Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Cost of Ownership Considerations in Global Sourcing Processes  

E-Print Network [OSTI]

Total Cost of Ownership Considerations in Global Sourcing Processes Robert Alard, Philipp Bremen and microeconomic aspects which can also be largely used independently. Keywords: Global Supply Networks, Total Cost of Ownership, Global Total Cost of Ownership, Global Procurement, Outsourcing, Supplier Evaluation, Country

Paris-Sud XI, Université de

2

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

3

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

4

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

5

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

6

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

7

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

Broader source: Energy.gov [DOE]

This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

8

Development of a Method Using BIM Technology to Determine the Utility Bill and Total Cost of Ownership of a Single-family Home  

E-Print Network [OSTI]

. Note: Numbers generated from Autodesk Green Building Studio & Google Mortgage Calculator Source: Created in Microsoft Excel 22 In the first method I was able to successfully establish the utility bill and the total cost of ownership.... Note: Numbers generated from Autodesk Green Building Studio & Google Mortgage Calculator Source: Created in Microsoft Excel 22 In the first method I was able to successfully establish the utility bill and the total cost of ownership...

McGarity, Ashley

2010-07-14T23:59:59.000Z

9

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

10

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

Broader source: Energy.gov [DOE]

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

11

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

SciTech Connect (OSTI)

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

2014-09-01T23:59:59.000Z

12

The impact of ownership unbundling on cost efficiency: Empirical evidence from the New Zealand electricity distribution sector  

Science Journals Connector (OSTI)

Abstract Several countries around the world have introduced reforms to the electric power sector. One important element of these reforms is the introduction of an unbundling process, i.e., the separation of the competitive activities of supply and production from the monopole activity of transmission and distribution of electricity. There are several forms of unbundling: functional, legal and ownership. New Zealand, for instance, adopted an ownership unbundling in 1998. As discussed in the literature, ownership unbundling produces benefits and costs. One of the benefits may be an improvement in the level of the productive efficiency of the companies due to the use of the inputs in just one activity and a greater level of transparency for the regulator. This paper analyzes the cost efficiency of 28 electricity distribution companies in New Zealand for the period between 1996 and 2011. Using a stochastic frontier panel data model, a total cost function and a variable cost function are estimated in order to evaluate the impact of ownership unbundling on the level of cost efficiency. The results indicate that ownership separation of electricity generation and retail operations from the distribution network has a positive effect on the cost efficiency of distribution companies in New Zealand. The estimated effect of ownership separation suggests a positive average one-off shift in the level of cost efficiency by 0.242 in the short-run and 0.144 in the long-run.

Massimo Filippini; Heike Wetzel

2014-01-01T23:59:59.000Z

13

Ownership Unbuilding in Electricity Markets - A Social Cost Benefit Analysis of the German TSO'S  

E-Print Network [OSTI]

OWNERSHIP UNBUNDLING IN ELECTRICITY MARKETS - A SOCIAL COST BENEFIT ANALYSIS OF THE GERMAN TSO’S Gert Brunekreeft1 Jacobs University Bremen Campus Ring 1 D-28759 Bremen Germany Email: g.brunekreeft@jacobs-university.de Version 2, August 11... , 2008 Abstract: This paper presents a social cost benefit analysis of ownership unbundling (as compared to legal und functional unbundling) of the electricity transmission system operators in Germany. The study relies on the Residual Supply Index...

Brunekreeft, Gert

14

The debt agency costs of family ownership in small and micro firms  

Science Journals Connector (OSTI)

This study investigates the impact that family ownership has on loan availability and credit terms. It differs from existing literature by investigating the impact of family ownership on loan availability and credit terms in small and micro firms. Our results suggest that loan availability becomes weaker when family ownership increases. Collateral requirements increase with family ownership, but contrary to previous studies we find no effect on interest rates. These results suggest that there are agency costs involved with family ownership. We also find that the impact of other attributes that affect loan availability or credit terms is different for family firms. Our results suggest that an increase in firm age improves loan availability and reduces collateral requirements only for the non-family firms. We also find that while an increase in profitability improves loan availability for all firms, it reduces interest rates and collateral requirements only for family firms.

Mervi Niskanen; Jyrki Niskanen; Virpi Laukkanen

2010-01-01T23:59:59.000Z

15

November 2010, IDC Retail Insights #GRI224949 Checkout System Cost of Ownership: The  

E-Print Network [OSTI]

November 2010, IDC Retail Insights #GRI224949 Checkout System Cost of Ownership: The Fundamental Parker November 2010 I D C R E T A I L I N S I G H T S O P I N I O N IDC Retail Insights published two checkout technologies to help retailers understand the differences among all the cost components involving

16

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

17

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

SciTech Connect (OSTI)

Flashlight usage is widespread across much of sub-Saharan Africa.1 In Kenya in particular, over half of all households report owning a flashlight (Kamfor, 2002). Aside from household use, flashlights are also widely used to perform income-earning jobs in Kenya. Lumina Research Note No.4, the first report in this series documenting flashlight use in Kenya, highlights flashlight use patterns of night watchmen and bicycle taxi drivers. Both of these are occupations that rely on the use of flashlights on a nightly basis (Tracy et al., 2009). Also highlighted by Research Note No.4, flashlight users in Kenya have reported being highly dissatisfied with the quality of the low-cost LED flashlights that are available, and they identify several reoccurring problems they have faced as flashlight end-users (Tracy et al., 2009). The fact that there exists a substantial dependency upon flashlights in Kenya and that users are disgruntled with the available products suggests reasons for concern about flashlight quality. This concern is present despite two recent technological transitions in the flashlight market. First, LED technology has quickly emerged as the dominant source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs, and low-cost LEDs have achieved price levels that make them cost competitive with conventional lighting sources for a number of applications (Mills, 2005). Second, rechargeable sealed-lead acid (SLA) batteries are also becoming more prevalent alternatives to disposable dry cell batteries. Flashlights using rechargeable SLA batteries tend to have a lower total cost of ownership over a two-year period than a flashlight using dry cell batteries (Radecsky, 2009); however, as this current report highlights, this may vary depending on the intensity of use patterns. To avoid a potential market spoiling effect for off-grid lighting products based on LED technology (Mills and Jacobson, 2008; Lighting Africa, 2007) a better understanding of flashlight use-patterns is crucial (Tracy et al., 2009). In addition, the economic implications faced by rural flashlight end-users provide further incentive for a move toward higher quality low-cost flashlights. In this report, our team uses interviews with 46 end users of flashlights to collect information about their use patterns and costs associated with owning and operating flashlight products. While flashlights used in their portable mode typically do not represent a substitute for kerosene or other forms of fuel-based lighting, at times they are used in stationary applications in place of a fuel-based lamp. In either case, these products often represent end users first exposure to LED technology and rechargeable dry cell batteries, and thus stand to either provide a positive or negative impression of these technologies for a diversity of lighting applications.

Tracy, Jennifer; Jacobson, Arne; Mills, Evan

2010-02-16T23:59:59.000Z

18

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Analytical Services & Testing Contract June 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

19

Project Functions and Activities Definitions for Total Project Cost  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

1997-03-28T23:59:59.000Z

20

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Period: Fee Information Maximum Fee Contract Type: Minimum Fee 91,085,394 74,386,573 Target Fee September 2002 - March 2017 Cost Plus Fixed FeeIncentive Fee 1,192,114,896...

22

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

- Oak Ridge, TN Contract Name: Transuranic Waste Processing Contract June, 2014 2,433,940 Cost Plus Award Fee 150,664,017 Fee Information Minimum Fee 2,039,246 Maximum Fee...

23

Total Estimated Contract Cost:) Performance Period Total Fee...  

Office of Environmental Management (EM)

Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,251,328,348 Fee Information 0 Maximum Fee 337,699,252...

24

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

Cumulative Fee Paid 22,200,285 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee 989,000,000 Contract Period: Contract Type: January 2010 - December...

25

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers [EERE]

& Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee June, 2014 Site: Portsmouth Paducah Project Office...

26

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

27

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

2011 - September 2015 June 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 419,202,975 Contract Period:...

28

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee June 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,245,814,927 Contract Period: EM Contractor Fee Site:...

29

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

30

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 16,098,142 EM Contractor Fee Site: Oak Ridge Office - Oak Ridge, TN...

31

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name:...

32

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

33

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

34

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

$ 3,422,994.00 $ 3,422,994.00 FY2011 4,445,142.00 $ FY2012 $ 5,021,951.68 FY2013 $ 3,501,670.00 FY2014 $0 FY2015 $0 FY2016 $0 FY2017 $0 FY2018 $0 FY2019 $0 Cumulative Fee Paid $16,391,758 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee $989,000,000 Contract Period: Contract Type: January 2010 - December 2019 Contract Number: EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name: Comprehensive Security Services September 2013 Fee Information Maximum Fee $55,541,496 $5,204,095 $3,667,493 $5,041,415 Minimum Fee 0 Fee Available $5,428,947 $6,326,114

35

Developing a total replacement cost index for suburban office projects  

E-Print Network [OSTI]

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

36

COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement that is not bourn by  

E-Print Network [OSTI]

1 COST SHARING Cost sharing is the portion of total project costs of a sponsored agreement. There are primarily three types of cost sharing that may occur on sponsored projects: Mandatory cost sharing. For example, the National Science Foundation requires mandatory cost sharing for some of its projects. COST

Cui, Yan

37

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

38

CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs  

Broader source: Energy.gov [DOE]

The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

39

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of...  

Office of Environmental Management (EM)

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive...

40

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network [OSTI]

in Kenya, outpacing incandescent flashlights (Johnstone etbenefits relative to incandescent bulbs, and low-cost LEDsby dry cell batteries, incandescent flashlights powered by a

Tracy, Jennifer

2010-01-01T23:59:59.000Z

42

Cost Savings of Nuclear Power with Total Fuel Reprocessing  

SciTech Connect (OSTI)

The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads (< LWR fuel) if all spent fuel feedstock is from the fast reactor (i.e., Breeding Ratio =1). 4) Yucca Mountain storage of unprocessed LWR spent fuel is estimated as $360,000/MTHM. But this fuel can be processed to remove TRU for use as fast reactor fuel. The remaining fission products repository costs are only one fifth that of the original fuel. Storage of short half life fission products alone requires less storage time and long term integrity than LWR spent fuel (300 years storage versus 100,000 years.) 5) LWR decommissioning costs are estimated to be $0.3 x 10{sup 6}/MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first 7.5 years and 2.39 cents/kWh for the next 32.5 years. The average cost over forty years is 2.50 cents/kWh which is less than the LWR costs. These power costs are similar to coal power, are lower than gas, oil, and much lower than renewable power.(authors)

Solbrig, Charles W.; Benedict, Robert W. [Fuel Cycle Programs Division, Idaho National Laboratory, Idaho Falls, Idaho (United States)

2006-07-01T23:59:59.000Z

43

,"U.S. Total Refiner Acquisition Cost of Crude Oil"  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil" "Sourcekey","R00003","R12003","R13003" "Date","U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel)","U.S. Crude Oil Domestic...

44

Sharing the Total Cost of Ownership of Electric Vehicles: A Study on the Application of Game Theory  

E-Print Network [OSTI]

and constituent systems (customers, vehicle producers, energy suppliers, telecommunication operators, states

de Weck, Olivier L.

45

Characterizing opportunities for short reach optical interconnect adoption : a market survey and total cost of ownership model approach  

E-Print Network [OSTI]

Over the past decade, the demand for digital information has increased dramatically with the rising use of the Internet and various types of multimedia data - text, audio, graphics, video, and voice. As a consequence, the ...

Lindsey, Johnathan Jake, III

2010-01-01T23:59:59.000Z

46

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

47

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

48

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

49

Cutting costs through substation ownership  

SciTech Connect (OSTI)

The term applied to service through a customer-owned main substation is primary service, and such customers are billed at primary metering rates. These terms denote that the customer accepts service (and billing metering is located) on the primary, rather than secondary, side of the main transformer. Some electric utilities are prepared to offer extremely attractive billing reductions to those customers willing to invest in their own main substations instead of renting a substation purchased with utility company capital. Depending on the utility and the particular circumstances, some plants can recover their investment in primary substation equipment in as little as 1 or 2 years.

Keithly, D. (ABB Electric, Waukesba, WI (US))

1989-06-22T23:59:59.000Z

50

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

51

Minimizing the total cost of hen allocation to poultry farms using hybrid Growing Neural Gas approach  

Science Journals Connector (OSTI)

Abstract In this paper a decision support system to solve the problem of hen allocation to hen houses with the aim of minimizing the total cost is described. The total cost consists of farm utilization cost, hen transportation cost, and loss from mixing hens at different ages in the same hen houses. Clustering of hen houses using the traditional Growing Neural Gas (GNG) was first determined to allocate hens to the hen houses effectively. However, the traditional GNG often solves the clustering problem by considering distance only. Therefore the hybrid Growing Neural Gas (hGNG) considering both the distance from the centroids of the clusters to the hen houses and the weights of hen house sizes was proposed to solve the problem. In the second phase, allocating and determining routes to allocate hens to the hen houses using the nearest neighbor approach were carried out in order to minimize the total distance. The performance of the algorithm was measured using the relative improvement (RI), which compares the total costs of the hGNG and GNG algorithms and the current practice. The results obtained from this study show that the hGNG algorithm provides better total cost values than the firm’s current practice from 7.92% to 20.83%, and from 5.90% to 17.91% better than the traditional GNG algorithm. The results also demonstrate that the proposed method is useful not only for reducing the total cost, but also for efficient management of a poultry production system. Furthermore, the method used in this research should prove beneficial to other similar agro-food sectors in Thailand and around the world.

Atiwat Boonmee; Kanchana Sethanan; Banchar Arnonkijpanich; Somnuk Theerakulpisut

2015-01-01T23:59:59.000Z

52

FEMP Offers New eTraining Core Course on Fundamentals of Life Cycle Costing for Energy Conservation  

Broader source: Energy.gov [DOE]

FEMP presents a new e-Training Core Course that providing skills to improve Federal economic-based decision making, determine the total cost of ownership of project alternatives, and inform decisions for energy and water efficiency investments.

53

A brief study into the impact University of Bath has had on CO2 emissions and the cost of ownership of passenger cars.  

E-Print Network [OSTI]

to demonstrate fuel economy improvements totalling 4% including: · 3% improvement due to the optimised use of oil needed to protect the engine at any particular time thereby saving energy, fuel and reducing CO2 in fuel economy.[4]. These improvements are now in production in very large volumes. The 2.2L Duratorq

Burton, Geoffrey R.

54

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

55

Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of total costs (TPC) and energy efficiency of enzymatic ethanol production. The analysis is parametrized with respect to plant capacity and polysaccharides content (pc) of lignocellulosic feedstock. The feedstock is based on wheat straw whose price is proportional to its pc ranging from new straw with high pc and high cost to agro-wastes with limited pc but lower cost. The plant flowsheet was built using a conventional biochemical platform with co-saccharification and fermentation (SHF) technologies. A parametric analysis of TPC as a function of plant capacity (100–2100 ton DB/day) and pc (i.e. feedstock price) (80% (75 USD/ton DB)–35% (6 USD/ton DB)) was performed with Net Present Value (NPV) techniques. Current data from Mexican economics and the agro-industrial sector were used as an illustrative case. A quasi-linear section of the TCP surface was identified delimited by (300–1100 ton DB/day) and (80–55% pc) with increments no larger than 21% of the minimum TPC obtained (0.99 USD/l etOH for 2100 ton DB/day and 80% pc). Major cost contributions are detailed and quantified for boundary cases of this surface. Energy consumption and production were also calculated for all the plant capacity and feedstock pc cases, taking into consideration the Maximum Energy Recovery (MER) obtained from a Pinch analysis. The end-use energy index eer was less than 0.82 for all cases, thus stressing the need to use process equipment with lower energy requirements. TPC are compared against previously published results for SHF technology between 500 and 2100 ton DB/day plant capacities. These values were updated and normalized with respect to feedstock and enzyme costs employed in this work. Differences among TPC and recently published normalized results are within a ±5% range, thus confirming the dependence of TPC from feedstock and enzyme prices, regardless of flowsheet technology and economic conditions.

A. Sanchez; V. Sevilla-Güitrón; G. Magańa; L. Gutierrez

2013-01-01T23:59:59.000Z

56

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

57

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

58

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

59

A cost/benefit model for insertion of technological innovation into a total quality management program  

E-Print Network [OSTI]

for measuring quality improvement is the cost of quality. Traditionally, comprehensive quality cost reports have regularly been issued in a fixed format to identify opportunities for improvement and provide guidelines for improvement over time. However, current...

Ratliff, William L

2012-06-07T23:59:59.000Z

60

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost  

Science Journals Connector (OSTI)

A cost analysis of the 10MWe Solar One Thermal Central Receiver Plant near Barstow, California, ... is presented to help predict costs of future solar thermal central receiver plants. In this paper, the Solar One...

H. F. Norris

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal mine methane ownership issues  

SciTech Connect (OSTI)

The article summarizes the CMM ownership conditions in the US and the obstacles they present for project development. The first section discusses CMM resources and rights on lands controlled by the US Government, the case in several western states. The second section reviews the situation on private lands, such as in much of the eastern US, where ownership of the mineral; resources is governed by state laws. Each of the two sections analyses the ownership procedures and rules that govern both the relationship between the surface and subsurface owners and the relationship between two or more subsurface resource owners. 8 refs., 1 tab.

NONE

2007-09-30T23:59:59.000Z

62

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

63

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

64

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

65

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

66

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

67

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

68

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

69

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

70

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

71

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

72

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

73

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

74

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

75

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

76

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network [OSTI]

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

77

Retained Ownership Strategies for Cattlemen  

E-Print Network [OSTI]

, some roll-back in prices of feeder cattle can be endured without suffering a loss. Table 1 illustrates the effects of cost of gain and total pounds of gain on cattle break-even prices. The table assumes you are grazing or backgrounding a 500-pound... of $40 per hundredweight, the break-even price at the program?s end would be $70.29 per hun- dredweight, including interest charges on the calf and other feeding costs. As one would expect, the price per hundredweight required to break even is below...

Davis, Ernest E.; Mintert, James R.; McGrann, James M.

1999-06-23T23:59:59.000Z

78

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

79

Transformation of California's Residential Photovoltaics Market Through Third-Party Ownership  

SciTech Connect (OSTI)

Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption.

Drury, E.; Miller, M.; Macal, C. M.; Graziano, D. J.; Heimiller, D.; Ozik, J.; Perry, T. D.

2012-03-01T23:59:59.000Z

80

A Study of United States Hydroelectric Plant Ownership  

SciTech Connect (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

cost of ownership and environmental savings analyses: solar photovoltaic, wind, and fuel cellscost. ENVIRONMENTAL SAVINGS ANALYSIS Solar, wind, and fuel cellsanalysis results favor wind over solar and fuel cells in terms of both ownership cost and

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

82

Essays on Development, Ownership Structure, and Agriculture.  

E-Print Network [OSTI]

??This thesis examines how ownership structure and climate change issues affect farmers in developing countries in three chapters. The first chapter surveys the theoretical and… (more)

Moorthy, Aravind

2012-01-01T23:59:59.000Z

83

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

option. Solar photovoltaic needs to cut the cost by 50% orcost of ownership and environmental savings analyses: solar photovoltaic,

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

84

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

85

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

86

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

87

Retained Ownership Strategies for Cattlemen.  

E-Print Network [OSTI]

for Selected Texas Markets. Table 2. Break-even prices for a 500-pound calf grazed to different endpoint weights at different costs, dollars per hundredweighf1 Costs of gain, S/ cwt. Pounds gained 35 40 45 50 55 Breakeven prices, S/ cwt. 100 68.33 69... of costs of gains and gain efficiency of cattle on break-even prices. The table assumes grazing or backgrounding a 500-pound stocker calfwith an "in" price of$75 per hundredweight. Costs of gain are given in units of$5 per hundredweight, beginning...

Davis, Ernest E; McGrann, James M.; Boleman Larry L.; Mies, William L.

1987-01-01T23:59:59.000Z

88

Enabling Legislation: Third-Party Ownership Resources  

Broader source: Energy.gov [DOE]

States can allow third-party ownership of renewable assets, which expands the type of financing available to the residential sector and encourages expansion of residential sector deployment. Third...

89

Directory of coal production ownership, 1979  

SciTech Connect (OSTI)

Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

Thompson, B.

1981-10-01T23:59:59.000Z

90

Safe open-nested transactions through ownership  

Science Journals Connector (OSTI)

Researchers in transactional memory (TM) have proposed open nesting as a methodology for increasing the concurrency of transactional programs. The idea is to ignore ``low-level'' memory operations of an open-nested transaction when detecting conflicts ... Keywords: abstract serializability, open-nested transactions, ownership types, ownership-aware transactions, safe nesting, semantic deadlock, semantics, serializability by modules, transactional memory, transactional memory semantics, xmodules

Kunal Agrawal; I-Ting Angelina Lee; Jim Sukha

2009-02-01T23:59:59.000Z

91

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Max Wei (Primary Contact), Tom McKone, Tim Lipman 1 , David Dornfeld 2 , Josh Chien 2 , Chris Marnay, Adam Weber, Paul Beattie 3 , Patricia Chong 3 Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, CA 94706 Phone: (510) 486-5220 Email: mwei@lbl.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Subcontractors: 1 University of California, Berkeley, Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center, Berkeley, CA 2 University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, CA

92

Effect of the Ownership of Dialysis Facilities on Patients' Survival and Referral for Transplantation  

Science Journals Connector (OSTI)

There has been much concern that the growth of for-profit ownership of health care organizations may compromise the quality of care provided to patients. As compared with not-for-profit entities, for-profit firms may be under more pressure to generate income, a situation that may lead to greater cost... There has been much concern that the growth of for-profit ownership of health care organizations may compromise the quality of care provided to patients. As compared with not-for-profit entities, for-profit firms may be under more pressure to generate ...

Garg P.P.Frick K.D.Diener-West M.Powe N.R.

1999-11-25T23:59:59.000Z

93

Property:CompanyOwnership | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:CompanyOwnership Jump to: navigation, search Property Name Company Ownership Property Type String Description Describes whether the company is privately or publicly owned. Allows Values Public, Private This is a property of type String. The allowed values for this property are: Public Private Pages using the property "CompanyOwnership" Showing 16 pages using this property. 4 4C Offshore Limited + Private + A ALDACOR + Private + ALDACOR INC + Private + Alternate Energy LLC + Private + B Balloon Eólica + Private + Buffalo Software + Private + C CarbonFree Technology + Private + Community Energy Inc + Private + E EXEN Holdings LLC + Private + Ecoforest + Private + I Inovus + Private +

94

Backup Power Cost of Ownership Analysis and Incumbent Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in...

95

Property:EIA/861/Ownership | Open Energy Information  

Open Energy Info (EERE)

Ownership Ownership Jump to: navigation, search This is a property of type String. Description: Ownership Ownership Type: One of 10 different types of ownership categories: Federal; Political Subdivision; Municipal Marketing Authority; Cooperative; State; Municipal; Investor-Owned; Retail Power Marketer (Energy Service Provider); (Wholesale) Power Marketer; Transmission Company. "State" ownership refers to statewide organizations whose scope is larger than county level. [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/Ownership" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + R + 4 4-County Electric Power Assn + C + A A & N Electric Coop (Virginia) + C +

96

Pyramidal Ownership in Ecuadorian Business Groups  

E-Print Network [OSTI]

of business groups through the legal foundations and institutional framework of the country, and more specifically, of the corporate governance. They also discuss the importance of the high levels of ownership concentration leading to capital allocation... in the corporate governance literature. According to this hypothesis, the pyramidal structure allows groups to shift income or assets out of high tax jurisdictions into low tax jurisdictions, such as tax havens. This paper focuses on the study of the tunneling...

Granda Kuffo, Maria L.

2010-01-16T23:59:59.000Z

97

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network [OSTI]

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

98

Foreign Ownership, Control, or Influence Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the policies, responsibilities, and authorities for implementing the Department of Energy (DOE) Foreign Ownership, Control, or Influence (FOCI) program, which is designed to obtain information that indicates whether DOE offerors/bidders or contractors/subcontractors are owned, controlled, or influenced by foreign individuals, governments, or organizations, and whether that foreign involvement may pose an undue risk to the common defense and security. This directive does not cancel another directive. Canceled by DOE O 470.1 of 9-28-1995.

1993-06-14T23:59:59.000Z

99

Vehicle ownership and mode use: the challenge of sustainability  

E-Print Network [OSTI]

by historically high fuel prices as well as economicthe related issues of fuel price, vehicle ownership, anda hypothetical change in fuel prices. The results indicate

Srinivasan, Sivaramakrishnan; Walker, Joan L.

2009-01-01T23:59:59.000Z

100

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total supply chain cost model  

E-Print Network [OSTI]

Sourcing and outsourcing decisions have taken on increased importance within Teradyne to improve efficiency and competitiveness. This project delivered a conceptual framework and a software tool to analyze supply chain ...

Wu, Claudia

2005-01-01T23:59:59.000Z

102

Ownership and Hospital Productivity Brigitte Dormont* et Carine Milcent**  

E-Print Network [OSTI]

Ownership and Hospital Productivity Brigitte Dormont* et Carine Milcent** 1 July, 12, 2012 Abstract There is ongoing debate about the effect of ownership on hospital performance as regards efficiency and care public and private hospitals. In France, public and private hospitals do not only differ

103

Community wind power ownership schemes in Europe and their relevance to the United States  

E-Print Network [OSTI]

of Community Wind Power Ownership in Europe..46 4.3 Factorsof Community Wind Power Ownership in Europe More than halfCommunity Wind Power Ownership Schemes in Europe and their

Bolinger, Mark

2001-01-01T23:59:59.000Z

104

Property:Building/OwnershipCategory | Open Energy Information  

Open Energy Info (EERE)

OwnershipCategory OwnershipCategory Jump to: navigation, search This is a property of type String. Ownership category Pages using the property "Building/OwnershipCategory" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Government building + Sweden Building 05K0002 + Government building + Sweden Building 05K0003 + Private company + Sweden Building 05K0004 + Private company + Sweden Building 05K0005 + Private company + Sweden Building 05K0006 + Government building + Sweden Building 05K0007 + Government building + Sweden Building 05K0008 + Government building + Sweden Building 05K0009 + Government building + Sweden Building 05K0010 + Government building + Sweden Building 05K0011 + Government building + Sweden Building 05K0012 + Government building +

105

TABLE 2. U.S. Nuclear Reactor Ownership Data  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. Nuclear Reactor Ownership Data" "PlantReactor Name","Generator ID","Utility Name - Operator","Owner Name","% Owned" "Arkansas Nuclear One",1,"Entergy Arkansas...

106

Micro-home ownership in a mega-metropolis  

E-Print Network [OSTI]

As a means to keep pace with today's globally networked society, the home is reconceived as a portable, transformable device that adapts and reconfigures itself to coexist within a range of changing terrains. Ownership ...

MacCarroll, Christian D. (Christian David)

2005-01-01T23:59:59.000Z

107

Ownership unbundling in electricity distribution: empircal evidence from New Zealand  

E-Print Network [OSTI]

OWNERSHIP UNBUNDLING IN ELECTRICITY DISTRIBUTION: EMPIRICAL EVIDENCE FROM NEW ZEALAND Paul H L Nillesen Director PricewaterhouseCoopers Advisory N.V. De Entree 201 Amsterdam The Netherlands Paul.nillesen@nl.pwc.com Michael G Pollitt Reader... in Business Economics Judge Business School Cambridge CB2 1AG United Kingdom m.pollitt@jbs.cam.ac.uk 2Abstract New Zealand is the only country to date to have implemented forced ownership unbundling of electricity distribution from the rest of the electricity...

Nillesen, Paul; Pollitt, Michael G.

108

Abstract--In an open access power market, power tracing is a very important issue as it can help allocate the total cost of  

E-Print Network [OSTI]

it a desired method for transmission pricing. This work has been supported by the National Science increasing complexity and the associated computations costs. Index Terms--Electricity market, transmission pricing, Short Run Marginal Cost (SRMC). I. INTRODUCTION LECTRICITY MARKET design and operation have

Cañizares, Claudio A.

109

Levelized Electricity Costs  

Science Journals Connector (OSTI)

The concept of levelized energy costs responds to the necessity of disclosing the ... in order to recover the total life cycle cost of energy production. This chapter charts the effectiveness of levelized cost fo...

Nuno Luis Madureira

2014-01-01T23:59:59.000Z

110

Ownership mix of addiction treatment centres in the USA  

Science Journals Connector (OSTI)

The dominant presence of private Addiction Treatment Centres (ATCs) raises questions about how changes in ownership mix affect access to and quality of care. This paper examines the relationship between an ATC's ownership choice and the ownership mix in its market. Organisational and market characteristics are considered by using data from the National Survey of Substance Abuse Treatment Services, North American Industry Classification System, Internal Revenue Service's Business Master File, US Census Bureau Population Estimate Survey, Uniform Crime Reporting Program Data and Local Area Unemployment Statistics. We use linear probability models to link the facility's choice of ownership with the ownership status of its competitors. The results indicate that the value of being non-profit is higher in markets where many ATCs are non-profit and lower in markets where many are for-profit. The likelihood of a non-profit status appears to be more influenced by the presence of incumbent non-profits, rather than by high earnings or longevity.

Guy David; Margo Lederhandler; Victoria Acevedo-Perez

2011-01-01T23:59:59.000Z

111

Foreign ownership, technological capabilities and clothing exports in Sri Lanka  

Science Journals Connector (OSTI)

Drawing on recent developments in applied international trade and innovation and learning in developing countries, this paper examines the links between firm-level export performance, foreign ownership and the acquisition of technological capabilities in a sample of 205 clothing enterprises in Sri Lanka. Econometric analysis indicates that foreign ownership, firm size, human capital, technological capabilities and geographical location are all positively associated with export shares. Furthermore, higher levels of technological capability are associated with larger firm size, university-level manpower and in-house technological effort. Micro-level investigations are a complementary input to developing policies for promoting private sector competitiveness in outward-oriented developing countries.

Ganeshan Wignaraja

2008-01-01T23:59:59.000Z

112

Ris-R-Report Support Schemes and Ownership Structures  

E-Print Network [OSTI]

to its potential contribution to energy savings, efficiency gains, customer proximity comments on this report. The FC4Home Project (FC4Home ­ SocioEconomic and Energy Systems AnalysisRisø-R-Report Support Schemes and Ownership Structures The Policy Context for Fuel Cell Based Micro

113

CSEM WP 140 Ownership Change, Incentives and Plant Efficiency  

E-Print Network [OSTI]

obstructions to innovation and market efficiencies in many industries. In many countries, the electric utility to concerns created by the Calfornia crisis as well as to major increases in the price of natural gas, whichCSEM WP 140 Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric

Kammen, Daniel M.

114

Unbundling ownership and control: international experience of independent system operators  

Science Journals Connector (OSTI)

As competition has been introduced into electricity markets around the world, a fundamental challenge has been how to govern the vertical relationship between the monopolistic transmission networks and the potentially competitive activities of generation and supply. An innovative solution is to allow the incumbent to retain ownership of its network but to hand over their operation to an Independent Systems Operator (ISO). In principle, this should remove the opportunity for the owner of the transmission network to discriminate against third-party suppliers. It also allows the integration of transmission networks in separate regions and under separate ownership. This paper considers the lessons of the British and US experience of the ISO model. We conclude that if the British model works, it could be applied within Germany, with the regional networks operated by a single ISO. Ultimately, these types of arrangements could also allow supranational electricity transmission markets in Europe.

Enese Lieb-Doczy; Isabelle McKenzie; David Squires

2008-01-01T23:59:59.000Z

115

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Differences in 10 Household Automobile Ownership Rates:hauseltoldr lacking automobiles were mmit like! ) to be leftWithout 3 Access to an Automobile. Top Ten Metropolitan

Raphael, S; Berube, A; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

116

Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya  

E-Print Network [OSTI]

treated net (ITN) ownership, usage, and malaria transmissionand mortality. However, usage varies among households, andsuch variations in actual usage may seriously limit the

2011-01-01T23:59:59.000Z

117

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

SciTech Connect (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

none,

2001-02-01T23:59:59.000Z

118

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

119

Home ownership as wealth over the life cycle European Household Motivation for Residential Assets  

E-Print Network [OSTI]

Home ownership as wealth over the life cycle European Household Motivation for Residential Assets Current situation and future prospects INTRODUCTION Encouraging Home Ownership Most countries encourage a country's wealth and the proportion of home owners. 44 Homeownership rates in Western Europe (Source: EMF

Birmingham, University of

120

Factors Associated with Bicycle Ownership and Use: A Study of 6 Small U.S. Cities  

E-Print Network [OSTI]

Factors Associated with Bicycle Ownership and Use: A Study of 6 Small U.S. Cities Yan Xing to the Committee on Bicycle Transportation: ANF20 Word Count: 5498 Number of figures: 2 Number of tables: 4 #12;Xing, Handy, and Buehler 2 Factors Associated with Bicycle Ownership and Use: A Study of 6 Small U

Handy, Susan L.

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

College of Engineering Request for Institutional Waiver of Indirect Cost  

E-Print Network [OSTI]

PAF Number College of Engineering Request for Institutional Waiver of Indirect Cost Principal Investigator Sponsor Project Title Total Direct Costs Total Modified Direct Costs Full Indirect Costs Rate Full Indirect Costs Amount Total Project Costs (with Full IDC) Requested Indirect Costs Rate Requested Indirect

Kamat, Vineet R.

122

Costs of Storing and Transporting Hydrogen  

Broader source: Energy.gov [DOE]

An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

123

Demographic and Psychosocial Correlates of Mobile Phone Ownership and Usage among Youth Living in the Slums of Kampala, Uganda  

E-Print Network [OSTI]

J, et al. Cell phone usage among adolescents in Uganda:Mobile Phone Ownership and Usage among Youth Living in themobile phone ownership and usage. [West J Emerg Med. 2014;

Swahn, Monica H; Braunstein, Sarah; Kasirye, Rogers

2014-01-01T23:59:59.000Z

124

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

125

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network [OSTI]

quantify production, energy and cost characteristics of ironCost Total O&M Cost Energy Cost Raw Material Cost AnnualCost Total O&M Cost Energy Cost (other than Coking Coal and

Karali, Nihan

2014-01-01T23:59:59.000Z

126

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

127

Robust Cost Colorings Takuro Fukunaga  

E-Print Network [OSTI]

Robust Cost Colorings Takuro Fukunaga Magn´us M. Halld´orsson Hiroshi Nagamochi Abstract We consider graph coloring problems where the cost of a coloring is the sum of the costs of the colors, and the cost of a color is a monotone concave function of the total weight of the class. This models resource

HalldĂłrsson, MagnĂşs M.

128

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network [OSTI]

This paper examines the relationships between the built environment—both ‘neighborhood’ design characteristics and relative location—and motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

129

E-Print Network 3.0 - aircraft by ownership Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOOL FOR EN ROUTE CONTROLLERS1 Heinz Erzberger2 Summary: ownership of them, the maximum number on the List for any sector will seldom exceed 2-3 aircraft in a 20... the...

130

Non-Federal Participation Capacity Ownership : Administrator`s Final Record of Decision.  

SciTech Connect (OSTI)

In a September 1988 Record of Decision (ROD), Bonneville Power Administration (BPA) explained its decision to proceed with the Third Alternating Current (Third AC) Intertie addition construction project using its own funding. At that time, BPA`s decision on non-Federal ownership access to the added capacity was deferred to a separate non-Federal participation policy development process. BPA`s preferred alternative for providing non-Federal Intertie access is to adopt Capacity Ownership for 725 MW. Capacity Ownership allows non-Federal PNW scheduling utilities to purchase contract rights to use protions of BPA`s share of AC Intertie capacity for the life of the Intertie facilities. This ROD documents BPA`s decision to proceed with Capacity Ownership for non-Federal parties.

United States. Bonneville Power Administration.

1994-03-01T23:59:59.000Z

131

Structural Models and Endogeneity in Corporate Finance: The Link Between Managerial Ownership and Corporate Performance  

E-Print Network [OSTI]

This paper presents a parsimonious, structural model that isolates primary economic determinants of the level and dispersion of managerial ownership, firm scale, and performance and the empirical associations among them. ...

Coles, Jeffrey L.; Lemmon, Michael L.; Meschke, Felix

2012-01-01T23:59:59.000Z

132

The role of home ownership in Japan’s aged society  

Science Journals Connector (OSTI)

In Japan’s aged society, one key element expected ... of a ‘homeowner society’, where most households have ascended the housing ladder towards residential-...2003, 2007; Ronald 2004...). Since home ownership has ...

Yosuke Hirayama

2010-06-01T23:59:59.000Z

133

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

134

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

135

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

136

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

137

Cost Containment  

Science Journals Connector (OSTI)

Cost containment in health care involves a wide ... , the growth rate of expenditure or certain costs of health care services. These measures include ... patient education, etc. The reasons for increased cost ...

2008-01-01T23:59:59.000Z

138

Energy use, cost and CO2 emissions of electric cars  

Science Journals Connector (OSTI)

We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km?1 (using renewables) and 155 g km?1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35–77 g CO2 eq km?1. We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 € year?1. TCO of future wheel motor PHEV may become competitive when batteries cost 400 € kWh?1, even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 € kWh?1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400–1400 € tonne?1 CO2 eq and may come down to ?100 to 300 € tonne?1. Abatement cost using battery powered cars are currently above 1900 € tonne?1 and are not projected to drop below 300–800 € tonne?1.

Oscar van Vliet; Anne Sjoerd Brouwer; Takeshi Kuramochi; Machteld van den Broek; André Faaij

2011-01-01T23:59:59.000Z

139

Calculator program aids well cost management  

SciTech Connect (OSTI)

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

140

Guide to Minimizing Compress-based Cooling  

Broader source: Energy.gov [DOE]

Guide describes best practices for reducing energy use and total-cost-of-ownership for data center cooling systems.

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The road to renewables : a case study of wind energy, local ownership and social acceptance at Samsř.  

E-Print Network [OSTI]

??The aim of this thesis is to investigate how local participation and local ownership enhances social acceptance of wind energy. In Norway many planned wind… (more)

Jakobsen, Ina

2008-01-01T23:59:59.000Z

142

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

total combustion engine vehicle operating cost, $/km = costcombustion engine vehicle ownership cost, $/km A comparisonbustion engine vehicles, (2) the high cost of electricity

Cairns, Elton J.

2012-01-01T23:59:59.000Z

143

Chapter_4_Foreign_Ownership_Control_or_Influence_Facility_Clearance_and_Classified_Contract_Registration  

Broader source: Energy.gov (indexed) [DOE]

Foreign Ownership, Control, or Influence; Foreign Ownership, Control, or Influence; Facility Clearance; and Classified Contract Registration This chapter summarizes the process that contractors undergo to be authorized to perform classified work for DOE HQ. The process involves three-steps: obtaining a Foreign Ownership, Control, or Influence (FOCI) determination, obtaining a Facility Clearance; and registering classified contracts within DOE's Safeguards and Security Information Management System (SSIMS). At HQ, all these actions are performed within the Office of Information Security (HS- 92), within the Office of Health, Safety and Security. HS-92 has developed a website (see the Helpful Websites subsection, below) containing instructional handbooks for completing the forms identified in this chapter. These handbooks

144

Oh, the Joys of Energy-Inefficient Smartphone Ownership! | Department of  

Broader source: Energy.gov (indexed) [DOE]

Oh, the Joys of Energy-Inefficient Smartphone Ownership! Oh, the Joys of Energy-Inefficient Smartphone Ownership! Oh, the Joys of Energy-Inefficient Smartphone Ownership! August 22, 2011 - 1:23pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory So, I recently purchased my first smartphone. For the most part, I love the daylights out of it. But you know what? Its battery life is horrible. Smartphones take a lot of charging. I was horrified when one of my friends got a smartphone about a year ago and promptly announced that his phone couldn't survive a full 24 hours without a charge. I clearly wasn't that horrified, though, because mine isn't that much better. During my first day at work, my smartphone promptly wore its battery down to nearly nothing. (And I wasn't actually using it at work, I swear! It was just sitting

145

EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve  

Broader source: Energy.gov (indexed) [DOE]

236: Preparation for Transfer of Ownership of Naval Petroleum 236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY SUMMARY This EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation. Proposed activities would include accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the development of the Rocky Mountain Oilfield Testing Center (RMOTC).

146

Does corporate ownership structure affect firms' environmental performance? Evidence in the European energy industry  

Science Journals Connector (OSTI)

The present paper aims to explore the mutual influence existing between corporate ownership structure and firms' environmental performance. The attention is focused on the energy industry, that represents one of the industries with the highest environmental impact and that, in the last few years, has been forced to increase efforts towards green issues. In particular, the introduction of vertical unbundling in electricity and gas markets provides the opportunity to concentrate the attention on European energy companies operating in service activities, in which it is possible to better understand firms' environmental performance. The study, performing a linear regression model, examines the explanatory power of corporate governance issues, in particular firms' ownership structure, as potential determinants of companies' environmental performance. The results show that firms with more diffuse ownership present the worst environmental performance, while greater stakes held by institutional investors or by the state do not seem to be related with firms' green performance.

Francesco Calza; Giorgia Profumo; Ilaria Tutore

2013-01-01T23:59:59.000Z

147

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

148

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

149

An application of ratio and regression estimation to a forest land ownership project  

E-Print Network [OSTI]

AN APPLICATION OF RATIO AND REGRESSION ESTIMATION TO A FOREST LAND OWNERSHIP PROJECT A Thesis By DAVID LYNN MINALDI Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1967 Major Subject: Statistics AN APPLICATION OF RATIO AND REGRESSION ESTIMATION TO A FOREST LAND OWNERSHIP PROJECT A Thesis By DAVID I YNN MINALDI Approve as t~~ye and content by: ( (Chai(man f - mmittee) (Member) (Head...

Minaldi, David Lynn

1967-01-01T23:59:59.000Z

150

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

151

Cost Shifting  

Science Journals Connector (OSTI)

Abstract Cost shifting exists when a provider raises prices for one set of buyers because it has lowered prices for some other buyer. In theory, cost shifting can take place only if providers have unexploited market power. The empirical evidence on the extent of cost shifting is mixed. Taken as a whole, the evidence does not support the claims that cost shifting is a large and pervasive feature of the US health-care markets. At most, one can argue that perhaps one-fifth of Medicare payment reductions have been passed on to private payers. The majority of the rigorous studies, however, have found no evidence of cost shifting.

M.A. Morrisey

2014-01-01T23:59:59.000Z

152

"2012 Retail Power Marketers Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from form EIA-861 schedule 4B)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "3 Phases Renewables","CA","Power Marketer",354,148820,7268.5,4.8840882 "Calpine Power America LLC","CA","Power Marketer",1,1072508,54458,5.0776311 "City of Corona - (CA)","CA","Municipal",859,65933,5749.5,8.720216 "Commerce Energy, Inc.","CA","Power Marketer",23386,596604,37753,6.3279831 "Constellation NewEnergy, Inc","CA","Power Marketer",362,4777373,250287.4,5.2390173

153

"2012 Utility Bundled Retail Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16180,399144,41820,10.477422 "Alaska Power and Telephone Co","AK","Investor Owned",6976,64788,18175,28.053035 "Alaska Village Elec Coop, Inc","AK","Cooperative",7923,73956,42708,57.74785 "Anchorage Municipal Light and Power","AK","Municipal",30747,1100665,100959.2,9.1725639 "Barrow Utils & Elec Coop, Inc","AK","Cooperative",1871,49580,5293,10.675676

154

Cost analysis guidelines  

SciTech Connect (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

155

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation's aftermath concerned the size and composition of the area's populations that lacked access to an automobile for all U.S. metropolitan areas that reside in a household without access to an automobile. Finally, we

Sekhon, Jasjeet S.

156

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

157

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

158

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS  

E-Print Network [OSTI]

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

Finley Jr., Russell L.

159

cost savings  

National Nuclear Security Administration (NNSA)

reduced the amount of time involved in the annual chemical inventory for a cost savings of 18,282. Other presentations covered SRNS' award-winning employee suggestion...

160

BPA's Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPAsCosts Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimating SCR installation costs  

SciTech Connect (OSTI)

The EUCG surveyed 72 separate US installations of selective catalytic reduction (SCR) systems at coal-fired units totalling 41 GW of capacity to identify the systems' major cost drivers. The results, summarized in this article, provide excellent first-order estimates and guidance for utilities considering installing the downstream emissions-control technology. 4 figs., 1 tab.

Marano, M.; Sharp, G. [American Electric Power (United States)

2006-01-15T23:59:59.000Z

162

Low-Cost, Lightweight Solar Concentrator  

Broader source: Energy.gov (indexed) [DOE]

sunshot DOEGO-102012-3663 * September 2012 MOTIVATION Solar concentrators currently cost 150-250m 2 , which represents as much as half of the total installed cost for a...

163

Relationships among landowner and land ownership characteristics and participation in conservation programs in central Texas  

E-Print Network [OSTI]

RELATIONSHIPS AMONG LANDOWNER AND LAND OWNERSHIP CHARACTERISTICS AND PARTICIPATION IN CONSERVATION PROGRAMS IN CENTRAL TEXAS A Thesis by JENNIFER CEARLEY SANDERS Submitted to the Office of Graduate Studies of Texas A&M... AND PARTICIPATION IN CONSERVATION PROGRAMS IN CENTRAL TEXAS A Thesis by JENNIFER CEARLEY SANDERS Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: R...

Sanders, Jennifer Cearley

2005-08-29T23:59:59.000Z

164

Electronic copy available at: http://ssrn.com/abstract=2065816 Ultimate Ownership Structure and Bank Regulatory Capital Adjustment  

E-Print Network [OSTI]

Electronic copy available at: http://ssrn.com/abstract=2065816 1 Ultimate Ownership Structure), Tel: + 33 5 55 14 92 51. hal-00918579,version1-13Dec2013 #12;Electronic copy available at: http

Boyer, Edmond

165

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network [OSTI]

you recharged/replaced the batteries most recently? 3.1.5you to charge/replace batteries last time? 3.1.6 How manyIf it uses dry cell batteries, what type of batteries AND

Tracy, Jennifer

2010-01-01T23:59:59.000Z

166

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

167

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

168

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

169

Farmland Ownership  

E-Print Network [OSTI]

in Kansas and Texas follow a similar pattern, indicating that agricultural land is a broad market, not just a local one. Overall, from 1913 to 1998 land values grew at an annual rate of 3.2 percent and 4.5 percent for Kansas and Texas, respectively. For only... the 1950-1998 period, Kansas and Texas growth rates were 4.7 percent and 5.7 percent, respectively. As a reference, the overall economic U.S. inflation rate was 3.2 percent for 1913-1998 and 3.8 percent for 1950-198. Figure 1. Average Farm Real Estate Value...

Kastens, Terry L.; Dhuyvetter, Kevin C.; Falconer, Lawrence

1999-09-25T23:59:59.000Z

170

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable) costs apply

Boisvert, Jeff

171

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408 ­ off-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable

Boisvert, Jeff

172

Low-Cost, Lightweight Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

or parabolic dish) can range between 40-50% of the total costs. To meet SunShot cost target of 6ckWh, the concentrator costs need to reduced from 150-200m 2 to 75m 2...

173

Rationale for cost-effective laboratory medicine.  

Science Journals Connector (OSTI)

...hospital, work load has increased...to contain costs in the DRG...limit future capital funds for...mechanism to control total health...Although computers can track...performed more cost effectively...investment in capital equipment...in a more cost-efficient...sufficient work load and multiple...of quality control, auto...hospital via computer, telephone...

A Robinson

1994-04-01T23:59:59.000Z

174

Indirect Cost Sharing Policies and Guidelines  

E-Print Network [OSTI]

Indirect Cost Sharing Policies and Guidelines University at Albany In the 1997 Fall semester% of the University's indirect cost return to the schools or colleges, departments, and centers. The allocations are determined in direct proportion to the units' contribution toward the total indirect cost recovery pool

Kidd, William S. F.

175

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network [OSTI]

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

176

U.S. Total Refiner Acquisition Cost of Crude Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History Composite 94.74 59.29 76.69 101.87 100.93 100.49 1968-2013 Domestic 98.47 59.49 78.01 100.71 100.72 102.91 1968-2013 Imported 92.77 59.17...

177

The total adjustment cost problem: Applications, models, and solution algorithms  

Science Journals Connector (OSTI)

Resource leveling problems arise whenever it is expedient to reduce the fluctuations in resource utilization over time, while maintaining a prescribed project completion deadline. Several resource leveling objective functions may be defined, consideration ... Keywords: Minimum and maximum time lags, Mixed-integer linear programming formulations, Project scheduling, Resource adjustment

Stefan Kreter; Julia Rieck; Jürgen Zimmermann

2014-04-01T23:59:59.000Z

178

Brush Busters: How to Estimate Costs for Controlling Small Mesquite  

E-Print Network [OSTI]

rapidly as plant size increases. ? Costs can escalate rapidly if you apply leaf or stem sprays using excessive pressure or nozzles with large orifices. ? Labor is usually a major component of total cost with Brush Busters methods. Costs escalate rapidly... and Figure 2 estimates costs for the stem spray method). Each figure consists of three graphs. The upper graph shows the cost for the spray only. The center graph shows total cost for spray plus labor at $6 per hour. The bottom graph shows total cost...

Ueckert, Darrell; McGinty, Allan

1999-04-15T23:59:59.000Z

179

Estimating Specialty Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

1997-03-28T23:59:59.000Z

180

Direct costing  

E-Print Network [OSTI]

oau 5e reduced. Under the same oonOitions, even ~Me on a bread scale entails not mere1y the conduct of the direct oyeraticns cf yrccessing the materials into finished products, but also the performance of auxiliary functions. these may 'ba power y... purposes have been advanced as folkway le Most of a o03RyaxO' 8 products Grc usual13r sold at prices which oovex' full product costs y plus 861ling a%el administrative expenses, plus normal profit. The inventoi~ valuate. on should be consistent...

Browning, Donald Bullock

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cost Analysis Rate Settin  

E-Print Network [OSTI]

Cost Analysis and Rate Settin for Animal Research Facilities #12;#12;Cost Analysis and Rate ... .. . ...................... . . . ................................. . .... 7 Chapter 2 Preparation for Cost Analysis ......................................................... 9 Chapter 3 Assignment of Costs to Animal Research Facility Cost Centers

Baker, Chris I.

182

Cost and production estimation for a cutter suction dredge  

E-Print Network [OSTI]

repairs than the an pipe length. After the equipment and pipeline costs are determined, the overhead costs are then taken to be 9 percent of the total daily costs of equipment and pipeline. Several cells are left open where additional specific costs can... repairs than the an pipe length. After the equipment and pipeline costs are determined, the overhead costs are then taken to be 9 percent of the total daily costs of equipment and pipeline. Several cells are left open where additional specific costs can...

Miertschin, Michael Wayne

2012-06-07T23:59:59.000Z

183

Cost Sharing What is Cost Sharing?  

E-Print Network [OSTI]

1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources and Expenses o Equipment x Committing to cost share is highly discouraged unless required by the sponsoring agency x Tracking of committed cost share is required to meet federal regulations (OMB A-110) x UCSD has

Tsien, Roger Y.

184

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

185

AN ENERGY COST OPTIMIZATION METHOD FOR A LARGE SCALE HYBRID CENTRAL COOLING PLANT WITH MULTIPLE ENERGY SOURCES UNDER A COMPLEX ELECTRICITY COST STRUCTURE.  

E-Print Network [OSTI]

??The cooling energy cost could be a significant portion of the total energy cost for a large organization or building complex during summer. A hybrid… (more)

Guo, Yin

2012-01-01T23:59:59.000Z

186

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

187

Cost Sharing Basics Definitions  

E-Print Network [OSTI]

Cost Sharing Basics Definitions Some funding agencies require the grantee institution the project costs. Cost sharing is defined as project costs not borne by the sponsor. Cost sharing funds may resources or facilities. If the award is federal, only acceptable non-federal costs qualify as cost sharing

Finley Jr., Russell L.

188

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

189

FULL-COST ACCOUNTING  

Science Journals Connector (OSTI)

FULL-COST ACCOUNTING ... Environmental costs would be built into a product's cost, and consumers would be able to make informed purchases. ...

1993-01-11T23:59:59.000Z

190

Strategic renewal after ownership transfers in SMEs: do successors' actions pay off?  

Science Journals Connector (OSTI)

Different types of strategic renewal by the successor are identified: organisational change, innovation, combined actions and no action. The main assumption is that renewal after succession improves SME post-transfer performance compared to no actions taken. Also, successor's timing of the takeover is observed, looking at the economic conditions in the year of ownership transfer: decline, average or growing conditions. The hypotheses are tested on a random stratified sample of 333 Dutch firms. Univariate analysis of variance (ANOVA) and complementary T-tests show that organisational change, product/market innovation and combined actions all increase post-transfer performance compared to no renewal. Strategic renewal pays off in any economic period, but mostly so in periods of economic decline. The control variable firm size is a significant predictor: the smaller the firm the better the post-transfer performance.

Lex Van Teeffelen; Lorraine Uhlaner

2010-01-01T23:59:59.000Z

191

Energy Use and Costs in Texas Schools and Hospitals  

E-Print Network [OSTI]

demand charges, monthly natural gas consumed, monthly total natural gas costs, and total facility conditioned area. From this data, the monthly and annual energy use and cost performance of the facility is presented with the calculation of 10 use and cost...

Dunn, J. R.

1998-01-01T23:59:59.000Z

192

Commissioning : The Total Process  

E-Print Network [OSTI]

that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs...

Kettler, G. J.

1998-01-01T23:59:59.000Z

193

sions (EC) directives have both legally and functionally separated rail operations from infrastructure ownership and management, the  

E-Print Network [OSTI]

infrastructure ownership and management, the government-owned national railways still maintain a symbiotic rela exhibiting high levels of utilization, and slots will eventually come to be viewed as the valuable resources, administrative, and operational improvements (2). In such an envi- ronment, flexible means for utilizing slots

194

Cost-Effectiveness Ratio  

Science Journals Connector (OSTI)

The cost?effectiveness ratio (CER) is a calculation that summarizes the intervention's net cost and effectiveness. The three types of CER are: the average cost?effectiveness ratio (ACER), the marginal cost?...

2008-01-01T23:59:59.000Z

195

Cost Share-Cost Reimbursement Invoice Format Example | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Share-Cost Reimbursement Invoice Format Example Effective Date: 102014 File (public): Cost Share-Cost...

196

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

197

Automobility in India: A Study of Car Acquisition and Ownership Trends in the City of Surat  

E-Print Network [OSTI]

vehicle attributes, we assess the effect of price, fuel cost, size of the vehicle, and engineof the vehicle, fuel cost per kilometer, size of the engine,vehicles with larger engines. Analyses revealed that the Indian consumer is very sensitive to fuel cost.

Banerjee, Ipsita

2011-01-01T23:59:59.000Z

198

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

199

Development of surface mine cost estimating equations  

SciTech Connect (OSTI)

Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

Not Available

1980-09-26T23:59:59.000Z

200

Evaluation of Novel and Low-Cost Materials for Bipolar Plates in PEM Fuel Cells.  

E-Print Network [OSTI]

??Bipolar plate material and fabrication costs make up a significant fraction of the total cost in a polymer electrolyte membrane fuel cell stack. In an… (more)

Desrosiers, Kevin Campbell

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total CWT costs in the Columbia River Basin 5/12/2011 Recovery costs  

E-Print Network [OSTI]

Corp 153,000$ PGE 10,400$ Idaho Power 8,000$ PSMFC 32,500$ ODFW 472,600$ Anad. Fish Cons. Act 107,687$ PSMFC Mark Center 65,000$ ODFW Ocean Sampling (55%)1 209,100$ WDFW Selective Fisheries Monitoring 45,000$ WDFW - PST CWT Lab - (33.2%)1 37,228$ ODFW - PST Ocean Sampling (55%)1 65,605$ ODFW - Ocean

202

Dengue vaccination may be cost effective in Brazil  

Science Journals Connector (OSTI)

Even when considering the relatively low efficacy of dengue vaccine shown in recent phase 2b trials, age-targeted vaccination may still be cost effective in Brazil provided the total vaccination cost is sufficien...

2013-07-01T23:59:59.000Z

203

Incorporating uncertainty in the Life Cycle Cost Analysis of pavements  

E-Print Network [OSTI]

Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

Swei, Omar Abdullah

2012-01-01T23:59:59.000Z

204

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

205

Cost Study for Large Wind Turbine Blades  

SciTech Connect (OSTI)

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

206

Veeco Develops Tools to Drive Down HBLED Costs  

Broader source: Energy.gov [DOE]

Veeco is working in partnership with Sandia National Laboratories and Philips Lumileds to drive down the cost of high-brightness LEDs by implementing process simulation tools and by improving temperature measurement and control methods to increase MOCVD yield. Veeco is working with Sandia to reduce the cost of ownership (COO) of the deposition equipment by, for example, using a heated flow flange, which reduces the consumption of the expensive precursors (ammonia, nitrogen, hydrogen, and the metal organics) by 40 percent. Two different types of pyrometers developed by Sandia and Veeco are being tested by Philips Lumileds to control the substrate temperature, which helps determine the color of the LED. If all works according to plan, the COO will be reduced by at least 75 percent by improving throughput, growth uniformity, yield, and temperature stabilization.

207

PEM Stack Manufacturing: Industry Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel...

208

Cost Model and Cost Estimating Software  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

1997-03-28T23:59:59.000Z

209

World Port Institutions and Productivity: Roles of Ownership, Corporate Structure, and Inter-port Competition  

E-Print Network [OSTI]

Maritime Transport Costs and Port Efficiency. Washington,Windows analysis to container port production efficiency. ”2002. “Efficiency gains from port reform and the potential

Cheon, SangHyun

2007-01-01T23:59:59.000Z

210

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct...

211

Cost Study Manual  

Broader source: Energy.gov (indexed) [DOE]

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

212

Activity Based Costing  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

1997-03-28T23:59:59.000Z

213

Rangeland Resource Management for Texans: Total Resource Management  

E-Print Network [OSTI]

The Total Resource Management approach helps ranchers make strategic, tactical and operational decisions for the best, most cost-effective use of resources. This publication offers step-by-step directions for implementing TRM for a profitable...

Hanselka, C. Wayne; Fox, William E.; White, Larry D.

2004-03-26T23:59:59.000Z

214

Methods | Transparent Cost Database  

Open Energy Info (EERE)

information NREL has developed the following cost of energy tools: System Advisor Model (SAM): https:sam.nrel.gov SAM makes performance predictions and cost of...

215

Calculating Cost Savings from FY08 Pollution Prevention Projects Purpose: To ensure a standard and credible method is used to compare the cost savings of all pollution prevention  

E-Print Network [OSTI]

Calculating Cost Savings from FY08 Pollution Prevention Projects Purpose: To ensure a standard and credible method is used to compare the cost savings of all pollution prevention proposals, allowing `apples = UTotal Project Cost Annual Project Savings Total Project Cost = all costs for implementation, including

216

Costing for National Electricity Interventions to Increase Access to Energy, Health Services, and Education  

E-Print Network [OSTI]

Costing for National Electricity Interventions to Increase Access to Energy, Health Services ..................................................................................................... 6 2 Earth Institute Electricity Planning and Investment Costing Model........................................................................... 21 4.1 Total costs of electricity distribution scale-up............................

Modi, Vijay

217

The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date  

E-Print Network [OSTI]

of the 9.2 ˘/kWh retail electricity cost in 2012 across theof total retail electricity costs. Again, comparabilityprojected increase in electricity costs to meet a 33% RPS in

Heeter, Jenny

2014-01-01T23:59:59.000Z

218

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

219

Information erasure without an energy cost  

E-Print Network [OSTI]

Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell's demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.

Joan A. Vaccaro; Stephen M. Barnett

2010-04-29T23:59:59.000Z

220

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Highly Insulating Windows - Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

222

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

223

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

224

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Broader source: Energy.gov (indexed) [DOE]

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

225

Contracting with reading costs and renegotiation costs  

E-Print Network [OSTI]

OF CALIFORNIA, SAN DIEGO Contracting with Reading Costs andrents, and the competitive contracting process. Journal ofReiche. Foundation of incomplete contracting in a model of

Brennan, James R.

2007-01-01T23:59:59.000Z

226

Cost Estimation Package  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

1997-03-28T23:59:59.000Z

227

Life Cycle Cost Estimate  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

228

A chronicle of costs  

SciTech Connect (OSTI)

This report contains the history of all estimated costs associated with the superconducting super collider.

Elioff, T.

1994-04-01T23:59:59.000Z

229

Environmental and Cost Synergy in Supply Chain Network Integration Mergers and Acquisitions  

E-Print Network [OSTI]

with the minimization of the total costs and the total emissions under firm-specific weights. We propose a synergy measure that captures the total generalized cost. We then apply the new mathematical framework to quantifyEnvironmental and Cost Synergy in Supply Chain Network Integration in Mergers and Acquisitions Anna

Nagurney, Anna

230

Early Station Costs Questionnaire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

231

Low Cost, Durable Seal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

232

The social costs of child abuse in Japan  

Science Journals Connector (OSTI)

Abstract The present study calculates the social costs of child abuse in Japan. The items calculated included the direct costs of dealing with abuse and the indirect costs related to long-term damage from abuse during the fiscal year 2012 (April 1, 2012, to March 31, 2013). Based on previous studies on the social costs of child abuse and peripheral matters conducted in other countries, the present study created items for the estimable direct costs and indirect costs of child abuse, and calculated the cost of each item. Among indirect costs, future losses owing to child abuse were calculated using extra costs with a discount rate of 3%. The social cost of child abuse in Japan in the fiscal year 2012 was at least Ą1.6 trillion ($16 billion). The direct costs totaled Ą99 billion ($1 billion), and the indirect costs totaled Ą1.5 trillion ($15 billion). This sum of Ą1.6 trillion for only the year 2012 is almost equal to the total amount of damages of Ą1.9 trillion caused by the 2011 Tohoku Earthquake and Tsunami in Fukushima Prefecture. Moreover, abuse is a serious problem that occurs every year and has recurring costs, unlike a natural calamity. However, Japan has no system for calculating the long-term effects of abuse. Therefore, owing to the scarcity of data, the calculations in the present study may underestimate the true costs.

Ichiro Wada; Ataru Igarashi

2014-01-01T23:59:59.000Z

233

PHENIX Work Breakdown Structure. Cost and schedule review copy  

SciTech Connect (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

234

SunShot Initiative: Transformational Approach to Reducing the Total System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Approach to Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics to someone by E-mail Share SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Facebook Tweet about SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Twitter Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Google Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Delicious Rank SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Digg

235

Cost Modeling and Design Techniques for Integrated Package Distribution Systems  

E-Print Network [OSTI]

Cost Modeling and Design Techniques for Integrated Package Distribution Systems Karen R. Smilowitz idealizations of network geometries, operating costs, demand and customer distributions, and routing patterns that approximate the total cost of operation. The design problem is then reduced to a series of optimization

Daganzo, Carlos F.

236

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network [OSTI]

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7/14/2004 Issuing Authority: Office of Financial Services Effective Date: October 1, 2003 Definitions: Cost sharing is that portion of the total cost of a research or other externally funded project that is not funded

Goddard III, William A.

237

Quality Cost Analysis: Benefits and Risks Copyright Cem Kaner  

E-Print Network [OSTI]

Quality Cost Analysis: Benefits and Risks Copyright © Cem Kaner January, 1996 All rights reserved quality-related costs as a means of communication between the quality staff departments and the company of quality-related costs since 1951. Feigenbaum made it one of the core ideas underlying the Total Quality

238

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

239

Operations Cost Allocation Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

240

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

242

Life-Cycle Cost Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Life-Cycle Cost Analysis Life-Cycle Cost Analysis Life-Cycle Cost Analysis October 16, 2013 - 4:41pm Addthis Constructed Costs of a Net-Zero Office Building Facility: Research Support Facility at the National Renewable Energy Laboratory in Golden, Colorado Operational: August 2010 Constructed cost: $259/ft2 to achieve 50% less energy use than code Constructed cost of similar office buildings in area: $225 to $300/ft2 Reaching Net-Zero: A 1.27 MW photovoltaic system was added to the project in two phases to bring the system to net-zero. This system was financed through a power purchase agreement and did not add to the constructed cost of the building. If those costs were included in the capital costs, the total constructed cost would have been 291/ft2 to reach net-zero energy use. Learn more about the Research Support

243

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Broader source: Energy.gov (indexed) [DOE]

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

244

Taking Another Look at Pumping Systems: Opportunities Go Well Beyond Just Energy Savings  

E-Print Network [OSTI]

payback periods. Basing decisions, however, on total cost of ownership and established life-cycle cost methodologies provides compelling arguments to shift business decision-making away from initial cost considerations. Pumping systems account... payback periods. Basing decisions, however, on total cost of ownership and established life-cycle cost methodologies provides compelling arguments to shift business decision-making away from initial cost considerations. Pumping systems account...

Tutterow, V.; Walters, T.

2006-01-01T23:59:59.000Z

245

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

246

Hydrogen Pathway Cost Distributions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

247

Cost-Benefit Analysis  

Science Journals Connector (OSTI)

cost-benefit analysis is an analytical procedure for determining the economic efficiency of intervention, expressed as the relationship between costs and outcomes, usually measured in monetary terms. In othe...

2008-01-01T23:59:59.000Z

248

Cost-Efficiency  

Science Journals Connector (OSTI)

Cost?efficiency is a goal that has been integrated by policy makers into all modern health care systems to control the expansion of costs over time. It relates to maximizing the quality of a comparable unit ...

2008-01-01T23:59:59.000Z

249

About Cost Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

250

Costs of Electricity  

Science Journals Connector (OSTI)

A major reason for the decreased interest in the building of new nuclear power plants in recent years has been the relatively high cost of nuclear power. In this section, we will consider the role of costs in electricity

2005-01-01T23:59:59.000Z

251

Direct/Indirect Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

1997-03-28T23:59:59.000Z

252

Cost Optimal Energy Performance  

Science Journals Connector (OSTI)

EPBD recast requires Member States (MS) to ensure that minimum energy performance requirements of buildings are set with a view to achieving cost optimal levels using a comparative methodology framework...1]. Cost

Jarek Kurnitski

2013-01-01T23:59:59.000Z

253

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

254

Cost Containment and Productivity  

E-Print Network [OSTI]

Cost Containment and Productivity Faculty Assembly Presentation January 22, 2013 Arthur G. Ramicone, CFO David N. DeJong, Vice Provost, Academic Planning and Resources Management #12;Cost Containment Resources to Enhance the Student Experience · Reduce the Cost and Complexity of Administrative Operations

Jiang, Huiqiang

255

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

256

Lunch & Learn Cost Sharing  

E-Print Network [OSTI]

Lunch & Learn Cost Sharing #12;Today's Agenda Policy Procedures OMNI Child Budget Setup Transactions in OMNI FACET Common Issues #12;Cost Sharing Policy http://www.research.fsu.edu/contractsgra nts ­ Not quantified ­ Do not have to account for and report #12;Cost Sharing Procedures http

McQuade, D. Tyler

257

Estimated Cost Description Determination Date:  

Broader source: Energy.gov (indexed) [DOE]

and posted 2/10/2011 and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next 12 Months Department of Energy (DOE) Savannah River Site (SRS) Jan-11 Estimated Schedule (**NEPA Milestones) South Carolina Department of Health and Environmental Control (SCDHEC) issued a National Pollutant Discharge Elimination System (NPDES) Industrial Stormwater General Permit (IGP) # SCR000000 November 12, with an effective date of January

258

Cost Function Estimates  

Science Journals Connector (OSTI)

Abstract The cost function describes the cost-minimizing combinations of inputs required for production of different levels of output. Empirical cost function studies take both short-run and long-run approaches and can be structurally consistent with microeconomic theory versus more behavioral or real-world data oriented. Studies of health care providers face numerous challenges including the multiproduct nature of the firm, difficulty in controlling for quality of service, and frequent failure of the profit-maximization assumption. Cost function applications in health care are numerous and include such topics as optimal firm size, performance inefficiency measures, and comparisons of production costs with third-party payments.

K. Carey

2014-01-01T23:59:59.000Z

259

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

260

Cost effective lighting  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cost Model for Digital Curation: Cost of Digital Migration  

E-Print Network [OSTI]

Steece, B. 2000. Software cost estimation with COCOMO II.Developing a Framework of Cost Elements for PreservingAshley, K. 1999. Digital archive costs: Facts and fallacies.

Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

2009-01-01T23:59:59.000Z

262

Private trucking costs and records  

E-Print Network [OSTI]

were asked of the appro- priate officials in each case. Tbe interviewer observed the methods of keeping cost and operating statistics in order to determine the different systems in use and also to estimate the time and expense involved in keeping... TBB OHR4TIOI Oy TBBXR OMN TROCHE FLBBT@?1956 Losel Xaeareity Total Operation Rsysaeaa: Qrkviag Bayeaaes Motor tueL aa6 Oil Other operatiaO Bryaaeea 855, 104. 00 62?915 ?00 oO? 91?979?$65?00 040?0$7. 00 197 ' 725 ?00 62)054?667?00 911, 7...

Haning, Charles R

2012-06-07T23:59:59.000Z

263

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

264

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

265

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

266

Cost per-User as Key Factor in Project Prioritization: A Case Study of the San Francisco Bay Area  

E-Print Network [OSTI]

signi?cant additional costs per ride to existing operations.total estimated investment cost of network-related. ll0V gapwould lower the estimated costs per Affected ride. pmjem was

Nuworsoo, Cornelius; Parks, Kamala; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

267

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

and grid owners. Energy (and cost) savings might be found inSystem to Offset Peak Energy Cost at a Wastewater TreatmentSavings Estimation (GWh) Energy Costs Current Other Total

Xu, Tengfang

2011-01-01T23:59:59.000Z

268

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network [OSTI]

from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

Barbose, Galen

2011-01-01T23:59:59.000Z

269

Commercial equipment cost database  

SciTech Connect (OSTI)

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

270

Total solar house description and performance  

SciTech Connect (OSTI)

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

271

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

272

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

273

Costs of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

274

Cost of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

275

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

276

Cost Estimating Handbook for Environmental Restoration  

SciTech Connect (OSTI)

Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

NONE

1990-09-01T23:59:59.000Z

277

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

278

Petroleum well costs.  

E-Print Network [OSTI]

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

279

Early Station Costs Questionnaire  

Broader source: Energy.gov (indexed) [DOE]

of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the...

280

''When Cost Measures Contradict''  

SciTech Connect (OSTI)

When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes empirically these two properties of different costs measures as they pertain to assessing the costs of the carbon abatement policies, especially the Kyoto Protocol, under alternative assumptions about implementation.

Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P. M.

2003-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low Cost, Durable Seal  

Broader source: Energy.gov [DOE]

This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects.

282

Cost Estimating and Cost Management Capacity Building Workshop  

E-Print Network [OSTI]

Cost Estimating and Cost Management Capacity Building Workshop August 11-13, 2010 Coffman Memorial 574 guidebook on cost estimating and cost management · To learn how states are moving forward with the implementation of the guidebook or other initiatives related to cost estimating and cost management · To share

Minnesota, University of

283

The Social Cost of Intercity Transportation  

E-Print Network [OSTI]

,409 39,972 7,918 Total All Sources 18,536 60,863 19,890 #12;Air Pollution: Valuation Local Health Costs External to User (not necessarily to system) Result: Noise, Air Pollution, Congestion, Accidents Not: Water Pollution, Parking, Defense ... #12;Approach Air Highway Noise Air Pollution Congestion

Levinson, David M.

284

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

moneys in a program known as LoanSTAR. Due to the time between the audits and availability of funds, update of the reports for current energy and equipment cost, and for accomplishment of projects was necessary. Audits in 1984 and 1986 identified total...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

285

Simple Modular LED Cost Model  

Broader source: Energy.gov [DOE]

The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost...

286

Costing climate change  

Science Journals Connector (OSTI)

...Costenergy analyses of such schemes...and tidal power at costs...consider in economic analyses of GHG abatement...pertaining to wind power in Denmark...In a cost analysis of implementing...Cutting coal combustion...large an economic burden...

2002-01-01T23:59:59.000Z

288

Cost-Effectiveness: Implication for Bonneville and Utility Programs Council document 2007-23 August 2007  

E-Print Network [OSTI]

1 Cost-Effectiveness: Implication for Bonneville and Utility Programs Council document 2007 found to be cost effective if the electric system paid all the costs. Council plan conservation targets are based on availability of conservation that passes this Total Resource Cost (TRC) test. Since its first

289

Universal coverage with insecticide-treated nets – applying the revised indicators for ownership and use to the Nigeria 2010 malaria indicator survey data  

Science Journals Connector (OSTI)

Analysis of population-based survey data in Nigeria addressing updated recommendations for standard reporting of insecticide-treated mosquito nets ownership and use that allows much more programme-useful information and permits comparability across sites and countries to assess progress and challenges in malaria control scale-up.

Albert Kilian; Hannah Koenker; Ebenezer Baba; Emmanuel O Onyefunafoa; Richmond A Selby; Kojo Lokko; Matthew Lynch

2013-09-10T23:59:59.000Z

290

Physical Cost of Erasing Quantum Correlation  

E-Print Network [OSTI]

Erasure of information stored in a quantum state requires energy cost and is inherently an irreversible operation. If quantumness of a system is physical, does erasure of quantum correlation as measured by discord also need some energy cost? Here, we show that change in quantum correlation is never larger than the total entropy change of the system and the environment. The entropy cost of erasing correlation has to be at least equal to the amount of quantum correlation erased. Hence, quantum correlation can be regarded as genuinely physical. We show that the new bound leads to the Landauer erasure. The physical cost of erasing quantum correlation is well respected in the case of bleaching of quantum information, thermalization, and can have potential application for any channel leading to erasure of quantum correlation.

Arun Kumar Pati

2012-08-23T23:59:59.000Z

291

An Examination of Avoided Costs in Utah  

E-Print Network [OSTI]

existing avoided cost methodology and established thefor certain avoided cost methodologies or avoided cost inpu

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

292

Transmission line capital costs  

SciTech Connect (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

293

Decommissioning Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

294

Question: What is the cost threshold for providing cost detail for subrecipient  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Question: What is the cost threshold for providing cost detail for subrecipients or consultant Question: What is the cost threshold for providing cost detail for subrecipients or consultant information? Is there a cost threshold set for third parties? Answer: Each subawardee/subrecipient/subcontractor whose work is expected to exceed $650,000 or 50% of the total work effort (whichever is less) should complete a Budget Justification package to include the SF 424A budget form, Budget Justification Guideline Excel document, and a narrative supporting the Budget Justification Guidelines. This information may be saved as a separate file or included with the Prime Applicant's Budget.pdf file. Summary level information for subawardees is not sufficient. Detailed explanations and supporting

295

Totally Unimodular Multistage Stochastic Programs  

E-Print Network [OSTI]

Nov 23, 2014 ... be the workforce level with a cost of ck per worker. The number of ... to the variable of the previous workforce level y?(k). Remark 4. ... planning.

2014-11-23T23:59:59.000Z

296

Page (Total 3) Philadelphia University  

E-Print Network [OSTI]

of materials and equipment and expected cost of materials needed (purchasing material that are not available in the department will take long time and should be avoided when possible). 3. Conduct the research work (field

297

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-DistribuciĂłn del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

298

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

299

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

300

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of total oil increase in oil prices. demand; thus, we assume6), which results from oil price changes, is a real cost toanalysis when we use low-oil-price case and high-oil-price

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

External Costs of Transport in the U.S.  

E-Print Network [OSTI]

oil is 58.6% of total oil demand, which results in $1.20 toof regional oil supply and demand. Wealth transfer cost.oil. Leiby (2007) also estimates “monopsony” or demand-

Delucchi, Mark A.; McCubbin, Donald R.

2010-01-01T23:59:59.000Z

302

Cost effectiveness of protection schemes for IP-over-WDM networks  

Science Journals Connector (OSTI)

We analyze the cost of IP-over-WDM networks employing survivable traffic grooming protection. The network cost is evaluated in terms of total number of optical transceivers in the...

Correia, N S C; Medeiros, M C R

2007-01-01T23:59:59.000Z

303

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network [OSTI]

compressor); total cost of materials for the water pump, the hydrogencost); the initial temperature and pressure of hydrogen; the compressorcompressor cost per unit of output ($/hp/million standard ft3 [SCF] of hydrogen/

Delucchi, Mark

2005-01-01T23:59:59.000Z

304

Lookin g for data personnel costs, indirect costs, equipment costs  

Broader source: Energy.gov (indexed) [DOE]

Negotiating Group Question/Answer Sessions November 19, 2009 Q: What happens now? A: The negotiation process starts tomorrow [November 20, 2009], when DOE will be sending the Awardees an e-mail with information about which website to go to for clarification and direction, information from the Office of Civil Rights, and answers to some of the questions that came up in the meeting. DOE will be gathering information about the questions concerning cyber requirements, metrics, and reporting requirements and will be getting back to the awardees about those issues the week after Thanksgiving. We have done a review of the budgets, and emails will be sent giving opportunities to address any issues. We will also re-review technical and cost proposals.

305

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

306

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

307

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

308

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

309

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

310

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

311

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

312

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

313

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

314

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

315

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

316

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

317

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

318

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

319

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

320

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

322

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

323

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

324

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

325

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

326

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

327

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

328

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

329

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

330

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

331

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

332

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

333

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

334

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

335

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

336

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

337

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

338

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

339

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

340

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

342

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

343

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

344

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

345

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

346

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

347

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

348

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

349

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

350

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

351

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

352

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

353

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

354

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

355

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

356

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

357

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

358

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

359

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

360

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

362

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

363

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

364

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

365

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

366

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

367

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

368

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

369

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

370

Waste management facilities cost information for transuranic waste  

SciTech Connect (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

371

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

372

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

373

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

374

Cost Effective Sustainable Housing.  

E-Print Network [OSTI]

??Cost Effective Sustainable Housing The topic of research which was discussed throughout this study was an analysis of sustainable development between single-family and multi-family structures.… (more)

Morton, Joshua

2009-01-01T23:59:59.000Z

375

Cost Estimating Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

2011-05-09T23:59:59.000Z

376

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

377

Costing climate change  

Science Journals Connector (OSTI)

...even whether man-made greenhouse-gas emissions should...and monetary savings from lighting policy calculated using `Work Energy Smart Lighting Calculator', assuming...reducing energy costs and greenhouse gases. Australian Greenhouse...

2002-01-01T23:59:59.000Z

378

Estimating environmental costs  

Science Journals Connector (OSTI)

Added demands on natural resources and proposed environmental regulations could potentially have a significant impact on the production and operational costs of information technology (IT). In this paper, we utilize an Economic Input-Output Life-Cycle ...

Kiara Corrigan; Amip Shah; Chandrakant Patel

2010-02-01T23:59:59.000Z

379

Standard costs for labor  

E-Print Network [OSTI]

STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... Administration and the government of East Pakistan. CONTENTS Chapter Page I. Introduction and Prelisd. nary Discussion II. Installation and Accounting Aspects of Standard Costs for Labor III, Recording~ Analysing and Reporting of Labor Vaxlances . 45 IV...

Khan, Mohammed Nurul Absar

2012-06-07T23:59:59.000Z

380

Cost estimate of electricity produced by TPV  

Science Journals Connector (OSTI)

A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12–20 kW, the costs of the TPV components and 100 EUR kW?1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (?sys = 1.0%), leading to 3000 EUR kW?1el,peak, an optimized Si based system using conventional, available technology (?sys = 1.5%), leading to 900 EUR kW?1el,peak, a further improved system with future technology (?sys = 5%), leading to 340 EUR kW?1el,peak and a GaSb based system (?sys = 12.3% with recuperator), leading to 1900 EUR kW?1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh?1el (including gas of about 3.5 EURcents kWh?1) were calculated and compared with those of fuel cells (31 EURcents kWh?1) and gas engines (23 EURcents kWh?1).

Günther Palfinger; Bernd Bitnar; Wilhelm Durisch; Jean-Claude Mayor; Detlev Grützmacher; Jens Gobrecht

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tokamak reactor cost model based on STARFIRE/WILDCAT costing  

SciTech Connect (OSTI)

A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately.

Evans, K. Jr.

1983-03-01T23:59:59.000Z

382

FY 2009 Progress Report for Lightweighting Materials- 7. Low-Cost Carbon Fiber  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

383

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

384

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect (OSTI)

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

385

Cooling Energy and Cost Savings with Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

386

Low-Cost "Vacuum Desiccator"  

Science Journals Connector (OSTI)

Low-Cost "Vacuum Desiccator" ... Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. ... Cost-Effective Teacher ...

Frederick Sweet

2004-10-01T23:59:59.000Z

387

Factors Impacting Decommissioning Costs - 13576  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

2013-07-01T23:59:59.000Z

388

Roadway Improvement Project Cost Allocation  

E-Print Network [OSTI]

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

389

Sunk Costs and Competitive Bidding  

E-Print Network [OSTI]

SUNK COSTS AND COMPETITIVE BIDDING Kenneth R. FrenchRevised: November 1982 SUNK COSTS AND COMPETITIVE BIDDINGl the winning bid be? I f sunk costs do not matter, I f the

French, Kenneth R.; McCormick, Robert E.

1982-01-01T23:59:59.000Z

390

Assigning research and development costs  

E-Print Network [OSTI]

and Development Cost Components RESEARCH AND DEVELOPMENT COSTS IN FINANCIAL STATEMENTS . 10 Capitalization Basis for Reporting Research and Development Costs Revenue Basis for Reporting Research and Development Costs Reasons Why Most Companies Expense... PRACTICE WITH ACCOUNTING THEORY Unknown Results at the End of an Accounting Period Uncertain Useful Life of Results. . . . . . . . . . . . . Recurrence of Annual Costs Permissive Feature of the Internal Revenue Code Uniform Amounts of Annual Costs...

Edwards, Wendell Edward

2012-06-07T23:59:59.000Z

391

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

392

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

393

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

394

Cost Controls Pay Off Big  

Science Journals Connector (OSTI)

Cost Controls Pay Off Big ... Biggest plus was the general improvement in the economy; but to this must be added successful efforts by industry to control costs. ...

1959-02-16T23:59:59.000Z

395

QGESS: Capital Cost Scaling Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(costs and values of inputs, outputs, and processes, including capital and operating costs) and performance (mass conversion, energy efficiency, and, generally speaking,...

396

Performance Period Total Fee Paid FY2001  

Broader source: Energy.gov (indexed) [DOE]

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

397

Low Cost, Durable Seal  

SciTech Connect (OSTI)

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

398

Low-Cost, Lightweight Solar Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with the goal of being applicable to all types of CSP systems * Several heliostat design options being considered to address driving requirements: * Facets that are compliant to winds > 35 mph * Deep structures for optimizing structural efficiency * Pointing accuracy achieved with mechanism design * Simple precision components * Easy on-site assembly with pre-fab components * Structural foam properties and strengthening trades being conducted to reduce overall costs with FEM models Goal: Typical costs for a concentrator (heliostat or parabolic dish) can range between 40-50% of the total costs. To meet SunShot

399

Low-Cost, Lightweight Solar Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

400

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Broader source: Energy.gov (indexed) [DOE]

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B Âľ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B Âľ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

402

MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT  

SciTech Connect (OSTI)

The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

R.E. Sweeney

2001-02-08T23:59:59.000Z

403

Cost Type Examples Salary costs for staff working  

E-Print Network [OSTI]

Cost Type Examples Salary costs for staff working on the grant Fellows, research assistants by the technician can be supported by a verifiable audit trail. Specialist consultancy fees Recruitment costs Staff recruitment and advertising costs, including interviewee travel. Materials & consumables Laboratory chemicals

Rambaut, Andrew

404

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

405

Invoice Statement of Cost Cost Type/Cost Share UT-B Contracts Div Page 1 of 1  

E-Print Network [OSTI]

Invoice Statement of Cost ­ Cost Type/Cost Share UT-B Contracts Div Aug 2009 Page 1 of 1 invoice-state-cost-ext-venx-aug09 Company Name: Statement of Amounts Claimed Invoice Number: Statement of Cost ­ Cost Type/Cost Cost Subcontractor Cost Job Title Name Current Hours Rate Current Amount Cumulative Hours Cumulative

Pennycook, Steve

406

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

407

Cost Estimates for New Molecules  

Science Journals Connector (OSTI)

Cost Estimates for New Molecules ... Once this has been carried out, the projected cost/kilogram for the new drug substance (if only raw material costs and no manufacturing/overhead/labour costs are considered) may well come down by a factor of 10 or even 100, and this is often more acceptable to management trying to make strategic decisions about potential profitability. ...

Trevor Laird

2005-02-22T23:59:59.000Z

408

Cost Sharing Why and How  

E-Print Network [OSTI]

Cost Sharing Why and How Trudy M. Riley Assistant Provost, Research Administration Susan M. Tkachick Sponsored Research Accountant $ Research Office #12;Research Office AGENDA What is Cost Sharing Why Cost Share What is Allowable Managing Cost Sharing during the life of the project What happens

Firestone, Jeremy

409

7 - Cost-Efficiency Evaluation  

Science Journals Connector (OSTI)

The purpose of cost-efficiency evaluations is to make the connection between cost and outcomes. Using methods like cost-benefit analysis and cost-effective analysis, this allows evaluators to provide the most complete information. The information may be used to make better decisions about implementation or continuing a program.

Gennaro F. Vito; George E. Higgins

2015-01-01T23:59:59.000Z

410

Cost Estimating, Analysis, and Standardization  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

1984-11-02T23:59:59.000Z

411

Cost Study Manual | Department of Energy  

Energy Savers [EERE]

Cost Study Manual Cost Study Manual Update 62912. Memo regarding Cost Study Manual Cost Study Manual More Documents & Publications Policy Flash 2013-62 Acquisition Letter 09 -...

412

Review of US utility demand-side bidding programs: Impacts, costs, and cost-effectiveness  

Science Journals Connector (OSTI)

In this study, we review utility experiences with demand-side management (DSM) bidding programs. Since 1987, about 35 US utilities have signed long-term contracts with developers of DSM resources (ie energy service companies and customers) to provide a quantity of demand and energy savings at specified prices. Total resource costs range between 5.4 and 8 cents/kWh for 10 DSM bidding programs where complete information on program costs is available. Almost all DSM bidding programs have been cost-effective compared with the utility's own supply-side alternatives, although there is substantial disagreement regarding the value of these programs compared with the utility's own DSM programs. In most bidding programs, payments to bidders account for between 70 and 90% of total program costs. Variation in winning bid prices is influenced primarily by DSM bid ceiling prices, differences in the mix of measures and markets targeted by developers, and the degree of performance risk borne by the DSM developer. Bids targeting residential customers averaged 6.2 cents/kWh compared with about 5.0 cents/kWh for commercial/industrial bids. We also compared the costs of acquiring lighting savings in DSM bidding contracts with a sample of 20 utility-sponsored commercial/industrial lighting programs. We found that, on average, total resource costs were slightly higher in bidding programs (6.1 vs 5.6 cents/kWh), although ratepayers bear significantly less performance risk in bidding programs compared with traditional utility-sponsored DSM programs.

Charles A. Goldman; Michele S. Kito

1995-01-01T23:59:59.000Z

413

costs | OpenEI  

Open Energy Info (EERE)

7 7 Varnish cache server costs Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

414

Residential photovoltaic systems costs  

SciTech Connect (OSTI)

A study of costs associated with the installation and operation of a residential photovoltaic system has been conducted to determine present and projected (1986) status. As a basis for the study, a residential photovoltaic system design projected for 1986 was assumed, consisting of two principal components: a roof-mounted array and a utility-interactive inverter. The scope of the study encompassed both silicon and cadmium sulfide photovoltaic modules. Cost estimates were obtained by a survey and study of reports generated by companies and agencies presently active in each of the subsystem area. Where necessary, supplemental estimates were established as part of this study. The range of estimates for silicon-based systems strongly suggest that such systems will be competitive for new installations and reasonably competitive for retrofit applications. The cadmium-sulfide-based system cost estimates, which are less certain than those for silicon, indicate that these systems will be marginally competitive with silicon-based systems for new construction, but not competitive for retrofit applications. Significant variations from the DOE system price sub-goals were found, however, particularly in the areas of array mounting, wiring and cleaning. Additional development work appears needed in these areas.

Cox, C.H. III

1980-01-01T23:59:59.000Z

415

Construction and first applications of a global cost of fishing database  

E-Print Network [OSTI]

of $928 and $1120, respectively. The total global variable fishing cost is estimated to be in the range USConstruction and first applications of a global cost of fishing database Vicky W. Y. Lam*, Ussif applications of a global cost of fishing database. ­ ICES Journal of Marine Science, 68: 1996­2004. Received 14

Pauly, Daniel

416

Textbook Cost Report for the Board of Regents University of Wisconsin -Madison  

E-Print Network [OSTI]

Textbook Cost Report for the Board of Regents University of Wisconsin - Madison November 2, 2007 Introduction Textbook costs matter. A typical first-year undergraduate, taking the typical first-year course--can expect to pay over $700 for textbooks in the first year. While this is a fraction of the total cost

Sheridan, Jennifer

417

Farm organization and cotton production costs in Comandante Fernandez, Chaco, Argentina  

E-Print Network [OSTI]

relevant in this matter. 'J. ractorized farms have lower proportions of fixed, but higher proportions of operating capital than non-tractorized farms when tenure is controlled. Average total costs per ton of cotton were signi- ficantlyy different only... between trartorized and non- tractorized owners. Average total costs per hectar'- are higher for tractorized than for non-trartoriz~H farms when tenure is controlled, ?oats o& capital items, among indirect cost components, and labor and traction...

Stagno, Horacio Hugo

2012-06-07T23:59:59.000Z

418

Appropriateness Criteria and Elective Procedures — Total Joint Arthroplasty  

Science Journals Connector (OSTI)

...the importance of such criteria and have already started developing them as guidelines for other orthopedic procedures. Second, accountable care organizations and other institutions pursuing similar health care delivery models are becoming influential, and as they move away from procedure-based payments... The implementation of appropriateness criteria that help to identify the patients likely to benefit most from a given procedure could help to combat increasing health care costs while enhancing access and quality. Total joint arthroplasty offers a prime example.

Ghomrawi H.M.K.Schackman B.R.Mushlin A.I.

2012-12-27T23:59:59.000Z

419

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect (OSTI)

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

420

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

422

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

423

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

424

Low-cost flywheel demonstration program. Final report  

SciTech Connect (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

425

NREL: News - NREL Reports Soft Costs Now Largest Piece of Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Release NR-6313 News Release NR-6313 NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar. "The two new reports, along with previous reports, provide a comprehensive look at the full cost of installing solar, while delineating and quantifying the various contributors to that final cost," NREL analyst Barry Friedman said. The first new report, "Benchmarking Non-Hardware Balance-of-System (Soft)

426

Low Cost Radio Telescope  

Science Journals Connector (OSTI)

A radio interferometer has been constructed at Haverford College as an aid to learning the fundamentals of radio astronomy. Its cost both in cash outlay and in construction time make it a feasible year-long project for an undergraduate. Its simplicity does not prevent it from being a useful instrument for instruction at the college or high-school level; among its capabilities are the measurement of the positions of at least four of the strongest discrete cosmic-noisesources and the diameter of the radio sun.

Joseph H. Taylor Jr.

1964-01-01T23:59:59.000Z

427

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

2,174 2,174 129,783 12,857.0 9.91 Alaska Power and Telephone Co AK Investor Owned 2,173 40,397 10,705.0 26.50 Alaska Village Elec Coop, Inc AK Cooperative 1,775 42,871 23,433.0 54.66 Anchorage Municipal Light and Power AK Municipal 6,304 953,876 83,738.0 8.78 Barrow Utils & Elec Coop, Inc AK Cooperative 400 38,069 3,929.0 10.32 Bethel Utilities Corp AK Investor Owned 1,017 30,229 16,102.0 53.27 Chugach Electric Assn Inc AK Cooperative 9,204 574,284 67,370.0 11.73 City & Borough of Sitka - (AK) AK Municipal 1,622 58,534 5,638.0 9.63 City of Petersburg - (AK) AK Municipal 717 9,064 1,030.5 11.37 City of Seward - (AK) AK Municipal 503 8,651 1,869.0 21.60 City of Unalaska - (AK) AK Municipal 242 11,183 4,906.4 43.87 City of Wrangell - (AK) AK Municipal 778 19,919 2,132.0 10.70 Copper Valley Elec Assn, Inc AK Cooperative 797 65,757

428

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

354 354 148,820 7,268.5 4.88 Calpine Power America LLC CA Power Marketer 1 1,072,508 54,458.0 5.08 City of Corona - (CA) CA Municipal 859 65,933 5,749.5 8.72 Commerce Energy, Inc. CA Power Marketer 23,386 596,604 37,753.0 6.33 Constellation NewEnergy, Inc CA Power Marketer 362 4,777,373 250,287.4 5.24 Direct Energy Business CA Power Marketer 480 4,028,166 249,932.0 6.20 Glacial Energy Holdings CA Power Marketer 98 74,913 5,896.2 7.87 Liberty Power Corp. CA Power Marketer 26 62,311 3,307.0 5.31 Marin Energy Authority CA Power Marketer 45,658 535,094 41,883.2 7.83 Noble Americas Energy Solutions LLC CA Power Marketer 201 7,533,445 471,887.5 6.26 Northern California Power Agny CA Political Subdivision 1 366,159 20,892.0 5.71 Pilot Power Group Inc CA Power Marketer 921 1,468,892 84,041.1 5.72 Shell Energy North America (US), L.P.

429

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

94 94 127,106 11,993.0 9.44 Chugach Electric Assn Inc AK Cooperative 7 54,804 5,902.0 10.77 City & Borough of Sitka - (AK) AK Municipal 15 4,968 476.0 9.58 City of Petersburg - (AK) AK Municipal 39 19,905 2,208.6 11.10 City of Seward - (AK) AK Municipal 126 33,599 5,828.0 17.35 City of Unalaska - (AK) AK Municipal 16 27,024 10,572.0 39.12 Cordova Electric Coop, Inc AK Cooperative 5 8,004 1,902.0 23.76 Golden Valley Elec Assn Inc AK Cooperative 496 855,521 160,872.2 18.80 Homer Electric Assn Inc AK Cooperative 23 127,076 11,094.0 8.73 Ketchikan Public Utilities AK Municipal 13 24,453 2,046.9 8.37 Kodiak Electric Assn Inc AK Cooperative 102 87,040 14,770.0 16.97 Alabama Power Co AL Investor Owned 5,839 22,157,722 1,345,850.0 6.07 Albertville Municipal Utilities Board AL Municipal 18 293,204 21,775.0 7.43 Arab Electric Coop Inc AL

430

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

Northern California Power Agny Northern California Power Agny CA Political Subdivision 1 366,159 20,892.0 5.71 Constellation NewEnergy, Inc CT Power Marketer 2 33,816 2,550.5 7.54 HESS CORPORATION CT Power Marketer 1 106,596 5,490.0 5.15 American PowerNet DC Power Marketer 1 148,928 8,161.0 5.48 Reliant Energy Northeast LLC DC Power Marketer 1 200,803 13,152.0 6.55 Constellation NewEnergy, Inc IL Power Marketer 3 781,822 37,958.5 4.86 Massachusetts Bay Trans Authority MA Political Subdivision 3 55,875 6,106.0 10.93 NextEra Energy Power Marketing MA Power Marketer 1 284,229 7,954.4 2.80 American PowerNet MD Power Marketer 1 121,566 6,618.0 5.44 Constellation NewEnergy, Inc MD Power Marketer 2 151,684 13,222.6 8.72 PPL EnergyPlus LLC MD Power Marketer 1 9,108 544.5 5.98 Reliant Energy Northeast LLC MD Power Marketer 1 157,011 10,282.7 6.55 Constellation NewEnergy, Inc

431

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

3,912 3,912 142,255 16,970.0 11.93 Alaska Power and Telephone Co AK Investor Owned 4,803 24,391 7,470.0 30.63 Alaska Village Elec Coop, Inc AK Cooperative 6,148 31,085 19,275.0 62.01 Anchorage Municipal Light and Power AK Municipal 24,443 146,789 17,221.2 11.73 Barrow Utils & Elec Coop, Inc AK Cooperative 1,471 11,511 1,364.0 11.85 Bethel Utilities Corp AK Investor Owned 1,671 10,677 5,990.0 56.10 Chugach Electric Assn Inc AK Cooperative 69,495 549,748 76,083.0 13.84 City & Borough of Sitka - (AK) AK Municipal 3,669 47,899 4,570.0 9.54 City of Petersburg - (AK) AK Municipal 1,354 20,803 2,010.2 9.66 City of Seward - (AK) AK Municipal 2,064 16,488 3,344.0 20.28 City of Unalaska - (AK) AK Municipal 686 4,009 1,997.6 49.83 City of Wrangell - (AK) AK Municipal 1,170 15,273 1,604.0 10.50 Copper Valley Elec Assn, Inc AK Cooperative

432

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

41 41 71,558 3,893.2 5.44 City of Corona - (CA) CA Municipal 7 40,918 3,592.4 8.78 Commerce Energy, Inc. CA Power Marketer 7,862 391,246 24,362.0 6.23 Constellation NewEnergy, Inc CA Power Marketer 38 2,158,578 102,576.2 4.75 Direct Energy Business CA Power Marketer 29 241,690 14,996.0 6.20 Marin Energy Authority CA Power Marketer 6 31,782 2,241.5 7.05 Noble Americas Energy Solutions LLC CA Power Marketer 56 1,875,061 126,908.8 6.77 Pilot Power Group Inc CA Power Marketer 41 498,646 29,521.7 5.92 Shell Energy North America (US), L.P. CA Power Marketer 31 2,259,297 98,489.5 4.36 Constellation NewEnergy, Inc CT Power Marketer 574 1,159,360 96,511.6 8.32 Farmington River Power Company CT Investor Owned 1 23,588 1,484.4 6.29 HOP Energy, LLC CT Power Marketer 2 5,198 409.2 7.87 Integrys Energy Services, Inc. CT Power Marketer 63 109,635

433

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

City of North Little Rock - (AR) City of North Little Rock - (AR) AR Municipal 1 349 41.0 11.75 Entergy Arkansas Inc AR Investor Owned 1 114 11.0 9.65 City & County of San Francisco CA Municipal 1 103,268 4,130.0 4.00 City of Pasadena - (CA) CA Municipal 1 9,538 1,365.5 14.32 Los Angeles Department of Water & Power CA Municipal 2 16,946 2,655.0 15.67 Sacramento Municipal Util Dist CA Political Subdivision 1 28,918 3,485.2 12.05 San Diego Gas & Electric Co CA Investor Owned 4 95,213 6,744.0 7.08 Southern California Edison Co CA Investor Owned 1 51,664 6,759.0 13.08 WAPA-- Western Area Power Administration CA Federal 1 14,049 299.0 2.13 Public Service Co of Colorado CO Investor Owned 1 52,471 5,083.0 9.69 Florida Power & Light Co FL Investor Owned 1 80,521 6,752.0 8.39 JEA FL Municipal 1 3,374 341.1 10.11 Georgia Power Co GA Investor Owned 1 156,955

434

Ownership and Health Care  

E-Print Network [OSTI]

and Mutter (2010) look at Critical Access Hospitals; Ozcan and Haksever (1992) look at urban hospitals; Vitaliano and Toren (1996) concentrate on hospitals in New York state. These papers also di er in their methodology, some use DEA and some use SFA..., Fullerton and Gan (2005)), nance (Fohlin (1998)), and labor (Seitz (2009)) to name just a few 8 examples. Several economists have applied this methodology to the health care sector. Most commonly it is used in the context of how the quantity of health...

Nighohossian, Jeremy

2013-05-01T23:59:59.000Z

435

Oxygenation cost estimates for Cherokee, Douglas, and Norris reservoirs  

SciTech Connect (OSTI)

The capital and annual costs associated with reoxygenation of the turbine releases at Cherokee, Douglas and Norris Reservoirs using the small bubble injection technique developed for Ft. Patrick Henry Dam were computed. The weekly average dissolved oxygen (DO) deficits were computed for each reservoir for an average year (based on 16 years of records). The total annual cost of an oxygen supply and injection system for each reservoir is presented. 5 refs., 6 figs., 5 tabs.

Fain, T.G.

1980-10-01T23:59:59.000Z

436

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for ‘small scale’ combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85°C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include ‘residential’ use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

437

Wind Integration Cost and Cost-Causation: Preprint  

SciTech Connect (OSTI)

The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

2013-10-01T23:59:59.000Z

438

Reducing LED Costs Through Innovation  

Broader source: Energy.gov [DOE]

A Wisconsin-based company is developing an innovative way to reduce manufacturing costs of light-emitting diodes (LEDs).

439

Cost Effectiveness NW Energy Coalition  

E-Print Network [OSTI]

1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent understanding of cost effectiveness contributed to under performing conservation E.g: individual measures vs at end of 2009 #12;2 The thinking was . . . That a Cost Effectiveness Guide could: · Increase regionally

440

The cost of a bodyguard  

Science Journals Connector (OSTI)

...research-article Animal behaviour 1001 60 70 14 The cost of a bodyguard Fanny Maure 1 2 * Jacques...benefits of host manipulation and their costs to fitness-related traits, such as longevity...study provides the first evidence of a cost required for manipulating host behaviour...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Check Estimates and Independent Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

1997-03-28T23:59:59.000Z

442

ROC curves in cost space  

Science Journals Connector (OSTI)

ROC curves and cost curves are two popular ways of visualising classifier performance, finding appropriate thresholds according to the operating condition, and deriving useful aggregated measures such as the area under the ROC curve (AUC) or ... Keywords: Area Under the ROC Curve (AUC), Cost curves, Cost-sensitive evaluation, Kendall tau distance, Operating condition, ROC curves, Ranking performance

José Hernández-Orallo; Peter Flach; César Ferri

2013-10-01T23:59:59.000Z

443

Title, Location, Document Number Estimated Cost Description  

Broader source: Energy.gov (indexed) [DOE]

1/23/2013 1/23/2013 Transmittal to State: TBD EA Approval: TBD FONSI: TBD EA Determination Date: Transmittal to State: EA Approval: FONSI: EA Determination Date: Transmittal to State: EA Approval: FONSI: EA Determination Date: Transmittal to State: EA Approval: FONSI: EA Determination Date: Transmittal to State: EA Approval: FONSI: Total Estimated Cost $0 Office of Legacy Management Jan-13 Annual NEPA Planning Summary Evaluation of Proposed Grazing on the Maybell and Maybell West UMTRCA sites, Colorado TBD DOE is seeking reuse of the lands associated with the Maybell and Maybell West UMTRCA disposal sites in Moffat County, in northwestern Colorado. Potential impacts from grazing would be evaluated in this EA. The schedule and costs have yet to be determined since EA determination was recently made.

444

Title, Location, Document Number Estimated Cost Description  

Broader source: Energy.gov (indexed) [DOE]

Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Title, Location, Document Number Estimated Cost Description EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $65,000 Annual NEPA Planning Summary NEPA Reviews of Proposals to Implement Enterprise SRS Initiatives unknown The Savannah River Site Strategic Plan for 2011 - 2015 describes 12 initiatives that Enterprise SRS will pursue by applying SRS's management core competencies in nuclear materials. Implementation of new missions resulting from this effort will likely require NEPA review. However, until firm proposals are developed

445

Costs of lithium-ion batteries for vehicles  

SciTech Connect (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

446

Life-cycle cost analysis of floating offshore wind farms  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to put forward a methodology in order to evaluate the Cost Breakdown Structure (CBS) of a Floating Offshore Wind Farm (FOWF). In this paper CBS is evaluated linked to Life-Cycle Cost System (LCS) and taking into account each of the phases of the FOWF life cycle. In this sense, six phases will be defined: definition, design, manufacturing, installation, exploitation and dismantling. Each and every one of these costs can be subdivided into different sub-costs in order to obtain the key variables that run the life-cycle cost. In addition, three different floating platforms will be considered: semisubmersible, Tensioned Leg Platform (TLP) and spar. Several types of results will be analysed according to each type of floating platform considered: the percentage of the costs, the value of the cost of each phase of the life-cycle and the value of the total cost in each point of the coast. The results obtained allow us to become conscious of what the most important costs are and minimize them, which is one of the most important contributions nowadays. It will be useful to improve the competitiveness of floating wind farms in the future.

Castro-Santos Laura; Diaz-Casas Vicente

2014-01-01T23:59:59.000Z

447

Low Cost Heliostat Development Phase II Final Report  

SciTech Connect (OSTI)

The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

Kusek, Stephen M.

2014-04-21T23:59:59.000Z

448

Reducing total fulfillment at costs at Amazon EU through network design optimization  

E-Print Network [OSTI]

A key supply chain management issue encountered by any business requiring a distribution system is in designing its distribution network. A distribution network configuration has both direct and indirect ongoing effects ...

Merriam, Ken (Ken A.)

2007-01-01T23:59:59.000Z

449

Sustainable Transportation Decision-Making: Spatial Decision Support Systems (SDSS) and Total Cost Analysis  

E-Print Network [OSTI]

is to develop a Spatial Decision Support System (SDSS) that will lead to more balanced decision-making in transportation investment and optimize the most sustainable high-speed rail (HSR) route. The decision support system developed here explicitly elaborates...

Kim, Hwan Yong

2013-04-04T23:59:59.000Z

450

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

451

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

452

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

453

17.2 - Cost Participation  

Broader source: Energy.gov (indexed) [DOE]

17.2 (June 2004) 17.2 (June 2004) 1 Cost Participation [Reference: FAR 35.003(b), DEAR 917.70] Overview This section discusses DOE treatment of cost participation by organizations performing research, development, and demonstration projects under DOE prime contracts. This section does not cover efforts and projects performed for DOE by other Federal agencies. Background Cost participation is a generic term denoting any situation where the Government does not fully reimburse the contractor for all allowable costs necessary to accomplish the project or effort under the contract. The term includes, but is not limited to: * Cost Sharing * Cost Matching * Cost Limitation, which may be direct or indirect * Participation in-kind

454

Realistic costs of carbon capture  

SciTech Connect (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

455

Heliostat cost-analysis tool  

SciTech Connect (OSTI)

Estimated production costs of solar energy systems serve as guides for future component development and as measures of the potential economic viability of the technologies. The analysis of heliostat costs is particularly important since the heliostat field is the largest cost component of a solar central receiver plant. A heliostat cost analysis tool (HELCAT) that processes manufacturing, transportation, and installation cost data has been developed to provide a consistent structure for cost analyses. HELCAT calculates a representative product price based on direct input data (e.g. direct materials, direct labor, capital requirements) and various economic, financial, and accounting assumptions. The characteristics of this tool and its initial application in the evaluation of second generation heliostat cost estimates are discussed. A set of nominal economic and financial parameters is also suggested.

Brandt, L.D.; Chang, R.E.

1981-10-01T23:59:59.000Z

456

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

457

Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth  

SciTech Connect (OSTI)

The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LEDâ??s into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield. Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

William Quinn

2012-04-30T23:59:59.000Z

458

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

459

LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation...  

Office of Environmental Management (EM)

of the parts of a cost estimate (those elements not truly independent of each other in terms of their accuracy and expected values), consider evaluating certain elements as...

460

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cost?Based Optimization of a Papermaking Wastewater Regeneration Recycling System  

Science Journals Connector (OSTI)

Wastewater can be regenerated for recycling in an industrial process to reduce freshwater consumption and wastewater discharge. Such an environment friendly approach will also lead to cost savings that accrue due to reduced freshwater usage and wastewater discharge. However the resulting cost savings are offset to varying degrees by the costs incurred for the regeneration of wastewater for recycling. Therefore systematic procedures should be used to determine the true economic benefits for any water?using system involving wastewater regeneration recycling. In this paper a total cost accounting procedure is employed to construct a comprehensive cost model for a paper mill. The resulting cost model is optimized by means of mathematical programming to determine the optimal regeneration flowrate and regeneration efficiency that will yield the minimum total cost.

Long Huang; Xiao Feng; Khim H. Chu

2010-01-01T23:59:59.000Z

462

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

463

Project Cost Profile Spreadsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

464

EGov PMA Scorecard Cost, Schedule & Performance Standard...  

Energy Savers [EERE]

EGov PMA Scorecard Cost, Schedule & Performance Standard.tif EGov PMA Scorecard Cost, Schedule & Performance Standard.tif EGov PMA Scorecard Cost, Schedule &...

465

Hydrogen Threshold Cost Calculation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

466

High Energy Cost Grants | Department of Energy  

Energy Savers [EERE]

High Energy Cost Grants High Energy Cost Grants The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and...

467

An Examination of Avoided Costs in Utah  

E-Print Network [OSTI]

Subject An Examination of Avoided Costs in Utah Date Januarystate by seeking changes to the avoided cost tariff paid tomethod of calculating avoided costs that has been officially

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

468

District Wide Geothermal Heating Conversion Blaine County School District  

Broader source: Energy.gov [DOE]

This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of ownership of available HVAC replacement options.

469

Fuel Cell Technical Publications | Department of Energy  

Energy Savers [EERE]

for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

agency must select one that is capable of being powered by cleaner fuels, including electricity and natural gas, if the total lifecycle cost of ownership is less than or...

471

Lower Cost Energy Options  

E-Print Network [OSTI]

ttle b1t about Abbott Laborator1es. Abbott 1s a world-w1de health care company w1th 27 manufactur1ng and research fac111t1es 1n the U.S. and Puerto R1co totall1ng more than 10,000,000 square feet of floor space. The company has also has manufactur1...ch ranks 96th 1n the Furtune 500. .uaan L.UOU.TO_IU OOMESTIC ENEllGY CONSEllVATION ~~ n ~~~ ~~ a M m M ~ ? " YEn F1gure 1: Energy Conservat10n U.S. & Puerto R1co The Abbott energy conservat10n program started 1n 1973 as d1d many compan1es. We...

Maze, M. E.

472

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

473

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

474

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

475

Download Data | Transparent Cost Database  

Open Energy Info (EERE)

in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a...

476

Turfgrass: Maintenance Costs in Texas.  

E-Print Network [OSTI]

LAW FOR VARIOUS M-AINTENANCE ITEMS BASED ON O\\!'\\'S. ERSHIP AND TYPE OF GRASS WITHIN EACH REGION Maintenance items TY PC Percent Lot size, Region of oz;r- of lawns square Com~osty Fertilizer Chemicals Water Average grass in region feet cost cost... LAW FOR VARIOUS M-AINTENANCE ITEMS BASED ON O\\!'\\'S. ERSHIP AND TYPE OF GRASS WITHIN EACH REGION Maintenance items TY PC Percent Lot size, Region of oz;r- of lawns square Com~osty Fertilizer Chemicals Water Average grass in region feet cost cost...

Holt, Ethan C.; Allen, W. Wayne; Ferguson, Marvin H.

1964-01-01T23:59:59.000Z

477

Reviewing electricity generation cost assessments.  

E-Print Network [OSTI]

?? Studies assessing the electricity generation cost of various power generating technologies are becoming increasingly common and references to such studies can often be heard… (more)

Larsson, Simon

2012-01-01T23:59:59.000Z

478

Building Life Cycle Cost Programs  

Broader source: Energy.gov [DOE]

The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Program to provide computational support for the analysis of capital investments in buildings.

479

Lower Cost Carbon Fiber Precursors  

Broader source: Energy.gov (indexed) [DOE]

performing fiber. (600-750 KSI) Barriers: Addresses the need for higher performance low cost fiber for hydrogen storage tanks and energy management structures of automobiles....

480

Income and Cost Analysis: Cooperative Cotton Gins and Cooperative Supply Associations of Texas, Season 1949-50.  

E-Print Network [OSTI]

inputs. The de~ivation of cost estimating equations enables the gin manager to evaluate his own total cost and items of cost in terms of average performance of the whole industry. The gin manager who compares his own costs with standard costs over a...- ard income and costs can evaluate his own net margin situation as to additions or deductions as income is higher or lower than standard and as costs are Power or higher than standard. CONTENTS I I Page Digest 2 "Break-even" Volume-A Concept...

Paulson, W. E.

1955-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network [OSTI]

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

482

Research and Development of a Low Cost Solar Collector  

SciTech Connect (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

483

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

484

Energy Cost Reduction Measures Identified for Texas State Agencies  

E-Print Network [OSTI]

audit programs examined a total of 35.3 million square feet of state-owned space. Energy cost reduction measures with paybacks of four years or less were identified. The purpose of this paper is to present the projects identified in 1986. Most relate...

Grigg, T. J.; Verdict, M. E.

1987-01-01T23:59:59.000Z

485

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

486

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

487

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

488

Use of Cost Estimating Relationships  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

1997-03-28T23:59:59.000Z

489

Electric power substation capital costs  

SciTech Connect (OSTI)

The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

Dagle, J.E.; Brown, D.R.

1997-12-01T23:59:59.000Z

490

The future costs of energy  

Science Journals Connector (OSTI)

...2002 GDP per capita: Argentina...15 000 in GDP per capita, then a...afford higher energy cost? Or, should we demand OPEC countries...15 000 in GDP per capita, then a...afford higher energy cost? Or, should we demand OPEC countries...

Matthew R. Simmons

491

Hay Harvesting Costs $$$$$ in Texas.  

E-Print Network [OSTI]

.............. .. ................. 6 LOOSE HAY STACKING ................................... 7 Tractor-Mounted (Front-End Loader) Hay Stacking Equipment .......... .... ............. 8 Fixed Costs ............................................................ 8 Operating Costs..., there is no economic advantage to At least two tractors are usually needed for baling. Most livestock producers who use custom balers will probably have to buy another tractor. This machine may be used for other operations, but the equivalent of one full...

Long, James T.; Taylor, Wayne D.

1972-01-01T23:59:59.000Z

492

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

493

New Continuous-Time Scheduling Formulation for Continuous Plants under Variable Electricity Cost  

Science Journals Connector (OSTI)

Equation 21 is a big-M constraint that is only active if there is a continuous task being executed that belongs to energy cost level e. ... Due to the differences in electricity price among the energy cost levels, assigning production to the cheapest levels will have the biggest impact on the total cost. ... While accurate values are obviously dependent on problem data, particularly on the different cost levels agreed with the electricity provider, and on the scheduling practice at the plant, results have shown potential cost savings around 20%. ...

Pedro M. Castro; Iiro Harjunkoski; Ignacio E. Grossmann

2009-06-16T23:59:59.000Z

494

Cost Principles Policy Responsible Office: Cost Analysis Effective Date: November 1, 2013  

E-Print Network [OSTI]

Cost Principles Policy Responsible Office: Cost Analysis Effective Date: November 1, 2013 Last-21, Cost Principles for Educational Institutions and the Cost Accounting Standards Board (CASB)) identify cost accounting policies that must be followed to receive federal awards. These regulations

Jawitz, James W.

495

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs July 23, 2010 - 3:24pm Addthis Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? 70 street lights and 25 traffic signals to be replaced via Recovery Act. Town expects 10 percent reduction in energy costs. Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

496

Energy Detectives Help Pennsylvania Town Reduce Costs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Detectives Help Pennsylvania Town Reduce Costs Detectives Help Pennsylvania Town Reduce Costs Energy Detectives Help Pennsylvania Town Reduce Costs July 23, 2010 - 3:24pm Addthis Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? 70 street lights and 25 traffic signals to be replaced via Recovery Act. Town expects 10 percent reduction in energy costs. Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

497

SunShot Initiative: Reducing Non-Hardware Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Non-Hardware Costs Reducing Non-Hardware Costs DOE supports efforts to dramatically reduce the non-hardware, balance of systems costs associated with solar energy systems. Representing as much as 64% of the total installed system price, these "soft costs" include: Customer Acquisition Financing and Contracting Permitting, Interconnection, and Inspection Installation and Performance Operations and Maintenance. To meet SunShot goals, the industry must innovate new ways to automate and speed processes that make it easier for consumers, businesses, utilities, solar companies, and others to install solar projects. For example, novel software solutions now allow solar companies to design systems and provide accurate quotes using satellite images rather than conducting full site visits.

498

INFOGRAPHIC: Let's Get to Work on Solar Soft Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

INFOGRAPHIC: Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs December 2, 2013 - 1:00pm Addthis Learn how soft costs are contributing to the price of solar energy systems in the United States. Learn more about what the Energy Department is doing to lower soft costs and increase deployment of solar energy systems. | Infographic by SunShot Learn how soft costs are contributing to the price of solar energy systems in the United States. Learn more about what the Energy Department is doing to lower soft costs and increase deployment of solar energy systems. | Infographic by SunShot Addthis Related Articles Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to learn more.

499

INFOGRAPHIC: Let's Get to Work on Solar Soft Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

INFOGRAPHIC: Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs December 2, 2013 - 1:00pm Addthis Learn how soft costs are contributing to the price of solar energy systems in the United States. Learn more about what the Energy Department is doing to lower soft costs and increase deployment of solar energy systems. | Infographic by SunShot Learn how soft costs are contributing to the price of solar energy systems in the United States. Learn more about what the Energy Department is doing to lower soft costs and increase deployment of solar energy systems. | Infographic by SunShot Addthis Related Articles Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to learn more.

500

Entanglement cost of generalised measurements  

E-Print Network [OSTI]

Bipartite entanglement is one of the fundamental quantifiable resources of quantum information theory. We propose a new application of this resource to the theory of quantum measurements. According to Naimark's theorem any rank 1 generalised measurement (POVM) M may be represented as a von Neumann measurement in an extended (tensor product) space of the system plus ancilla. By considering a suitable average of the entanglements of these measurement directions and minimising over all Naimark extensions, we define a notion of entanglement cost E_min(M) of M. We give a constructive means of characterising all Naimark extensions of a given POVM. We identify various classes of POVMs with zero and non-zero cost and explicitly characterise all POVMs in 2 dimensions having zero cost. We prove a constant upper bound on the entanglement cost of any POVM in any dimension. Hence the asymptotic entanglement cost (i.e. the large n limit of the cost of n applications of M, divided by n) is zero for all POVMs. The trine measurement is defined by three rank 1 elements, with directions symmetrically placed around a great circle on the Bloch sphere. We give an analytic expression for its entanglement cost. Defining a normalised cost of any d-dimensional POVM by E_min(M)/log(d), we show (using a combination of analytic and numerical techniques) that the trine measurement is more costly than any other POVM with d>2, or with d=2 and ancilla dimension 2. This strongly suggests that the trine measurement is the most costly of all POVMs.

Richard Jozsa; Masato Koashi; Noah Linden; Sandu Popescu; Stuart Presnell; Dan Shepherd; Andreas Winter

2003-03-27T23:59:59.000Z