Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Variability of Population-Weighted Seasonal Heating Degree Days  

Science Conference Proceedings (OSTI)

Regional and national heating fuel demand is related to both weather and population density. This study analyzes the variability of population-weighted, seasonal heating degree days for the coterminous 48 states. A risk assessment of unusual ...

Nathaniel B. Guttman

1983-03-01T23:59:59.000Z

2

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

3

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

4

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

5

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

6

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

7

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

8

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

9

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

10

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

11

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

12

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

13

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

14

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

15

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

16

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

17

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

18

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

19

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

20

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

22

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

23

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

24

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

25

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

26

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

27

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

28

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

29

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

30

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

31

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

32

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

33

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

34

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

35

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

36

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

37

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

38

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

39

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING ...  

Science Conference Proceedings (OSTI)

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING SYSTEM AS A TOTAL ... and evaluation studies on active and passive fire protection ...

2011-10-13T23:59:59.000Z

40

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

42

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

43

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

44

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

45

Dry Cooling: Perspectives on Future Needs  

Science Conference Proceedings (OSTI)

The total number of dry-cooled power plants in the United States has increased significantly in recent years. This is because nonutility generators are using dry-cooling systems to meet environmental protection and water conservation requirements. A survey shows that utility planners expect that dry cooling could become an important cooling-system option for new utility plants.

1991-08-19T23:59:59.000Z

46

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

47

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2011-02-07T23:59:59.000Z

48

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

Information Center

2008-09-24T23:59:59.000Z

49

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

50

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

51

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

52

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

53

The Greenest Way to Stay Cool - NREL  

Coolerado The ‘Elevator Brief” Patented Heat Exchanger that cools air using 50 -90% less energy – peak demand and total KWh -than conventional AC

54

"Hot" for Warm Water Cooling  

E-Print Network (OSTI)

liquid cooling, dry cooler, cooling tower 1. INTRODUCTIONsolutions for cooling. Substituting cooling towers,hybrid cooling towers, or dry coolers that provide warmer

Coles, Henry

2012-01-01T23:59:59.000Z

55

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network (OSTI)

quad. The estimates for total energy usage are within 12% ofthe total heating and cooling energy usages represented bythe total heating and cooling energy usages represented by

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

56

A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance  

E-Print Network (OSTI)

This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams to very low dewpoints unattainable with conventional cooling approaches. The system allows for precise control of the indoor space humidity while delivering high quantities of outdoor air, at both peak and part load conditions, and during both occupied and unoccupied modes. Low operating cost, reasonable first cost and a significant reduction in cooling plant capacity requirements provide a life cycle cost that is substantially less than that of more conventional system approaches.

Fischer, J. C.

2000-01-01T23:59:59.000Z

57

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

58

ION-BY-ION COOLING EFFICIENCIES  

SciTech Connect

We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2012-03-01T23:59:59.000Z

59

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

60

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

'Radio Wave Cooling' Offers New Twist on Laser Cooling  

Science Conference Proceedings (OSTI)

'Radio Wave Cooling' Offers New Twist on Laser Cooling. From NIST Tech Beat: September 13, 2007. ...

2013-07-08T23:59:59.000Z

62

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

63

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

64

Cool Colored Roofs to Save Energy and Improve Air Quality  

Science Conference Proceedings (OSTI)

Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-08-23T23:59:59.000Z

65

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

66

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

67

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

68

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

69

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

70

Cooling System Functions  

Science Conference Proceedings (OSTI)

...size Flow restrictions Heat exchanger size and design All of these factors must be considered. Every component in the cooling

71

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these...

72

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

73

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

74

Stochastic cooling in RHIC  

SciTech Connect

After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

2009-05-04T23:59:59.000Z

75

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

76

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

77

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

78

SOLERAS solar cooling project  

Science Conference Proceedings (OSTI)

In view of the increasing demand for cooling in both the United States and Saudi Arabia, solar cooling systems are being considered as serious alternatives to the energy intensive conventional systems, especially when confronted with rising fossil fuel costs. Saudi Arabia and the hot, southern regions of the United States, having abundant sunshine and high cooling demand, are obvious candidates for solar active cooling systems and passive cooling design. Solar active cooling has yet to be shown to be either technologically mature or economically feasible, but efforts have been, and are presently being made within the United States National Solar Cooling Program to develop reliable systems which can compete economically with conventional cooling systems. Currently, the program is funding research and development projects in the areas of absorption, Rankine, dessicant, and advanced technologies. Saudi Arabia has a long and successful tradition of building cooling using passive architectural designs. Combining these past achievements with a program of research and development in both active and passive solar cooling should permit an early economical introduction of entirely solar cooled buildings to Saudi Arabia and the southern United States.

Corcoleotes, G.; Williamson, J.S.

1982-01-01T23:59:59.000Z

79

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

80

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

82

Optimization and Control of Cooling Microgrids for Data Centers  

E-Print Network (OSTI)

Abstract — Reliable operation of today’s data centers requires a tremendous amount of electricity to power both the IT equipment and the supporting cooling facilities. As much as half of total data center electricity consumption can be attributed to the cooling systems required to maintain the thermal status of IT equipment. In order to lower the electricity usage of the cooling system and hence reduce the data center environmental footprint, alternative cooling resources, such as water and air-side economizers, are being exploited to supplement or replace the traditional chilled water based cooling schemes. The various cooling resource options, together with the mechanisms to distribute and deliver the cooling resource to IT equipment racks, constitute a cooling microgrid. In this paper, we present a holistic perspective for the optimization and control of the data

Rongliang Zhou; Zhikui Wang; Alan Mcreynolds; Cullen E. Bash; Thomas W; Christian Rocky Shih

2012-01-01T23:59:59.000Z

83

Stochastic cooling in RHIC  

SciTech Connect

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

84

Induced-Draft Cooling Towers and Parallel Wet/Dry Cooling for Combined-Cycle Plants: Design Best Practices and Procurement Specifica tions  

Science Conference Proceedings (OSTI)

This report contains information and examples of best practices for the design and specification of wet and parallel (hybrid) cooling towers for combined-cycle applications. Two reference (template) specifications are includedone for totally wet cooling systems and one for parallel cooling systems with a wet cooling tower and air-cooled condensers (ACC) in parallel. These template specifications are intended to be the starting point from which the utility or developer can "customize" as needed to fit its...

2011-10-14T23:59:59.000Z

85

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

86

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

87

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

88

Passive containment cooling system  

DOE Patents (OSTI)

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

89

Power electronics cooling apparatus  

DOE Patents (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

90

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

91

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

92

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

93

Potential Refrigerants for Power Electronics Cooling  

DOE Green Energy (OSTI)

In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

Starke, M.R.

2005-10-24T23:59:59.000Z

94

Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads  

SciTech Connect

This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

Denholm, P.; Ong, S.; Booten, C.

2012-05-01T23:59:59.000Z

95

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

96

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

97

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

98

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

99

cooling degree days | OpenEI  

Open Energy Info (EERE)

cooling degree days cooling degree days Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, cooling degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Source NOAA Date Released Unknown Date Updated June 24th, 2005 (9 years ago) Keywords climate cooling degree days NOAA Data application/vnd.ms-excel icon hcs_51_avg_cdd.xls (xls, 215.6 KiB) Quality Metrics Level of Review Some Review

100

Solar Desiccant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

102

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

103

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

104

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

105

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

106

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

107

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

108

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

109

Emerging Technologies for Efficient Data Centers: Uninterruptible Power Supply Eco Mode, Liquid Cooling, and Evaporative Cooling  

Science Conference Proceedings (OSTI)

This report summarizes research in emerging technologies that improve data center energy efficiency, including evaporative cooling, liquid cooling, and high-efficiency eco mode operation of the uninterruptible power supply. The report describes the efficiency gains of these technologies and their impact on total data center energy use. It also identifies market barriers for each technology and potential next steps to promote adoption of these efficient technologies.

2013-12-09T23:59:59.000Z

110

Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study  

E-Print Network (OSTI)

Currently accepted methods of passive cooling offset only sensible building loads. In the warm, humid southeastern gulf coast climates the latent building load can comprise 35% of the building load in the typical residence. As the sensible load on residences in these climates is reduced or offset by passive cooling techniques, this latent cooling load percentage increases rapidly. In such residences the auxiliary cooling load cannot be effectively met by conventional cooling equipment . The Florida Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five concrete block wall types are under test at the FSEC Passive Cooling Laboratory (PCL) in Cape Canaveral. Moisture studies involve examination of the absorption and desorption rates of building materials and furnishings and the development of improved moisture migration modeling techniques for inclusion in building energy analysis programs. TARP (Thermal Analysis Research program), developed at NBS by George Walton, and FLOAD, by FCHART Software, have been chosen as the analysis programs with which cooling examined.

Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

1984-01-01T23:59:59.000Z

111

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

112

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

113

LBNL's Novel Approach to Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

systems department, chilled water, cooling water tower, double exchanger cooling, dual heat exchanger, high tech and industrial systems group, inrow, lawrence berkeley national...

114

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

115

Optimization of Cooling Water  

E-Print Network (OSTI)

A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems.

Matson, J.

1985-05-01T23:59:59.000Z

116

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

and Passive Cooling Marlo Martin and Paul Berdahl SeptemberNTIS. 3. P. Berdahl and M. Martin, "The Resource for Radia-1978) p. 684. 4. M. Martin and P. Berdahl, "Description of a

Martin, M.

2011-01-01T23:59:59.000Z

117

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

118

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

119

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

120

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

122

Stimulated radiative laser cooling  

E-Print Network (OSTI)

Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host, into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

Muys, Peter

2007-01-01T23:59:59.000Z

123

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Müller

2013-08-08T23:59:59.000Z

124

Effect of Cooling Rate From Solution Treatment on Precipitation ...  

Science Conference Proceedings (OSTI)

of practical large size forging, such as furnace cooling, air cooling, oil quench and water quench. .... of y (3 y 'I and y '- y ” co-precipitates is agreed well with the TTH diagram. The “on .... groups, because of either the increase of total amount of.

125

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

126

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

127

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

128

WATER COOLED RETORT COVER  

DOE Patents (OSTI)

A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

Ash, W.J.; Pozzi, J.F.

1962-05-01T23:59:59.000Z

129

Cooling Energy and Cost Savings with Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

130

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

131

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

132

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

133

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

134

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

135

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

136

Performance of a cross-cooled desiccant dehumidifier prototype  

DOE Green Energy (OSTI)

The cross-cooled dehumidifier prototype was constructed in the form of a cube with a side dimension of 0.6 m. The cross-cooling was achieved by passing air through rectangular channels perpendicular to process channels which are lined with desiccant sheets consisting of 9..mu..m Syloid 63/sup TM/ silica gel held in a Teflon web. The process for the manufacture of the silica gel sheets was developed at the Illinois Institute of Technology. The dehumidifier prototype was installed in a test system that simulated the performance of a cross-cooled desiccant cooling system and monitored the performance of the prototype. The dehumidifier prototype was operated over a wide range of operating conditions which would be typically encountered in the field installation of such a system. Variables measured were the moisture cycled, cooling capacity, total cooling capacity and coefficient of performance.

Worek, W.M.; Lavan, Z.

1981-08-01T23:59:59.000Z

137

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

138

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

139

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

140

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

142

Turbomachine rotor with improved cooling  

SciTech Connect

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

143

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

144

Five solar cooling projects  

Science Conference Proceedings (OSTI)

The jointly funded $100 million five-year international agreement (SOLERAS) between Saudi Arabia and the United States was undertaken to promote the development of solar energy technologies of interest to both nations. Five engineering field tests of active solar cooling systems funded under the SOLERAS agreement for installation and operation in the U.S. southwest are described.

Davis, R.E.; Williamson, J.S.

1980-01-01T23:59:59.000Z

145

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

146

Dynamic Model of Facial Cooling  

Science Conference Proceedings (OSTI)

Recent modifications to windchill forecasting have motivated the development of a rate-of-tissue-cooling model for the purpose of predicting facial cooling times. The model assumes a hollow cylindrical geometry with a fixed internal boundary ...

Peter Tikuisis; Randall J. Osczevski

2002-12-01T23:59:59.000Z

147

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

72 5.1.2 Memory thermal and cooling model . . . . . . . . 75Energy, Thermal and Cooling Management . . . . . . . .Conclusion . . Chapter 4 Thermal and Cooling Management in

Ayoub, Raid

2011-01-01T23:59:59.000Z

148

Guide to Minimizing Compress-based Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling (direct or indirect), or various liquid cooled solutions. In addition to weather data, the Green Grid organization has developed a free cooling map tool to aid in...

149

AIR COOLED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

Fermi, E.; Szilard, L.

1958-05-27T23:59:59.000Z

150

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

151

Proceedings: Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affect availability and heat rate in fossil and nuclear power plants. Twenty-two papers presented at the 1997 Cooling Tower Technology Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions.

1997-08-13T23:59:59.000Z

152

Conduction cooling: multicrate fastbus hardware  

SciTech Connect

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

153

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

154

Cooling your home naturally  

SciTech Connect

This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

NONE

1994-10-01T23:59:59.000Z

155

SCINTILLATION DETECTOR COOLING SYSTEM  

SciTech Connect

A well logging apparatus for irradiating earth formations with neutrons and recording the gamma rays emitted therefrom is designed which hss a scintillation decay time of less than 3 x 10/sup -8/ sec and hence may be used with more intense neutron sources. The scintillation crystal is an unactivated NaI crystal maintained at liquid N/sub 2/ temperature. The apparatus with the cooling system is described in detail. (D.L.C.)

George, W.D.; Jones, S.B.; Yule, H.P.

1962-08-14T23:59:59.000Z

156

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

157

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

158

Passive cooling system for top entry liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system for liquid metal cooled, top entry loop nuclear fission reactors. It comprises: a liquid metal cooled nuclear reactor plant; a passive cooling system; and a secondary passive cooling system.

Boardman, C.E.; Hunsbedt, A.; Hui, M.M.

1992-10-27T23:59:59.000Z

159

Solar absorption cooling plant in Seville  

SciTech Connect

A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe [Departamento de Ingenieria Energetica, Universidad de Sevilla, Camino de los Descubrimiento s/n, 41092 Sevilla (Spain)

2010-08-15T23:59:59.000Z

160

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

with four cooling fans of different designs available on thedesign, installation, and use, the performance of cooling fans

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

162

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

163

Superconducting magnet cooling system  

DOE Patents (OSTI)

A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

Vander Arend, Peter C. (Center Valley, PA); Fowler, William B. (St. Charles, IL)

1977-01-01T23:59:59.000Z

164

Cooled, temperature controlled electrometer  

DOE Patents (OSTI)

A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

Morgan, John P. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

165

Cooling apparatus and method  

DOE Patents (OSTI)

A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

Mayes, James C. (Sugar Land, TX)

2009-05-05T23:59:59.000Z

166

Modeling the Impact of Summer Temperatures on National Electricity Consumption  

Science Conference Proceedings (OSTI)

National population-weighted weekly degree day totals, which have been used to model and assess temperature-related natural gas consumption, are compared with summertime electricity consumption. A very close relationship between national cooling ...

Douglas M. Le Comte; Henry E. Warren

1981-12-01T23:59:59.000Z

167

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

168

Spray Cooling Enhancement of Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Dry cooling of power plants may be an attractive alternative to wet cooling, particularly where water conservation and environmental protection pose critical siting issues. However, dry cooling technology may be unable to maintain design plant output during the hottest periods of the year, which are often periods of peak system demand. This study—cosponsored by EPRI, the California Energy Commission, and Crockett Cogeneration Co.—evaluated the use of a low-pressure spray enhancement system to...

2003-09-29T23:59:59.000Z

169

Indirect passive cooling system for liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system. It is for liquid metal cooled nuclear reactors having a pool of liquid metal coolant with the heat generating fissionable fuel core substantially immersed in the pool of liquid metal coolant. The passive cooling system including a combination of spaced apart side-by-side partitions in generally concentric arrangement and providing for intermediate fluid circulation and heat transfer therebetween.

Hunsbedt, A.; Boardman, C.E.

1990-09-25T23:59:59.000Z

170

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

171

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

172

SIMULATING THE COOLING FLOW OF COOL-CORE CLUSTERS  

SciTech Connect

We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any active galactic nucleus (AGN) heating, focusing instead on cooling in order to understand how gas reaches the supermassive black hole at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the cooling of gas out to 100 kpc with the cold gas accretion in the central 100 pc, potentially closing the loop between cooling and heating. Isotropic heat conduction does not affect the result significantly, but we show that including the potential well of the brightest cluster galaxy is necessary to obtain the correct result. Also, we found that the outcome is sensitive to resolution, requiring very high mass resolution to correctly reproduce the small transition radius.

Li Yuan; Bryan, Greg L. [Department of Astronomy, Pupin Physics Laboratories, Columbia University, New York, NY 10027 (United States)

2012-03-01T23:59:59.000Z

173

Emergency core cooling system  

DOE Patents (OSTI)

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

174

Beam cooling: Principles and achievements  

SciTech Connect

After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

Mohl, Dieter; Sessler, Andrew M.

2003-05-18T23:59:59.000Z

175

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

176

Muon Cooling R&D  

E-Print Network (OSTI)

International efforts are under way to design and test a muon ionization cooling channel. The present R&D program is described, and future plans outlined.

Steve Geer

2001-08-15T23:59:59.000Z

177

"Hot" for Warm Water Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Published 112011 Conference Location Seattle, WA Call Number LBNL-5128E Abstract Liquid cooling is key to reducing energy consumption for this generation of supercomputers and...

178

Influence of Cooling on Distortion  

Science Conference Proceedings (OSTI)

Table 11   Factors that influence the cooling intensity of liquid quenchants...the vapor pressure is, the more difficult the

179

Laser Cooling of Trapped Ions.  

Science Conference Proceedings (OSTI)

... period, so it can be assumed to give an in- stantaneous impulse to the ... In sympathetic laser cooling, two different ion species are loaded into a trap. ...

2002-11-15T23:59:59.000Z

180

Theory of Semiconductor Laser Cooling .  

E-Print Network (OSTI)

??Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order… (more)

Rupper, Greg

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

182

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H. (Powell, TN), Wereszczak, Andrew A. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Lowe, Kirk T. (Knoxville, TN)

2010-09-14T23:59:59.000Z

183

Film cooling for a closed loop cooled airfoil  

DOE Patents (OSTI)

Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

2003-01-01T23:59:59.000Z

184

GAS COOLED NUCLEAR REACTORS  

DOE Patents (OSTI)

A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

Long, E.; Rodwell, W.

1958-06-10T23:59:59.000Z

185

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

186

Boosted Fast Flux Loop Alternative Cooling Assessment  

Science Conference Proceedings (OSTI)

The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and Al-Hf alloy heat sink system is capable of maintaining all system components below their maximum temperature limits. The maximum temperature of this conduction cooling system, 224.2°C (435.6 °F) occurs in a small, localized region in the heat sink structure near the core mid-plane. The total coolant flow rate requirement for this configuration is 207 L/min (54.7 gpm). The calculated Flow Instability Ratio and Departure from Nucleate Boiling Ratio for this configuration under nominal conditions are 6.5 and 8.0, respectively, which safely exceed the minimum values of 2.0. Materials and fabrication issues inspection revealed that the neutron absorber would probably best be made from powdered Al3Hf mixed with aluminum powder and extruded or hot isostatically pressed. Although Al3Hf has not been specifically studied extensively, its mechanical and chemical properties should be very much like Al3Zr, which has been studied. Its behavior under irradiation should be very satisfactory, and resistance to corrosion will be investigated to a limited extent in planned miniplate irradiation tests in ATR. Pressurized water systems needed to effect heat removal are already available in the ATR complex, and mixed gas temperature control systems needed to trim experiment temperatures have been engineered and need only be fabricated and installed. In sum, it appears the alternately cooled configuration arrived at can be very successful. The cost estimate for this configuration indicates to

Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

2007-08-01T23:59:59.000Z

187

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

188

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

Forsberg, Charles W. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

189

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

190

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

191

Laser cooling to quantum degeneracy  

E-Print Network (OSTI)

We report on Bose-Einstein condensation (BEC) in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1\\muK on a narrow-linewidth transition. The critical phase-space density for BEC is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^5 atoms can be repeatedly formed on a timescale of 100ms, with prospects for the generation of a continuous atom laser.

Stellmer, Simon; Grimm, Rudolf; Schreck, Florian

2013-01-01T23:59:59.000Z

192

Keeping cool in the job  

Science Conference Proceedings (OSTI)

Describes cooling garments used at nuclear plants to keep workers cooler for longer periods of time, safeguard health, boost efficiency, and elevate morale. Examines 2 cooling concepts tested by EPRI in laboratory and field conditions: using circulating liquids for cooling (represented by 2 commercially available personal cooling systems); and using frozen water for cooling (represented by 2 prototype garments recently developed by EPRI). Explains that pipes and pressure vessels inside nuclear power plants give off significant amounts of waste heat, with temperatures reaching up to 55C (131F)-not very comfortable for maintenance workers who are swathed in radiation protection gear and doing repair work. Finds that the frozen-water concept may considerably extend working time in the power plant. Concludes that the right research can overcome heat, humidity, and close quarters which conspire to make maintenance work in power plants a tough task.

Lihach, N.; O'Brien, J.

1982-09-01T23:59:59.000Z

193

Film cooling air pocket in a closed loop cooled airfoil  

SciTech Connect

Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

194

Evaluation of Cooling Solutions for Outdoor Electronics  

E-Print Network (OSTI)

The thermal management of an outdoor electronic enclosure can be quite challenging due to the additional thermal load from the sun and the requirement of having an air-sealed enclosure. It is essential to consider the effect of solar heating loads in the design process; otherwise, it can shorten the life expectancy of the electronic product or lead to catastrophic failure. In this paper we analyze and compare the effectiveness of different cooling techniques used for outdoor electronics. Various cooling techniques were compared like special coatings and paints on the outer surface, radiation shields, double-walled vented enclosures, fans for internal air circulation and air-to-air heat exchangers. A highly simplified, typical outdoor system was selected for this study measuring approximately 300x300x400 mm (WxLxH). Solar radiation was incident on 3 sides of the enclosure. There were 8 equally spaced PCBs inside the enclosure dissipating 12.5W each uniformly (100 watts total). A computational fluid dynamics (CFD) model of the system was built and analyzed. This was followed by building a mock-up of the system and conducting experiments to validate the CFD model. It was found that some of the simplest cooling techniques like white oil paint on the outer surface can significantly reduce the impact of solar loads. Adding internal circulation fans can also be very effective. Using air-to-air heat exchangers was found to be the most effective solution although it is more complex and costly.

Mahendra Wankhede; V. Khaire; A. Goswami; S. D. Mahajan

2008-01-07T23:59:59.000Z

195

Predictive pre-cooling control for low lift radiant cooling using building thermal mass  

E-Print Network (OSTI)

Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

Gayeski, Nicholas (Nicholas Thomas)

2010-01-01T23:59:59.000Z

196

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

197

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

198

Acoustic cooling engine  

DOE Patents (OSTI)

An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

1988-01-01T23:59:59.000Z

199

Non-intrusive cooling system  

DOE Patents (OSTI)

A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

2001-05-22T23:59:59.000Z

200

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of geothermal cooling systems for Arizona  

DOE Green Energy (OSTI)

Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

202

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

203

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

between the cooling effect (measured with a thermal manikin)output is the body cooling effect [5]. Thermal manikins withThermal manikins can be used to measure the fan cooling

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

204

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

of the cooling effect measured with the thermal manikin andThe mea- sured cooling effect with the thermal manikin isby a thermal manikin to quantify the cooling effects of air

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

205

MUCOOL: Ionization Cooling R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory MUCOOL Muon Ionization Cooling R&D Welcome to the muon ionization cooling experimental R&D page. The MuCool collaboration has been formed to pursue the development of a...

206

Cooling arrangement for a tapered turbine blade  

SciTech Connect

A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

Liang, George (Palm City, FL)

2010-07-27T23:59:59.000Z

207

Optimal sequencing of a cooling tower with multiple cells  

E-Print Network (OSTI)

This paper evaluates the energy savings potential of multi-cell cooling tower optimal sequencing control methods. Annual tower fan energy usage is calculated for a counter-flow tower with multiple variable-speed fans. Effectiveness-NTU tower model is employed to predict the cooling tower performance at various conditions. Natural convection when the fan is off is accounted by using an assumed airflow rate. The energy savings at five cities representing different typical climates are studied using typical meteorological year data. The results show that, if the tower capacity can be increased by 50% and 100% by running extra tower cells, the annual total fan power usage can be reduced by 44% and 61%, respectively. A cumulative saving percent curve is generated to help estimate the annual total savings percent when extra cooling tower capacity is available during only part of a year.

Zhang, Z.; Liu, J.

2012-01-01T23:59:59.000Z

208

IEP - Water-Energy Interface: Cooling Water Intake Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

The types of cooling water systems to be evaluated are: Wet Cooling Tower - The condenser is cooled with water recirculated to a mechanical draft cooling tower. Because there...

209

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

Distributed Generation, Absorption Cooling, Space Cooling,use heat to drive an absorption cooling cycle, and the heatlargest drivers for absorption cooling technology adoption

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

210

Economic Evaluation of Alternative Cooling Technologies  

Science Conference Proceedings (OSTI)

Water use and conservation at electric power plants are becoming increasingly important siting issues. At most plants, the requirement for condensing exhaust steam from the steam turbine, generically known as power plant cooling, is the major use of water. Alternative cooling systems exist, including once-through cooling, wet-recirculating cooling, dry cooling, and hybrid (or wet/dry cooling), some of which offer significant opportunity for water conservation. These water savings normally, but perhaps no...

2012-01-25T23:59:59.000Z

211

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

212

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

213

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

78 5.2 Combined Energy, Thermal and CoolingOne reason for thermal and energy variations betweenWe propose a combined energy, thermal and cooling management

Ayoub, Raid

2011-01-01T23:59:59.000Z

214

Vehicle Cooling Systems - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and ... The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a ...

215

Renewable and cooling aware workload management for sustainable data centers  

Science Conference Proceedings (OSTI)

Recently, the demand for data center computing has surged, increasing the total energy footprint of data centers worldwide. Data centers typically comprise three subsystems: IT equipment provides services to customers; power infrastructure supports the ... Keywords: cooling optimization, demand shaping, renewable energy, scheduling, sustainable data center

Zhenhua Liu; Yuan Chen; Cullen Bash; Adam Wierman; Daniel Gmach; Zhikui Wang; Manish Marwah; Chris Hyser

2012-06-01T23:59:59.000Z

216

Cooling Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Power Plant Cooling Technologies Cooling Technologies Cooling tower at Steamboat Springs geothermal power plant in Steamboat Springs, NV. Power generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling technologies to reject the heat that is created. The second law of thermodynamics states: "No process can convert heat absorbed from a reservoir at one temperature directly into work without also rejecting heat to a cooler reservoir. That is, no heat engine is 100% efficient"[1] In the context of power generation from thermal energy, this means that any heat that is created must be rejected. Heat is most commonly rejected in

217

Multi-Photon Laser Cooling  

Science Conference Proceedings (OSTI)

... used traditional cooling beams at 852 nm in the x-y plane, but replaced the usual two beams along z with lasers at 795 nm. This laser only couples ...

2011-10-04T23:59:59.000Z

218

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

219

Convective Cooling of Lightning Channels  

Science Conference Proceedings (OSTI)

We report experimental data which trace the time development of electric discharge channels in air and which demonstrate the turbulent cooling of such channels. These data provide qualitative confirmation of the model proposed and used by Hill, ...

J. M. Picone; J. P. Boris; J. R. Greig; M. Raleigh; R. F. Fernsler

1981-09-01T23:59:59.000Z

220

Energy Savers: Cool Summer Tips  

SciTech Connect

A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed.

Miller, M.

2001-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and...

222

Advance in MEIC cooling studies  

Science Conference Proceedings (OSTI)

Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

223

Absorption Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial...

224

Cooling Towers, Energy Conservation Machines  

E-Print Network (OSTI)

Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water returning from the cooling tower, greater chemical product volume can be condensed and less energy is required to run compressors. This paper will discuss two case histories and the rapid cost-effective savings thereby accruing through retrofit.

Burger, R.

1980-01-01T23:59:59.000Z

225

Quantum limit of photothermal cooling  

E-Print Network (OSTI)

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone; Nori, Franco

2010-01-01T23:59:59.000Z

226

Cross-cooled dehumidifier model test results and computer simulations  

DOE Green Energy (OSTI)

Research on the development of a solar operated cross-cooled desiccant cooling system is described. A 15 cm x 15 cm x 15 cm (6'' x 6'' x 6'') cross-cooled silica gel desiccant dehumidifier model was designed, built and tested. The process of producing the silica gel sheets, the design and construction of the unit, the test setup and the test procedures are described in detail. A total of twenty tests were performed to determine the effect of inlet process stream dew point, process stream and cooling stream flowrates and regeneration stream temperature and dew point, on the performance of the unit. The test results show that the unit performance improves with increasing regeneration temperature, process stream flowrate and process air inlet dew point. The unit performance decreases with increase of the regeneration stream dew point. The results clearly show that the process stream inlet dew point is the dominating factor and that the concept of cross-cooling works very well. With moderate cross-cooling, the unit performance can increase over 50%. All tests were simulated by a computer program. The experimental and theoretical results are in very good agreement.

Mei, V.; Lavan, Z.

1979-11-01T23:59:59.000Z

227

Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces  

Science Conference Proceedings (OSTI)

A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

Timothy Chainer

2012-11-30T23:59:59.000Z

228

Energy Efficient Electronics Cooling Project  

SciTech Connect

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

229

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

230

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

231

"Hot" for Warm Water Cooling  

Science Conference Proceedings (OSTI)

Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

2011-08-26T23:59:59.000Z

232

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

233

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

234

Definition: Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Water Cooling Water Cooling Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process.[1] View on Wikipedia Wikipedia Definition Water cooling is a method of heat removal from components and industrial equipment. As opposed to air cooling, water is used as the heat conductor. Water cooling is commonly used for cooling automobile internal combustion engines and large industrial facilities such as steam electric power plants, hydroelectric generators, petroleum refineries and chemical plants. Other uses include cooling the barrels of machine guns, cooling of

235

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

236

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

237

Cool- and Warm-Season Precipitation Reconstructions over Western New Mexico  

Science Conference Proceedings (OSTI)

Precipitation over the southwestern United States exhibits distinctive seasonality, and contrasting ocean–atmospheric dynamics are involved in the interannual variability of cool- and warm-season totals. Tree-ring chronologies based on annual-...

D. W. Stahle; M. K. Cleaveland; H. D. Grissino-Mayer; R. D. Griffin; F. K. Fye; M. D. Therrell; D. J. Burnette; D. M. Meko; J. Villanueva Diaz

2009-07-01T23:59:59.000Z

238

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

239

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network (OSTI)

heat recovery and absorption cooling are selected in allself- generated and absorption cooling displaces a further

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

240

Parametric Study of Turbine Blade Internal Cooling and Film Cooling  

E-Print Network (OSTI)

Gas turbine engines are extensively used in the aviation and power generation industries. They are used as topping cycles in combined cycle power plants, or as stand alone power generation units. Gains in thermodynamic efficiency can be realized by increasing the turbine inlet temperatures. Since modern turbine inlet temperatures exceed the melting point of the constituent superalloys, it is necessary to provide an aggressive cooling system. Relatively cool air, ducted from the compressor of the engine is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines use high Reynolds number internal flow to cool their internal passages. The first part of this study focuses on experiments pertaining to passages with Reynolds numbers of up to 400,000. Common turbulator designs (45degree parallel sharp-edged and round-edged) ribs are studied. Older correlations are found to require corrections in order to be valid in the high Reynolds number parameter space. The effect of rotation on heat transfer in a typical three-pass serpentine channel is studied using a computational model with near-wall refinement. Results from this computational study indicate that the hub experiences abnormally high heat transfer under rotation. An experimental study is conducted at Buoyancy numbers similar to an actual engine on a wedge shaped model trailing edge, roughened with pin-fins and equipped with slot ejection. Results show an asymmetery between the leading and trailing surfaces due to rotation - a difference which is subdued due to the provision of pin-fins. Film cooling effectiveness is measured by the PSP mass transfer analogy technique in two different configurations: a flat plate and a typical high pressure turbine blade. Parameters studied include a step immediately upstream of a row of holes; the Strouhal number (quantifying rotor-stator interaction) and coolant to mainstream density ratio. Results show a deterioration in film cooling effectiveness with on increasing the Strouhal number. Using a coolant with a higher density results in higher film cooling effectiveness.

Rallabandi, Akhilesh P.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Personal cooling apparatus and method  

DOE Patents (OSTI)

A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

Siman-Tov, Moshe (Knoxville, TN); Crabtree, Jerry Allen (Knoxville, TN)

2001-01-01T23:59:59.000Z

242

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air conditioning load, which is highly coincident with HL&P's system peak, provided a large market for cool storage technologies. Initial market research made it very clear that a special cool storage rate was required to successfully market the technology. Development of the rate required an integrated, multidepartment effort and extensive use of DSManager, an integrated resource planning model. An experimental version of the rate was initially implemented as part of the initial phase of the cool storage program. A permanent rate, incorporating lessons learned from the experimental rate, was then developed for the long term implementation of the program. The permanent rate went through a lengthy regulatory approval process which included intervention by a local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation.

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

243

Cooling Towers, Energy Conservation Strategies  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. After it is put on the line and the cold water temperature or volume becomes inadequate, they look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: (1) The present service needed is now greater than the original requirements which the tower was purchased for; (2) 'Slippage' due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation; (3) The installation could have been originally undersized due to the low bidder syndrome; and (4) New plant expansion needs colder temperatures off the tower.

Burger, R.

1983-01-01T23:59:59.000Z

244

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

245

cooling | OpenEI Community  

Open Energy Info (EERE)

cooling cooling Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

246

Keeping Cool at Fermilab INSIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 1996 June 28, 1996 Number 13 Keeping Cool at Fermilab INSIDE 2 University Close-Up: The University of Minnesota 6 Summer at Fermilab by Eric Berger, Office of Public Affairs As debate heats up among lawmakers on the fate of the nation's helium reserve, Fermilab researchers prepare for a long, cold summer. How cold? Minus 450 degrees Fahrenheit-the temperature of the liquid helium that cools the Tevatron's supercon- ducting magnets. Proposed congressional changes to the 1960 Helium Act, however, could ultimately affect Fermilab's vital cooling operation, which uses 13 million cubic feet of gaseous helium annually. Electric current travels through a supercon- ductor friction-free, like skaters on smooth ice, allowing physicists to run accelerators at higher f energies, while using far less electricity than

247

Thermal performance of cooling towers  

SciTech Connect

Wet cooling towers are often used in HVAC applications to reject heat to the atmosphere. Heat rejection is accomplished within the tower by heat and mass transfer between hot water droplets and ambient air. These heat and mass transfer processes and the resulting coefficient of performance are often misunderstood and misinterpreted. To demystify these concepts, the heat and mass transfer exchange at the water droplet level are reviewed. This is followed by an analysis of an idealized spray-type tower to show how cooling tower performance is affected by fill height, water retention time, and air and water mass flow rates. Finally, the so-called coefficient of performance of cooling towers is examined.

Bernier, M.A. [Ecole Polytechnique de Montreal, Quebec (Canada)

1995-04-01T23:59:59.000Z

248

Quench cooling under reduced gravity  

E-Print Network (OSTI)

We report the quench cooling experiments performed with liquid O2 under different levels of gravity simulated with the magnetic gravity compensation. A copper disk is quenched from 270K to 90K. It is found that the cooling time in microgravity is very long in comparison with any other gravity level. This phenomenon is explained by the isolation effect of the gas surrounding the disk. The liquid subcooling is shown to drastically improuve the heat exchange thus reducing the cooling time (about 20 times). The effect of subcooling on the heat transfer is analyzed at different gravity levels. It is shown that such type of experiments cannot be used for the analysis of the critical heat flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is analyzed instead.

Chatain, D; Nikolayev, V S; Beysens, D

2013-01-01T23:59:59.000Z

249

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough moisture to meet the latent portion of the load while the sensible portion is met by a vapor compression cooling system; desiccant regeneration is achieved by using the heat rejected from the condenser together with other thermal sources. At present, residential desiccant cooling systems are in actual operation but are more costly than vapor compression systems, resulting in relatively long payback periods. Component efficiencies need to be improved, particularly the efficiency of the dehumidifier.

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

250

Cooling Tower Inspection with Scuba  

E-Print Network (OSTI)

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling tower pump suction basin was accomplished by diving into the basin using SCUBA gear. It was possible to see a build-up of debris on the pump suction basket strainers and on the floor of the sumps. Also, it was discovered that one of the four baskets had been installed incorrectly. Photographs of the basket strainers were taken to aid in describing their exact condition. With the aid of SCUBA it was possible to sufficiently clean the pump sumps so that costly downtime was avoided. Likewise, using this technique, steps were taken to greatly reduce the chance for further contamination of the circulating cooling water system.

Brenner, W.

1982-01-01T23:59:59.000Z

251

Lamination cooling system formation method  

SciTech Connect

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

2012-06-19T23:59:59.000Z

252

Guidelines for Selecting Cool Roofs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

253

Cooling assembly for fuel cells  

DOE Patents (OSTI)

A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

1990-01-01T23:59:59.000Z

254

Lamination cooling system formation method  

Science Conference Proceedings (OSTI)

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

2009-05-12T23:59:59.000Z

255

Quantum noise in photothermal cooling  

SciTech Connect

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. We achieve this by developing a Langevin formalism for the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lambert, Neill [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2011-03-15T23:59:59.000Z

256

Evaluation of Cooling Solutions for Outdoor Electronics  

E-Print Network (OSTI)

The thermal management of an outdoor electronic enclosure can be quite challenging due to the additional thermal load from the sun and the requirement of having an air-sealed enclosure. It is essential to consider the effect of solar heating loads in the design process; otherwise, it can shorten the life expectancy of the electronic product or lead to catastrophic failure. In this paper we analyze and compare the effectiveness of different cooling techniques used for outdoor electronics. Various cooling techniques were compared like special coatings and paints on the outer surface, radiation shields, double-walled vented enclosures, fans for internal air circulation and air-to-air heat exchangers. A highly simplified, typical outdoor system was selected for this study measuring approximately 300x300x400 mm (WxLxH). Solar radiation was incident on 3 sides of the enclosure. There were 8 equally spaced PCBs inside the enclosure dissipating 12.5W each uniformly (100 watts total). A computational fluid dynamics (C...

Wankhede, Mahendra; Goswami, A; Mahajan, S D

2008-01-01T23:59:59.000Z

257

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro-drive eliminates these items from the drive train and puts the same electric motor HP at ground level close coupled to a hydraulic pump, filters, and oil reservoir. Hydraulic lines bring oil pressure to the hydraulic motor, which is more than 75% less weight than comparable gear boxes and presents a smooth practically trouble free performance. In this three cell installation, the original 75 horsepower motors and 18’ diameter fans were cooling a total of 14,000 GPM which were CTI tested and 74.7% of capability. The upgrading and retrofit consisted of installing at ground level 100 horse power motors, 22’ diameter fans, 14’ high velocity recovery fan cylinders, “V” PVC splash bars, and high efficiency cellular drift eliminators. Testing after completion indicated a 92% tower now circulating 21,000 GPM instead of the original 14,000.

Dickerson, J. A.

1987-09-01T23:59:59.000Z

258

Reducing residential cooling requirements through the use of electrochromic windows  

Science Conference Proceedings (OSTI)

This paper presents the results of a study investigating the energy performance of electrochromic windows in a prototypical residential building under a variety of state switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling energy and peak demand as a function of glazing type, size, and electrochromic control strategy. A single-story ranch-style home located in the cooling-dominated locations of Miami, FL and Phoenix, AZ was simulated. Electrochromic control strategies analyzed were based on incident total solar radiation, space cooling load, and outside air temperature. Our results show that an electrochromic material with a high reflectance in the colored state provides the best performance for all control strategies. On the other hand, electrochromic switching using space cooling load provides the best performance for all the electrochromic materials. The performance of the incident total solar radiation control strategy varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); i.e., required cooling decreases as the setpoint range decreases; also, performance differences among electrochromics increases. The setpoint range of outside air temperature control of electrochromics must relate to the ambient weather conditions prevalent in a particular location. If the setpoint range is too large, electrochromic cooling performance is very poor. Electrochromics compare favorably to conventional low-E clear glazings that have high solar heat gain coefficients that are used with overhangs. However, low-E tinted glazings with low solar heat gain coefficients can outperform certain electrochromics. Overhangs should be considered as a design option for electrochromics whose state properties do not change significantly between bleached and colored states.

Sullivan, R.; Rubin, M.; Selkowitz, S.

1995-05-01T23:59:59.000Z

259

Is H3+ cooling ever important in primordial gas?  

E-Print Network (OSTI)

Studies of the formation of metal-free Population III stars usually focus primarily on the role played by H2 cooling, on account of its large chemical abundance relative to other possible molecular or ionic coolants. However, while H2 is generally the most important coolant at low gas densities, it is not an effective coolant at high gas densities, owing to the low critical density at which it reaches local thermodynamic equilibrium (LTE) and to the large opacities that develop in its emission lines. It is therefore possible that emission from other chemical species may play an important role in cooling high density primordial gas. A particularly interesting candidate is the H3+ molecular ion. This ion has an LTE cooling rate that is roughly a billion times larger than that of H2, and unlike other primordial molecular ions such as H2+ or HeH+, it is not easily removed from the gas by collisions with H or H2. It is already known to be an important coolant in at least one astrophysical context -- the upper atmospheres of gas giants -- but its role in the cooling of primordial gas has received little previous study. In this paper, we investigate the potential importance of H3+ cooling in primordial gas using a newly-developed H3+ cooling function and the most detailed model of primordial chemistry published to date. We show that although H3+ is, in most circumstances, the third most important coolant in dense primordial gas (after H2 and HD), it is nevertheless unimportant, as it contributes no more than a few percent of the total cooling. We also show that in gas irradiated by a sufficiently strong flux of cosmic rays or X-rays, H3+ can become the dominant coolant in the gas, although the size of the flux required renders this scenario unlikely to occur.

S. C. O. Glover; D. W. Savin

2008-09-04T23:59:59.000Z

260

Global Cool Cities Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Heating & Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

262

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows, and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. The results of Phase 1 work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems. One potential disadvantage of an ice-slurry district cooling system is the introduction of ice into equipment not so designed, such as air handlers at end user locations. A prototypic ice slurry distribution loop will demonstrate a cooling network which will provide ice slurry to an end user but sends ice free water into the actual heat transfer.

Winters, P.J.

1991-01-02T23:59:59.000Z

263

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

264

Solar-powered cooling system  

SciTech Connect

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

265

Evaporative cooling enhanced cold storage system  

DOE Patents (OSTI)

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

266

Multi-pass cooling for turbine airfoils  

SciTech Connect

An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

Liang, George (Palm City, FL)

2011-06-28T23:59:59.000Z

267

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

268

Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud  

SciTech Connect

A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

2002-01-01T23:59:59.000Z

269

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

270

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

271

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

272

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

273

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

274

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

°C °F Cooling Effect (?t eq ) °C °F Fan Power, W (P f ) Cooling-Fan Efficiency (CFE) °C/W °F/Wand B. Jones. 1983. Ceiling fans as extenders of the summer

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

275

Experimental Study of Hybrid Cooled Heat Exchanger.  

E-Print Network (OSTI)

??A test system for a hybrid cooled heat exchanger was designed, and the test facility was constructed based on ASHRAE Standard 41.2-1987. A conventional air-cooled… (more)

Tsao, Han-Chuan

2011-01-01T23:59:59.000Z

276

Cooling Towers--Energy Conservation Strategies  

E-Print Network (OSTI)

A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers, and other associates heat rejection equipment.

Matson, J.

1991-06-01T23:59:59.000Z

277

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

278

Data Center Alternative Cooling Analysis Tool  

amounts of energy. Consistent large loads of energy are required for data center efficiency and reliability. Four different cooling technologies, ...

279

Modeling Cathode Cooling Due to Power Interruption  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling Cathode Cooling Due to Power Interruption ... Development and Application of SAMI's Low Voltage Energy-Saving Technology.

280

Engineered design of SSC cooling ponds  

SciTech Connect

The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project`s successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency.

Bear, J.B.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankthe chillers and cooling towers, the thermal storage tank,of thermal energy storage in building cooling systems.

Ma, Yudong

2010-01-01T23:59:59.000Z

282

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

COOLING AND DOUBLE WALLBOARD COMPARISON OF THERMAL STORAGEThermal Performance of Phase Change Wallboard for Residential CoolingThermal Performance of Phase Change Wallboard for Residential Cooling

Feustel, H.E.

2011-01-01T23:59:59.000Z

283

Viability of dynamic cooling control in a data center environment  

E-Print Network (OSTI)

A. Beitelmal, “Thermal Considerations in Cooling Large Scalesmart cooling, dynamic thermal control, energy optimization,thermal management conditions. EP-04-1163, BASH Keywords: Data center cooling,

Boucher, T.; Auslander, D.; Bash, C.; Federspiel, C.; Patel, C.

2006-01-01T23:59:59.000Z

284

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the effect of thermal mass on cooling loads, and thereforelift radiant cooling using building thermal mass, Departmentlevel thermal modelling are recommended for design cooling

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

285

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

OF THIS DOCUME THERMAL FOR COOLING ENERGY STORAGE BUILDINGSi- LBL-25393 THERMAL FOR COOLING w ENERGY STORAGE BUILDINGSpeak power periods, thermal storage for cooling has become a

Akbari, H.

2010-01-01T23:59:59.000Z

286

On-chip high speed localized cooling using superlattice microrefrigerators  

E-Print Network (OSTI)

for on-chip cooling solution, thermal characterization andActive cooling can provide an effective thermal resistance (cooling of electron gas and by reducing the lattice thermal

Zhang, Y; Christofferson, J; Shakouri, A; Zeng, G H; Bowers, J E; Croke, E T

2006-01-01T23:59:59.000Z

287

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

the shortcomings of alternative cooling sources, or to avoidthe shortcomings of alternative cooling sources, or to avoidC . Blumstein; "Alternatives to Compressor Cooling in

Feustel, H.E.

2011-01-01T23:59:59.000Z

288

Passive Cooling of a Micromechanical Oscillator with a ...  

Science Conference Proceedings (OSTI)

... Closely related passive cooling has been reported in [9,20 ... Although rather modest cooling is obtained here ... eventually provide ground state cool- ing ...

2007-09-26T23:59:59.000Z

289

Rapid cooling technology could aid surgery patients, heart attack...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling technology could aid surgery patients, heart attack victims Diagram shows how ice slurry cools blood INTERNAL COOLING - An ice slurry, delivered through an endotracheal...

290

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

291

Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements  

SciTech Connect

Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2002-12-15T23:59:59.000Z

292

What's so cool about Curiosity  

NLE Websites -- All DOE Office Websites (Extended Search)

What's so cool about Curiosity? What's so cool about Curiosity? Curiosity, the Mars Science Laboratory, is the largest and most complicated device we have ever landed on a planet other than Earth. ï‚· About the size of a small SUV -- ten feet long (not including the arm), nine feet wide and seven feet tall ï‚· 900 kilograms (2,000 pounds) (Spirit and Opportunity, earlier research vehicles sent to Mars were 384 pounds) ï‚· Uses aerobraking, parachute, retro rockets and skycrane concepts to land gently (Spirit and Opportunity used aerobraking, parachutes and airbags that bounced them to the surface) Curiosity carries three instruments from Los Alamos National Laboratory. ï‚· The Radioisotope Thermoelectric Generator supplies electricity and heat to the rover

293

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

294

Proceedings of the Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

The performance of cooling towers and associated systems strongly affects availability and heat rate in fossil and nuclear power plants. Twenty-four papers presented at the 2012 Cooling Tower Technology Conference, held August 8–9, 2012, in Pensacola, Florida, discuss research results, industry experience, and case histories of cooling tower problems and solutions. ...

2012-09-13T23:59:59.000Z

295

Cooling Evolution of Hybrid Stars  

E-Print Network (OSTI)

The cooling of compact isolated objects for different values of the gravitational mass has been simulated for two alternative assumptions. One is that the interior of the star is purely hadronic and second that the star can have a rather large quark core. It has been shown that within a nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. For a realistic choice of parameters the equation of state (EoS) allows for 2SC quark matter with a large quark gap ~ 100 MeV for u and d quarks of two colors that coexists with normal quark matter within a mixed phase in the hybrid star interior. We argue that, if in the hadronic phase the neutron pairing gap in 3P_2 channel is larger than few keV and the phases with unpaired quarks are allowed, the corresponding hybrid stars would cool too fast. Even in the case of the essentially suppressed 3P_2 neutron gap if free quarks occur for M cooling data existing by today. It is suggested to discuss a "2SC+X" phase, as a possibility to have all quarks paired in two-flavor quark matter under neutron star constraints, where the X-gap is of the order of 10 keV - 1 MeV. Density independent gaps do not allow to fit the cooling data. Only the presence of an X-gap that decreases with increase of the density could allow to appropriately fit the data in a similar compact star mass interval to that following from a purely hadronic model.

H. Grigorian

2005-02-28T23:59:59.000Z

296

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

297

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

298

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

299

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

1995-09-05T23:59:59.000Z

300

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

Gamble, B.B.; Sidi-Yekhlef, A.

1998-12-15T23:59:59.000Z

302

Improvements in solid desiccant cooling  

Science Conference Proceedings (OSTI)

The DINC (Direct-Indirect Evaporative Cooling) cycle was proposed in 1986 by Texas A and M researchers. The idea was to combine the benefits of direct and indirect evaporative cooling with desiccant dehumidifying using a rotating solid silica-gel dehumidifier. Recent parametric studies completed for the Texas Energy Research in Applications Program have developed a computer design for a nominal 3-ton system that would minimize the energy consumption (both thermal and electric) while maintaining a sensible heat ratio of 75% or less. That optimum design for the original 1986 DINC cycle was modified to improve its energy efficiency. The modifications described in this paper were: (1) staging the desiccant regeneration air and (2) recirculation of the primary air to the secondary side of the indirect evaporative cooling. Computer simulations were run to study the effect of the modifications on the performance of the system. American Refrigeration Institute (AIR) standard conditions (Ambient air at 35C, 40% R.H. and Room air at 26.7C, 50% R.H.) were used for all the modifications. Results were also compared to the familiar Pennington (ventilation) cycle. The study indicated that recirculating the indirect evaporative cooler air only degenerated the performance. However, staging a portion of the regeneration air could improve the thermal coefficient of Performance by 25% over the non-staged DINC cycle. Compared to a similar staged-regeneration Pennington cycle it is a 16% improvement in thermal COP and the sensible heat ratio was 70%.

Waugaman, D.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-01-01T23:59:59.000Z

303

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA)

1998-01-01T23:59:59.000Z

304

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

305

Preliminary economic assessment or residential passive solar cooling potential in the United States  

DOE Green Energy (OSTI)

In many areas of the continental United States, residential cooling loads are equal to or greater than energy used for residential space heating. Offsetting part of the cooling load could yield considerable dollar savings to the consumer as well as total energy savings. The physical performances of three passive cooling designs are used to estimate the dollar value of first-year fuel savings (excluding heating benefits) and a maximum affordable design cost. The designs include natural ventilation, forced ventilation, and evaoprative cooling concepts. Because economic performance is primarily governed by the level of electricity prices, dollars savings are greatest in regions that show both good physical performance of the cooling design and high electricity prices. Physical and economic performance summaries are presented in mapped form for 220 solar regions within the continental United States.

Kirschner, C.; Mangeng, C.; Yemans, M.; Roach, F.

1982-01-01T23:59:59.000Z

306

Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and Latent Fractions From Whole-Building Monitored Data: Methodology and Advantages  

E-Print Network (OSTI)

In hot and humid climates, where summers are both warm and humid, the latent cooling can be a significant portion of the total cooling load (as much as 40%). Typically the monitored data only includes whole-building heating and cooling energy use and total electric consumption. A method to disaggregate the latent cooling energy use from the measured whole-building heating and cooling energy use would be of particular interest. This paper presents such a method and discusses its benefits. It is shown that the overall heat transfer coefficient including the conduction, infiltration, and ventilation effects of a building, can be evaluated. Subsequently this enables the disaggregation of the total cooling energy use into sensible and latent cooling fractions. The benefits of such a method include: (i) better understanding of the sensible and latent fractions in the total cooling energy use of a building, and (ii) better regression models for energy analysis. In addition to the whole-building cooling and heating energy use and the ambient conditions, the required system parameters include: (i) cold deck supply temperature, (ii) hot deck supply temperature, (iii) mixed air temperature or ventilation rate, (iv) internal gains, and (v) total mass flow rate of the dual duct constant volume system. If continuous measurements of the system parameters are not available, then one-time measurements may be used to disaggregate the latent cooling energy use.

Katipamula, S.; Reddy, T. A.; Claridge, D. E.

1992-05-01T23:59:59.000Z

307

Western Cooling Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Efficiency Center Efficiency Center Jump to: navigation, search Name Western Cooling Efficiency Center Place Davis, CA Website http://http://wcec.ucdavis.edu References Western Cooling Efficiency Center [1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections Western Cooling Efficiency Center is a research institution located in Davis, CA, at the University of California at Davis (UC Davis). References ↑ "Western Cooling Efficiency Center" Retrieved from "http://en.openei.org/w/index.php?title=Western_Cooling_Efficiency_Center&oldid=382319" Categories: Clean Energy Organizations

308

Alternate Cooling Methods for Industrial Plants  

E-Print Network (OSTI)

Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect evaporative, desiccant, and absorption cooling. Cooling effectiveness, operating cost and investment are also presented. Data for this evaluation was collected from clients served by Georgia Tech's Industrial Energy Extension Service, a state-sponsored energy conservation assistance program.

Brown, M.; Moore, D.

1990-06-01T23:59:59.000Z

309

Passive containment cooling water distribution device  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

Conway, Lawrence E. (Hookstown, PA); Fanto, Susan V. (Plum Borough, PA)

1994-01-01T23:59:59.000Z

310

The Relative Effects of U.S. Population Shifts (1930-80) on Potential Heating, Cooling and Water Demand  

Science Conference Proceedings (OSTI)

The effects on potential heating, cooling and water demand induced by the shift and growth of population from cooler and wetter regions of the country to warmer and drier areas were examined. Heating and cooling degree day totals for each of the ...

Henry F. Diaz; Ronald L. Holle

1984-03-01T23:59:59.000Z

311

Original article: A three-dimensional model for the study of the cooling system of submersible electric pumps  

Science Conference Proceedings (OSTI)

We study the cooling system for submersible electric pumps. This study aims to provide some guidelines to improve the existing cooling system of these electric pumps when they work partially or totally not immersed in the service fluid. Note that inefficient ... Keywords: Finite element method, Heat transfer, Numerical approximation

N. Egidi; P. Maponi; L. Misici; S. Rubino

2012-08-01T23:59:59.000Z

312

Passive cooling system for top entry liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

1992-01-01T23:59:59.000Z

313

Fans for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fans for Cooling Fans for Cooling Fans for Cooling May 30, 2012 - 7:46pm Addthis Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger What does this mean for me? You may be able to keep your home cool with energy-efficient and well-placed fans. Fans are less expensive to operate than air conditioners. Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of fans,

314

VORPAL Simulations Relevant to Coherent Electron Cooling  

SciTech Connect

Coherent electron cooling (CEC)* combines the best features of electron cooling and stochastic cooling, via free-electron laser technology**, to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the â modulatorâ and â kickerâ regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations*** of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results. In particular, we compare the semi-analytic binary collision model with electrostatic particle-in-cell (PIC).

Bell, G.I.; Bruhwiler, D.L.; Sobol, A.V.; Ben-Zvi, Ilan; Litvinenko, Vladimir; Derbenev, Yaroslav

2008-07-01T23:59:59.000Z

315

VORPAL simulations relevant to coherent electron cooling  

Science Conference Proceedings (OSTI)

Coherent electron cooling (CEC) [1] combines the best features of electron cooling and stochastic cooling, via free-electron laser technology [2], to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations [3] of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results.

Bell,G.; Bruhwiler, D.; Sobol, A.; Ben-Zvi, I.; Litvinenko, V.; Derbenev, Y.

2008-06-23T23:59:59.000Z

316

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

317

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why Cool Roofs? Why Cool Roofs? Why Cool Roofs? Addthis Description By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills. Speakers Secretary Steven Chu Duration 1:46 Topic Tax Credits, Rebates, Savings Commercial Weatherization Commercial Heating & Cooling Fossil Oil Credit Energy Department Video SECRETARY OF ENERGY STEVEN CHU: The reason we wanted the Department of Energy to take the lead in cool roofs is to demonstrate that this really saves money. If you have a roof and it's black, it's absorbing energy from the sun

318

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism res...

Maunz, P; Schuster, I; Syassen, N; Pinkse, P W H; Rempe, G

2004-01-01T23:59:59.000Z

319

Passive cooling program element. [Skytherm system  

DOE Green Energy (OSTI)

An outline of the Passive Cooling R and D program element is presented with significant technical achievements obtained during FY 1978. Passive cooling mechanisms are enumerated and a survey of ongoing projects is made in the areas of cooling resource assessment and system development. Results anticipated within the next fiscal year are discussed and the direction of the R and D effort is indicated. Passive cooling system development has centered primarily about the Skytherm system. Two projects are underway to construct such systems in regions having a higher cooling load than the original Skytherm site at Atascadero, California. Component development and commercialization studies are major goals of these two projects and a third project at Atascadero. A two-story passive cooling test module has been built to study radiative, evaporative and convective cooling effects in a structure making use of the thermosiphon principle, but not equipped with a roof pond.

Wahlig, M.; Martin, M.

1978-09-01T23:59:59.000Z

320

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cooling by Heat Conduction Inside Magnetic Flux Loops and the Moderate Cluster Cooling Flow Model  

E-Print Network (OSTI)

I study non-radiative cooling of X-ray emitting gas via heat conduction along magnetic field lines inside magnetic flux loops in cooling flow clusters of galaxies. I find that such heat conduction can reduce the fraction of energy radiated in the X-ray band by a factor of 1.5-2. This non-radiative cooling joins two other proposed non-radiative cooling processes, which can be more efficient. These are mixing of cold and hot gas, and heat conduction initiated by magnetic fields reconnection between hot and cold gas. These processes when incorporated into the moderate cooling flow model lead to a general cooling flow model with the following ingredients. (1) Cooling flow does occur, but with a mass cooling rate about 10 times lower than in old versions of the cooling flow model. Namely, heating occurs such that the effective age of the cooling flow is much below the cluster age, but the heating can't prevent cooling altogether. (2) The cooling flow region is in a non-steady state evolution. (3) Non-radiative cooling of X-ray emitting gas can bring the model to a much better agreement with observations. (4) The general behavior of the cooling flow gas, and in particular the role played by magnetic fields, make the intracluster medium in cooling flow clusters similar in some aspects to the active solar corona.

Noam Soker

2003-11-02T23:59:59.000Z

322

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

323

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

324

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

DOE Green Energy (OSTI)

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

325

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

326

Efficient cooling: Making it happen  

SciTech Connect

This article presents a series of solutions that can help everyone to some basic questions about air conditioning: what`s the best way to size a residential air conditioner? to what extent do air conditioners tend to be oversized? how can energy research and programs help promote optimal sizing of cooling systems? Topics covered include the following: defining the debate over sizing of air conditioners; methods for sizing; evaluating simple {open_quotes}rules of thumb{close_quotes}; working with HVAC contractors; creating consumer demand for proper sizing. 1 fig. 1 tab.

Sherman, C.; Hildebrandt, E. [Sacramento Municipal Utility District, CA (United States)

1998-03-01T23:59:59.000Z

327

Indirect evaporative cooling in retail  

Science Conference Proceedings (OSTI)

JCPenney Co., Inc., recently opened a 126,000-sq ft, two-level retail store in Albuquerque, NM. The project construction was accomplished using a design-build format. This process allows preliminary construction processes to begin while the design is finalized. Law/Kingdom, Inc. was assigned the architectural and engineering services for this building. During the process of design, the team decided to study the addition of evaporative cooling into the air system. This article reviews system design, selection, and performance using an indirect evaporative system in the HVAC system. It also demonstrates the company`s design approach on the original equipment selection for a typical anchor store.

Bartlett, T.A. [JCPenney Co., Plano, TX (United States)

1996-12-01T23:59:59.000Z

328

A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating  

E-Print Network (OSTI)

In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

Sakakibara, Y; Suzuki, T; Yamamoto, K; Chen, D; Koike, S; Tokoku, C; Uchiyama, T; Ohashi, M; Kuroda, K

2013-01-01T23:59:59.000Z

329

A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating  

E-Print Network (OSTI)

In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

Y. Sakakibara; N. Kimura; T. Suzuki; K. Yamamoto; D. Chen; S. Koike; C. Tokoku; T. Uchiyama; M. Ohashi; K. Kuroda

2013-09-19T23:59:59.000Z

330

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Cool roofs, cool research, at DOE Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network National Library of Energy OSTIblog Science.gov Science Accelerator

331

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

332

Spray Cooling in Room Fires  

Science Conference Proceedings (OSTI)

... power of the volumetric median drop diameter* of the spray. ... The temperature, velocity and concentrations (CO, CO2, 02 and total hydro- ...

2008-12-05T23:59:59.000Z

333

Cooling Evolution of Hybrid Stars  

E-Print Network (OSTI)

The cooling of compact isolated objects for different values of the gravitational mass has been simulated for two alternative assumptions. One is that the interior of the star is purely hadronic and second that the star can have a rather large quark core. It has been shown that within a nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. For a realistic choice of parameters the equation of state (EoS) allows for 2SC quark matter with a large quark gap ~ 100 MeV for u and d quarks of two colors that coexists with normal quark matter within a mixed phase in the hybrid star interior. We argue that, if in the hadronic phase the neutron pairing gap in 3P_2 channel is larger than few keV and the phases with unpaired quarks are allowed, the corresponding hybrid stars would cool too fast. Even in the case of the essentially supp...

Grigorian, H

2005-01-01T23:59:59.000Z

334

Heat pipe turbine vane cooling  

SciTech Connect

The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

Langston, L.; Faghri, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

335

Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements  

Science Conference Proceedings (OSTI)

Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2003-07-01T23:59:59.000Z

336

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

337

Mechanically-reattachable liquid-cooled cooling apparatus  

DOE Patents (OSTI)

An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.

Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E

2013-09-24T23:59:59.000Z

338

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

339

Definition: Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate.[1] References ↑ http://en.wikipedia.org/wiki/Evaporative_cooler Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Evaporative_Cooling&oldid=601323" Category: Definitions What links here Related changes

340

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cool Farm Tool | Open Energy Information  

Open Energy Info (EERE)

Cool Farm Tool Cool Farm Tool Jump to: navigation, search Tool Summary Name: Cool Farm Tool Agency/Company /Organization: Unilever Sector: Land Focus Area: Agriculture Topics: Co-benefits assessment, Resource assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.unilever.com/aboutus/supplier/sustainablesourcing/tools/?WT.LHNAV= Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool [1] Overview "The Cool Farm Tool is a new greenhouse gas calculator for farming. It's easy to use and gives instant results that invite users to try out alternatives and ask 'what if' questions. The tool was commissioned by Unilever from the University of Aberdeen The tool is ideal for farmers, supply chain managers and companies interested in quantifying their

342

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

343

Microsoft PowerPoint - Cool Roofs_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for: for: Quarterly Facilities and Infrastructure Meeting Presented by: The Office of Engineering and Construction Management Content Excerpted From Presentation of: Bob Schmidt - NNSA Kansas City Plant Cool Roofs - An Overview August 4, 2009 2 *The terms "white roof" and "cool roof" are often mistakenly used interchangeably. A white roof is not necessarily a cool roof and a cool roof is not necessarily white. *"Cool Roofs" come in many style as defined by industry standard and can include: Metal Single ply Modified bitumen Acrylic coated White Roof vs. Cool Roof 3 Solar reflectance alone can significantly influence surface temperature, with the white stripe on the brick wall about 5 to 10° F (3-5° C) cooler than the surrounding, darker

344

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

345

Abstract Radiative Cooling in Hot Humid Climates  

E-Print Network (OSTI)

Passive radiative cooling of buildings has been an underachieving concept for decades. The few deployments have generally been in dry climates with low solar angles. The greatest need for cooling is in the tropics. The high humidity endemic to many of these regions severely limits the passive cooling available per radiative area. To wrest temperature relief from humid climates, not just nocturnal cooling but solar irradiance, both direct and indirect, must be addressed. This investigation explores the extent to which thermal radiation can be used to cool buildings in the tropics. It concludes that inexpensive materials could be fabricated into roof panels providing passive cooling day and night in tropical locations with an unobstructed view of sky.

Aubrey Jaffer

2006-01-01T23:59:59.000Z

346

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

347

Cooling of Neutron Stars. Hadronic Model  

E-Print Network (OSTI)

We study the cooling of isolated neutron stars. The main cooling regulators are introduced: EoS, thermal transport, heat capacity, neutrino and photon emissivity, superfluid nucleon gaps. Neutrino emissivity includes main processes. A strong impact of medium effects on the cooling rates is demonstrated. With taking into account of medium effects in reaction rates and in nucleon superfluid gaps modern experimental data can be well explained.

D. Blaschke; H. Grigorian; D. N. Voskresensky

2004-03-07T23:59:59.000Z

348

A Comparative Demonstration of Alternative Milk Cooling  

Science Conference Proceedings (OSTI)

A newly-designed groundwater-ice bank milk cooling system significantly reduces energy use and peak electric demand by about 30% over a conventional direct expansion bulk tank cooling system. This study compared the energy efficiency, electrical demands, and milk quality obtained using the new and conventional systems. Overall, the new system represents a viable, cost-effective alternative for dairy farms that are upgrading or replacing milk cooling equipment.

1993-10-01T23:59:59.000Z

349

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

350

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

351

Solar cooling R and D overview  

DOE Green Energy (OSTI)

The status of the principal solar energy conversion processes for cooling is reviewed; applications ready for demonstrations are identified; and directions for near term R and D efforts needed to bring other potentially successful cooling systems to the point of demonstration are recommended. The principal solar cooling methods are classified as: absorption, heat engine/vapor compression, desiccant, solar assisted heat pump, photovoltaic heat pump, and passive and others.

Auh, P.C.

1978-09-01T23:59:59.000Z

352

Evaporative Enhancement for Air Cooled Condensers  

Science Conference Proceedings (OSTI)

This report summarizes research into condenser air evaporative pre-cooling technologies and the associated potential for energy and peak power savings. The interest in this project is evaluation of the specific application of evaporative cooling to the inlet air of condenser coils, particularly for large roof-top type air cooled chillers. While the technology is established and understood particularly well for hot, dry climates, this report is intended to also examine evaporative ...

2013-03-06T23:59:59.000Z

353

Cool! Nanoparticle Research Points to Energy Savings  

Science Conference Proceedings (OSTI)

... The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems ...

2011-05-02T23:59:59.000Z

354

Magneto-Optical Cooling of Atoms  

E-Print Network (OSTI)

We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity.

Raizen, Mark G; Rochester, Simon; Narevicius, Julia; Narevicius, Edvardas

2013-01-01T23:59:59.000Z

355

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.

P. Maunz; T. Puppe; I. Schuster; N. Syassen; P. W. H. Pinkse; G. Rempe

2004-03-03T23:59:59.000Z

356

Failure of Cooling Tower West Virginia 1978  

Science Conference Proceedings (OSTI)

... The Willow Island disaster was the collapse of a cooling tower under ... In response to this request, NBS carried out field, laboratory and analytical ...

2011-08-12T23:59:59.000Z

357

Complete Muon Cooling Channel Design and Simulations  

Science Conference Proceedings (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

358

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

359

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water… (more)

Rulff, David

2011-01-01T23:59:59.000Z

360

NIST Quantum Refrigerator Offers Extreme Cooling and ...  

Science Conference Proceedings (OSTI)

... NIST's prototype solid-state refrigerator uses quantum physics in the square chip mounted on the green circuit board to cool the much larger copper ...

2013-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

362

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

Evaluation of the Cooling Fan Efficiency indexfor a desk fan anda computer fan Stefano Schiavon 1,2,* , M. Sc. PhD

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

363

Dew-Point Evaporative Comfort Cooling (Presentation)  

SciTech Connect

Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

Dean, J.

2012-10-01T23:59:59.000Z

364

Bee Cool Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Product Producer of polysilicon solar panels and solar trackers, and solar battery chargers. References Bee Cool Inc1 LinkedIn Connections CrunchBase Profile No...

365

Heat pipe cooling of metallurgical furnace equipment.  

E-Print Network (OSTI)

??Current water-cooling technology used in the metallurgical industry poses a major safety concern. In addition, these systems are expensive to operate and result in significant… (more)

Navarra, Pietro, 1979-

2006-01-01T23:59:59.000Z

366

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

367

AEDG Implementation Recommendations: Cool Roofs | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

section of the guide and focus on cool roofs, which are recommended for metal building roofs and roofs with insulation entirely above deck. Publication Date: Wednesday,...

368

Green Cooling: Improving Chiller Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

369

Cool CAVEs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAVEs CAVEs Cool CAVEs January 5, 2011 - 6:18pm Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? The Idaho National Laboratory's "CAVE" -- 3-D Computer-Assisted Virtual Environment -- allows scientists to literally walk into their data and look at it from multiple perspectives. Projectors, mounted behind the walls and on the ceiling, are manipulated by researchers using 3-D goggles and a handheld controller -- and allow them to study everything from terrain to applied nuclear research, to active sites of proteins. To escape the holiday chaos, many folks found refuge in caves - dark places with sticky floors, lumpy seating and Jeff Bridges playing scenes against a computer-enhanced younger version of himself . . . at least if

370

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

371

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

372

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

373

District heating and cooling market assessment  

SciTech Connect

For more than 10 years, the U.S. Department of Energy (DOE) has supported research on and development of district steam, hot-water, and chilled-water systems in the residential and commercial sectors. In 1991, DOE sponsored a research project at Argonne National Laboratory (ANL) to reestimate the national market for district heating and cooling (DHC) systems to the year 2010. ANL had previously developed a DHC market-penetration model and used it to project future market penetration. The first step in the project was to conduct a literature search to identify major data sources on historical DHC markets and any past studies on the future market potential of DHC systems. On the basis of an evaluation of the available data and methodologies for estimating market penetration of new technologies, it was concluded that ANL should develop a new econometric model for forecasting DHC markets. By using the 1989 DOE/Energy Information Administration Commercial Buildings Energy Consumption Surveys (CBECS) public-use-tape data, a model was estimated for steam, hot-water, and chilled-water demand in the buildings surveyed. The model provides estimates of building steam, hot-water, and chilled-water consumption and expenditures between now and the year 2010. The analysis shows that the total U.S. market for district steam, hot water, and chilled water could grow from 0.8 quadrillion British thermal units (quad) in 1989 to 1.0 quad by 2000 and 1.25 quad by 2010. The demand for chilled water could nearly double in the forecast period, and its share could approach one-third of the total DHC market. This model, and the results, should be of use to policymakers, researchers, and market participants involved in the planning and implementation of community-based, energy-conserving, and environmentally beneficial energy systems.

Teotia, A.P.S.; Karvelas, D.E.; Daniels, E.J.; Anderson, J.L.

1993-06-01T23:59:59.000Z

374

Emergency cooling system and method  

DOE Patents (OSTI)

An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

Oosterkamp, W.J.; Cheung, Y.K.

1994-01-04T23:59:59.000Z

375

Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

376

Cooling circuit for steam and air-cooled turbine nozzle stage  

SciTech Connect

The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

2002-01-01T23:59:59.000Z

377

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

378

Comparative report: performance of active-solar space-cooling systems, 1981 cooling season  

DOE Green Energy (OSTI)

This report provides a detailed analysis of solar absorption cooling and solar Rankine cooling processes as represented by the National Solar Data Network (NSDN) systems. There is comprehensive data on four absorption chiller cooling systems and one Rankine cooling system. Three of these systems, including the Rankine system, demonstrated that solar cooling can be operated efficiently and provide energy savings. Good designs and operating procedures are discussed. Problems which reduce savings are identified. There is also a comparison of solar cooling by absorption, Rankine, and photovoltaic processes. Parameters and performance indices presented include overall system delivered loads, solar fraction of the load, coefficient of performance, energy collected and stored, and various subsystem efficiencies. The comparison of these factors has allowed evaluation of the relative performance of various systems. Analyses performed for which comparative data are provided include: energy savings and operating costs in terms of Btu; energy savings in terms of dollars; overall solar cooling efficiency and coefficient of performance; hourly building cooling loads; actual and long-term weather conditions; collector performance; collector area to tons of chiller cooling capacity; chiller performance; normalized building cooling loads per cooling degree-day and building area; and cooling solar fractions, design and measured.

Wetzel, P.; Pakkala, P.

1981-01-01T23:59:59.000Z

379

Theory of cooling neutron stars versus observations  

E-Print Network (OSTI)

We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

Yakovlev, D G; Kaminker, A D; Potekhin, A Yu

2007-01-01T23:59:59.000Z

380

Performance of cross-cooled desiccant dehumidifiers  

DOE Green Energy (OSTI)

A cross-cooled silica gel desiccant dehumidifier model was designed, built and tested. The performance of the unit was studied as a function of inlet process stream dew point, process stream and cooling stream flowrates and regeneration stream temperature and dew point. The tests were also simulated by a computer program and were compared to the experimental results.

Mei, V.C.; Lavan, Z.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

382

2006 EPRI Cooling Tower Technology Conference Proceedings  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Fifteen papers presented at a 2006 Conference in Des Moines, Iowa discussed industrial experience and provided case histories of cooling tower problems and solutions.

2006-08-01T23:59:59.000Z

383

Liquid cooled counter flow turbine bucket  

DOE Patents (OSTI)

Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

Dakin, James T. (Schenectady, NY)

1982-09-21T23:59:59.000Z

384

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

385

Heat Transfer from Rotating Blade Platforms with and without Film Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer from Rotating Blade Transfer from Rotating Blade Platforms with and without Film Cooling J.C. Han and M.T. Schobeiri SCIES Project 03-01-SR113 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Texas A&M University Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded 07/01/2003 (36 Month Duration) $461,024 Total Contract Value ($361,024 DOE) Turbine Heat Transfer Laboratory Texas A&M University SR 113 - 10-2005 - JCHan Gas Turbine Needs Need Detailed Heat Transfer Data on Rotating Blade Platforms Improve Current Rotor Blade Cooling Schemes Provide Options for New Rotor Blade Cooling Designs Need Accurate and Efficient CFD Codes to Improve Flow and Heat Transfer Predictions and Guide Rotor Blade Cooling Designs Improved Turbine Power Efficiency by Increasing Turbine

386

One Cool Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

387

Solar space cooling | Open Energy Information  

Open Energy Info (EERE)

cooling cooling Jump to: navigation, search Solarcooling.jpg Contents 1 Introduction 2 Solar Absorption Technology 3 Solar Desiccant Technology 4 Passive Solar Cooling 5 References Introduction There are many benefits to Solar Cooling systems. For one the sun is a clean energy resource that we should be using more often. It also produces no emissions and is replenished naturally, it reduces greenhouse gases, it saves the release of 1.6 lbs. of carbon dioxide (CO2) for each kilowatt-hour (kWh) produced, it saves the use of one-half gallon of water for each kWh of solar energy produced, it saves the release of other emissions that result from the burning of fossil fuels such as nitrogen oxides, sulfur dioxide or mercury and it provides customers with options to reduce their electric bills. But up to this point Solar Cooling systems are

388

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

389

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

390

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

391

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

392

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed1, 2 for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing3, 4. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules2 (which do not have a closed transition) and collective excitations of

P. Maunz; I. Schuster; N. Syassen; P. W. H. Pinkse; G. Rempe

2004-01-01T23:59:59.000Z

393

Cooling system for a nuclear reactor  

DOE Patents (OSTI)

A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

Amtmann, Hans H. (Rancho Santa Fe, CA)

1982-01-01T23:59:59.000Z

394

Reducing home heating and cooling costs  

SciTech Connect

This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

Not Available

1994-07-01T23:59:59.000Z

395

A review of desiccant cooling systems  

SciTech Connect

This paper describes recent published design advances that have been made in desiccant cooling systems. In desiccant cooling cycles, the desiccant reduces the humidity of the air by removing moisture from the air. Then the temperature is reduced by other components such as heat exchangers, evaporative coolers, or conventional cooling coils. The main advantage that desiccant cooling systems offer is the capability of using low-grade thermal energy. Desiccant cooling systems for residential and commercial applications are now being used to reduce energy-operating costs. However, the initial costs are comparatively high. The focus of research for the past decade has been to develop desiccant systems with a high coefficient of performance. Recent studies have emphasized computer modeling and hybrid systems that combine desiccant dehumidifiers with conventional systems.

Waugaman, D.G.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-03-01T23:59:59.000Z

396

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

397

Sun-shades as a passive cooling element  

DOE Green Energy (OSTI)

A discussion of the importance of proper sun-shade design is presented by showing results of thermal performance evaluation of a building with and without sun-shades. The analysis was carried out by using a simulation model developed by Shaviv and Shaviv. The criteria for evaluating sunshades is based on the total energy consumption of the building for cooling, heating, and artificial lighting. We find that the best solution for shading is external sun-shades and we present a method developed by Shaviv for their design. Several designs of external sun-shades are presented.

Shaviv, E

1980-01-01T23:59:59.000Z

398

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

Logan, C.M.

1996-04-16T23:59:59.000Z

399

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

Logan, Clinton M. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

400

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows; and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. Previous research (Phase 1) conducted by CBI under DOE Contract FG01-86CE26564 has shown a friction reducing effect of ice crystals in water flow. The results of this work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems.

Winters, P.J.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

COLD MOLECULAR GAS ALONG THE COOLING X-RAY FILAMENT IN A1795  

SciTech Connect

We present the results of interferometric observations of the cool core of A1795 at CO(1-0) using the Combined Array for Research in Millimeter-wave Astronomy. In agreement with previous work, we detect a significant amount of cold molecular gas (3.9 {+-} 0.4 Multiplication-Sign 10{sup 9} M{sub Sun }) in the central {approx}10 kpc. We report the discovery of a substantial clump of cold molecular gas at clustercentric radius of 30 kpc (2.9 {+-} 0.4 Multiplication-Sign 10{sup 9} M{sub Sun }), coincident in both position and velocity with the warm, ionized filaments. We also place an upper limit on the H{sub 2} mass at the outer edge of the star-forming filament, corresponding to a distance of 60 kpc (<0.9 Multiplication-Sign 10{sup 9} M{sub Sun }). We measure a strong gradient in the H{alpha}/H{sub 2} ratio as a function of radius, suggesting different ionization mechanisms in the nucleus and filaments of A1795. The total mass of cold molecular gas ({approx}7 Multiplication-Sign 10{sup 9} M{sub Sun }) is roughly 30% of the classical cooling estimate at the same position, assuming a cooling time of 10{sup 9} yr. Combining the cold molecular gas mass with the UV-derived star formation rate and the warm, ionized gas mass, the spectroscopically derived X-ray cooling rate is fully accounted for and in good agreement with the cooling byproducts over timescales of {approx}10{sup 9} yr. The overall agreement between the cooling rate of the hot intracluster medium and the mass of the cool gas reservoir suggests that, at least in this system, the cooling flow problem stems from a lack of observable cooling in the more diffuse regions at large radii.

McDonald, Michael [Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139 (United States); Wei, Lisa H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Veilleux, Sylvain, E-mail: mcdonald@space.mit.edu, E-mail: lisa.wei@cfa.harvard.edu, E-mail: veilleux@astro.umd.edu [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States)

2012-08-20T23:59:59.000Z

402

Advances in Beam Cooling for Muon Colliders  

DOE Green Energy (OSTI)

A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

R.P. Johnson, Y.S. Derbenev

2006-09-01T23:59:59.000Z

403

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

404

Recent Innovations in Muon Beam Cooling  

DOE Green Energy (OSTI)

Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

Rolland P. Johnson; Mohammad Alsharo'a; Charles Ankenbrandt; Emanuela Barzi; Kevin Beard; S. Alex Bogacz; Yaroslav Derbenev; Licia Del Frate; Ivan Gonin; Pierrick M. Hanlet; Robert Hartline; Daniel M. Kaplan; Moyses Kuchnir; Alfred Moretti; David Neuffer; Kevin Paul; Milorad Popovic; Thomas J. Roberts; Gennady Romanov; Daniele Turrioni; Victor Yarba; and Katsuya Yonehara

2006-03-01T23:59:59.000Z

405

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

that stay cool in the sun by minimizing solar absorption andhigh solar reflectance can also stay cool in the sun.solar reflectance and high thermal emittance stay cool in the sun.

Akbari, Hashem

2008-01-01T23:59:59.000Z

406

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION  

E-Print Network (OSTI)

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D- Original RTSM.......................................................153 4.4.1 RTSM Peak Design Cooling Load

407

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

408

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankin parallel), an array of cooling towers, a 7000 m 3 chilledthe chillers and cooling towers, the thermal storage tank,

Ma, Yudong

2010-01-01T23:59:59.000Z

409

GROUND WATER USE FOR COOLING: ASSOCIATED AQUIFER TEMPERATURE CHANGES  

E-Print Network (OSTI)

expensive or scarce, cooling towers or ponds are employed.~-1), for dry and wet cooling tower systems, respectively.condenser cooling sys terns such as towers or ponds are

Lippmann, Marcelo J.

2012-01-01T23:59:59.000Z

410

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

411

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

change the cooling load profile for the mechanical systems.and the resulting cooling load profile has been reported inimplications for cooling load profile and peak cooling load

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

412

Matching equipment size to the cooling load  

SciTech Connect

This article presents a heat extraction rate analysis method, using ASHRAE algorithms that enables HVAC system designers to optimally size cooling equipment. The final stage of the cooling load calculation process determines the heat extraction rate required to achieve design conditions. Put another way, this stage determines the equipment capacity required to match the cooling load profile, and it does so in a manner that predicts the resulting space temperature profile, and it does so in a manner that predicts the resulting space temperature profile. It is a stage in the design process that, in practice, may not be given the attention it deserves.

Bloom, B. (Harvey Toub Engineering, Atlanta, GA (United States))

1993-10-01T23:59:59.000Z

413

Control system for solar heating and cooling  

DOE Green Energy (OSTI)

A control system is being developed that will be capable of operating solar heating and cooling systems covering a wide range of configurations, and using different operating strategies that may be optimal for different climatic regions. To insure widespread applicability of the control system, it is being designed to allow for modification for operating with essentially all practical heating and cooling system configurations and control algorithms simply by interchange of replaceable modules in the circuitry. An experimental heating and cooling system, the main purpose of which is to allow testing and exercise of the controller, was designed so that it could be operated in these various configurations.

Wahlig, M.; Binnall, E.; Dols, C.; Graven, R.; Selph, F.; Shaw, R.; Simmons, M.

1975-08-01T23:59:59.000Z

414

Feedback Cooling of a Single Neutral Atom  

E-Print Network (OSTI)

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

Markus Koch; Christian Sames; Alexander Kubanek; Matthias Apel; Maximilian Balbach; Alexei Ourjoumtsev; Pepijn W. H. Pinkse; Gerhard Rempe

2010-07-12T23:59:59.000Z

415

Feedback Cooling of a Single Neutral Atom  

E-Print Network (OSTI)

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

Koch, Markus; Kubanek, Alexander; Apel, Matthias; Balbach, Maximilian; Ourjoumtsev, Alexei; Pinkse, Pepijn W H; Rempe, Gerhard

2010-01-01T23:59:59.000Z

416

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

417

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

418

Cooling circuit for a gas turbine bucket and tip shroud  

SciTech Connect

An open cooling circuit for a gas turbine bucket wherein the bucket has an airfoil portion, and a tip shroud, the cooling circuit including a plurality of radial cooling holes extending through the airfoil portion and communicating with an enlarged internal area within the tip shroud before exiting the tip shroud such that a cooling medium used to cool the airfoil portion is subsequently used to cool the tip shroud.

Willett, Fred Thomas (25 Long Creek Dr., Burnt Hills, NY 12027); Itzel, Gary Michael (12 Cider Mill Dr., Clifton Park, NY 12065); Stathopoulos, Dimitrios (11 Wyngate Rd., Glenmont, NY 12077); Plemmons, Larry Wayne (late of Hamilton, OH); Plemmons, Helen M. (2900 Long Ridge Trails, Hamilton, OH 45014); Lewis, Doyle C. (444 River Way, Greer, SC 29651)

2002-01-01T23:59:59.000Z

419

FILES- COOLING TOWER PLUME MODELING  

E-Print Network (OSTI)

Ladies and Gentlemen:? In the referenced letter, Progress Energy Carolinas, Inc. (PEC) noted that the input and output' files for the modeling analysis for cooling tower plumes would be provided under a separate cover. due to the requirements for native file submittal (see NRC RAI # 5.3.3.1-1 and PGN RAI # H-295). The purpose of this letter is to submit these calculation native files. The supplemental information contained in the files on the attached CD is provided to support the NRC's review of the Shearon Harris Nuclear Power Plant Units 2 and 3 (HAR) Environmental Report (ER), but does not comply with the requirements for electronic submission in the NRC Guidance Document. The NRC staff requested the files be submitted in their native formats, required for utilization in the software employed to support the ER development. As discussed with the NRC's environmental project manager responsible for review of the HAR ER, the data provided on the attached CD are of a nature that is not easily convertible to PDF output files. Furthermore, PEC understands that converting the information to PDF output files; would not serve the underlying purpose of the submittal; i.e., to provide the raw, unprocessed data to enable reviewers to evaluate software used in the HAR application. Enclosure 1 provides a list of folders with the requested data files that are included on the attached CD (Attachment 5.3.3.1-1 SACTI Native Files). If you have any further questions, or need additional information, please contact Bob Kitchen at

Garry D. Mi Er

2009-01-01T23:59:59.000Z

420

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

422

Cooling Tower Report, October 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 More Documents & Publications...

423

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

424

Air Cooling Technology for Power Electronics Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Assessing potential for air cooling in power electronics is a critical factor in power electronics equipment. NREL aims to assess effective air cooling techniques for power electronics technologies.

Bharathan, D.

2007-11-14T23:59:59.000Z

425

Electricity production and cooling energy savings from installation...  

NLE Websites -- All DOE Office Websites (Extended Search)

production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Title Electricity production and cooling energy savings...

426

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

427

The Effect of Daylighting Strategies on Building Cooling Loads...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Effect of Daylighting Strategies on Building Cooling Loads and Overall Energy Performance Title The Effect of Daylighting Strategies on Building Cooling Loads and Overall...

428

Performance analysis of hybrid liquid desiccant solar cooling system.  

E-Print Network (OSTI)

??This thesis investigates the coefficient of performance (COP) of a hybrid liquid desiccant solar cooling system. This hybrid cooling system includes three sections: 1) conventional… (more)

Zhou, Zhipeng (Joe Zoe)

2009-01-01T23:59:59.000Z

429

Building Energy Software Tools Directory: Gas Cooling Guide PRO  

NLE Websites -- All DOE Office Websites (Extended Search)

user-defined cooling and dehumidification equipment characteristics, annual energy usage and cost, summary of key calculated performance variables, monthly cooling and heating...

430

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

431

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

432

Evaluation and performance enhancement of cooling tower spray zones.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The performance of wet cooling towers can be improved by installing spray nozzles that distribute the cooling water uniformly onto the fill whilst… (more)

Roux, Daniel

2012-01-01T23:59:59.000Z

433

Potential benefits of cool roofs on commercial buildings: conserving...  

NLE Websites -- All DOE Office Websites (Extended Search)

of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on...

434

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

435

DIRECT COOLED POWER ELECTRONICS SUBSTRATE - Energy Innovation Portal  

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant ...

436

Active Solar Heating and Cooling Systems Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating and Cooling Systems Exemption Active Solar Heating and Cooling Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Heating...

437

New and Underutilized Technology: Water Cooled Oil Free Magnetic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Cooled Oil Free Magnetic Bearing Compressors New and Underutilized Technology: Water Cooled Oil Free Magnetic Bearing Compressors October 4, 2013 - 3:58pm Addthis The...

438

MUCOOL: Ionization Cooling R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory MUCOOL Muon Ionization Cooling R&D Welcome to the muon ionization cooling experimental R&D page. The MuCool collaboration has been formed to pursue the development of a muon ionization cooling channel for a high luminosity muon collider. For more information please contact Alan Bross (Spokesperson: bross@fnal.gov), Rick Fernow (BNL Contact person: fernow1@bnl.gov), or Mike Zisman (LBNL Contact person: mszisman@lbl.gov). General MUCOOL Telephone Book MUCOOL Notes MUCOOL Collaborating Institutes and Interests Useful Links Link to IIT MUCOOL page Meetings Muon Collaboration Friday Meetings Fermilab Muon Group Monday Meetings MTA RF Workshop (August 22, 2007 - Fermilab) Low Emittance Muon Collider Workshop (February 12-16, 2007, Fermilab) Low Emittance Muon Collider Workshop (February 6-10, 2006, Fermilab)

439

Doppler cooling three-electronic-level molecules  

E-Print Network (OSTI)

Analogous to the extension of laser cooling techniques from two-level to three-level atoms, Doppler cooling of molecules with an intermediate electronic state is considered. In particular, we use a rate-equation approach to simulate cooling of SiO+, in which population buildup in the intermediate state is prevented by its short lifetime. We determine that Doppler cooling of SiO+ can be accomplished without optically repumping from the intermediate state, at the cost of causing undesirable parity flips and rotational diffusion. Since the necessary repumping would require a large number of continuous-wave lasers, optical pulse shaping of a femtosecond laser is proposed as an attractive alternative. Other candidate three-electron-level molecules are also discussed.

Nguyen, J H V

2010-01-01T23:59:59.000Z

440

Enhancing cavity cooling with cavity driving  

E-Print Network (OSTI)

Cavity-mediated cooling has the potential to become one of the most efficient techniques to cool molecular species down to very low temperatures. However, theoretical schemes with single-laser driving require relatively strong trapping potentials and relatively long cavity photon life times which are hard to realise experimentally. In this paper we therefore consider an alternative cavity cooling scenario with double-laser driving. It is shown that the second laser can enhance the phonon-photon coherence which governs the time evolution of the mean phonon number, thereby resulting in higher cooling rates and a lower final temperature, when the cavity decay rate kappa is four or more times larger than the phonon frequency nu of the trapped particle.

Blake, Tony; Beige, Almut

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT  

E-Print Network (OSTI)

The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

Niinikoski, T O

1998-01-01T23:59:59.000Z

442

Aging and weathering of cool roofing membranes  

E-Print Network (OSTI)

and L.S. Rose. 2002. “Aging of reflective roofs: sootAging and Weathering of Cool Roofing Membranes HashemNRC), Canada ABSTRACT Aging and weathering can reduce the

2005-01-01T23:59:59.000Z

443

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

444

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Chu at COP-16: Building a Sustainable Energy...

445

Elastic Metal Alloy Refrigerants: Thermoelastic Cooling  

SciTech Connect

BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

2010-10-01T23:59:59.000Z

446

Stability analysis of supercritical water cooled reactors  

E-Print Network (OSTI)

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

447

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

448

Stochastic cooling of a high energy collider  

SciTech Connect

Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

2011-09-04T23:59:59.000Z

449

On thermal performance of seawater cooling towers  

E-Print Network (OSTI)

Seawater cooling towers have been used since the 1970s in power generation and other industries, so as to reduce the consumption of freshwater. The salts in seawater are known to create a number of operational problems, ...

Sharqawy, Mostafa H.

450

Final Report: Cooling Molecules with Laser Light  

SciTech Connect

Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

Di Rosa, Michael D. [Los Alamos National Laboratory

2012-05-08T23:59:59.000Z

451

Cooling scheme for turbine hot parts  

DOE Patents (OSTI)

A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

Hultgren, Kent Goran (Winter Park, FL); Owen, Brian Charles (Orlando, FL); Dowman, Steven Wayne (Orlando, FL); Nordlund, Raymond Scott (Orlando, FL); Smith, Ricky Lee (Oviedo, FL)

2000-01-01T23:59:59.000Z

452

Cooling circuit for and method of cooling a gas turbine bucket  

SciTech Connect

A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

Jacala, Ariel C. P. (Simpsonville, SC)

2002-01-01T23:59:59.000Z

453

Floating dry cooling: a competitive alternative to evaporative cooling in a binary cycle geothermal power plant  

DOE Green Energy (OSTI)

The application of the floating cooling concept to non-evaporative and evaporative atmospheric heat rejection systems was studied as a method of improving the performance of geothermal powerplants operating upon medium temperature hydrothermal resources. The LBL thermodynamic process computer code GEOTHM is used in the case study of a 50 MWe isobutane binary cycle power plant at Heber, California. It is shown that operating a fixed capacity plant in the floating cooling mode can generate significantly more electrical energy at a higher thermodynamic efficiency and reduced but bar cost for approximately the same capital investment. Floating cooling is shown to benefit a plant which is dry cooled to an even greater extent than the same plant operating with an evaporative heat rejection system. Results of the Heber case study indicate that a dry floating cooling geothermal binary cycle plant can produce energy at a bus bar cost which is competitive with the cost of energy associated with evaporatively cooled systems.

Pines, H.S.; Green, M.A.; Pope, W.L.; Doyle, P.A.

1978-07-01T23:59:59.000Z

454

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

455

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

456

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

457

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

458

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

459

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

460

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

462

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

463

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

464

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

465

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

466

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

467

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

468

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

469

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

470

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

471

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

472

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

473

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

474

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

475

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

476

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

477

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

478

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

479

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

480

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

Note: This page contains sample records for the topic "total population-weighted cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

482

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

483

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

484

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

485

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

486

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

487

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

488

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

489

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

490

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

491

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

492

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

493

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......