National Library of Energy BETA

Sample records for total production imports

  1. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand ...

  3. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS2... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels ...

  4. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Georgia of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Ghana of ...

  5. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports ...

  6. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Panama of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Peru ...

  7. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: U.S. Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country 2010 2011 2012 2013 2014 2015 View History All Countries 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Persian Gulf 624,638 679,403 789,082 733,325 684,235 550,046 1993-2015 OPEC* 1,790,811 1,662,720 1,563,273 1,357,907 1,181,458 1,058,209 1993-2015 Algeria 186,019 130,723 88,487 42,014 40,193 39,478

  8. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History All Countries 54,063 56,468 52,343 59,570 56,245 63,583 1981-2016 Persian Gulf 3,326 2,849 3,951 2,738 3,343 3,487 1993-2016 OPEC* 12,172 13,760 12,417 15,062 14,321 14,771

  9. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable

  10. Total Net Imports of Crude Oil and Petroleum Products into the U.S.

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Indonesia Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos

  11. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total All Countries 9,441 8,450 7,393 6,237 5,065 4,651 1973-2015 Persian Gulf 1,705 1,842 2,149 1,988 1,861 1,496 1993-2015 OPEC* 4,787 4,429 4,093 3,483 2,996 2,652 1993-2015 Algeria 510 355 241 108 109 105 1993-2015 Angola 393 346 233 215 154 136 1993-2015 Ecuador 135 147 117 153 116 104 1993-2015 Indonesia 37 20 6 23 24 37 1993-2015 Iran 0 0 1993-2014 Iraq 415 459 476 341 369 229 1996-2015 Kuwait 197 191 305 328 311 206 1993-2015 Libya 70 15 60 58 5

  12. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total All Countries 4,857 5,072 5,000 4,674 4,525 4,870 1973-2016 Persian Gulf 1,509 1,553 1,805 1,707 1,923 1,712 1993-2016 OPEC* 2,824 2,940 3,423 3,179 3,420 3,154 1993-2016 Algeria 106 142 147 130 91 171 1993-2016 Angola 158 133 172 242 161 128 1993-2016 Ecuador 209 101 175 95 144 124 1993-2016 Indonesia 63 35 38 43 43 53 1993-2016 Iran 1993-2014 Iraq 252 245 365 349 555 434 1996-2016 Kuwait 205 289 123 199 177 135 1993-2016 Libya 10 5 0

  13. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  14. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. Total 9,010 5,030 8,596 6,340 4,707 8,092 1936-2016 PAD District 1 3,127 2,664 2,694 1,250 1,327 2,980 1981-2016 Connecticut 1995-2015 Delaware 280 1995-2016 Florida 858 649 800 200 531 499 1995-2016 Georgia 210 262 149 106 1995-2016 Maine 1995-2015 Maryland 84 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,283 843 1,073 734 355 1,984 1995-2016 New York 234 824 210 196 175 1995-2016 North Carolina 1995-2011

  15. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  16. Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing

    Broader source: Energy.gov [DOE]

    When referring to U.S. imports of petroleum, it is important to make the distinction between total imports and net imports. Net imports are equal to the amount of total imported petroleum minus the...

  17. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  18. ,"U.S. Total Imports Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Total Imports Natural Gas Plant Processing",1,"Monthly"... "Back to Contents","Data 1: U.S. Total Imports Natural Gas Plant Processing" ...

  19. Fact #837: September 8, Gap between Net Imports and Total Imports of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum is Widening | Department of Energy 7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact #837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net imports of petroleum (total imports minus exports) were 6.2 million barrels per day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in exports of

  20. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  1. Fact #837: September 8, Gap between Net Imports and Total Imports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in ...

  2. Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,583 2,728 2014 5,470 3,783 2,334 2,806 2,175 3,311 1,567 2,871 2,505 2,003 2015 7,729 7,623 5,521 1,673 2,557 7,133 8,237 2,563 2,653 1,541 2,452 2016 10,633 8,593 5,626 4,693 5,087 7,520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  3. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  4. Percentages of Total Imported Crude Oil by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History 20.0º or Less 14.71 17.17 15.82 15.37 16.15 15.51 1983-2016 20.1º to 25.0º 40.07 40.06 40.58 40.60 44.66 39.73 1983-2016 25.1º to 30.0º 8.07 6.89 6.44 5.96 8.19 10.02 1983-2016 30.1º to 35.0º 28.10 27.08 28.91

  5. Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #837: Gap between Net Imports and Total Imports of Petroleum is Widening

  6. U.S. Total Imports of Residual Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South ...

  7. Product Supplied for Total Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished

  8. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  9. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than

  10. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  11. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  12. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  13. Total outlines world exploration, production challenges, approaches

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper describes the current international picture of exploration/production; expresses the most prominent challenges the author sees emerging from changing conditions, and discusses briefly how the industry can and does answer these challenges. Geologic status---first, oil and gas provinces are obviously maturing. The peak of discoveries in the U.K. North Sea is well past, and if yearly additions still appear more or less stable, this happens at the expense of a larger number of exploratory wells being drilled. This is going on with variations in a number of areas. Second, the world is shrinking in terms of new prospective basins. For instance, the Norwegian Barents Sea looked so promising a few years ago but has yet to yield a major field. The case is not unique, and everyone can make his own list of disappointments: East African rift basins, Paraguay, and so on. One article pointed out that the last decade's reserve addition from wildcat oil discoveries was down by almost 40% from additions registered during 1972-81. This excluded the USSR, Eastern Europe, China, Mexico, and a couple of Middle East countries.

  14. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  15. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  16. Importance of Biomass Production and Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of feedstocks and overall final product cost - Improve quality of feedstocks at the ... especially in feedstock supply and logistics with production and conversion, are ...

  17. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Indonesia Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Curacao Cyprus Czech Republic Denmark Dominican Republic Egypt

  18. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Indonesia Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Curacao Cyprus Czech Republic Denmark Dominican Republic Egypt

  19. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    301,768 290,577 310,060 294,858 315,660 302,286 1981-2016 Persian Gulf 47,129 45,649 56,422 51,276 59,920 51,466 1993-2016 OPEC* 94,605 93,098 110,857 100,517 112,899 99,098 1993-2016 Algeria 3,896 5,042 4,558 4,113 3,161 5,487 1993-2016 Angola 5,154 3,844 5,323 7,265 4,995 3,837 1993-2016 Ecuador 10,350 7,133 8,188 5,466 7,133 6,702 1993-2016 Indonesia 1,956 1,004 1,172 1,291 1,904 1,601 1993-2016 Iraq 7,810 7,092 11,326 10,480 17,213 13,011 1996-2016 Kuwait 6,369 8,389 3,812 5,971 5,478 4,052

  20. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  1. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...US-NBB1","MTTIMNUS-NBO1","MTTIMUSBE1","MTTIMNUS-NBH1","MTTIMNUS-NBN1","MTTIMNUS-NBL1","MTTIMNUS-NBK1","MTTIMUSBR1","MTTIMUSBX1","MTTIMNUS-NBU1","MTTIMNUS-NBM1","MTTI...

  3. West Coast (PADD 5) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Norway 322 170 373 510 1995-2015 Oman 4,008 13,189 3,460 951 1995-2013 Panama 1995-2008 Papua New Guinea 1995-2003 Peru 6,471 5,712 3,017 4,596 3,652 2,234 1993-2015 Philippines 30 ...

  4. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    11,793 11,436 10,598 9,859 9,241 9,401 1973-2015 Persian Gulf 1,711 1,861 2,156 2,009 1,875 1,507 1973-2015 OPEC* 4,906 4,555 4,271 3,720 3,237 2,899 1973-2015 Algeria 510 358 242 115 110 108 1973-2015 Angola 393 346 233 216 154 136 1973-2015 Ecuador 212 206 180 236 215 230 1993-2015 Indonesia 37 21 7 24 25 39 1973-2015 Iran 1973-2001 Iraq 415 459 476 341 369 229 1973-2015 Kuwait 197 191 305 328 311 206 1973-2015 Libya 70 15 61 59 6 7 1973-2015 Nigeria 1,023 818 441 281 92 83 1973-2015 Qatar 1 6

  5. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  6. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  7. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  8. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  9. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  10. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  11. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Supplement from: U.S. Crude Oil and Natural Gas Proved Reserves Top 100 U.S. Oil and Gas Fields With Data for 2013 | Release Date: April 2, 2015 | Next Release Date: January 2016 Previous Issues (pdf): Year: 2009 2008 2007 (Appendix B) 2006 (Appendix B) 2005 (Appendix B) 2004 (Appendix B) 2003 (Appendix B) 2002 (Appendix B) 2001 (Appendix B) 2000 (Appendix B) 1999 (Appendix B) 1998 (Appendix B) 1997 (Appendix B) 1996 (Appendix B) Go Introduction This supplement to the U.S. Energy Information

  12. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  13. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel ...

  14. Importance of Biomass Production and Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Importance of Biomass Production and Supply Importance of Biomass Production and Supply Bryce Stokes gave this presentation at the Symbiosis Conference. symbiosisconferencestokes...

  15. Fact #837: September 8, 2014 Gap between Net Imports and Total...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excel file with dataset for Fact 837: Gap between Net Imports and Total Imports of ... were Only 33% of U.S. Consumption in 2013 - Dataset Fact 839: September 22, 2014 ...

  16. Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Imports (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,984 2,621 5,981 2015 2,844 3,045 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point,

  17. Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Imports (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 2016 2,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Elba Island, GA LNG

  18. Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5.00 5.61 9.05 6.64 6.88 7.63 3.32 2010's 4.05 4.18 2.10 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release

  19. ARM - Evaluation Product - Radiatively Important Parameters Best Estimate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (RIPBE) ProductsRadiatively Important Parameters Best Estimate (RIPBE) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  3. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  5. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  7. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  8. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  10. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  11. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  12. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  13. Alaska (with Total Offshore) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    company data. Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Shale Natural Gas Estimated Production Alaska Shale Gas Proved Reserves, Reserves Changes,...

  14. AEO2011: World Total Coal Flows By Importing Regions and Exporting...

    Open Energy Info (EERE)

    Coal Flows By Importing Regions and Exporting Countries This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

  15. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  16. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  17. Total Crude Oil and Products Exports by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total All Countries 151,212 143,480 155,073 154,624 175,388 156,194 1981-2016 Afghanistan 0 0 0 0 0 1997-2016 Albania 0 0 1998-2016 Algeria 611 914 0 221 331 349 1996-2016 Andora 2005-2015 Angola 264 1 0 0 1 0 1995-2016 Anguilla 0 0 0 0 0 1 2005-2016 Antigua and Barbuda 61 145 66 112 187 129 1995-2016 Argentina 1,309 1,878 1,203 2,112 2,723 4,089 1993-2016 Armenia 0 2005-2016 Aruba 1,758 1,415 1,615 758 678 285 2005-2016 Australia 562 295

  18. US imports. Part II. Refined product market shares, then and now

    SciTech Connect (OSTI)

    Not Available

    1987-07-08

    Unlike imports of crude oil to the US, which were up 45.7% between 1977 and 1986, imports of petroleum products have fallen by about 8.6% during the same period. The crude oil price crash of 1986 deepened US dependency on imports of crude, from 21.4% in 1977 to 25.4% in 1986, but reduced the dependency in the case of total refined products from 11.32% in 1977 to 11.13% in 1986. Comparing the first four months of 1987 with 1986, US dependency on imported petroleum products is down 2.73 percentage points; import dependency on OPEC petroleum products is down 4.60 percentage points; dependency on Arab OPEC countries product imports is down 1.88 percentage points; and for Eastern Hemisphere exporters, that dependency has fallen 2.17 percentage points. This issue also contains: (1) ED refining netback data from the US Gulf and West coasts, Rotterdam, and Singapore for early July 1987; and (2) ED fuel price/tax series for countries of the Western Hemisphere, July 1987 edition. 4 figures, 5 tables.

  19. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 11,793 11,436 10,598 9,859 9,241 9,401 1973-2015 Crude Oil 9,213 8,935 8,527 7,730 7,344 7,351 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 179 183 170 182 143 144 1983-2015 Pentanes Plus 26 48 29 34 14 11 1983-2015 Liquefied Petroleum Gases 153 135 141 148 128 133 1973-2015 Ethane 1993-2007 Ethylene 0 0 0 0 0 0 1993-2015 Propane 93 82 85 103 89 93 1995-2015 Propylene 29 28 31 24 19 19 1993-2015 Normal Butane 12 8 9 6 7 6

  20. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Crude Oil 3,362,856 3,261,422 3,120,755 2,821,480 2,680,626 2,682,946 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 65,314 66,851 62,192 66,290 52,031 52,563 1981-2015 Pentanes Plus 9,498 17,681 10,680 12,241 5,186 4,027 1981-2015 Liquefied Petroleum Gases 55,816 49,170 51,512 54,049 46,845 48,536 1981-2015 Ethane 1993-2007 Ethylene 135 119 115 123 129 36

  1. U.S. oil imports to decline with rising oil production through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  2. U.S. crude oil production expected to exceed oil imports later...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That ...

  3. High oil production continues to cut U.S. oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High oil production continues to cut U.S. oil imports High U.S. crude oil production will help further reduce America's reliance on oil imports during the next two years. In its ...

  4. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration ...

  5. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other

  6. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release

  7. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  8. Table 10. Total natural gas proved reserves, reserves changes, and production, w

    U.S. Energy Information Administration (EIA) Indexed Site

    Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in reserves during 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  9. Higher U.S. oil production in 2013 and 2014 means lower oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Higher U.S. oil production in 2013 and 2014 means lower oil imports U.S. crude oil production topped 7 million barrels per day in November and December for the first time in 20 ...

  10. U.S. net oil and petroleum product imports expected to fall to...

    U.S. Energy Information Administration (EIA) Indexed Site

    and petroleum product imports expected to fall to just 29 percent of demand in 2014 With ... oil and petroleum products is forecast to fall from 40 percent in 2012 to just 29 percent ...

  11. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Exports",6,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu

    2010-01-15

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  13. U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of

  14. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 260,768 241,313 231,410 235,888 243,090 233,506 1997-2016 Pipeline Prices 2.42 2.12 1.54 1.51 1.44 1.76 1997-2016 Liquefied Natural Gas Volumes 12,048 9,728 8,568 4,767 5,200 7,638 1997-2016 Liquefied Natural Gas Prices 5.48 5.12 3.29 3.30 3.45 3.18 1997-2016 Compressed Natural Gas Volumes 30 29 33 28 29 19 2014-2016 Compressed Natural Gas Prices 5.41 3.27 1.54 1.05 1.10 0.63 2014

  15. Imports of Total Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    869 637 930 610 801 832 1982-2016 East Coast (PADD 1) 639 598 794 538 662 640 2004-2016 Midwest (PADD 2) 8 4 7 9 15 6 2004-2016 Gulf Coast (PADD 3) 207 12 105 0 100 134 2004-2016 Rocky Mountain (PADD 4) 0 4 1 3 0 1 2004-2016 West Coast (PADD 5) 15 19 23 60 23 50

  16. East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for

    Gasoline and Diesel Fuel Update (EIA)

    Processing Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 54,063 56,468 52,343 59,570 56,245 63,583

  17. Total All Countries Exports of Crude Oil and Petroleum Products by

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bangladesh Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burkina Faso Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Cocos (Keeling) Islands Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Curacao Cyprus Czech

  18. U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Total Lower 48 States Federal Offshore Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico (Louisiana & Alabama) Federal Offshore, Gulf of Mexico (Texas) Alaska Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East

  19. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  20. Important high-twist contribution to prompt single-photon production

    SciTech Connect (OSTI)

    Berger, E.L.

    1982-02-01

    Quantitative predictions are presented for a specific hard-scattering reaction ..pi..N ..-->.. ..gamma..X in which both the incident meson and the produced prompt photon couple directly in the QCD amplitude. The process leads to a highly constrained class of events at large p/sub T/ in which the photon momentum is balanced by that of a recoil quark jet, with no spectator jet of final-state particles emerging along the beam axis. Normalized absolutely in terms of the electromagnetic form factor of the pion, F/sub ..pi../(Q/sup 2/), the cross section provides a lower bound on the total p/sub T//sup -6/ high twist contribution to the inclusive prompt-photon yield.

  1. Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product

    SciTech Connect (OSTI)

    McFarlane, S; Shippert, T; Mather, J

    2011-06-30

    The Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to create a complete set of clearly identified set of parameters on a uniform vertical and temporal grid to use as input to a radiative transfer model. One of the main drivers for RIPBE was as input to the Broadband Heating Rate Profile (BBHRP) VAP, but we also envision using RIPBE files for user-run radiative transfer codes, as part of cloud/aerosol retrieval testbeds, and as input to averaged datastreams for model evaluation.

  2. Effect of total lymphoid irradiation on functional status in chronic multiple sclerosis: importance of lymphopenia early after treatment--the pros

    SciTech Connect (OSTI)

    Devereux, C.; Troiano, R.; Zito, G.; Devereux, R.B.; Kopecky, K.J.; Friedman, R.; Dowling, P.C.; Hafstein, M.P.; Rohowsky-Kochan, C.; Cook, S.D.

    1988-07-01

    To determine whether immunosuppression by total lymphoid irradiation (TLI) slowed deterioration of chronic progressive multiple sclerosis (MS), functional impairment score and blood lymphocyte counts were compared at 6-month intervals through 4 years following treatment of MS patients by either TLI (n = 27) or sham irradiation (n = 21). At each interval, 20 to 30% fewer TLI-treated patients had deteriorated (p less than 0.05 at 6, 12, and 18 months), and the difference in mean functional impairment score between groups became progressively greater (p less than 0.01 at 42 and 48 months). Benefit accrued principally to the 17 TLI-treated patients with absolute blood lymphocyte counts less than 900/mm3 3 months after treatment, whose mean functional impairment score remained within 0.6 units of baseline (p = NS), whereas the ten TLI patients with higher post-treatment lymphocyte counts had progressive deterioration (p less than 0.05 to p less than 0.001 versus TLI-treated patients with lower lymphocyte counts at all intervals except 30 months) and had deteriorated by more than 5 functional scale units by 42 and 48 months. Side effects were minor and complications rare in TLI-treated patients, but one TLI-treated patient developed staphylococcal sepsis. Thus, TLI slows deterioration of chronic progressive MS, with what appears to be enduring benefit through 4 years compartmented to patients with greater induced lymphopenia. Modification of lymphoid irradiation regimens to increase the proportion of MS patients who achieve a favorable degree of lymphopenia and to avert functional hyposplenism may further improve the benefit/risk ratio.

  3. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose

    SciTech Connect (OSTI)

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  4. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

  5. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2014, seventy percent of the primary energy imports were crude oil, followed by petroleum products (16%) and natural gas (12%). The remaining sources of primary energy imports: coal, coal coke,...

  6. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts",5,"Monthly","6/2016","1/15/1981" ,"Release

  7. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  9. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  10. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  11. U.S. Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Hungary 0 0 0 0 0 0 1995-2015 India 50 49 40 80 91 82 1995-2015 Ireland 4 2 2 8 8 1995-2015 Israel 5 1 2 0 0 1995-2014 Italy 37 37 26 13 16 12 1993-2015 Ivory Coast 1 0 1 0 1 0 ...

  12. Measuring Dependence on Imported Oil

    Reports and Publications (EIA)

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  13. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  14. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore »and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  15. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  16. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  17. GRD Import

    Energy Science and Technology Software Center (OSTI)

    2010-11-01

    Imports RAW data (*.GRD) files created by Ion-TOF’s SurfaceLab version 6.1 or later into Matlab and saves the resulting variables to a file.

  18. Percentages of Total Imported Crude Oil by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 14.08 15.13 17.20 16.66 16.20 18.49 1978-2014 20.1 to 25.0 26.11 26.01 27.47 29.77 33.87 36.73 1978-2014 25.1 to...

  19. Measurements of the total and differential Higgs boson production cross sections combining the H ? ?? and H ? ZZ* ? 4? decay channels at ?s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-08-27

    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of ?s = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H ? ?? and H ? ZZ* ? 4? event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. Themoretotal production cross section is determined to be ?pp?H = 33.0 5.3 (stat) 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.less

  20. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  1. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  10. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  16. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  17. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  19. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  20. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  1. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  11. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  13. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  14. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  15. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  16. S. 42: A Bill to amend the Internal Revenue Code of 1986 to impose a fee on the importation of crude oil and refined petroleum products. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, January 25, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    S. 42 is a bill to amend the Internal Revenue Code of 1986 to impose a fee on the importation of crude oil and refined petroleum products.

  17. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  18. Arbuscular mycorrhizal interactions … an important trait for...

    Office of Environmental Management (EM)

    interactions an important trait for biomass production of bioenergy crops? Arbuscular mycorrhizal interactions an important trait for biomass production of bioenergy crops? ...

  19. S. 254: A Bill to amend the Internal Revenue Code of 1986 to impose a fee on the importation of crude oil or refined petroleum products. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, January 28, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This is the text of a bill to impose import taxes on crude oil and refined petroleum products, petrochemical feedstock or petrochemical derivatives. Taxes will be paid by the first person who sells the product within the U.S. and by the person who uses the product.

  20. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  1. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  2. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    1 3 6 5 1 6 4 60 29 PAY PLAN SES 2 EJ/EK 18 EN 05 1 EN 04 28 EN 03 3 NN (Engineering) 19 NQ (Prof/Tech/Admin) 40 NU (Tech/Admin Support) 4 White 35.7% NNSA Production Office (NPO) As of March 21, 2015 DIVERSITY 115 74 64.3% American Indian Alaska Native African American Asian American Pacific Islander Hispanic SES EJ/EK EN 05 EN 04 EN 03 NN NQ NU 1.7% 15.7% 0.9% 24.3% 2.6% 16.5% 34.8% 3.5% 0.0% 0.9% 2.6% 5.2% 4.3% 0.9% 5.2% 3.5% 52.2% 25.2% SUPERVISORS DISABILITY 11 SUPERVISORS RATIO VETERANS 24

  3. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    2 Females Male Female Male Female Male Female Male Female Male Female 0 1 3 6 4 1 8 4 65 30 PAY PLAN SES 2 EJ/EK 15 EN 05 1 EN 04 38 EN 03 7 EN 00 2 NN (Engineering) 16 NQ (Prof/Tech/Admin) 38 NU (Tech/Admin Support) 3 DIVERSITY 122 80 65.6% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 34.4% NNSA Production Office (NPO) As of September 5, 2015 SES EJ/EK EN 05 EN 04 EN 03 EN 00 NN NQ NU 1.6% 12.3% 0.8% 31.1% 5.7% 1.6% 13.1% 31.1% 2.5% 0.0% 0.8%

  4. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  5. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  6. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  7. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  8. Imported resources - gas

    SciTech Connect (OSTI)

    Marxt, J.

    1995-12-01

    This paper examines aspects of the supply and demand of natural gas and natural gas products such as LNG in the Czech Republic.

  9. H. R. 4828: a bill to amend the Internal Revenue Code of 1954 to impose a tax on the importation of crude oil and petroleum products. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, May 15, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Energy Independence Act of 1986 amends the Internal Revenue Code of 1954 to impose a tax on the importation of crude oil and petroleum products. The Act would impose an excise tax on the first sale of any imported oil following importation, with the tax rates declining to 20% of the 1986-1987 rate in increments of 20% per year to 1991. Rates for imported petroleum products add an additional adjustment for environmental outlay. The tax does not apply to exports. The bill outlines procedures for determining prices and making adjustments for environmental outlay and inflation. The bill was referred to the Committee on Ways and Means.

  10. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  11. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  12. Measurement of the ratios of the Z/gamma* + >= n jet production cross sections to the total inclusive Z/gamma* cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-08-01

    We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in p{bar p} collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/{gamma}* {yields} e{sup +}e{sup -} candidates corresponding to the integrated luminosity of 340 pb{sup -1} collected using the D0 detector. Ratios of the Z/{gamma}* + {ge} n jet cross sections to the total inclusive Z/{gamma}* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.

  13. Company Level Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports With Data for June 2016 | Release Date: August 31, 2016 | Next Release Date: September 30, 2016 | XLS Previous Issues Month: June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 prior issues Go June 2016 Import Highlights Monthly data on the origins of crude oil imports in June 2016 show that two countries, Canada and Saudi Arabia, exported more than one million barrels

  14. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  15. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  16. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  17. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  20. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  1. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  2. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  3. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  5. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  6. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  7. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  8. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  9. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  10. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  12. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  13. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  14. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  15. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  4. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  5. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  6. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  7. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  8. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  15. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  17. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  19. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  3. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  4. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  7. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Renter-Occupied Housing Unit Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......