

352

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections 2010--Volume 4: Turbine Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2010-12-23T23:59:59.000Z

353

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2006; Volume 4: Turbine-Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2007-03-30T23:59:59.000Z

354

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network (OSTI)

A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well as the monitoring of the entire steam system. This is used for both day-to-day site optimization as well as long-term site planning. In this presentation, we will discuss who the main users of the program are and how they and the plant derive benefits from its use.

Jones, B.; Nelson, D.

2007-01-01T23:59:59.000Z

355

Demonstration of a rotary separator for two-phase brine and steam flows. Final report  

DOE Green Energy (OSTI)

The application of a two-phase rotary separator for geothermal energy conversion was demonstrated. Laboratory tests were conducted with clean water and steam at Biphase Energy Systems, Inc., Santa Monica, California. Field tests were conducted at the Union Oil Co., Tow No. 1 wellsite near Brawley, California. The system tested consisted of the major components of a total flow rotary separator/turbine conversion system. A nozzle converted the brine wellhead enthalpy to two-phase flow kinetic by impinging the nozzle flow tangentially on the inside of the separator. The flow was therefore subjected to the high centrifugal force field in the separator. This caused the liquid phase to collect as a film on the separator drum with very little energy loss. The steam was allowed to flow radially inward to the central steam discharge. Potable water was obtained by condensing the steam exhaust. The brine collection system converted the liquid film kinetic energy to static pressure head. The system was operated for 116 hours in a high salinity environment (115,000 ppM TDS). The system operated properly with no adverse effects from solids precipitation or scale buildup. The rotary separator produced separate flows of pure liquid and steam of greater than 99.5% quality.

Cerini, D.J.

1978-01-01T23:59:59.000Z

356

Steam-flooding  

SciTech Connect

Steam-flooding has become an established recovery technique within the last 20 years. This overview discusses its evolution, methods for selecting and designing steam-floods, constraints, and possible improvements. The term steam-flooding is used here in a general sense. The discussion includes steam soak (cyclic steam injection) and steam drive.

Matthews, C.S.

1983-03-01T23:59:59.000Z

357

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

358

Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation  

SciTech Connect

Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

Webb, R.L.; Chamra, L.; Jaber, H.

1992-02-01T23:59:59.000Z

359

Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979  

DOE Green Energy (OSTI)

A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

Ney, E.J.

1979-07-01T23:59:59.000Z

360

Development of Code to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction model is essential for successfully avoiding unscheduled outages of steam turbines. This report provides the initial electrochemical data needed for the model development.

2005-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of Code to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction technology is essential for successfully avoiding unscheduled outages of steam turbines.

2004-02-03T23:59:59.000Z

362

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

2002-01-01T23:59:59.000Z

363

Evaluation of Temper Embrittlement in Turbine Rotor Material  

Science Conference Proceedings (OSTI)

To assess the integrity of in-service steam turbine rotors, utilities need to know their current toughness. This report presents a procedure for nondestructively estimating toughness on the basis of the chemical composition of the rotor steel.

1991-03-01T23:59:59.000Z

364

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

365

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

366

Generating Electricity with your Steam System: Keys to Long Term Savings  

E-Print Network (OSTI)

The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings with relatively quick payback of capital. Carefully planned and executed projects are the key to unlocking the maximum value of generating electricity from an existing steam system. This paper illustrates the key concepts of generating onsite power with backpressure steam turbine generators along with practical considerations.

Bullock, B.; Downing, A.

2010-01-01T23:59:59.000Z

367

Advanced Turbine Systems program  

SciTech Connect

Allison draws the following preliminary conclusions from this preliminary design effort: (1) All cycles investigated require a high temperature turbine capability to be developed under ATS. (2) The HAT and intercooled chemical recuperation cycles compete in only a narrow sector of the industrial engine market. This is the result of the complexity and water usage of the HAT cycle and the limitation of the chemical recuperation cycle to applications where natural gas is readily available. (3) From a cycle point of view, the ICR and chemical recuperation cycles are similar. Both optimize at fairly low compressor pressure ratios ({approximately}15) because both want high temperature in the exhaust to optimize the recuperation process. Excess steam production with the chemical recuperation process makes it somewhat doubtful that the two recuperation processes are interchangeable from a hardware point of view. Allison intends to perform a global optimization on this cycle during Phase 2 of ATS. (4). There appears to be no substitute for the simple cycle with steam generation in the cogen-steam market since steam is, by definition, a valuable product of the cycle.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1993-11-01T23:59:59.000Z

368

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

369

Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)  

DOE Green Energy (OSTI)

A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100% after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.

Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

2000-09-01T23:59:59.000Z

370

Task 1—Steam Oxidation (NETL-US)  

SciTech Connect

The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

371

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2012  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2012-12-12T23:59:59.000Z

372

Combustion Turbine Experience and Intelligence Reports: 2007  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements coupled with heat recovery bottoming steam cycles has risen dramatically over the past 20 years. Much of this improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage coupled with lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effectively...

2008-03-27T23:59:59.000Z

373

Combustion Turbine Experience and Intelligence Report: 2008  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements, coupled with heat recovery bottoming steam cycles, have risen dramatically over the past 20 years. Much improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage in combination with the lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effec...

2009-03-23T23:59:59.000Z

374

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

375

Computer Optimization of Steam Production  

E-Print Network (OSTI)

As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total energy is consumed in generating high pressure steam. Recently, a computer program was implemented to optimize high pressure steam production. The first challenge in developing the program was to provide reliable analog and digital instrumentation allowing simultaneous analog header control along with effective digital steam flow control. Once appropriate instrumentation became available, the effort focused on identifying the best approach for developing the computer control program. After screening several alternatives, it became apparent that we were dealing with an allocation problem which could be effectively handled with a linear program. The control program has performed well since it was commissioned. It has experienced a service factor of greater than 95% while reducing energy consumption of the boilers by over 500 million Btu's per day.

Todd, C. H.

1982-01-01T23:59:59.000Z

376

Nuclear Maintenance Applications Center: Feed Pump Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Steam Turbines and Auxiliaries Program 65 and the Nuclear Maintenance Application Center have developed a series of maintenance guides to assist plant personnel with the performance of various maintenance tasks associated with a wide variety of plant components. The objective of this project was to publish a maintenance guide for the feed pump turbines that included an ...

2012-09-25T23:59:59.000Z

377

Method and apparatus for improved start-up procedures in conventional steam power generators and dual fluid Cheng cycle engines  

SciTech Connect

In a start-up procedure for a steam injected gas turbine engine, a chamber; compressor means for introducing air into the chamber; means for introducing steam within the chamber, including at least a steam injection line; means for heating air and steam in the chamber, including at least a hydrocarbon fuel source and means for combustion; turbine means response to a mixture of air, combustion products and steam for converting the energy associated with the mixture to mechanical energy; counterflow heat exchanger means, including at least superheater and evaporator sections, for transferring residual thermal energy for the mixture exhausted from the turbine means, to incoming water and steam, wherein the evaporator section includes a water storage drum between, and connected with, the evaporator and superheat sections, the connection between the drum and superheater sections including a steam injector control valve, and means for providing incoming water at temperatures below the normal operating boiling temperature to the evaporator section.

Hamill, J.; Digumarth, R.; Conlon, W.; Cheng, D.Y.; Chang, C.N.

1988-04-05T23:59:59.000Z

378

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

379

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

380

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling of Proposed Changes to SIUC Central Heating, Air-Conditioning, and Power Plant Incorporating Variable Frequency Drive (VFD) and High Efficiency Turbine.  

E-Print Network (OSTI)

??Currently, the Southern Illinois University Carbondale (SIUC) power plant produces steam at high pressure to drive a high pressure (HP) turbine to make a portion… (more)

Su, Heyin

2011-01-01T23:59:59.000Z

382

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

383

Development of Code to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low-Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction technology is essential for successfully avoiding unscheduled outages of steam turbines.

2005-03-14T23:59:59.000Z

384

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

385

Rate of change of pressure temperature protection system for a turbine  

SciTech Connect

In a steam turbine being driven from a source of the steam, a control system is described for protecting the turbine from undesirable steam pressure variation comprising: a. means for establishing an acceptable range of variation of actual steam pressure, b. means coupled to the acceptable pressure range establishing means for generating a first alarm signal only if the actual steam pressure is outside the acceptable range, c. means for generating a second signal representing an acceptable rate of change of the actual pressure, and d. means coupled to the first alarm signal generating means and the second signal generating means for generating a second alarm signal only if the actual rate of change of steam pressure exceeds the acceptable rate of change and the actual steam pressure is outside of the acceptable range of steam pressure variation.

Vecchio, R.J.; Gram, J.A.

1987-04-07T23:59:59.000Z

386

Steam Chemistry: Interaction of Chemical Species with Water, Steam and Materials During Evaporation, Superheating and Condensation: June 22-25, 1999, Frieburg, Germany  

Science Conference Proceedings (OSTI)

The continued protection of the steam turbine in the phase transition zone (PTZ) is vital to the reliability of power generating and other energy-related equipment. This conference was dedicated to the fundamental aspects of the corrosion processes and efficiency improvements that involve the formation of moisture droplets, liquid films, and deposits on turbine surfaces.

2000-08-08T23:59:59.000Z

387

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

388

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

389

Plant Guide to Turbine Disk Rim Inspection  

Science Conference Proceedings (OSTI)

Steam turbine disk rims are one of the most highly stressed areas of the rotor. Periodic inspection of the rims provides information on the operability of the rotor, including the identification of conditions that could result in catastrophic failure of the rotor.

2006-12-18T23:59:59.000Z

390

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

391

Heat Recovery Steam Generator Procurement Specification  

Science Conference Proceedings (OSTI)

Many heat recovery steam generators (HRSGs), particularly those equipped with advanced gas turbines that are subjected to periods of frequent cyclic operation, have experienced premature pressure part failures resulting from excessive thermal mechanical fatigue damage. The very competitive power generation marketplace has resulted in the lowest installed cost often taking precedence over medium- and long-term durability and operating costs. The procurement of engineer, procure, and construct ...

2013-12-20T23:59:59.000Z

392

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

393

Using the Biphase Turbine to Generate Useful Energy from Process Streams  

E-Print Network (OSTI)

The Biphase turbine is a device for effectively converting enthalpy changes in a two-phase (liquid and gas) working fluid into mechanical energy. No other device is currently available for performing this task. The working fluid may be a single component, two-phase stream, as in a water-steam combination; or it may be a multi-component, two phase stream such as is often present in industrial processes. The performance of the Biphase turbine and its advantages over single-phase energy conversion devices' (steam or hydraulic turbines for example) have been demonstrated in its application to geothermal energy conversion. Its development and application to other areas such as waste-heat recovery, desalination, solar cooling, and now, two phase industrial process streams is being pursued by Biphase Energy Systems. This paper identifies specific industrial process streams from which power recoveries of up to two MW can be obtained. In current practice, this power is dissipated across two phase flash valves. A total potential national energy savings equivalent to 58 million barrels of oil per year is identified for processes examined in the five most energy-intensive industries.

Helgeson, N. L.; Studhalter, W. R.

1981-01-01T23:59:59.000Z

394

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

395

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

396

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

397

Integrated vacuum absorption steam cycle gas separation  

Science Conference Proceedings (OSTI)

Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

2011-11-22T23:59:59.000Z

398

A STEAM POWER INSTALLATION FOR NUCLEAR POWER PLANT WITH GAS-COOLED REACTORS  

SciTech Connect

A steam power plant is designed for use with gas-cooled power reactors. In this plant, the turbine is divided into two sections, one high pressure and the other low pressure, the low-pressure turbine being the condensing turbine. The feed water from the condensing turbine is divided into two streams, one of which is brought to a higher pressure than the other. The high-pressure feed water is evaporated and superheated in the heat exchanger and then supplied to the high-pressure turbine, while the low-pressure feed water is evaporated and mixed with the exhaust steam of the highpressure turbine before superhenting and then passing to the low-pressure condensing turbine. Circulation of the reactor coolant is effected by a blower driven by a series turbine with no regulating devices and arranged in the steam plant circuit upstream of the low-pressure turbine; such a turbine works with constant efficiency over its whole load range. (D.L.C.)

1961-03-01T23:59:59.000Z

399

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections–2013: Supplemental Addition  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2013-12-17T23:59:59.000Z

400

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections, Volume 1: General Practices  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2013-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

402

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

403

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

404

Program on Technology Innovation: Oxide Growth and Exfoliation on Alloys Exposed to Steam  

Science Conference Proceedings (OSTI)

Exfoliation of oxide scales from the steam-touched surfaces of superheater and reheater tubes results in short-term overheating boiler tube failures (BTF) and solid particle erosion of the inlet stages of the steam turbine. This report provides the state-of-knowledge of oxide growth and exfoliation, which will eventually help power plant operators control the damage mechanisms.

2007-06-26T23:59:59.000Z

405

Robust controller design for main steam pressure based on SPEA2  

Science Conference Proceedings (OSTI)

Main steam pressure is an important physical quantity that reflects the energy supply-demand relationship between the boiler and turbine. It has a significant role in the unit operation. Because boiler burning behavior varies greatly and the model of ... Keywords: H? robust control, SPEA2, main steam pressure, weighing function matrix

Shuan Wang; Dapeng Hua; Zhiguo Zhang; Ming Li; Ke Yao; Zhanyou Wen

2011-08-01T23:59:59.000Z

406

APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND  

DOE Patents (OSTI)

A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)

Treshow, M.

1963-07-23T23:59:59.000Z

407

The evaporative gas turbine (EGT) cycle  

SciTech Connect

Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1998-04-01T23:59:59.000Z

408

Design of high-efficiency turbomachinery and gas turbines  

SciTech Connect

The present treatment of pump, compressor, and turbine turbomachinery emphasizes thermodynamics, design methods, and the use that can be made of relatively simple rules for the choosing of cycle types, vector diagrams, blading types, heat exchanger configurations, etc. Gas dynamics are treated to the virtual exclusion of mechanical design considerations, although a brief historical account of the family of turbomachine systems notes gradual structural as well as thermodynamic and gas dynamic refinements. The complete systems described and analyzed include aircraft, marine, and electrical power generation gas turbines, steam turbines, and hydraulic pumps and turbines. Both axial and centrifugal flow turbomachine types are considered. 112 references.

Wilson, D.G.

1984-01-01T23:59:59.000Z

409

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

410

Real-time turbine maintenance system  

Science Conference Proceedings (OSTI)

Reliable power generation and low maintenance costs are the major goals of power plant administration. This goal, in fact, can be achieved by a proper turbine maintenance policy. This study presents a model for total productive maintenance to enhance ... Keywords: Radio frequency identification, Total productive maintenance, Turbine

Tung-Liang Chen

2009-05-01T23:59:59.000Z

411

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

412

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

413

Steam Generator Management Program: Steam Generator Progress Report  

Science Conference Proceedings (OSTI)

Since 1985, EPRI has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities.

2009-10-19T23:59:59.000Z

414

Secondary steam models of a combined cycle power plant simulator  

Science Conference Proceedings (OSTI)

In this paper, the general description of a full scope simulator for a combined cycle power plant is presented; the antecedents of this work are explained; the basis of the models of the auxiliary and turbine gland steam systems are exposed and some ...

Edgardo J. Roldan-Villasana; Ma. de Jesus Cardoso-Goroztieta; Adriana Verduzco-Bravo; Jorge J. Zorrilla-Arena

2011-04-01T23:59:59.000Z

415

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

416

Repowering reheat units with gas turbines: Final report. [Adding gas turbines and heat recovery to present units  

SciTech Connect

Although conventional repowering on nonreheat units replaces existing boilers with gas turbines and heat recovery steam generators, options investigated by Virginia Power use gas turbine waste heat to supplement, rather than replace, the output of existing steam generators. Virginia Power's experience in considering feedwater heater repowering (FHR) and hot windbox repowering (HWR) as repowering options is described here. Studying five plants identified as potential repowering candidates, investigators first evaluated FHR, which uses a gas turbine generator set equipped with an economizer to heat boiler feedwater. This reduces the steam turbine extraction flow and increases the steam turbine capacity. HWR, the second method investigated, routes the hot, relatively oxygen-rich exhaust flow from a gas turbine into the boiler windbox, eliminating the need for an air preheater. A boiler stack gas cooler then heats feedwater, again increasing turbine capacity by reducing extraction steam flow requirements for feedwater heating. FHR provided the lowest installed cost, especially at Mount Storm unit 3, a coal-fired minemouth plant. Use of a gas turbine to heat feedwater at this plant resulted in a $523/kW (1985) installed cost and 124-MWe unit capacity increase at a design incremental heat rate of 8600 Btu/kWh. FHR at Mount Storm units 1, 2, and 3 cost less overall than installation and operation of a new combined cycle. Although the findings and conclusions in this series of repowering reports are largely unique to the individual plants, units, and applications studied, other utilities performing repowering studies can draw on the types of consideration entertained, alternatives examined, and factors and rationale leading to rejection or acceptance of a given repowering approach. 12 figs., 12 tabs.

Rives, J.D.; Catina, J.

1987-05-01T23:59:59.000Z

417

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

418

Heat-recovery steam generators: Understand the basics  

Science Conference Proceedings (OSTI)

Gas turbines with heat-recovery steam generators (HRSGs) can be found in virtually every chemical process industries (CPI) plant. They can be operated in either the cogeneration mode or the combined-cycle mode. In the cogeneration mode, steam produced from the HRSG is mainly used for process applications, whereas in the combined-cycle mode, power is generated via a steam turbine generator. Recent trends in HRSG design include multiple-pressure units for maximum energy recovery, the use of high-temperature superheaters or reheaters in combined-cycle plants, and auxiliary firing for efficient steam generation. In addition, furnace firing is often employed in small capacity units when the exhaust gas is raised to temperatures of 2,400--3,000 F to maximize steam generation and thus improve fuel utilization. This article highlights some of the basic facts about gas turbine HRSGs. This information can help plant engineers, consultants, and those planning cogeneration projects make important decisions about the system and performance related aspects.

Ganapathy, V.

1996-08-01T23:59:59.000Z

419

Downhole steam quality measurement  

SciTech Connect

An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1987-01-01T23:59:59.000Z

420

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

422

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

423

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

424

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections 2010--Volume 3: Balancing and A lignment  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2010-12-23T23:59:59.000Z

425

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections -- 2011: Volume 2, Repair Proce dures  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2012-07-31T23:59:59.000Z

426

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections—2007: Volumes 2 and 4 Sup plemental Additions  

Science Conference Proceedings (OSTI)

Up to 70 of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2008-03-27T23:59:59.000Z

427

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2006; Volume 1: General Practic es  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2007-03-30T23:59:59.000Z

428

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

429

STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm  

E-Print Network (OSTI)

...........................................................................................................................10 Gas turbine technology

430

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

431

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

432

Steam Trap Application  

E-Print Network (OSTI)

The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product quality, and reduce energy and maintenance costs.

Murphy, J. J.

1982-01-01T23:59:59.000Z

433

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

434

Development of Model to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are the result of corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction model is essential to successfully avoid unscheduled outages of steam turbines. This report provides the latest analytical model for predicting failure and includes the electrochemical data for a blade material (17-4PH) that will be used in the model.

2007-02-26T23:59:59.000Z

435

Definition: Turbine | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Dictionary.png Turbine A device or machine that converts the kinetic energy of a fluid (air, water, steam or other gases) to mechanical energy.[1][2] View on Wikipedia Wikipedia Definition Related Terms Electric generator, Electricity, Electricity generation, energy, bioenergy References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=T ↑ http://www1.eere.energy.gov/site_administration/glossary.html Retriev LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ed from "http://en.openei.org/w/index.php?title=Definition:Turbine&oldid=493149" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

436

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

437

Kuwait - Analysis - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Gas Turbine: Al-Julaia: 1,000 MW: Gas Turbine: Shuwakh: 2,000 MW: Gas Turbine: Shuaiba South: 1,400 MW: Steam Turbine: Doha East: 2,300 MW: Steam Turbine: Total ...

438

Cooling system for a bearing of a turbine rotor  

SciTech Connect

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

439

Gas Turbine Considerations in the Pulp and Paper Industry  

E-Print Network (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena. Large quantities of process steam and electrical energy are required per unit of production. The pulp and paper industry has recognized the thermodynamic benefits and potentially attractive economics of developing power generation as an integral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suitable economic conditions are present. And many systems incorporating a wide variety of steam turbine types have been installed and are contributing toward profitable operations. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened the interest in power generation in the pulp and paper industry, as well as others. A strategic review of these issues creates the opportunity to favorably position the pulp and paper industry for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their traditional steam turbine approach.

Anderson, J. S.; Kovacik, J. M.

1990-06-01T23:59:59.000Z

440

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Measurements of low level NO /SUB x/ emission from a Cheng Cycle Gas Turbine  

Science Conference Proceedings (OSTI)

Mass steam injection into the combustor of a Cheng Cycle turbine can influence combustion characteristics and pollutant formation. When using a Cheng Cycle system based on a Garrett 831 gas turbine liquid fuel, these influences were studied experimentally. Data obtained to date indicate that significant NO /SUB x/ reduction can be achieved without suffering combustion inefficiency or instability.

Chang, C.N.; Digumarthi, R.

1984-06-01T23:59:59.000Z

442

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

443

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

444

Comparative evaluation of surface and downhole steam-generation techniques  

Science Conference Proceedings (OSTI)

It has long been recognized that the application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil-bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. This paper compares the technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses, with (a) thermally efficient delivery (through insulated strings) of surface generated steam, (b) low pressure combustion downhole steam generation, (c) high pressure combustion downhole steam generation using air as the oxygen source, and (d) high pressure combustion downhole steam generation substituting pure oxygen for air. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality. Therefore, a parametric analysis has been performed which examines varying depths, injection rates and steam qualities. Results indicate that the technologies are not readily distinguishable for low injectivity reservoirs in which conventional steam drives are feasible. However, high injection rates produce a notable cost difference between high pressure combustion systems and the other technologies. Issues that must be addressed before gaining further insight into the economic viability of downhole steam generation are discussed.

Hart, C.

1982-01-01T23:59:59.000Z

445

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

Science Conference Proceedings (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

446

Turbine Condition Assessment and Monitoring Methodology  

Science Conference Proceedings (OSTI)

This report provides a broad overview of the process of steam turbine condition assessment and on-line monitoring (OLM). Describing the traditional approaches to condition assessment and the advanced techniques for automated OLM will encourage readers to consider strategies in their own organizations for applying the best features of each approach. Although new commercially available OLM systems have powerful data processing techniques, the equipment still requires a great deal of subject matter expertis...

2004-12-22T23:59:59.000Z

447

Steam generator support system  

SciTech Connect

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

448

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

449

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

450

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

451

Economic evaluation of the nuclear turbine deaerating cycle  

Science Conference Proceedings (OSTI)

Degradation in performance of pressurized water reactor steam generators after several years in operation has been reported in recent years. The major concern is the tube cracking caused by tube and support plate corrosion. Recent studies indicate that the level of oxygen concentration in the feedwater plays an important role in starting steam generator corrosion. The functions of a deaerator in the steam cycle is to reduce the concentration of dissolved gases, particularly oxygen, to a low level. An economic analysis has been performed to select the cycle for the pressurized water reactor plant with the installation of a deaerator to the turbine regenerative cycle.

Chiang, K.C.; Lee, N.H.

1986-04-01T23:59:59.000Z

452

Downhole steam injector  

SciTech Connect

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

453

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from about $0.50 per 1,000# to $3.00 or more. Many see costs of $5.00 per 1,000# by 1980. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1979-01-01T23:59:59.000Z

454

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from $0.50 per 1,000# to today's cost of $4.00 or more. Many see costs of $6.00/$7.00 in the near future. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1980-01-01T23:59:59.000Z

455

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

456

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes v