Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

South Dakota Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) South Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,846 1,947 2,558 2,231 3,431 3,920 4,369 1990's 881 93 1,006 854 1,000 848 0 687 772 702 2000's 648 563 531 550 531 446 455 422 1,099 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value South Dakota Natural Gas Wellhead Value and Marketed Production

2

Indiana Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Indiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Indiana Natural Gas Wellhead Value and Marketed Production

3

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

4

Virginia Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,342 8,928 15,041 15,427 19,223 18,424 17,935 1990's 14,283 14,906 24,734 37,840 50,259 49,818 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Virginia Natural Gas Wellhead Value and Marketed Production

5

Oregon Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oregon Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,069 837 688 467 433 NA 390 751 751 2010's 1,376 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Oregon Natural Gas Wellhead Value and Marketed Production

6

Alaska Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,569 211,579 222,637 304,841 271,120 228,284 192,760 1990's 191,798 200,557 206,259 224,786 201,891 227,797 193,278 191,017 192,982 186,727 2000's 189,896 197,735 200,871 199,616 413,667 502,887 494,323 368,344 337,359 397,077 2010's 316,546 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

7

Alabama Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 59,051 56,685 42,925 34,164 35,674 45,488 41,614 1990's 37,229 35,972 51,219 75,474 70,489 54,964 493,069 583,370 560,414 544,020 2000's 521,215 376,241 370,753 348,722 304,212 285,237 274,176 259,062 246,747 225,666 2010's 212,769 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

8

Pennsylvania Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Pennsylvania Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 118,372 166,342 150,234 159,889 163,318 167,089 191,774 1990's 177,609 152,500 138,675 189,443 187,113 177,139 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Pennsylvania Natural Gas Wellhead Value and Marketed

9

Nebraska Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Nebraska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,091 2,300 1,944 1,403 1,261 910 878 1990's 793 785 1,177 1,375 2,098 1,538 1,332 1,194 1,285 1,049 2000's 879 883 892 1,168 1,172 1,172 NA 1,555 3,082 2,908 2010's 2,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nebraska Natural Gas Wellhead Value and Marketed Production

10

Montana Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,751 47,534 46,113 42,203 42,814 47,748 52,044 1990's 45,998 48,075 50,359 58,810 51,953 46,739 46,868 50,409 51,967 55,780 2000's 67,294 78,493 86,075 86,027 90,771 101,666 106,843 110,942 802,619 293,941 2010's 87,539 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

11

North Dakota Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 69,319 60,111 62,371 58,593 51,671 21,240 12,290 1990's 11,537 5,138 3,994 4,420 0 0 0 52,401 53,185 52,862 2000's 48,714 57,949 57,015 57,808 59,513 57,972 53,675 54,745 52,469 59,369 2010's 81,837 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

12

California Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) California Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 282,639 343,079 361,739 329,366 346,720 327,399 283,509 1990's 275,738 211,841 195,515 76,381 199,649 263 37,823 219,216 264,810 382,715 2000's 323,864 328,778 309,399 293,691 276,520 274,817 278,933 268,016 263,107 241,916 2010's 251,559 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

13

Mississippi Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641 97,258 2010's 73,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

14

Colorado Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Colorado Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 139,820 143,552 126,037 163,684 164,557 191,544 216,737 1990's 242,997 271,159 314,105 388,016 441,343 511,513 559,473 637,375 696,321 705,477 2000's 735,332 800,712 819,205 989,678 1,058,383 1,106,993 1,170,819 1,280,638 1,436,203 1,409,172 2010's 1,548,576 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

15

Michigan Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Michigan Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,910 144,537 131,855 127,287 146,996 146,145 155,988 1990's 106,193 189,497 190,637 199,746 216,268 238,203 245,740 305,950 278,076 277,364 2000's 296,556 275,036 274,476 236,987 259,681 261,112 NA NA 153,130 159,400 2010's 151,886 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

16

Arkansas Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613 2010's 936,600 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

17

West Virginia Quantity of Production Associated with Reported Wellhead  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) West Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 130,078 143,730 144,883 135,431 160,000 174,942 177,192 1990's 95,271 198,605 202,775 171,024 55,756 50,439 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value West Virginia Natural Gas Wellhead Value and Marketed

18

Kentucky Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

19

Ohio Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Ohio Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 149,096 184,651 180,458 180,287 164,960 166,690 159,730 1990's 154,619 146,189 143,381 135,939 130,855 125,085 119,251 116,246 108,542 102,505 2000's 98,551 97,272 103,158 120,081 119,847 83,523 86,315 88,095 84,858 88,824 2010's 78,122 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

20

New York Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New York Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,836 25,200 31,561 22,964 25,676 23,455 20,433 1990's 25,023 21,704 22,543 20,620 19,684 17,325 0 15,415 15,415 15,426 2000's 17,166 27,187 35,941 35,044 45,436 54,377 55,344 54,942 50,320 44,849 2010's 35,241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

22

New Mexico Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New Mexico Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 884,517 925,298 880,307 676,886 790,639 752,629 833,593 1990's 949,735 1,029,824 1,274,220 1,489,052 1,510,804 1,480,327 1,553,103 1,540,157 1,483,370 1,511,671 2000's 1,685,664 1,670,644 1,614,045 1,576,639 1,578,773 1,571,920 1,562,754 1,495,615 895,675 1,370,727 2010's 1,287,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

23

Oklahoma Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375 1,531,657 1,584,905 1,571,615 1,683,563 1,589,871 1,765,988 1,621,316 2010's 1,408,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

24

Texas Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Texas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,227,995 6,630,246 6,367,936 6,465,964 6,414,021 6,386,544 6,276,968 1990's 6,476,032 6,066,256 5,893,069 5,769,437 5,834,671 5,592,323 4,684,140 4,716,304 4,777,945 5,719,128 2000's 5,869,901 5,159,233 5,166,315 5,186,213 5,271,306 5,539,052 5,993,702 6,454,249 7,483,842 7,623,747 2010's 7,470,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

25

Louisiana Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Louisiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,149,192 3,650,412 3,179,306 2,986,468 3,243,795 3,158,903 3,066,789 1990's 3,780,551 3,355,867 3,404,963 3,454,646 3,562,360 3,709,015 3,976,305 5,398,216 5,410,523 5,265,670 2000's 3,587,815 1,529,733 1,365,925 1,350,399 1,357,366 1,296,048 1,361,119 1,275,806 1,292,478 1,449,809 2010's 2,140,525 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

26

Wyoming Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760 1,811,992 1,916,238 2,116,818 2,239,778 2010's 2,318,486 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

27

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

28

DIRECTOR'S REPORT Diminishing quantities of water and their management continue to be a problem for Nebraska . In addition to  

E-Print Network [OSTI]

DIRECTOR'S REPORT Diminishing quantities of water and their management continue to be a problem of the Interior, contains eight research projects related to the Water Quantity and Management and Water Quality programs outlined in the "Research Framework." Water Quantity and Management Declining groundwater tables

Nebraska-Lincoln, University of

29

SAFETY ANALYSIS REPORT FOR PACKAGING, MODEL 9977, ADDENDUM 3, JUSTIFICATION FOR SMALL GRAM QUANTITY CONTENTS  

SciTech Connect (OSTI)

This Addendum establishes a new family of content envelopes consisting of small quantities of radioactive materials. These content envelopes and specific packing configurations are shown to be subcritical. However, the dose rates of some payloads must be measured and shown to comply with applicable radiation limits. Authorization for shipment of the content envelop requires acceptance of this Addendum by the DOE-HQ certifying official as a supplement to the 9977 SARP Revision 2 and DOE-HQ?s subsequent revision of the CoC Revision 10 (which is based on SARP Addendum 2 and SARP Addendum 4) to authorize the additional content envelope. The Small Gram Quantity Content Envelopes and packing configurations will be incorporated in the next revision of the 9977 SARP.

Abramczyk, G.

2011-10-31T23:59:59.000Z

30

Reportable Quantity-Calculator  

Broader source: Energy.gov [DOE]

Any time a hazardous substance as defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or more commonly known as Superfund) is released to the environment...

31

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

32

PRO-DAIRY Alert and Action Statement Water use reporting required for New York State dairy farms that use large quantities of water.  

E-Print Network [OSTI]

1 PRO-DAIRY Alert and Action Statement Water use reporting required for New York State dairy farms to have plentiful water, the reporting of water usage provides NYSDEC information to manage the state that use large quantities of water. All dairy farms should be aware of this requirement, especially those

Walter, M.Todd

33

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

34

An indirect sensing technique for diesel fuel quantity control. Technical progress report, October 1--December 31, 1998  

SciTech Connect (OSTI)

Work has proceeded intensely with the objective of completing the commercial prototype system prior to the end of the contract period. At the time of this report, testing and refinement of the commercial version of the system has not been completed. During this reporting period, several major milestones were reached and many significant lessons were learned. These are described. The experimental retrofit system has achieved all performance objectives in engine dynamometer tests. The prototype commercial version of the system will begin demonstration service on the first of several Santa Maria Area Transit (SMAT) transit buses on February 1, 1999. The commercial system has been redesignated the Electronic Diesel Smoke Reduction System (EDSRS) replacing the original internal pseudonym ADSC. The focus has been narrowed to a retrofit product suitable for installation on existing mechanically-governed diesel engines. Included in this potential market are almost all diesel-powered passenger cars and light trucks manufactured prior to the introduction of the most recent clean diesel engines equipped with particulate traps and electronic controls. Also included are heavy-duty trucks, transit vehicles, school buses, and agricultural equipment. This system is intended to prevent existing diesel engines from overfueling to the point of visible particulate emissions (smoke), while allowing maximum smoke-limited torque under all operating conditions. The system employs a microcontroller and a specialized exhaust particulate emission sensor to regulate the maximum allowable fuel quantity via an adaptive throttle-limit map. This map specifies a maximum allowable throttle position as a function of engine speed, turbocharger boost pressure and engine coolant temperature. The throttle position limit is mechanized via a servo actuator inserted in the throttle cable leading to the injection pump.

MacCarley, C.A.

1999-01-26T23:59:59.000Z

35

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

36

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

37

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

38

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

39

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

40

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

42

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

43

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

44

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

45

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

46

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

47

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

48

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

49

SAT SUN MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI DATE TOTAL REPORTED  

E-Print Network [OSTI]

SAT SUN MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI DATE TOTAL REPORTED IN OUT IN TOTAL WORKED OUT TOTAL PROJ CARRY OVER DIFF OCT SAT SUN MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI DATE TOTAL REPORTED IN OUT IN TOTAL WORKED OUT TOTAL PROJ CARRY OVER DIFF SAT SUN MON TUE WED THU FRI SAT SUN MON TUE

Hutcheon, James M.

50

Oil Quantity : The histori  

E-Print Network [OSTI]

model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

Lin, C.-Y. Cynthia

51

Water quality Water quantity  

E-Print Network [OSTI]

01-1 · Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

52

Water quality Water quantity  

E-Print Network [OSTI]

· Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

53

Quantity | Open Energy Information  

Open Energy Info (EERE)

View View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Special page Facebook icon Twitter icon » Quantity Jump to: navigation, search Properties of type "Quantity" Showing 53 properties using this type. A Property:Area Property:AvgReservoirDepth C Property:Capacity E Property:EstReservoirVol Property:EstimatedCostHighUSD Property:EstimatedCostLowUSD Property:EstimatedCostMedianUSD Property:EstimatedTime Property:EstimatedTimeHigh Property:EstimatedTimeLow Property:EstimatedTimeMedian F Property:FirstWellDepth Property:FirstWellFlowRate G Property:GeneratingCapacity Property:GrossProdCapacity I Property:IdentifiedHydrothermalPotential Property:InstalledCapacity M Property:MeanCapacity N Property:NetProdCapacity

54

Cool data: quantity AND quality  

Science Journals Connector (OSTI)

Ways of optimizing X-ray cryo-data quality and quantity are discussed. The possible advantages/disadvantages of collecting X-ray data at 30 K instead of 100 K are also considered.

Garman, E.

1999-10-01T23:59:59.000Z

55

14UO TANK,OPENING REPORT NO.5. October 20th -November 26th (37 days total; 27 working days).  

E-Print Network [OSTI]

14UO TANK,OPENING REPORT NO.5. October 20th - November 26th (37 days total; 27 working days). Since the tank was last closed the accelerator ran for 97 days.until this opening which was scheduled to replace was done during the tank-open period. We believe that there would be value in gIvIng our assessments

Chen, Ying

56

Prices vs. quantities with incomplete enforcement  

E-Print Network [OSTI]

This paper extends Weitzman's (1974) "Prices vs. Quantities" to allow for incomplete enforcement. Whether the regulator uses prices (e.g., taxes) or quantities (e.g., tradeable quotas), a first-best design is always ...

Montero, Juan-Pablo

1999-01-01T23:59:59.000Z

57

Conserved Quantities for Polyhomogeneous Space-Times  

E-Print Network [OSTI]

The existence of conserved quantities with a structure similar to the Newman-Penrose quantities in a polyhomogeneous space-time is addressed. The most general form for the initial data formally consistent with the polyhomogeneous setting is found. The subsequent study is done for those polyhomogeneous space-times where the leading term of the shear contains no logarithmic terms. It is found that for these space-times the original NP quantities cease to be constants, but it is still possible to construct a set of other 10 quantities that are constant. From these quantities it is possible to obtain as a particular case a conserved quantity found by Chrusciel et al.

J. A. Valiente Kroon

1998-05-27T23:59:59.000Z

58

Production of Large Quantities of Heavy Water  

Science Journals Connector (OSTI)

... concentrates of the new water are now produced on a large scale in Norway by Norsk Hydro-Elektrisk Kvlstofaktieselskab, Oslo. Large quantities of 1: 300-water can be ...

LEIF TRONSTAD

1934-06-09T23:59:59.000Z

59

Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers" Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1.1,1 , 20,"Food and Kindred Products",1829," W "," W ",28

60

Property:DayQuantity | Open Energy Information  

Open Energy Info (EERE)

DayQuantity DayQuantity Jump to: navigation, search Property Name DayQuantity Property Type String Description Enter the number of days (the default), but convert it to whatever time metric you'd like. Please note that the conversion to months and years is not accurate since the conversion depends on the specific years and months, but which are not known. Acceptable units (and their conversions) are: 1 day,Day,days,Days,DAY,DAYS,d,D 24 hour,hours,Hour,Hours,hr,hrs,HOUR,HOURS,HR,HRS 1440 minute,minutes,Minute,Minutes,min,Min,MINUTE,MINUTES,MIN 86400 second,seconds,Second,Seconds,sec,Sec,SECOND,SECONDS,SEC 0.142857143 week,weeks,Week,Weeks,wk,Wk,WEEK,WEEKS,WK 0.032786885 month,months,Month,Months,MONTH,MONTHS 0.002739726 year,years,Year,Years,yr,Yr,YEAR,YEARS,YR 1 day,Day,days,Days,DAY,DAYS,d,D

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

62

Hamiltonian Structure and Statistically Relevant Conserved Quantities  

E-Print Network [OSTI]

power. This additional conserved quantity, beyond the energy, has been ignored in previ- ous statistical of the Hamiltonian beyond that of the energy. First, an ap- propriate statistical theory is developed that includes in contemporary science ranging from short-term climate prediction for the coupled atmosphere-ocean system

Majda, Andrew J.

63

TIPS FOR REPORTING COMPLIANCE Attachment E  

E-Print Network [OSTI]

Record the Fuel Type and Price per Gallon on the corresponding date line. Record the Total Fuel Quantity transaction, not the price per gallon). Staple all Comdata fuel receipts to the back of the report/MONTH Record the Total Number of Passengers for the Month (this does not include the driver). FUEL/FLUID TYPES

Zhang, Yuanlin

64

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

SciTech Connect (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

65

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

66

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network [OSTI]

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778?10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

67

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

68

Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1,1 , 20,"Food and Kindred Products",988,940,48,16.2 2011," Meat Packing Plants",0,0,0,"NF"

69

Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",1,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",188,122,66,35.6 " 20-49",2311,1901,410,39.5 " 50-99",2951,2721,230,9.6 " 100-249",6674,5699,974,7.1

70

Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",0.9,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",222,164," Q ",23.3 " 20-49",1131,937,194,17.2

71

Quantity of Natural Gas Production Associated with Reported Wellhead Value  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2005 2006 2007 2008 2009 2010 View History U.S. 15,425,867 15,981,421 1980-2006 Alabama 285,237 274,176 259,062 246,747 225,666 212,769 1983-2010 Alaska 502,887 494,323 368,344 337,359 397,077 316,546 1983-2010 Arizona 211 588 634 503 695 165 1983-2010 Arkansas 190,533 193,491 269,886 446,551 680,613 936,600 1983-2010 California 274,817 278,933 268,016 263,107 241,916 251,559 1983-2010 Colorado 1,106,993 1,170,819 1,280,638 1,436,203 1,409,172 1,548,576 1983-2010 Florida NA NA NA NA NA NA 1983-2010 Illinois NA NA NA NA NA NA 1983-2010 Indiana

72

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

73

Category 3 threshold quantities for hazard categorization of nonreactor facilities  

SciTech Connect (OSTI)

This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

Mandigo, R.L.

1996-02-13T23:59:59.000Z

74

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

75

Some Intensive and Extensive Quantities in High-Energy Collisions  

E-Print Network [OSTI]

We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

A. Tawfik

2013-10-02T23:59:59.000Z

76

ARM - Evaluation Product - Critical soil quantities for describing land  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsCritical soil quantities for describing land ProductsCritical soil quantities for describing land properties Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Critical soil quantities for describing land properties 1994.01.01 - 2012.12.31 Site(s) SGP General Description The ARMBELAND is a subset of the ARM Best Estimate (ARMBE) products for supporting community land-atmospheric research and land model developments. It contains several critical soil quantities that ARM has been measuring for many years for describing land properties. The quantities in ARMBE-Land are averaged over one hour time interval, consistent with other ARMBE datasets. It is recommended to use with other ARMBE data products such as ARMBECLDRAD (cloud and radiative fluxes) and ARMBEATM (surface

77

Kinematic quantities of finite elastic and plastic deformation  

E-Print Network [OSTI]

Kinematic quantities for finite elastic and plastic deformations are defined via an approach that does not rely on auxiliary elements like reference frame and reference configuration, and that gives account of the inertial-noninertial aspects explicitly. These features are achieved by working on Galilean spacetime directly. The quantity expressing elastic deformations is introduced according to its expected role: to measure how different the current metric is from the relaxed/stressless metric. Further, the plastic kinematic quantity is the change rate of the stressless metric. The properties of both are analyzed, and their relationship to frequently used elastic and plastic kinematic quantities is discussed. One important result is that no objective elastic or plastic quantities can be defined from deformation gradient.

T. Flp; P. Vn

2012-03-05T23:59:59.000Z

78

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

79

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts |  

Broader source: Energy.gov (indexed) [DOE]

EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts EM's Indefinite Delivery/Indefinite Quantity Cleanup Contracts The Office of Environmental Management (EM) has 23 Indefinite Delivery/Indefinite Quantity (IDIQ) contracts to provide cleanup services at EM sites across the United States. The scope of work of the IDIQ contracts includes: environmental remediation deactivation, decommissioning, demolition and removal of contaminated facilities waste management regulatory compliance These nationwide, multiple-award IDIQ contracts allow EM sites to place timely, competitive and cost-effective task orders for environmental services with either large or small businesses, as determined by the complexity of the requirements. Twelve of the IDIQ contracts were awarded

80

Integrated quality and quantity modeling of a production line  

E-Print Network [OSTI]

The interaction of quantity and quality performance in a factory is clearly of great economic importance. However, there is very little quantitative analytical literature in this area. This thesis is an essential early ...

Kim, Jongyoon, 1974-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

REPORT NT-12-1  

National Nuclear Security Administration (NNSA)

REPORT NT-12-1 REPORT NT-12-1 MAY 2012 ENVIRONMENTAL MONITORING AND DISPOSAL OF RADIOACTIVE WASTES FROM U.S. NAVAL NUCLEAR-POWERED SHIPS AND THEIR SUPPORT FACILITIES NAVAL NUCLEAR PROPULSION PROGRAM DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20350 T h is p u b licatio n w a s p rin te d o n R e cycled P ap er ABSTRACT This report assesses the environmental effect of disposal of radioactive wastes originating from U.S. naval nuclear propulsion plants and their support facilities. The total long-lived gamma radioactivity in liquids discharged to all ports and harbors from all naval nuclear-powered ships and supporting tenders, naval bases, and shipyards was less than 0.002 curie in 2011. To put this small quantity of radioactivity into perspective, it is less than the quantity of naturally occurring radioactivity in the volume

82

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

83

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 2011 2012 2011 2012 2011 2012 Weighted-Average Price 53.48 57.61 56.20 54.74 54.86 56.26 Quantity with Reported Price 11,597 14,495 11,928 12,941 23,525 27,436 Weighted-Average Price 51.56 49.53 57.72 51.89 55.57 51.19 Quantity with Reported Price 2,931 2,237 5,494 5,272 8,425 7,510 Weighted-Average Price 54.37 56.42 57.06 54.25 56.48 54.71 Quantity with Reported Price 4,854 4,751 17,505 17,253 22,359 22,004 Weighted-Average Price 53.41 56.51 56.87 54.08 55.64 54.99 Quantity with Reported Price 19,381 21,483 34,927 35,466 54,308 56,949 Total Quantity 19,760 21,483 35,071 36,037 54,831 57,520 All Pricing Mechanisms Total Purchases Contract-Specified (Fixed and Base-Escalated) Pricing Spot-Market Pricing

84

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

85

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

86

Discussion the Traceability of Quantity Value of Digital Watthour Meter  

Science Journals Connector (OSTI)

To resolve the traceability of quantity value and calibration of digital watt-hour meter, in this paper introduced working principium of digital electric power metering system briefly, and analyzed the main origin of error from the theory of digital watt-hour meter and its calibration device. This paper also proposed new verification method of digital watt-hour meter calibration device and project of digital watt-hour meter traceability of quantity value. The method is used in digital signal generator calibration. The traceability project is traceability to the national primary standard which is corresponding to the device using in the method. The project in this paper, which is figure out verification and traceability of quantity value from main origin of error, provides a reasonable approach to traceability of digital watt-hour meter and a useful reference to decriminalization of digital metrology. Meantime, the scheme provides strong technical support for construction of digital transformer substation and Smart Strong Grid.

Meng Xiangfu; Liu Yuchao; Wang Yuhua

2012-01-01T23:59:59.000Z

87

Assessment of secondary crop residues. Final report  

SciTech Connect (OSTI)

This report is the first of three reports assessing the feasibility of converting secondary agricultural residues to energy in the form of either methane gas or ethyl alcohol. Secondary agricultural residues are defined in this study as those residues resulting from biomass processing to produce primary products; e.g., whey from cheese processing, vegetable processing wastes, residues from paper pulping, etc. This report summarizes the first two phases of this study, data compilation, and evaluation. Subsequent reports will analyze the technical and economic feasibility of converting these residues to energy and the implementability of this technology. The industries for which data has been compiled in this report include vegetable, fruit, seafood, meat, poultry, and dairy processing and the pulp, paper, and paperboard industry. The data collected include raw product input, final processed product output, residue types, and quantity, residue concentration, biodegradability, seasonality of production, and geographic distribution of processing facilities. In general, these industries produce a relatively solid residue ranging in total solids concentration from 10 to 50% and a dilute liquid residue with an organic content (measured as COD or BOD) ranging from a few hundred to a few thousand mg/l. Due to the significant quantities of residues generated in each of the industries, it appears that the potential exists for generating a substantial quantity of energy. For a particular industry this quantity of energy can range from only one percent upwards to nearly thirty-five percent of the total processing energy required. The total processing energy required for the industries included in this study is approximately 2.5 quads per year. The potential energy which can be generated from these industrial residues will be 0.05 to 0.10 quads per year or approximately 2 to 4 percent of the total demand.

Ashare, E.; Leuschner, A.P.; West, C.E.; Langton, B.

1981-03-01T23:59:59.000Z

88

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries" 7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Material Type","Spot Contracts 1",,"Long-Term Contracts 2",,"Total" ,"Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price" "U3O8",3364,54,25279,54.22,28642,54.2 "Natural UF6","W","W","W","W","W","W" "Enriched UF6","W","W","W","W","W","W"

89

NDHA REQUIREMENTS FOR FCNS 320 Quantity Food Production  

E-Print Network [OSTI]

of practical food service work experience. CERTIFICATION & TB TEST GUIDELINES Food Sanitation CertificateNDHA REQUIREMENTS FOR FCNS 320 ­ Quantity Food Production OVERVIEW State Of Illinois Food) Skin Test Verification of 100 Hours Completed Work Experience in Food Production Verification

Kostic, Milivoje M.

90

Economics of California Agriculture and Water Quality and Quantity  

E-Print Network [OSTI]

Economics of California Agriculture and Water Quality and Quantity December 2012 Daniel A. Sumner County in the South #12;Animal Products 10% Field Crops 16% Fruits 20%Tree Nuts 27% Vegetables 7% Wine 7 (available categories) Base Sector Output Water Cost Increase (75%) Water Availability Reduction (-25

California at Davis, University of

91

Use of the Predictive Sugars Biomarker to Evaluate Self-Reported Total Sugars Intake in the Observing Protein and Energy Nutrition (OPEN) Study  

Science Journals Connector (OSTI)

...whereas in analysis with energy-adjusted intakes...epidemiology may have prevented us from detecting a causal...and overreporting of energy intake related to weight status and lifestyle in a nationwide...Elliott P.Who are the low energy reporters' in the dietary...

Nataa Tasevska; Douglas Midthune; Nancy Potischman; Amy F. Subar; Amanda J. Cross; Sheila A. Bingham; Arthur Schatzkin; and Victor Kipnis

2011-03-01T23:59:59.000Z

92

Joint determination of order quantity and reorder point of continuous review model under quantity and freight rate discounts  

Science Journals Connector (OSTI)

The increased emphasis on transportation costs has enhanced the need to develop models with transportation consideration explicitly. However, in stochastic inventory models, the transportation cost is considered implicitly as part of fixed ordering cost ... Keywords: Inventory, Quantity discount, Stochastic demand, Transportation

M. A. Darwish

2008-12-01T23:59:59.000Z

93

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

94

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

95

Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522  

SciTech Connect (OSTI)

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has been overlooked and to verify the inventory. After each site has approved their project plan, the site will begin writing procedures and packaging/repackaging their waste. In some cases the sites have already begun the process. The waste will be shipped after all of the waste has been characterized and approved.

Mctaggart, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [DOE

2009-01-01T23:59:59.000Z

96

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted- Average Price First 5,757 31.91 6,789 34.97 7,119 38.24 Second 5,757 40.66 6,789 46.48 7,119 48.64 Third 5,757 43.60 6,789 50.80 7,119 51.16 Fourth 5,757 45.34 6,789 54.07 7,119 54.15 Fifth 5,757 47.89 6,789 57.21 7,119 56.93 Sixth 5,757 54.28 6,789 61.90 7,119 59.98 Seventh 5,757 60.21 6,789 65.21 7,119 61.02 Eighth 5,757 70.44 6,789 74.45 7,119 69.84 Total 46,060 49.29 54,308 55.64 56,949 54.99 1 Distribution divides total quantity of uranium delivered (with a price) into eight distributions by price (sorted from lowest to highest) and provides the quantity-weighted average price for each distribution.

97

Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins  

E-Print Network [OSTI]

I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

Siegel, Dustin S. (Dustin Scott), 1980-

2010-01-01T23:59:59.000Z

98

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

99

Computing plasma focus pinch current from total current measurement  

Science Journals Connector (OSTI)

The total current I total waveform in a plasma focus discharge is the most commonly measured quantity contrasting with the difficult measurement of I pinch . However yield laws should be scaled to focus pinch current I pinch rather than the peak I total . This paper describes how I pinch may be computed from the I total trace by fitting a computed current trace to the measured current trace using the Lee model. The method is applied to an experiment in which both the I total trace and the plasma sheath current trace were measured. The result shows good agreement between the values of computed and measured I pinch .

S. Lee; S. H. Saw; P. C. K. Lee; R. S. Rawat; H. Schmidt

2008-01-01T23:59:59.000Z

100

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Stochastic Perishable Inventory System with Random Supply Quantity  

E-Print Network [OSTI]

This paper considers a continuous review perishable inventory system with demands ar-rive according to a Markovian arrival process (MAP). We model, in this paper, the situation in which not all the ordered items are usable and the supply may contain a fraction of defec-tive items. The number of usable items is a random quantity. We consider a modified (s, S) policy which allows a finite number of pending order to be placed. We assume full back-logging of demands that occurred during stock out periods and that the recent backlogged demand may renege the system after an exponentially distributed amount of time. The limiting distribution of the inventory level is derived and shown to have matrix geometric form. The measures of system performance in the steady state are derived.

Paul Manuel; A. Shophia Lawrence; G. Arivarignan

102

Material quantities in building structures and their environmental impact  

E-Print Network [OSTI]

Improved operational energy efficiency has increased the percentage of embodied energy in the total life cycle of building structures. Despite a growing interest in this field, practitioners lack a comprehensive survey of ...

De Wolf, Catherine (Catherine Elvire Lieve)

2014-01-01T23:59:59.000Z

103

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

104

Testing DM warmness and quantity via the RRG model  

E-Print Network [OSTI]

We use the framework of a recently proposed model of reduced relativistic gas (RRG) to obtain the bounds for $\\Omega$'s of Dark Matter and Dark Energy (in the present case, a cosmological constant), taking into consideration an arbitrary warmness of Dark Matter. Two kind of tests are accounted for, namely the ones coming from the dynamics of the conformal factor of the homogeneous and isotropic metric and also the ones based on linear cosmic perturbations. The RRG model demonstrated its high effectiveness, permitting to explore a large volume in the space of mentioned parameters in a rather economic way. Taking all the tests together, namely Supernova type Ia (Union2 sample), $H(z)$, CMB ($R$ factor), BAO and LSS (2dfGRS data) into account, we confirm that $\\La$CDM is the most favored model. At the same time, for the 2dfGRS data alone we met the possibility of an alternative model with a very small quantity of a Dark Matter. This output is potentially relevant in view of the fact that the LSS is the only test...

Fabris, Julio C; Velasquez-Toribio, A M

2011-01-01T23:59:59.000Z

105

Transmission of the size of units of quantities and verification conditions as applied to measurement systems  

Science Journals Connector (OSTI)

The meaning of transmission of the size of units of quantities and verification conditions applied to measurement systems is considered.

A. A. Danilov

2007-05-01T23:59:59.000Z

106

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network [OSTI]

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

107

Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports About ESnet Overview ESnet Staff Governance Our Network Case Studies ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Network Requirements Reviews Reports Careers Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Reports ESnet publishes reports from science network Program Requirements Reviews on a regular basis. View the most recent of these below. Sort by: Date | Author | Type 2012 Eli Dart, Brian Tierney, Editors, "Biological and Environmental Research Network Requirements Workshop, November 2012 - Final Report"", November 29, 2012, LBNL LBNL-6395E

108

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network [OSTI]

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

109

Conserved quantities and dual turbulent cascades in Anti-de Sitter spacetime  

E-Print Network [OSTI]

We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in Anti--de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy $E$ of the modes: The particle number $N$ and Hamiltonian $H$ of our TTF system. $H$ represents the next-order contribution after $E$ to the total ADM mass $M$. Simultaneous conservation of $E$ and $N$ implies that weak turbulent processes undergo dual cascades (direct cascade of $E$ and inverse cascade of $N$ or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of $E$ and $N$ limits the region of phase space that can be explored within the TTF approximation and in particular rules out equipartion of energy among the modes for general initial data. Finally, we discuss possible effects of conservation of $N$ and $E$ on late time dynamics.

Alex Buchel; Stephen R. Green; Luis Lehner; Steve L. Liebling

2014-12-15T23:59:59.000Z

110

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

111

Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISCLAIMER DISCLAIMER Neither Pinnacle Technologies, Inc. nor any person acting on behalf of Pinnacle: * Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method or process disclosed in this report may not infringe privately owned rights; or * Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report Stimulation Technologies for Deep Well Completions DE-FC26-02NT41663 Final Report for National Energy Technology Laboratory Morgantown, WV Project No.: USDE-0511 Report Date: December 2005 By:

112

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

113

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

114

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

115

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

116

Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Researchers For Researchers What You Need to Know and Do The Tech Transfer Process Business Development Services Berkeley Lab LaunchPad Funding - Innovation Grants Forms and Policies Conflict of Interest Outside Employment Export Control Record of Invention Software Disclosure and Abstract See Also FAQs for Researchers Entrepreneurial Resources Webcast: Transferring Technology to the Marketplace Pre-Publication Review Report Invention/Software The next step is for Lab researchers to report the invention or software to the Technology Transfer and Intellectual Property Management Department. The invention report is not a patent application and in and of itself secures no intellectual property rights. It is used by the Lab to make a decision as to whether to proceed with a patent application.

117

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 Number of Purchasers Quantity with Reported Price Weighted-Average Price Number of Purchasers Quantity with Reported Price Weighted- Average Price Number of Purchasers Quantity with Reported Price Weighted- Average Price First 9 5,650 40.28 9 11,382 46.76 8 10,981 45.58 Second 9 21,274 45.77 8 21,780 54.02 7 11,659 53.03 Third 8 11,944 51.64 8 14,043 58.44 7 21,146 57.22 Fourth 8 7,192 62.88 8 7,104 69.28 7 13,163 61.01 Total 34 46,060 49.29 33 54,308 55.64 29 56,949 54.99 Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010-2012).

118

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries 7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Spot 1 Contracts Long-Term Contracts 2 Total Material Type Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price U3O8 3,364 54.00 25,279 54.22 28,642 54.20 Natural UF6 W W W W W W Enriched UF6 W W W W W W Natural UF6 and Enriched UF6 4,718 48.92 23,589 57.18 28,307 55.80 Total 8,082 51.04 48,867 55.65 56,949 54.99 W = Data withheld to avoid disclosure of individual company data. 1 A one-time delivery (usually) of the entire contract to occur within one year of contract execution (signed date).

119

Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand  

SciTech Connect (OSTI)

One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

2008-07-01T23:59:59.000Z

120

Conserved quantities and dual turbulent cascades in Anti-de Sitter spacetime  

E-Print Network [OSTI]

We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in Anti--de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy $E$ of the modes: The particle number $N$ and Hamiltonian $H$ of our TTF system. Simultaneous conservation of $E$ and $N$ implies that weak turbulent processes undergo dual cascades (direct cascade of $E$ and inverse cascade of $N$ or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of $E$ and $N$ limits the region of phase space that can be explored within the TTF approximation and in particular rules out equipartion of energy among the modes for general initial data. Finally, we discuss possible effects of conservation of $N$ and $E$ on late time dynamics.

Alex Buchel; Stephen R. Green; Luis Lehner; Steven L. Liebling

2015-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

122

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

123

REPORT  

Broader source: Energy.gov (indexed) [DOE]

REPORT REPORT of the INFRASTRUCTURE TASK FORCE of the DOE NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 16, 2003 2 EXECUTIVE SUMMARY On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D) laboratories. This activity was assigned to a five-member Infrastructure Task Force (ITF). After receiving extensive written materials from DOE, the Idaho Nuclear Engineering and Environmental Laboratory (INEEL) and Argonne National Laboratory-West (ANL-W), on November 6-8, 2002 the ITF visited the Idaho site and received briefings and tours of the INEEL and ANL-W facilities. INEEL and

124

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

125

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

5. Average price and quantity for uranium purchased by owners and operators of U.S. civilian nuclear power reactors by pricing mechanisms and delivery year, 2011-2012 dollars per pound U3O8 equivalent; thousand pounds U3O8 equivalent 5. Average price and quantity for uranium purchased by owners and operators of U.S. civilian nuclear power reactors by pricing mechanisms and delivery year, 2011-2012 dollars per pound U3O8 equivalent; thousand pounds U3O8 equivalent Pricing Mechanisms Domestic Purchases1 Foreign Purchases2 Total Purchases 2011 2012 2011 2012 2011 2012 Contract-Specified (Fixed and Base-Escalated) Pricing Weighted-Average Price 53.48 57.61 56.20 54.74 54.86 56.26 Quantity with Reported Price 11,597 14,495 11,928 12,941 23,525 27,436 Spot-Market Pricing Weighted-Average Price 51.56 49.53 57.72 51.89 55.57 51.19 Quantity with Reported Price 2,931 2,237 5,494 5,772 8,425 7,510 Other Pricing Weighted-Average Price 54.37 56.42 57.06 54.25 56.48 54.71

126

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

127

BLOW UP OF SUBCRITICAL QUANTITIES AT THE FIRST SINGULAR TIME OF THE MEAN CURVATURE FLOW  

E-Print Network [OSTI]

BLOW UP OF SUBCRITICAL QUANTITIES AT THE FIRST SINGULAR TIME OF THE MEAN CURVATURE FLOW NAM Q. LE curvature flow, singularity time, blow up, subcritical quantities. 1 #12;2 NAM Q. LE develop singularities, we give a logarithmic improvement of the above results by showing that a family of subcritical

Le, Nam

128

A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE VOLUME1  

E-Print Network [OSTI]

1413 A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearlyH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical

129

Hedging Quantity Risks with Standard Power Options in a Competitive Wholesale Electricity  

E-Print Network [OSTI]

Hedging Quantity Risks with Standard Power Options in a Competitive Wholesale Electricity Market, GA, 30332-0205 USA March 3, 2005 Abstract This paper addresses quantity risk in the electricity of a load serving entity, which provides electricity service at a regulated price in electricity markets

130

Hedging Quantity Risks with Standard Power Options in a Competitive Wholesale Electricity Market  

E-Print Network [OSTI]

Hedging Quantity Risks with Standard Power Options in a Competitive Wholesale Electricity MarketScience (www.interscience.wiley.com). Abstract: This paper addresses quantity risk in the electricity market-serving entity, which provides electricity service at a regulated price in electricity markets with price

Oren, Shmuel S.

131

Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity, Steam, and Natural Gas by Type" Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",," ------------------------------------",,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

132

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

133

Reports  

Office of Legacy Management (LM)

Reports Reports . . . . , Book -1. Service Open File Information for Project Rulison, Production Testing Phase, . , August 28,1970 : . "; DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DESCRIPTION O F PU1:T41C I-l!lkI,T;-1 SE1:VICh: 0P:SN F I L E INPOPt4ATION i[ ' 7 S&u-~%uestcrn E a d i o l o g i c a l H e a l t h 1,aboratol-p r? U. S. Depaieraent o f I l e a l t h ,. E d u c a t i o n aud Welfa,re i i I t - - . L-J~ub-l-ic H e a l t h ' ~ c r v i c e : Y T h i s s u r v e i l l a ~ l c e p e r f o r m e d u n d e r r e , a Memorandum o f ~ n d e k s t a n d i n ~ (No. SF 5 1 & L A U. S . . A t o m i c E n e r g y Commission i hk, ! i ilYo.,jh,asic g r o u p s o f i n f o r m a t i o n a r e p l a c e d i n t h e P u b l i c H e a l t h i k e l ~ e r v i k e , \ ~ o u t h w e s t c r n R a t i i o l o g i c a l H

134

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

135

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

136

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

137

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

138

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

139

FCRD-USED-2010-000033, LLW Quantity and Inventory, FINAL R...  

Broader source: Energy.gov (indexed) [DOE]

Cycle Research and Development Cycle Research and Development Used Fuel Disposition Low Level Waste Disposition - Quantity and Inventory Prepared for U.S. Department of Energy Used Nuclear Fuel Robert H. Jones, SRS June 2011 Revision 2 FCRD-USED-2010-000033 FCRD-USED-2010-000033 Fuel Cycle Research and Development June 2011 Used Fuel Disposition Revision 2 Low Level Waste - Quantity and Inventory Page ii of x THIS PAGE INTENTIONALLY LEFT BLANK

140

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total System Performance Assessment Peer Review Panel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

142

Total System Performance Assessment Peer Review Panel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

143

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

144

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

145

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

146

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

147

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

148

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

149

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

150

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

151

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

152

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

153

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

154

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

155

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

156

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

157

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

158

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

159

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

160

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

162

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

163

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

164

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

165

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

166

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

167

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

168

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

169

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

170

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

171

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

172

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

173

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

174

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

175

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

176

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

177

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

178

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

179

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

180

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

182

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

183

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

184

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

185

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

186

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

187

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

188

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

189

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

190

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

191

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

192

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

193

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

194

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

195

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

196

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

197

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

198

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

199

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

200

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

202

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

203

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

204

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

205

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

206

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

207

"Tier","PRIORITY","Total Tickets Logged","Tickets Closed","Currently...  

Broader source: Energy.gov (indexed) [DOE]

"TOTAL",,255,261,0 "SCR",,255,255,0 ,,0.9843137255,0.9616858238 "Total Issues Report - ESS",,,,"20120101 - 20120418" "Tier","PRIORITY","Total Tickets Logged","Tickets...

208

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

209

Proposal for a quantity based data model in the Virtual Observatory  

E-Print Network [OSTI]

We propose the beginnings of a data model for the Virtual Observatory (VO) built up from simple ``quantity'' objects. In this paper we present how an object-oriented, domain (or namespace)-scoped simple quantity may be used to describe astronomical data. Our model is designed around the requirements that it be searchable and serve as a transport mechanism for all types of VO data and meta-data. In this paper we describe this model in terms of an OWL ontology and UML diagrams. An XML schema is available online.

Brian Thomas; Edward Shaya

2003-12-23T23:59:59.000Z

210

A COMPARISON OF CLOUD MICROPHYSICAL QUANTITIES WITH FORECASTS FROM CLOUD PREDICTION MODELS  

E-Print Network [OSTI]

of the Atmospheric System Research (ASR) Program, Bethesda, MD March 15-19, 2010 Environmental Sciences Department/Atmospheric Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content

211

Processing Quantities with Heavy-Tailed Distribution of Measurement Uncertainty: How  

E-Print Network [OSTI]

Processing Quantities with Heavy-Tailed Distribution of Measurement Uncertainty: How to Estimate, the distribution of measurement errors is sometimes heavy-tailed, when very large values have a reasonable, in the amount of oil in an oil well, etc. In such situations in which we cannot measure y directly, we can often

Kreinovich, Vladik

212

ARTICLE IN PRESS Analysis of large scale MHD quantities in expanding magnetic clouds  

E-Print Network [OSTI]

Astronomi´a y Fi´sica del Espacio, CONICET-UBA, CC. 67 Suc. 28, 1428 Buenos Aires, Argentina b Departamento de Fi´sica, FCEN, UBA, Argentina c Laboratoire d'Etudes Spatiales et d'Instrumentation en energy per unit length along the flux tube. We find that these quantities do not differ more than 25

Demoulin, Pascal

213

Introducing Flexible Quantity Contracts into Distributed SoC and Embedded System Design Processes  

E-Print Network [OSTI]

Introducing Flexible Quantity Contracts into Distributed SoC and Embedded System Design Processes and flexible contracts regulate cooperation and cost distribution. The process ef- fectively delays the design a distributed design process. Today we already find dis- tributed design processes in automotive engineering

Paris-Sud XI, Université de

214

How Antigen Quantity and Quality Determine T-Cell Decisions in Lymphoid Tissue  

Science Journals Connector (OSTI)

...phase two and how they regulate this decision is crucial. Such an understanding was...K. F. 1987. Renormalization group theory of macromolecules. J. Wiley, New York...quantity and quality determine T-cell decisions in lymphoid tissue. | T lymphocytes...

Huan Zheng; Bo Jin; Sarah E. Henrickson; Alan S. Perelson; Ulrich H. von Andrian; Arup K. Chakraborty

2008-04-21T23:59:59.000Z

215

Tracking Quantity Fluctuations using STT Robert C. Kahlert, Ben Rode, David Baxter,  

E-Print Network [OSTI]

of oil price fluctuations are an example of such events, and are tracked in the STT (Situation Tracking- mation to be extracted. Our primary example domain will be quantity changes related to oil price language CycL and apply this representation to the problem of identifying and extracting information from

Forbus, Kenneth D.

216

Predicting Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap Simulation  

E-Print Network [OSTI]

Predicting Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap Simulation the transition state ensemble (TSE) and predict the rates and -values for protein folding. The new method as a gen- eral tool for studying protein folding kinetics. 1 Introduction Protein folding is a crucial

Pratt, Vaughan

217

Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and  

E-Print Network [OSTI]

Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics for studying protein folding kinetics. It uses the recently intro- duced Stochastic Roadmap Simulation (SRS validate the SRS method and indicate its potential as a general tool for studying protein folding kinetics

Pratt, Vaughan

218

Fruit Yield and Quality, and Irrigation Water Use Efficiency of Summer Squash Drip-Irrigated with Different Irrigation Quantities in a Semi-Arid Agricultural Area  

Science Journals Connector (OSTI)

Abstract Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efficiency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a field study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefficients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha?1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha?1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha?1 mm?1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha?1 mm?1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 ?g gallic acid equivalents (GAE) mg?1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were significantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions.

Yasemin Kuslu; Ustun Sahin; Fatih M Kiziloglu; Selcuk Memis

2014-01-01T23:59:59.000Z

219

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

220

Summary and recommendations: Total fuel cycle assessment workshop  

SciTech Connect (OSTI)

This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Studies directed toward the total synthesis of salvilenone  

E-Print Network [OSTI]

Model studies on the total synthesis of salvilenone, a phenalenone diterpene found in the roots of Salvia miltiorrhiza Bunge, are reported via a double annulation strategy. The key steps in the proposed synthesis involve ...

Choi, HuiWon

2005-01-01T23:59:59.000Z

222

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Max Wei (Primary Contact), Tom McKone, Tim Lipman 1 , David Dornfeld 2 , Josh Chien 2 , Chris Marnay, Adam Weber, Paul Beattie 3 , Patricia Chong 3 Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, CA 94706 Phone: (510) 486-5220 Email: mwei@lbl.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Subcontractors: 1 University of California, Berkeley, Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center, Berkeley, CA 2 University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, CA

223

Develop and test fuel-cell-powered on-site integrated total energy systems. Phase III. Full-scale power plant development. Third quarterly report, August-October 1981  

SciTech Connect (OSTI)

The 5kW integrated system has been fully assembled and successful checks were made of most microprocessor-controlled operational features. Long-term testing will be deferred until the stack is rebuilt. A PURPA-derived definition of qualified cogenerator has been supplied by A.D. Little, Inc. Preliminary considerations are presented for the designs of the 25 kW stack and the 50 kW methanol fuel processor. Initial results are given for overall system analysis of a 50kW system under pressurized operation and also under part-load operation at normal pressure. A general discussion of waste heat utilization is also provided. Progress in several areas of stack componentry is reported, including bipolar plate production, acid management, Pt catalyst recrystallization and bipolar plate resistance measurement technique. Methanol steam reforming catalyst test results are reviewed in preparation for making a choice of design catalyst for the 50 kW system.

Kaufman, A; Johnson, G K

1982-04-28T23:59:59.000Z

224

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 Purchase Contract Type (Signed in 2012) Quantity of Deliveries Received in 2012 Weighted-Average Price Contracts for Deliveries in 2012 Spot W W 31 Long-Term W W 3 Total 12,346 55.16 34 Table 8. Contracts signed in 2012 by owners and operators of U.S. civilian nuclear power reactors by contract type thousand pounds U 3 O 8 equivalent; dollars per pound U 3 O 8 equivalent W = Data withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2012)

225

Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex  

SciTech Connect (OSTI)

This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J. [SAIC, Idaho Falls, ID (United States). Waste Management Technology Div.

1994-08-01T23:59:59.000Z

226

Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings  

SciTech Connect (OSTI)

In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

2009-06-12T23:59:59.000Z

227

Quantity comparison of concurrency control methods for XML database systems based on DOM API  

Science Journals Connector (OSTI)

Existing works on processing of eXtensible Markup Language (XML) documents have been concentrated on query optimisation, storage problems, documents transformation, compressing methods and normalisation. There are only few papers on concurrency control in accessing and modifying XML documents, which are stored in XML database systems. The aim of this paper is to analyse and compare the quantity of concurrency control methods for XML database systems based on DOM API.

Krzysztof Jankiewicz; Aleksandra Siekierska; Maciej Siekierski

2008-01-01T23:59:59.000Z

228

Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992  

SciTech Connect (OSTI)

This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

Not Available

1994-02-01T23:59:59.000Z

229

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

230

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

231

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

232

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

233

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

234

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2010-2012 deliveries" 6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2010-2012 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Quantity Distribution 1","Deliveries in 2010",,"Deliveries in 2011",,"Deliveries in 2012" ,"Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price" "First ",5757,31.91,6789,34.97,7119,38.24 "Second ",5757,40.66,6789,46.48,7119,48.64 "Third ",5757,43.6,6789,50.8,7119,51.16 "Fourth ",5757,45.34,6789,54.07,7119,54.15

235

Set-Aside EM Nation-Wide Indefinite Delivery/Indefinite Quantity Contracts  

Broader source: Energy.gov (indexed) [DOE]

SET-ASIDE EM NATION-WIDE SET-ASIDE EM NATION-WIDE INDEFINITE DELIVERY/INDEFINITE QUANTITY CONTRACTS Contractor Name Team Members/Principal Subcontractors Clauss Construction AECOM, Inc. Cavanagh Services Group, Inc. EnergX, LLC Dynamic Management Solutions, LLC (DMS) CA - LLC Member Restoration Services, Inc, LLC Member Wastren Advantage, Inc. - LLC Member SAIC Bartlett Services, Inc. Siempelkamp Nuclear Services Gonzales-Stoller Remediation Services, LLC JG Management Systems, Inc. - LLC Member (Protégé) The S.M. Stoller Corporation - LLC Member (Mentor) AET Environmental, Inc. ALS Laboratory Group AquaTierra Associates, Inc. DBA Weiss Assoc. ARCADIS U.S., Inc. AREVA Federal Services, LLC

236

Unrestricted EM Nation-Wide Indefinite Delivery/Indefinite Quantity Contracts  

Broader source: Energy.gov (indexed) [DOE]

UNRESTRICTED EM NATION-WIDE UNRESTRICTED EM NATION-WIDE INDEFINITE DELIVERY/INDEFINITE QUANTITY CONTRACTS Contractor Name Principal Subcontracts AECOM Technical Services, Inc. Bartlett Services, Inc., Cavanagh Services Group, Inc. Clauss Construction EnergX, LLC NuVision Engineering Bechtel National, Inc. Eberline Services, Inc. North Wind, Inc. Philotechnics, Ltd. TC Program Solutions, LLC CDM, JV Navarro Research and Engineering, Inc. Newport News Nuclear, Inc. MSE Technology Applications, Inc. CH2M Hill Constructors, Inc. Babcock & Wilcox Technical Services Group EnergySolutions Federal Solutions, Inc. DEMCO, Inc. Terranear PMC, LLC Tetra Tech EC, Inc. Fluor Federal Services, Inc.

237

Bacteria Total Maximum Daily Load Task Force Final Report  

E-Print Network [OSTI]

Research and Development Needs 51 References 64 Appendix 1: Bacteria TMDL Task Force Members and Expert Advisors 71 Appendix 2: Models Used in Bacteria Projects 73 as Described in EPA Publications... Appendix 3: EPA Bacteria TMDL Guidelines 78 Appendix 4: State Approaches to Bacteria TMDL 88 Development Appendix 5: Comments from Expert Advisory Group 100 1 Executive Summary In September 2006, the Texas...

Jones, C. Allan; Wagner, Kevin; Di Giovanni, George; Hauck, Larry; Mott, Joanna; Rifai, Hanadi; Srinivasan, Raghavan; Ward, George; Wythe, Kathy

238

Quotation No. 3605 rev 2 Item No. 1 Date 10/6/2004 Quantity 1  

E-Print Network [OSTI]

Report Noise Measurement NPSH Test with Curve Vibration / Bearing #12;#12;Application Manual for NEMA

McDonald, Kirk

239

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

240

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

242

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

243

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

244

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

245

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

246

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1996...

247

Table 28. Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Acquisition Report," July 1984 to present. 28. Percentages of Total Imported Crude Oil by API Gravity 50 Energy Information Administration Petroleum Marketing Annual 1997...

248

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

249

Department of Energy, Indefinite Delivery Indefinite Quantity, Multiple Award, Energy Savings Performance  

Broader source: Energy.gov (indexed) [DOE]

2 DE-AM36-09GO290XX / Mod 6 2 DE-AM36-09GO290XX / Mod 6 Department of Energy, Indefinite Delivery Indefinite Quantity, Multiple Award, Energy Savings Performance Contract Awarded by the Department of Energy, Golden Field Office to 16 Energy Service Companies (ESCOs) on December 17, 2008 What follows is a generic version of the contract. All 16 contracts are identical with the exception of the SF33, Solicitation, Offer and Award, and Attachment J-13, Subcontracting Plan, which are specific to each ESCO. This is a conformed version of the contract as of November 2012, through modification 6, excluding contractor specific modifications for novations and name changes." 1 NEGOTIATED (RFP) November 2012 DE-AM36-09GO290XX / Mod 6 SOLICITATION, OFFER, AND AWARD 1. THIS CONTRACT IS A RATED ORDER

250

NETL: News Release - New Projects to Study Ways to Recover Vast Quantities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 12, 2002 March 12, 2002 New Projects to Study Ways to Recover Vast Quantities of "Left Behind" Oil TULSA, OK - Nearly two out of every three barrels of oil discovered in the United States remain trapped underground after conventional recovery operations. This staggering amount of remaining oil - approximately 200 billion barrels - can be one of America's best hopes for greater energy security if new technologies can be developed to recover it. Often, however, the "left behind" oil is in regions of the reservoir that are difficult to access and the oil is held tightly in place within tiny rock pores by capillary pressures that resist many traditional oil production practices. Now, as part of its program to develop ways to free this unrecovered oil, the Department of Energy's Fossil Energy research program is adding three new projects to be carried out by three of the Nation's top petroleum engineering universities:

251

Fluctuations of Conserved Quantities in High Energy Nuclear Collisions at RHIC  

E-Print Network [OSTI]

Fluctuations of conserved quantities in heavy-ion collisions are used to probe the phase transition and the QCD critical point for the strongly interacting hot and dense nuclear matter. The STAR experiment has carried out moment analysis of net-proton (proxy for net-baryon (B)), net-kaon (proxy for net-strangeness (S)), and net-charge (Q). These measurements are important for understanding the quantum chromodynamics phase diagram. We present the analysis techniques used in the moment analysis by the STAR experiment and discuss the moments of net-proton and net-charge distributions from the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider.

Luo, Xiaofeng

2015-01-01T23:59:59.000Z

252

Department of Energy, Indefinite Delivery Indefinite Quantity, Multiple Award, Energy Savings Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-AM36-09GO290XX / Mod 6 DE-AM36-09GO290XX / Mod 6 Department of Energy, Indefinite Delivery Indefinite Quantity, Multiple Award, Energy Savings Performance Contract Awarded by the Department of Energy, Golden Field Office to 16 Energy Service Companies (ESCOs) on December 17, 2008 What follows is a generic version of the contract. All 16 contracts are identical with the exception of the SF33, Solicitation, Offer and Award, and Attachment J-13, Subcontracting Plan, which are specific to each ESCO. This is a conformed version of the contract as of November 2012, through modification 6, excluding contractor specific modifications for novations and name changes." 1 NEGOTIATED (RFP) November 2012 DE-AM36-09GO290XX / Mod 6 SOLICITATION, OFFER, AND AWARD 1. THIS CONTRACT IS A RATED ORDER

253

Application of Specialized Optimization Techniques in Water Quantity and Quality Management with Respect to Planning for the Trinity River Basi  

E-Print Network [OSTI]

for the disposal of wastes. Thus, there is a clear interaction between quantity and quality of water. However, largely due to the agency structure in state and federal government, water quality management and water development activities are usually separated...

Meier Jr., W. L.; Shih, C. S.

254

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

255

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

256

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

257

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

258

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

259

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

260

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523  

SciTech Connect (OSTI)

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for RLC and RH-72B Cask loading and shipment certification. To date, the mobile loading team has successfully made 2,131 CH and RH TRU waste shipments. The mobile loading team continues to provide each site with safe and compliant loading ofTRU waste.

Carter, Mitch [Los Alamos National Laboratory; Howard, Bryan [Los Alamos National Laboratory; Weyerman, Wade [Los Alamos National Laboratory; Mctaggart, Jerri [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

262

ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT NAME OF OFFEROR OR CONTRACTOR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ITEM NO. ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT NAME OF OFFEROR OR CONTRACTOR 2 2 CONTINUATION SHEET REFERENCE NO. OF DOCUMENT BEING CONTINUED PAGE OF OAK RIDGE ASSOCIATED UNIVERSITIES, INC. (A) (B) (C) (D) (E) (F) DE-AC05-06OR23100/0456 Payment: OR for Oak Ridge/OSTI U.S. Department of Energy Oak Ridge Office Oak Ridge Financial Service Center P.O. Box 6017 Oak Ridge TN 37831 Period of Performance: 01/01/2006 to 12/31/2015 NSN 7540-01-152-8067 OPTIONAL FORM 336 (4-86) Sponsored by GSA FAR (48 CFR) 53.110 ___________ (x) x DE-AC05-06OR23100 copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT

263

Alternative Techniques for Injecting Massive Quantities of Gas for Plasma Disruption Mitigation  

SciTech Connect (OSTI)

Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing closecoupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D, with preliminary experiments already carried out. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

Combs, Stephen Kirk [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Commaux, Nicolas JC [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; Jernigan, Thomas C [ORNL; McGill, James M [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

2010-01-01T23:59:59.000Z

264

The composition of a quad of buildings sector energy: Physical, economic, and environmental quantities  

SciTech Connect (OSTI)

In an analysis conducted for the US Department of Energy Office of Building Technologies (OBT), the Pacific Northwest Laboratory examined the fuel type composition of energy consumed in the US buildings sector. Numerical estimates were developed for the physical quantities of fuel consumed, as well as of the fossil fuel emissions (carbon dioxide, sulfur dioxide, nitrogen oxides) and nuclear spent fuel byproducts associated with that consumption. Electric generating requirements and the economic values associated with energy consumption also were quantified. These variables were quantified for a generic quad (1 quadrillion Btu) of primary energy for the years 1987 and 2010, to illustrate the impacts of a fuel-neutral reduction in buildings sector energy use, and for specific fuel types, to enable meaningful comparisons of benefits achievable through various OBT research projects or technology developments. Two examples are provided to illustrate how these conversion factors may be used to quantify the impacts of energy savings potentially achievable through OBT building energy conservation efforts. 18 refs., 6 figs., 16 tabs.

Secrest, T.J.; Nicholls, A.K.

1990-07-01T23:59:59.000Z

265

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

266

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

267

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

268

A method for calculation of radiation quantities at all points in gamma radiation calibration fields  

Science Journals Connector (OSTI)

......Chi-square test in a gamma radiation calibration field was...dimensions) in a gamma radiation calibration field can...be used in dosimetry software of gamma radiation calibration fields...2000) Vienna: IAEA. Safety Reports Series, No......

S. M. Hosseini-Pooya; M. Khoshnoodi; A. Ansarinejad; F. Torkzadeh; M. Jafarizadeh

2008-03-01T23:59:59.000Z

269

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

270

A Fast Delivery Protocol for Total Order Broadcasting  

SciTech Connect (OSTI)

The conclusions of this report are: (1) Fast delivery protocol reduces the latency of message ordering for idle systems and keep comparable performances with communication history algorithms for busy systems; (2) The protocol optimizes the total ordering process by waiting for messages only from a subset of the machines in the group; and (3) The fast acknowledgment aggressively acknowledges total order messages to reduce the latency for idle system, and it is smart enough to hold the acknowledgments when the network communication is heavy.

Ou, Li [Tennessee Technological University; He, X. [Tennessee Technological University; Engelmann, Christian [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

271

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

272

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

273

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

274

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

275

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

276

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

277

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

278

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

279

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

280

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

282

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

283

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

284

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

285

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

286

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

287

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

288

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

289

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

290

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

291

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

292

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

293

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

294

TotalView Parallel Debugger at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

295

By Deborah A. Kramer No gallium production was reported in the McDonnell Douglas Corp. reportedly will world producers were Australia, Germany, and  

E-Print Network [OSTI]

facility in optoelectronic devices [light-emitting diodes France from stockpiled crude gallium produced, and in 1994. Although the total quantity of gallium used in optoelectronic devices increased, its percentage

296

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

297

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

298

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

299

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

300

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

302

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

303

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

304

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

305

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

306

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

307

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

308

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

309

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

310

ARM - Measurement - Shortwave spectral total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

311

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

312

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

313

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

314

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

315

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2011 Colorado Water Institute Annual Technical Report FY 2011 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether, the quality and quantity of water becomes essential to every discussion of any human activity. The Colorado

316

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2013 Colorado Water Institute Annual Technical Report FY 2013 1 #12;Introduction Water research is more important than ever in Colorado. Whether, the quality and quantity of water becomes essential to every discussion of any human activity. The Colorado

317

Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system  

Science Journals Connector (OSTI)

In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38mg/mL green fluorescent protein (GFP) in batch mode and 3.8mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4mg/mL were synthesized for dihydrofolate reductase and ?-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies.

Yasuaki Kazuta; Tomoaki Matsuura; Norikazu Ichihashi; Tetsuya Yomo

2014-01-01T23:59:59.000Z

318

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

319

Estimate of the total kinetic power and age of an extragalactic jet by its cocoon dynamics: the case of Cygnus A  

Science Journals Connector (OSTI)

......the quantities of total plasma. Also, for radio bubbles...specific heat ratio of the plasma inside the cocoon, respectively...the ICM with declining atmosphere and the relativistic...visible in the 610-MHz image and the aspect...D., 1998, Phys. Plasmas, 5, 1981. Celotti......

M. Kino; N. Kawakatu

2005-12-01T23:59:59.000Z

320

report | OpenEI  

Open Energy Info (EERE)

report report Dataset Summary Description The Weekly Financial and Activity report section includes the Department of Energy's weekly report on spending and major actions related to the Recovery Act. The "Weekly Update" tab includes listing of total appropriations, total obligations, and total disbursements for each Treasury Account. The "Major Activities" tab lists of the major actions taken to date and major planned actions of likely interest to senior government officials, Congress, and the public. File is in .xls format. Source DOE Date Released November 19th, 2010 (4 years ago) Date Updated Unknown Keywords activity DOE financial Recovery Act report Data application/vnd.ms-excel icon DOE_Weekly_Financial_and_Activity_Report_20101119.xls (xls, 1.8 MiB)

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 Deliveries Uranium Concentrate Natural UF 6 Enriched UF 6 Natural UF 6 and Enriched UF 6 Total Purchases W W W W 9,807 Weighted-Average Price W W W W 59.44 Purchases W W W W 47,713 Weighted-Average Price W W W W 54.07 Purchases 28,642 W W 28,878 57,520 Weighted-Average Price 54.20 W W 55.80 54.99 Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Natural UF 6 is uranium hexafluoride. The natural UF 6 and enriched UF 6 quantity represents only the U 3 O 8 equivalent uranium-component quantity specified in the contract for each delivery of natural UF 6 and enriched UF 6 . The natural UF 6 and enriched UF 6 weighted-average price represent only the U

322

Macroencapsulated and elemental lead mixed waste sites report  

SciTech Connect (OSTI)

The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m{sup 3} located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges.

Kalia, A.; Jacobson, R.

1996-09-01T23:59:59.000Z

323

Transportation Baseline Report  

SciTech Connect (OSTI)

The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

Fawcett, Ricky Lee; Kramer, George Leroy Jr.

1999-12-01T23:59:59.000Z

324

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

325

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

327

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

328

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

329

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

330

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

331

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

332

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

333

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

334

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

335

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

336

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

337

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

338

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

339

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

340

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

342

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

343

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

344

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

345

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

346

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

347

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

348

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

349

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

350

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

351

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

352

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

353

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

354

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

355

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

356

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

357

Total synthesis and study of myrmicarin alkaloids  

E-Print Network [OSTI]

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

358

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network [OSTI]

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

359

Provides Total Tuition Charge to Source Contribution  

E-Print Network [OSTI]

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

360

A GENUINELY HIGH ORDER TOTAL VARIATION DIMINISHING ...  

E-Print Network [OSTI]

(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order .... where the total variation is measured by the standard bounded variation ..... interval Ij and into the jump discontinuities at cell interfaces, see [12].

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

362

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

363

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

364

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

365

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

366

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

367

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

368

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

369

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

370

Report on Produced Water  

Office of Scientific and Technical Information (OSTI)

production data (Price 2009). According to the 2007 bimonthly reports of the Nevada Oil Patch, total oil production in 2007 was 408,174 bbl. Gas production for the same year was...

371

| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments for  

E-Print Network [OSTI]

Laboratory | Total Scattering at the Lujan Center Neutron Powder Diffractometer (NPDF) High-Intensity Powder. Shoemaker, et al., Reverse Monte Carlo neutron scattering study of disordered crystalline materials neutron| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments

Magee, Joseph W.

372

Seagate Crystal Reports - SNF53  

Office of Environmental Management (EM)

Shipping and Receiving Quantities (SNF-5) Shipping and Receiving Quantities (SNF-5) 201 1 -70(P)* & Non Annualized Quantity (MTHM) by Year 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Shipping Site 1998(A)* 2008(P)* 2004(P)* 2005(P)* 2006(P)* 2007(P)* RECEIVING SITE: Idaho National Environmental Engineering Laboratory (INEL) PROGRAM: Office of Defense Programs NavRctrFac 0.0000 0.9000 0.7400 0.6200 0.6200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Sandia-NM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 Total: 0.0000 0.9000 0.7400 0.6200 0.6200 0.0000 0.0000 0.0000 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 201 1 -70(P)* & Non Annualized Quantity (MTHM) by Year 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Shipping Site 1998(A)* 2008(P)* 2004(P)* 2005(P)*

373

Total effective dose equivalent associated with fixed uranium surface contamination  

SciTech Connect (OSTI)

This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm{sup 2} and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels.

Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

1997-04-01T23:59:59.000Z

374

Total System Performance Assessment - License Application Methods and Approach  

SciTech Connect (OSTI)

''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document.

J. McNeish

2003-12-08T23:59:59.000Z

375

The equation of state for stellar envelopes. IV. Thermodynamic quantities and selected ionization fractions for six elemental mixes  

SciTech Connect (OSTI)

The free-energy minimization technique in the form developed in the preceding papers in this series is employed to evaluate thermodynamic quantities and ionization fractions on a fine temperature and density grid for six astrophysical mixtures of 15 elements. The mixtures range from that appropriate to super-metal-rich stars, through solar abundance, to that for extreme Population II objects. In this paper, the results for solar abundances are summarized in a form that is illustrative and which facilitates comparison with the results from other equation of state calculations. 16 refs.

Mihalas, D.; Hummer, D.G.; Mihalas, B.W.; Daeppen, W. (Illinois Univ., Urbana (USA) High Altitude Observatory, Boulder, CO (USA) Joint Institute for Laboratory Astrophysics, Boulder, CO (USA) Paris Observatoire, Meudon (France))

1990-02-01T23:59:59.000Z

376

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

377

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

378

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

379

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Total Cross Sections for Neutron Scattering  

E-Print Network [OSTI]

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

382

A Report on Reports  

Science Journals Connector (OSTI)

Synopsis of Report on Reports, a Project Kaleidoscope commentary on the education of undergraduates in science, technology, engineering, and mathematics (STEM) in the U.S. and elsewhere.

John W. Moore

2003-09-01T23:59:59.000Z

383

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

384

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect (OSTI)

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

385

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

386

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

387

Seagate Crystal Reports - Snf10  

Office of Environmental Management (EM)

Stream Characteristic Detail (SNF-10) Stream Characteristic Detail (SNF-10) STATE: California SITE: GenAtomics PROGRAM: Office of Environmental Management OPERATIONS OFFICE: Oakland Operations Office GenAtomics - Spent Nuclear Fuel - TRIG A Reactor SNF STREAM CODE: 01725 Stream Fuel Types DOE Test SNF SST clad Storage Facility % of Stream Quantity GA TRIGA Reactor Facility 100 % of Stream Quantity Source Reactor GA-TRIGA MARK F 100.00 % of Stream TOTAL CURIES: ISOTOPE AND CONTAMINANT PROFILES 100 TRIGA Reactor SNF Isotopes Avg Concentration: 1.7706E-006 Ci Low Limit Concent: Upper Limit Concent: Actinium-227 Avg Concentration: 2.6087E+001 Ci Low Limit Concent: Upper Limit Concent: Americium-241 Avg Concentration: 1.1960E-001 Ci Low Limit Concent: Upper Limit Concent: Americium-242m Avg Concentration: 5.0739E-002 Ci

388

Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Alabama Offshore Natural Gas Gross Withdrawals and Production

389

California Natural Gas Gross Withdrawals Total Offshore (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742 32,313 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

390

Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702 307,306 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

391

Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 418,474 760,566 1980's 949,177 1,010,772 1,120,830 992,041 1,021,260 942,413 1,169,038 1,330,604 1,376,093 1,457,841 1990's 1,555,568 1,494,494 1,411,147 1,355,333 1,392,727 1,346,674 1,401,753 1,351,067 1,241,264 1,206,045 2000's 1,177,257 53,649 57,063 53,569 44,946 36,932 24,785 29,229 46,786 37,811 2010's 28,574 23,791 16,506 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

392

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

393

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

394

ARM - Measurement - Shortwave broadband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

395

Total Neutron Scattering in Vitreous Silica  

Science Journals Connector (OSTI)

The structure of Corning superpure vitreous silica glass has been investigated with neutrons. A new method of analysis using variable neutron wavelengths and the measurement of total scattering cross sections from transmission experiments is developed and the results are compared with those from differential x-ray scattering. The total neutron scattering method permits a simple and direct structure analysis with resolution apparently superior to x-rays. The preliminary results compare well in a first approximation analysis with the basic structure model of Warren and others and in addition the neutron-determined atomic radial distribution curve exhibits some finer details than the x-ray results. Thermal inelastic scattering of neutrons was corrected for in an approximate way.

R. J. Breen; R. M. Delaney; P. J. Persiani; A. H. Weber

1957-01-15T23:59:59.000Z

396

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

397

Frustrated total internal reflection acoustic field sensor  

DOE Patents [OSTI]

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

398

"No.","Treasury Appropriation Symbol","Title/Program","Total Appropriation","Total Obligations","Total Disbursements"  

Broader source: Energy.gov (indexed) [DOE]

Weekly Update Report Data (sheet 1 of 2) Version 1.0" Weekly Update Report Data (sheet 1 of 2) Version 1.0" ,"Agency Name:","Department of Energy" ,"Week Start Date:",39867 ,"Submitter Name:","David Abercrombie" ,"Submitter Contact Info:","David.Abercrombie@hq.doe.gov" "No.","Treasury Appropriation Symbol","Title/Program","Total Appropriation","Total Obligations","Total Disbursements" 1,"89-09/10-0211","Fossil Energy Research and Development, Recovery Act",3400000000,0,0 2,"89-09/10-0227","Science, Recovery Act",1600000000,0,0 3,"89-09/12-0237","Inspector General, Recovery Act",15000000,0,0 4,"89-09/10-0253","Defense Environmental Cleanup, Recovery Act",5127000000,0,0

399

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

Water Resources Research Center Annual Technical Report FY 1999 Introduction WATER PROBLEMS AND ISSUES OF MISSOURI The water problems and issues in the State of Missouri can be separated into three general areas: 1) water quality, 2) water quantity, and 3) water policy. Each of Missouri's specific

400

Center for Water Resources Annual Technical Report  

E-Print Network [OSTI]

Technical Report FY 2009 1 #12;Introduction California's National Institute for Water Research is located Quality, Quantity, and Security California must address our challenges to ensure a high quality of life Davis) Toward improved Irrigation Efficiency through Real-time Assimilation of Multi-spectral Satellite

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Improved selection in totally monotone arrays  

SciTech Connect (OSTI)

This paper's main result is an O(({radical}{bar m}lgm)(n lg n) + mlg n)-time algorithm for computing the kth smallest entry in each row of an m {times} n totally monotone array. (A two-dimensional A = a(i,j) is totally monotone if for all i{sub 1} < i{sub 2} and j{sub 1} < j{sup 2}, < a(i{sub 1},j{sub 2}) implies a(i{sub 2},j{sub 1})). For large values of k (in particular, for k=(n/2)), this algorithm is significantly faster than the O(k(m+n))-time algorithm for the same problem due to Kravets and Park. An immediate consequence of this result is an O(n{sup 3/2} lg{sup 2}n)-time algorithm for computing the kth nearest neighbor of each vertex of a convex n-gon. In addition to the main result, we also give an O(n lg m)-time algorithm for computing an approximate median in each row of an m {times} n totally monotone array; this approximate median is an entry whose rank in its row lies between (n/4) and (3n/4) {minus} 1. 20 refs., 3 figs.

Mansour, Y. (Harvard Univ., Cambridge, MA (United States). Aiken Computation Lab.); Park, J.K. (Sandia National Labs., Albuquerque, NM (United States)); Schieber, B. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Sen, S. (AT and T Bell Labs., Murray Hill, NJ (United States))

1991-01-01T23:59:59.000Z

402

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Price, rebate and order quantity decisions in a newsvendor framework with rebate-dependent recapture of lost sales  

Science Journals Connector (OSTI)

This paper analyses a single-period decision of a retailer facing uncertain and price dependent demand. The typical modeling of the problem in a newsvendor framework assumes the unfulfilled demand to be lost once and for all. However, in reality, there may be an opportunity to backlog the lost sales, by offering some incentive for waiting. Nevertheless, the retailer's procurement price may be higher, due to the likely cost increase of the emergency purchase. Further, not all the customers that could not buy in the first instance may avail the rebate offer and buy. The backlog fill rate is modeled as a function of the proportion of the rebate to the price. Then the retailer has to decide ahead of the realization of the demand the quantity to be ordered, the price and the rebate to be offered for backlogged sales that will maximize its expected profit. Numerical examples are presented to highlight model sensitivities to parametric changes.

F.J. Arcelus; Ravi Gor; G. Srinivasan

2012-01-01T23:59:59.000Z

404

SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS  

SciTech Connect (OSTI)

Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

Couture, A.

2013-06-07T23:59:59.000Z

405

A note on supply chain coordination for joint determination of order quantity and reorder point using a credit option  

Science Journals Connector (OSTI)

Abstract Credit options and side payments are two methods suggested for achieving coordination in a two-echelon supply chain. We examine the credit option coordination mechanism introduced by Chaharsooghi and Heydari [Chaharsooghi, S., & Heydari, J. (2010). Supply chain coordination for the joint determination of order quantity and reorder point using credit option. European Journal of Operational Research, 204(1), 8695]. This method assumes that the suppliers opportunity costs are equal to the reduction in the buyers financial holding costs during the credit period. In this note, we show that Chaharsooghi and Heydaris method is not applicable when buyer and supplier opportunity costs are not equal. We introduce an alternate per order rebate method that reduces supply chain costs to centralized management levels.

Barry R. Cobb; Alan W. Johnson

2014-01-01T23:59:59.000Z

406

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2010-2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2010-2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2010 Deliveries in 2011 Deliveries in 2012 Quantity Distribution1 Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price First 5,757 31.91 6,789 34.97 7,119 38.24 Second 5,757 40.66 6,789 46.48 7,119 48.64 Third 5,757 43.60 6,789 50.80 7,119 51.16 Fourth 5,757 45.34 6,789 54.07 7,119 54.15 Fifth 5,757 47.89 6,789 57.21 7,119 56.93 Sixth 5,757 54.28 6,789 61.90 7,119 59.98 Seventh 5,757 60.21 6,789 65.21 7,119 61.02

407

Notices Total Estimated Number of Annual  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

408

Total solar house description and performance  

SciTech Connect (OSTI)

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

409

Neutron Total Cross Sections at 20 Mev  

Science Journals Connector (OSTI)

With the T(d,n)He4 reaction as a monoenergetic source of neutrons of about 20 Mev, the total cross sections of 13 elements have been measured by a transmission experiment. These cross sections vary approximately as A23 as is to be expected from the continuum theory of nuclear reactions. The cross section for hydrogen at 19.93 Mev is 0.5040.01 barn. This result, together with other results at lower energies, seems to require a Yukawa potential in both the singlet and triplet n-p states and a singlet effective range that is lower than that obtained from p-p scattering data.

Robert B. Day and Richard L. Henkel

1953-10-15T23:59:59.000Z

410

Energy Witness Reports -Snapshots E. Facility  

E-Print Network [OSTI]

Energy Witness Reports - Snapshots E. Facility Utility Usage and Cost: Utility Summary Features Summary Report: Energy Consumption Features: -total kBtu -detail use and rate by utility -single bldg Features: -any time frame -monthly total HDD and CDD B. Building Summary Report: Baseline Energy Tracking

Paulsson, Johan

411

2013 Wind Technologies Market Report  

SciTech Connect (OSTI)

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

412

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

413

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

414

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

415

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

416

Total assessment audits (TAA) in Iowa  

SciTech Connect (OSTI)

Traditionally, energy, waste reduction and productivity audits are performed for a manufacturing facility independent of one another. Auditors generally deliver recommendations for improvement based on their specialized expertise (energy, waste reduction, productivity, etc.) without regard to how those recommendations may impact other, sometimes less obvious, subsystems or processes within the facility. The audits are typically performed in isolation from the plant upper management and commonly without adequate knowledge of how inherent interrelated operational constraints may directly or indirectly influence the success of audit recommendations. The Total Assessment Audit (TAA) concept originated from the belief that a manufacturing facility is better served using a holistic approach to problem solving rather than the more conventional isolated approach. The total assessment audit methodology partners the upper management team of a company with a multi-disciplined team of industry-specific specialists to collectively ascertain the core opportunities for improvement in the company and then to formulate a company oriented continuous improvement plan. Productivity, waste reduction, and energy efficiency objectives are seamlessly integrated into a single service delivery with the TAA approach. Nontraditional audit objectives that influence profitability and competitiveness such as business management practices, employee training, human resource issues, etc. are also subject to evaluation in a TAA. The underlying premise of this approach is that the objectives are interrelated and that simultaneous evaluation will province synergistic results. Ultimately, it is believed that the TAA approach can motivate a manufacturer to implement improvements it might not otherwise pursue if it were focused only on singular objectives.

Haman, W.G.

1999-07-01T23:59:59.000Z

417

Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005  

Broader source: Energy.gov [DOE]

The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

418

1992 Annual Capacity Report. Revision 1  

SciTech Connect (OSTI)

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

419

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

420

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

422

Provides Total Tuition Charge to Source Contribution  

E-Print Network [OSTI]

Contribution 10 4 * 1,914 1,550 364 15 6 3 2,871 2,326 545 20 8 4 3,828 3,101 727 25 10 5 4,785 3,876 909 30 12,752 1,818 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total,742 4,651 1,091 75 30 5 4,785 3,876 909 80 32 4 3,828 3,101 727 85 34 3 2,871 2,326 545 90 36 3 2,871 2

Kay, Mark A.

423

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

424

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

425

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for small scale combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include residential use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

426

Biodegradation of total petroleum hydrocarbon (TPH) in Jordanian petroleum sludge  

Science Journals Connector (OSTI)

Bioremediation, or the use of micro-organisms to decontaminate soil or groundwater, is being increasingly seen as an effective, environment-friendly treatment for oil-contaminated sites. In this study, the results are presented concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludge from the Jordan Oil Refinery Plant. As a result of the laboratory screening, 18 isolates were selected and grouped into two main clusters; cluster 1 containing 12 isolates grown at 43°C, and cluster 2 containing six isolates grown at 37°C. Three natural bacterial consortia with ability to degrade total petroleum hydrocarbons (TPH) were prepared from these isolates. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TPH removal percentage varying from 5.9% to 25.1%, depending upon consortia type and concentration. Consortia 7B and 13B exhibited the highest TPH removal percentages of 25% and 23%, respectively before nutrient addition. TPH removal rate was enhanced after addition of nutrients to incubated flasks. The highest TPH reduction (37%) was estimated after addition of a combination of nitrogen, phosphorus and sulphur to consortia 7B. This is the first report concerning biological treatment of total petroleum hydrocarbon by bacteria isolated from the oil refinery plant, where it lay the ground for full integrated studies recommended for hydrocarbon degradation that assist in solving sludge problems.

Bassam Mrayyan; Mohammad Battikhi

2004-01-01T23:59:59.000Z

427

A:REPORT96.PDF  

Broader source: Energy.gov (indexed) [DOE]

6 6 FREEDOM OF INFORMATION ACT ANNUAL REPORT FOR 1996 1. Total number of requests received during calendar year 1996: 2837 2. Total number of determinations to provide all requested records: 1401 3. Total number of initial determinations not to comply with a request for records made under subsection 552(a): Total Full Denials 58 Total Partial Denials 535 4. Authority relied upon for each such determination: a. Exemptions in 552(b) Exemption Invoked Number of Times Invoked 1 9 2 3 3 62 4 231

428

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

429

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

430

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

431

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

432

Exploring Total Power Saving from High Temperature of Server Operations  

E-Print Network [OSTI]

Air Temperature Total system power (%) Cooling power (%)Total system power (%) Cooling power (%) JunctionTo simulate the cooling power consumption at different

Lai, Liangzhen; Chang, Chia-Hao; Gupta, Puneet

2014-01-01T23:59:59.000Z

433

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

434

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

Broader source: Energy.gov [DOE]

This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

435

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2010-2012 deliveries" b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2010-2012 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Distribution of Purchasers","Deliveries in 2010",,,"Deliveries in 2011",,,"Deliveries in 2012" ,"Number of Purchasers","Quantity with Reported Price","Weighted-Average Price","Number of Purchasers","Quantity with Reported Price","Weighted-Average Price","Number of Purchasers","Quantity with Reported Price","Weighted-Average Price" "First ",9,5650,40.28,9,11382,46.76,8,10981,45.58

436

Annual Report  

Broader source: Energy.gov (indexed) [DOE]

Report Report Fiscal Year 2011 Office of Environment, Security, Safety and Health

437

Audit Report: IG-0730 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Audit Report: IG-0730 Audit Report: IG-0730 Audit Report: IG-0730 June 26, 2006 The Department's Management of Non-Nuclear High Explosives Two defense laboratories did not maintain adequate Management of High control, accountability, and safety over their high explosive Explosives inventories. At Sandia National Laboratories (Sandia), contractor officials did not always track the acquisition and use of explosives and could not account for significant quantities of explosive material and devices. In addition, both Sandia and the Los Alamos National Laboratory (Los Alamos) maintained large quantities of high explosives that were unlikely to be needed for current or future missions. Finally, both organizations were not regularly evaluating the stability and safety of the high explosive

438

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

439

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

440

Performance Period Total Fee Paid FY2001  

Broader source: Energy.gov (indexed) [DOE]

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

442

Alcohol Quantity and Type on Risk of Recurrent Gout Attacks: An Internet-based Case-crossover Study  

Science Journals Connector (OSTI)

AbstractObjectives Although beer and liquor have been associated with risk of incident gout, wine has not. Yet anecdotally, wine is thought to trigger gout attacks. Further, how much alcohol intake is needed to increase the risk of gout attack is not known. We examined the quantity and type of alcohol consumed on risk of recurrent gout attacks. Methods We conducted a prospective Internet-based case-crossover study in the US among participants with gout and who had at least one attack during the 1 year of follow-up. We evaluated the association of alcohol intake over the prior 24 hours as well as the type of alcoholic beverage with risk of recurrent gout attack, adjusting for potential time-varying confounders. Results This study included 724 participants with gout (78% men, mean age 54 years). There was a significant dose-response relationship between amount of alcohol consumption and risk of recurrent gout attacks (P gout attack was 1.36 (95% confidence interval [CI], 1.00-1.88) and 1.51 (95% CI, 1.09-2.09) times higher for >1-2 and >2-4 alcoholic beverages, respectively, compared with no alcohol consumption in the prior 24 hours. Consuming wine, beer, or liquor was each associated with an increased risk of gout attack. Conclusions Episodic alcohol consumption, regardless of type of alcoholic beverage, was associated with an increased risk of recurrent gout attacks, including potentially with moderate amounts. Individuals with gout should limit alcohol intake of all types to reduce the risk of recurrent gout attacks.

Tuhina Neogi; Clara Chen; Jingbo Niu; Christine Chaisson; David J. Hunter; Yuqing Zhang

2014-01-01T23:59:59.000Z

443

May 3, 2011 Situation Report  

Broader source: Energy.gov [DOE]

Beginning Wednesday April 27, 2011, severe storms with heavy rain, hail, and tornadoes impacted States in the Mid-Atlantic and Southern regions. As of 3:00 pm EDT, May 3, 2011, the impacted States report a total of 122,941 customers without power. This is a decrease from the 149,210 customers reported in this mornings Situation Report #11. Restoration efforts by electric utilities are reported below.

444

Annual Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Occupational Radiation Exposure Occupational Radiation Exposure Home Welcome What's New Register Dose History Request Data File Submittal REMS Data Selection HSS Logo Annual Reports User Survey on the Annual Report Please take the time to complete a survey on the Annual Report. Your input is important to us! The 2012 Annual Report View or print the annual report in PDF format The 2011 Annual Report View or print the annual report in PDF format The 2010 Annual Report View or print the annual report in PDF format The 2009 Annual Report View or print the annual report in PDF format The 2008 Annual Report View or print the annual report in PDF format The 2007 Annual Report View or print the annual report in PDF format The 2006 Annual Report View or print the annual report in PDF format The 2005 Annual Report

445

Ponding Test Results Seepage and Total Losses Main Canal B Hidalgo County Irrigation District No. 16  

E-Print Network [OSTI]

TR-325 2008 Ponding Test Results Seepage and Total Losses Main Canal B Hidalgo County Irrigation District No. 16 Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering... MAIN CANAL B HIDALGO COUNTY IRRIGATION DISTRICT NO. 16 Report Prepared by: Eric Leigh and Guy Fipps,1 P.E. February 17, 2004 IRRIGATION TECHNOLOGY CENTER Texas Cooperative Extension - Texas Agricultural...

Leigh, E.; Fipps, G.

446

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

447

OSTI Increases Total Number of Documents Available to the Public | OSTI, US  

Office of Scientific and Technical Information (OSTI)

Total Number of Documents Available to the Public Total Number of Documents Available to the Public June 2005 Oak Ridge, TN - OSTI is pleased to announce the addition of 1994 full-text records in digital form to the DOE Information Bridge, increasing by more than 15 percent the total number of documents available to the public through this Web product. Currently viewable are more than 108,000 DOE scientific and technical reports. Information Bridge provides the open source to full-text and bibliographic records of DOE R&D reports in physics, chemistry, materials, biology, environmental sciences, energy technologies, engineering, computer and information science, renewable energy, and other topics. The Information Bridge consists of full-text documents produced and made available by the DOE National Laboratories and grantees from 1994 forward.

448

CRD Report  

E-Print Network [OSTI]

Research Division Report Deconstructing Microbes Metagenomicon page 2 (Scientific Report SciDAC continued from page 1www.ctwatch.org/quarterly. Report Nano Letters continued

Wang, Ucilia

2007-01-01T23:59:59.000Z

449

Annual Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Reports science-innovationassetsimagesicon-science.jpg Annual Reports x Strategic Plan Annual Report - 2011 (pdf) Advancing Science for National Security See more Los...

450

Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Percentages of Total Imported Crude Oil by API Gravity Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History 20.0º or Less 16.07 17.25 17.35 14.65 17.17 19.70 1983-2013 20.1º to 25.0º 34.75 32.07 33.66 33.41 32.73 35.52 1983-2013 25.1º to 30.0º 9.35 8.59 8.61 11.45 8.98 7.73 1983-2013 30.1º to 35.0º 25.99 30.03 26.36 28.73 29.89 26.56 1983-2013 35.1º to 40.0º 11.94 10.60 12.42 9.74 9.89 8.80 1983-2013 40.1º to 45.0º 1.62 1.23 1.13 1.70 1.14 W 1983-2013 45.1º or Greater 0.28 0.23 0.48 0.31 0.20 W 1983-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

451

texas water resources institute Water management is one of the most significant challenges facing Texas today. Major water quantity and water quality  

E-Print Network [OSTI]

texas water resources institute Water management is one of the most significant challenges facing Texas today. Major water quantity and water quality problems exist, affecting the environment and economy. Texas needs solutions. At the Texas Water Resources Institute, we help solve these pressing water

452

Locating-total domination in claw-free cubic graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices of a graph G is a total dominating set of G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . A claw-free graph is a graph that does not contain K 1 , 3 as an induced subgraph. We show that the locating-total domination number of a claw-free cubic graph is at most one-half its order and we characterize the graphs achieving this bound.

Michael A. Henning; Christian Lwenstein

2012-01-01T23:59:59.000Z

453

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

454

TOTAL ORE PROCESSING INTEGRATION AND MANAGEMENT  

SciTech Connect (OSTI)

The lessons learned from ore segregation test No.3 were presented to Minntac Mine personnel during the reporting period. Ore was segregated by A-Factor, with low values going to Step 1/2 and high values going to Step 3. During the test, the mine maintained the best split possible for the given production and location constraints. During the test, Step 1&2 A-Factor was lowered more than Step 3 was raised. All other ore quality changes were not manipulated, but the segregation by A-Factor affected most of the other qualities. Magnetic iron, coarse tails, fine tails, silica, and grind changed in response to the split. Segregation was achieved by adding ore from HIS to the Step 3 blend and lowering the amount of LC 1&2 and somewhat lowering the amount of LC 3&4. Conversely, Step 1&2 received less HIS with a corresponding increase in LC 1&2. The amount of IBC was increased to both Steps about one-third of the way into the test. For about the center half of the test, LC 3&4 was reduced to both Steps. The most noticeable layer changes were, then: an increase in the HIS split; a decrease in the LC 1&2 split; adding IBC to both Steps; and lowering LC 3&4 to both Steps. Statistical analysis of the dataset collected during ordinary, non-segregated operation of the mine and mill is continuing. Graphical analysis of blast patterns according to drill monitor data was slowed by student classwork. It is expected to resume after the semester ends in May.

Leslie Gertsch; Richard Gertsch

2005-05-16T23:59:59.000Z

455

Capsule HRB-15B postirradiation examination report  

SciTech Connect (OSTI)

Capsule HRB-15B design tested 184 thin graphite trays containing unbonded fuel particles to peak exposures of 6.6 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/ fast fluence, approx. 27% fissions per initial metal atom (FIMA) fissile burnup, and 6% FIMA fertile burnup at nominal time-averaged temperatures of 815 to 915/sup 0/C. The capsule tested a variety of low-enriched uranium (approx. 19.5% U-235) fissile particle types, including UC/sub 2/, UC/sub x/O/sub y/, UO/sub 2/, zirconium-buffered UO/sub 2/ (referred to in this report as UO/sub 2//sup *), and 1:1(Th,U)O/sub 2/ with both TRISO and silicon-BISO coatings. All fertile particles were ThO/sub 2/ with BISO, silicon-BISO, or TRISO coatings. The findings indicated that all TRISO particles retained virtually all of their fission product inventories, except small quantities of silver, at these irradiation temperatures, while some of the silicon-BISO particles released significant amounts of both silver and cesium. No kernel migration, pressure vessel, or outer pyrolytic carbon (OPyC) failures were observed in the fuel particles, which had total diameters of < 900 ..mu..m; however, the incidence of failed OPyC coatings was found to increase with particle size in the TRISO inert particles, which had diameters of 1000 to 1200 ..mu..m. UO/sub 2//sup */ particles exhibited no detrimental irradiation effects, but they contained pure carbon precipitates in the kernels after irradiation which were not observed in the undoped UO/sub 2/ particles. Postirradiation examination revealed no differences in the irradiation performance of three UC/sub x/O/sub y/ kernel types with varying oxygen/uranium ratios.

Ketterer, J.W.; Bullock, R.E.

1981-06-01T23:59:59.000Z

456

Health physics 1992 progress report  

SciTech Connect (OSTI)

At Los Alamos National Laboratory, radiation protection services are provided by ESH-1, -4, and -12, and technical support is provided by ESH-6 to Laboratory groups that work with significant quantities of fissile material. The mission of all these groups is to protect Laboratory workers, the public, and the environment from radiation associated with Laboratory operations. In this report, 1992 radiation protection performance trends are presented. These data show that, in general, the collective external dose equivalent quantities from penetrating (gamma, x-ray, and neutron) radiation and from nonpenetrating (beta and low-energy photon) radiation showed a slight downward trend during 1992. The number of confirmed contaminations of skin and personal clothing decreased in 1992 when compared to the previous year. Finally, there was one reportable DOE 5000.3A internal contamination event in 1992. The 1992 radiation protection activities of the Laboratory, conducted at both the Nevada Test Site and at Los Alamos, are presented and discussed. These activities include external dosimetry, internal dosimetry, radiation-monitoring instrumentation, sample analysis, workplace radiological monitoring, nuclear criticality safety, hazardous materials response, radiological training, and radiological records. This report details routine activities, including any significant changes and improvements in 1992; additional activities, including special investigations, studies, and reviews; publications and presentations; and professional activities, including professional memberships, training received, and conferences attended.

Not Available

1994-04-01T23:59:59.000Z

457

Complete Embedded Minimal Surfaces of Finite Total David Hoffman  

E-Print Network [OSTI]

Complete Embedded Minimal Surfaces of Finite Total Curvature David Hoffman Department-5300 Bonn, Germany July 18, 1994 Contents 1 Introduction 2 2 Basic theory and the global Weierstrass representation 4 2.1 Finite total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2

458

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

459

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

460

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Connecticut Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

462

Connecticut Natural Gas % of Total Residential Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

% of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

463

Project Functions and Activities Definitions for Total Project Cost  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

1997-03-28T23:59:59.000Z

464

Final Beamline Design Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Beamline Design Report Final Beamline Design Report Guidelines and Review Criteria (SCD 1.20.95) 6.0 Final Beamline Design Report (FDR) Overview The Final Beamline Design Report is part of the Advanced Photon Source (APS) beamline review process and should be planned for when approximately 90% of the total beamline design has been completed. Fifteen copies of the FDR are to be submitted to the APS Users Office. Approval of the Collaborative Access Team's (CAT) designs described in the report is required prior to installation of beamline components in the APS Experiment Hall. Components that have a long lead time for design or procurement can be reviewed separately from the remainder of the beamline, but enough information must be provided so that the reviewer can understand the

465

NON-CLOSED CURVES IN Rn WITH FINITE TOTAL FIRST  

E-Print Network [OSTI]

], and Kondo and Tanaka [14] have examined the global properties of the total curvature of a curveNON-CLOSED CURVES IN Rn WITH FINITE TOTAL FIRST CURVATURE ARISING FROM THE SOLUTIONS OF AN ODE P finite total first curvature. If all the roots of the associated characteristic polynomial are simple, we

Gilkey, Peter B

466

Total Cost of Ownership Considerations in Global Sourcing Processes  

E-Print Network [OSTI]

Total Cost of Ownership Considerations in Global Sourcing Processes Robert Alard, Philipp Bremen and microeconomic aspects which can also be largely used independently. Keywords: Global Supply Networks, Total Cost of Ownership, Global Total Cost of Ownership, Global Procurement, Outsourcing, Supplier Evaluation, Country

Paris-Sud XI, Université de

467

GLOBAL RIGIDITY FOR TOTALLY NONSYMPLECTIC ANOSOV BORIS KALININ  

E-Print Network [OSTI]

GLOBAL RIGIDITY FOR TOTALLY NONSYMPLECTIC ANOSOV Zk ACTIONS BORIS KALININ AND VICTORIA SADOVSKAYA by NSF grant DMS-0140513. Supported in part by NSF grant DMS-0401014. 1 #12;GLOBAL RIGIDITY FOR TOTALLY Abstract. We consider a totally nonsymplectic (TNS) Anosov action of Zk which is either uniformly

Sadovskaya, Victoria

468

PARSII - New Reports and Reports With New Reporting Folder Location...  

Energy Savers [EERE]

- New Reports and Reports With New Reporting Folder Location More Documents & Publications PARSII - New Reports and Reports With New Reporting Folder Location Slide 1 Slide 1...

469

Reporting OIG: Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OIG: Department of Energy OIG: Department of Energy Month Ending Date: 03/31/2009 Submitter Name: Juston Fontaine Submitter Contact Info: 202-586-1959 Program Source/ Treasury Account Symbol: Agency Code Program Source/Treasury Account Symbol: Account Code Total Funding Total Obligations Total Gross Outlays 89 $0 $0 $0 Program Source/ Treasury Account Symbol: Agency Code Program Source/Treasury Account Symbol: Account Code Total Funding Total Obligations Total Gross Outlays 89 $182,278 $182,278 $182,278 Monthly Update Report Data (sheet 1 of 2) Version 1.0 Non-Recovery Act Funds Used on Recovery Act Activity Recovery Act Funds Used on Recovery Act Activity No. 1 To date, Department of Energy, Office of Inspector General Recovery Act funds have not been apportioned.

470

SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.  

SciTech Connect (OSTI)

This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report SRS 2010 Vegetation Inventory GeoStatistical Mapping Report, (Edwards & Parresol 2013).

Edwards, Lloyd A. [Leading Solutions, LLC.; Paresol, Bernard [U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

2014-09-01T23:59:59.000Z

471

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

472

Financial and Activity Report - March 9, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 Financial and Activity Report - March 9, 2012 The Weekly Financial and Activity Reports section includes the Department of Energy's weekly report on spending and major actions related to the Recovery Act. The "Weekly Update" tab includes listing of total appropriations, total obligations, and total disbursements for each Treasury Account. The "Major Activities" tab lists of the major actions taken to date and major planned actions of likely interest to senior government officials, Congress, and the public. DOE_Weekly_Financial_and_Activity_Report_20120309.xls More Documents & Publications Financial and Activity Report - July 16, 2010 Financial and Activity Report - March 30, 2012 Financial and Activity Report - August 27, 2010

473

Financial and Activity Report - March 30, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2012 30, 2012 Financial and Activity Report - March 30, 2012 The Weekly Financial and Activity Reports section includes the Department of Energy's weekly report on spending and major actions related to the Recovery Act. The "Weekly Update" tab includes listing of total appropriations, total obligations, and total disbursements for each Treasury Account. The "Major Activities" tab lists of the major actions taken to date and major planned actions of likely interest to senior government officials, Congress, and the public. DOE_Weekly_Financial_and_Activity_Report_20120330.xls More Documents & Publications Financial and Activity Report - August 5, 2011 Financial and Activity Report - August 26, 2011 Financial and Activity Report - July 29, 2011

474

Financial and Activity Report - March 2, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

, 2012 , 2012 Financial and Activity Report - March 2, 2012 The Weekly Financial and Activity Reports section includes the Department of Energy's weekly report on spending and major actions related to the Recovery Act. The "Weekly Update" tab includes listing of total appropriations, total obligations, and total disbursements for each Treasury Account. The "Major Activities" tab lists of the major actions taken to date and major planned actions of likely interest to senior government officials, Congress, and the public. DOE_Weekly_Financial_and_Activity_Report_20120302.xls More Documents & Publications Financial and Activity Report - July 16, 2010 Financial and Activity Report - March 30, 2012 Financial and Activity Report - March 9, 2012

475

Financial and Activity Report - March 23, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2012 3, 2012 Financial and Activity Report - March 23, 2012 The Weekly Financial and Activity Reports section includes the Department of Energy's weekly report on spending and major actions related to the Recovery Act. The "Weekly Update" tab includes listing of total appropriations, total obligations, and total disbursements for each Treasury Account. The "Major Activities" tab lists of the major actions taken to date and major planned actions of likely interest to senior government officials, Congress, and the public. DOE_Weekly_Financial_and_Activity_Report_20120323.xls More Documents & Publications Financial and Activity Report - July 16, 2010 Financial and Activity Report - July 30, 2010 Financial and Activity Report - February 12, 2010

476

Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures  

E-Print Network [OSTI]

From the inversion of a time series of high resolution slit spectrograms obtained from the quiet sun, the spatial and temporal distribution of the thermodynamical quantities and the vertical flow velocity is derived as a function of logarithmic optical depth and geometrical height. Spatial coherence and phase shift analyzes between temperature and vertical velocity depict the height variation of these physical quantities for structures of different size. An average granular cell model is presented, showing the granule-intergranular lane stratification of temperature, vertical velocity, gas pressure and density as a function of logarithmic optical depth and geometrical height. Studies of a specific small and a specific large granular cell complement these results. A strong decay of the temperature fluctuations with increasing height together with a less efficient penetration of smaller cells is revealed. The T -T coherence at all granular scales is broken already at log tau =-1 or z~170 km. At the layers beyon...

Puschmann, K G; Vazquez, M; Bonet, J A; Hanslmeier, A; 10.1051/0004-6361:20047193

2012-01-01T23:59:59.000Z

477

Water quantity and quality model for the evaluation of water-management strategies in the Netherlands: application to the province of Friesland  

SciTech Connect (OSTI)

The Netherlands have a rather complex water-management system consisting of a number of major rivers, canals, lakes and ditches. Water-quantity management on a regional scale is necessary for an effective water-quality policy. To support water management, a computer model was developed that includes both water quality and water quantity, based on three submodels: ABOPOL for the water movement, DELWAQ for the calculation of water quality variables and BLOOM-II for the phytoplankton growth. The northern province of Friesland was chosen as a test case for the integrated model to be developed, where water quality is highly related to the water distribution and the main trade-off is minimizing the intake of (eutrophicated) alien water in order to minimize external nutrient load and maximizing the intake in order to flush channels and lakes. The results of the application of these models to this and to a number of hypothetical future situations are described.

Brinkman, J.J.; Griffioen, P.S.; Groot, S.; Los, F.J.

1987-03-01T23:59:59.000Z

478

The application of the fusion method of thermit welding to small diameter tubing: An analysis of mold design and powder quantity.  

E-Print Network [OSTI]

of an exothermic reaction between iron oxide and aluminum, in the form of a finely powdered mixture. Produced in this reaction are steel, aluminum oxide, and a specific quantity of heat. In the early lgDD' s, the thermit process was used extensively... Pl ~ Glynn, who investigated another basic aspect of this problem. The science of aluminothermics involves the reduc- tion of a metallic oxide in the presence of aluminum. This reduction occurs in the form of an ebullient exothermic reaction...

Eller, Frank Charles

1972-01-01T23:59:59.000Z

479

Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives  

SciTech Connect (OSTI)

This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

Brough, W.G. [Lawrence Livermore National Lab., CA (United States); Boerigter, S.T. [Los Alamos National Lab., NM (United States)

1995-04-06T23:59:59.000Z

480

Report Card  

Science Journals Connector (OSTI)

Report Card ... Homework, tests, and report cards. ... I don't know how to break the news to themperhaps gentlythat even after they finish college and graduate school, the homework, tests, and report cards continue. ...

MADELEINE JACOBS

2000-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "total quantity reported" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CIOMS Report  

Science Journals Connector (OSTI)

CIOMS is the abbreviation for , asub?organization of the World Health Organization (WHO). Concerning the reporting of adverse reactions the CIOMS reached agreement on astandard form report for reporting adv...

2008-01-01T23:59:59.000Z

482

Available Balance Report Revised 12/2008 Page 1 Available Balance Report  

E-Print Network [OSTI]

Available Balance Report ­ Revised 12/2008 Page 1 Available Balance Report The "Available Balance Report" shows total Budget, Encumbrance, Expense, and Available Balance detailed by Budgetary Account of the resources they have available as of a point in time. This report is also used by the Budget Office

Weston, Ken

483

REPORT OF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REPORT OF TO THE BONNEVILLE POWER ADMINISTRATION REPORT OF THE INDEPENDENT EVALUATOR REVIEW AND VALIDATION OF FILINGS August 19, 2014 Submitted by: ACCION GROUP, LLC 244 North...

484

REPORT OF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RELEASE VERSION REPORT OF TO THE BONNEVILLE POWER ADMINISTRATION REPORT OF THE INDEPENDENT EVALUATOR REVIEW AND VALIDATION OF FILINGS January 31, 2013 Submitted by: ACCION GROUP,...

485

COLLEGE BUDGET REPORT TO ACADEMIC SENATE College of Applied Sciences and Arts TOTAL  

E-Print Network [OSTI]

.25 $1,039,784 $544,871 2.25 $173,789 $156,373 $27,607 $14,000 $101 $1,956,525 Nursing 19.08 $1 Therapy 8.25 $627,630 $344,315 3.75 $246,364 $69,882 $18,809 $0 $2,169 $1,309,169 Social Work 12.25 $871 AAD BASE BUDGET: 1,167.00 $74,371,848 31.65 $3,421,211 59.40 $6,101,100 523.45 $23,978,871 $793

Gleixner, Stacy

486

Seagate Crystal Reports - RAD14  

Office of Environmental Management (EM)

Shipping and Receiving Summary by Shipping Site (RAD-14) Shipping and Receiving Summary by Shipping Site (RAD-14) 201 1 -70(P)* & Non Annualized Quantity (m 3 ) by Waste Type 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Receiving Site 1998(A)* 2008(P)* 2004(P)* 2005(P)* 2006(P)* 2007(P)* SHIPPING SITE: Energy Technology Engineering Center WASTE TYPE: Low Level Waste STATE: California 868.020 136.130 41.780 293.500 293.500 149.850 199.800 282.800 292.900 0.000 0.000 0.000 0.000 0.000 Hanford 869.250 680.510 199.000 50.000 50.000 50.000 40.000 31.000 0.000 0.000 0.000 0.000 0.000 0.000 Nevada Test Site Total: 1,737.270 816.640 240.780 343.500 343.500 199.850 239.800 313.800 292.900 0.000 0.000 0.000 0.000 0.000 201 1 -70(P)* & Non Annualized Quantity (m 3 ) by Waste Type 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Receiving Site 1998(A)*

487

Seagate Crystal Reports - CM142  

Office of Environmental Management (EM)

Shipping and Receiving Summary by Shipping Site (CM-14) Shipping and Receiving Summary by Shipping Site (CM-14) 201 1 -70(P)* & Non Annualized Quantity (m 3 ) by Waste Type 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Receiving Site 1998(A)* 2008(P)* 2004(P)* 2005(P)* 2006(P)* 2007(P)* SHIPPING SITE: Energy Technology Engineering Center WASTE TYPE: Low Level Waste STATE: California 0.000 425.000 1,530.000 1,770.000 1,870.000 1,570.000 1,900.000 2,880.000 3,145.000 0.000 0.000 0.000 0.000 0.000 Commercial/Other Total: 0.000 425.000 1,530.000 1,770.000 1,870.000 1,570.000 1,900.000 2,880.000 3,145.000 0.000 0.000 0.000 0.000 0.000 201 1 -70(P)* & Non Annualized Quantity (m 3 ) by Waste Type 1999(A)* 2000(A)* 2001(P)* 2002(P)* 2003(P)* 2009(P)* 2010(P)* Receiving Site 1998(A)* 2008(P)* 2004(P)* 2005(P)* 2006(P)* 2007(P)* SHIPPING SITE: Energy Technology Engineering Center

488

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

489

The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)  

E-Print Network [OSTI]

The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

2014-03-18T23:59:59.000Z

490

Low-energy positron scattering from methanol and ethanol: Total cross sections  

Science Journals Connector (OSTI)

We report total cross sections for positron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH). The energy range of the present study is 0.140eV. The ethanol measurement appears to be original while for methanol we compare our data to the only previous result from Kimura and colleagues [Adv. Chem. Phys. 111, 537 (2000)], with a significant discrepancy between them being found at the lower energies. Positronium formation threshold energies for both species, deduced from the present respective total cross section data sets, are found to be consistent with those expected on the basis of their known ionization energies. There are currently no theoretical results against which we can compare our total cross sections.

Antonio Zecca, Luca Chiari, A. Sarkar, Kate L. Nixon, and Michael J. Brunger

2008-08-05T23:59:59.000Z

491

Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: July 16, 2012 6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing to someone by E-mail Share Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Facebook Tweet about Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Twitter Bookmark Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Google Bookmark Vehicle Technologies Office: Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing on Delicious Rank Vehicle Technologies Office: Fact #736: July 16, 2012 Total

492

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

493

Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic-Aqueous Solvent Systems  

SciTech Connect (OSTI)

Mass spectrometry-based identification of the components of multiprotein complexes often involves solution-phase proteolytic digestion of the complex. The affinity purification of individual protein complexes often yields nanogram to low-microgram amounts of protein, which poses several challenges for enzymatic digestion and protein identification. We tested different solvent systems to optimize trypsin digestions of samples containing limited amounts of protein for subsequent analysis by LC-MS-MS. Data collected from digestion of 10-, 2-, 1-, and 0.2- g portions of a protein standard mixture indicated that an organicaqueous solvent system containing 80% acetonitrile consistently provided the most complete digestion, producing more peptide identifications than the other solvent systems tested. For example, a 1-h digestion in 80% acetonitrile yielded over 52% more peptides than the overnight digestion of 1 g of a protein mixture in purely aqueous buffer. This trend was also observed for peptides from digested ribosomal proteins isolated from Rhodopseudomonas palustris. In addition to improved digestion efficiency, the shorter digestion times possible with the organic solvent also improved trypsin specificity, resulting in smaller numbers of semitryptic peptides than an overnight digestion protocol using an aqueous solvent. The technique was also demonstrated for an affinityisolated protein complex, GroEL. To our knowledge, this report is the first using mass spectrometry data to show a linkage between digestion solvent and trypsin specificity. Mass spectrometry (MS) has become a widely used method for studying proteins, protein complexes, and whole proteomes because of innovations in soft ionization techniques, bioinformatics, and chromatographic separation techniques.1-7 An example of a high-throughput mass spectrometry strategy commonly used for this purpose is a variation of the "shotgun" approach, involving in-solution digestion of a protein complex followed by onedimensional (1D) or two-dimensional (2D) liquid chromatography (LC) coupled with electrospray ionization (ESI) MS-MS.6-8 One of the applications of this method is for characterizing multiprotein complexes by identifying large numbers of proteins in a single data acquisition.9 Large-scale implementations of this strategy have been reported for yeast and Escherichia coli.10-12 To achieve a goal of characterizing large numbers of protein complexes13 isolated by affinity purification from Rhodopseudomonas palustris,14 an efficient protocol for digesting these complexes is required.

Strader, Michael B [ORNL; Tabb, Dave L [ORNL; Hervey, IV, William Judson [ORNL; Pan, Chongle [ORNL; Hurst, Gregory {Greg} B [ORNL

2006-01-01T23:59:59.000Z

494

Estimating Radiation Risk from Total Effective Dose Equivalent...  

National Nuclear Security Administration (NNSA)

and UNSCEAR 1988 in Radiation Risk Assessment - Lifetime Total Cancer Mortality Risk Estimates at Low Doses and Low Dose Rates for Low-LET Radiation, Committee on Interagency...

495

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

496

,"U.S. Total Refiner Petroleum Product Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

NUSDPG","EMAEPPRLPWGNUSDPG","EMAEPPRHPWGNUSDPG" "Date","U.S. Total Gasoline WholesaleResale Price by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline Wholesale...

497

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

498

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

499

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

500

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...