Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

2

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

3

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

4

Total Cost of Ownership for Current Plug-in Electric Vehicles: Fall 2013 Update  

Science Conference Proceedings (OSTI)

Dramatic growth over the last three years in the plug-in electric vehicle (PEV) market has resulted in many unanswered questions concerning total cost of ownership (TCO). In June 2013, EPRI released a public study that presented a new way of analyzing driving data for the purpose of calculating TCO for PEV ownership (EPRI report 3002001728). That study—which focused on the 2013 Chevrolet Volt and 2013 Nissan LEAF—used a full year’s worth of driving data to calculate the TCO of ...

2013-12-06T23:59:59.000Z

5

Sustainability and socio-enviro-technical systems: modeling total cost of ownership in capital facilities  

Science Conference Proceedings (OSTI)

Investment in sustainability strategies and technologies holds promise for significant cost savings over the operational phase of a facility's life cycle, while more effectively meeting stakeholder needs. However, accurately estimating the first costs ...

Annie R. Pearce; Kristen L. Sanford Bernhardt; Michael J. Garvin

2010-12-01T23:59:59.000Z

6

Total Cost of Ownership Model for Current Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The plug-in electric vehicle (PEV) market has grown dramatically in the past three years, but the central question concerning PEV acceptance in the marketplace still remains: When compared to a hybrid or conventional vehicle, is a PEV worth the additional up-front cost to consumers? Given the incomplete understanding of changes in driving patterns due to vehicle purchases, the baseline analysis described in this report does not model customer adaptation, nor does it attempt to address non-tangible ...

2013-06-10T23:59:59.000Z

7

Alternative Windpower Ownership Structures: Financing Terms and Project Costs  

E-Print Network (OSTI)

LBNL-38921 UC-1321 Alternative Windpower Ownership Structures: Financing Terms and Project Costs Terms and Variables: Description and Empirical Estimates . . . . . . . . . 8 Windpower Project, Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Windpower Project Costs Under Various Ownership Structures . . . . . . . . . . . . 19 Analysis

8

EUV lithography cost of ownership analysis  

SciTech Connect

The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

Hawryluk, A.M.; Ceglio, N.M.

1995-01-19T23:59:59.000Z

9

HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing  

E-Print Network (OSTI)

2000 Broomes, Peter. , “HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , “HVAC Results Comparison”, April,HVAC Modeling for Cost of Ownership Assessment in

Broomes, Peter; Dornfeld, David A

2003-01-01T23:59:59.000Z

10

Alternative windpower ownership structures: Financing terms and project costs  

DOE Green Energy (OSTI)

Most utility-scale renewable energy projects in the United States are developed and financed by private renewable energy companies. Electric output is then sold to investor-owned and public utilities under long-term contracts. Limited partnerships, sale/leaseback arrangements, and project-financing have historically been the dominant forms of finance in the windpower industry, with project-finance taking the lead more recently. Although private ownership using project-finance is still the most popular form of windpower development, alternative approaches to ownership and financing are becoming more prevalent. U.S. public and investor-owned electric utilities (IOUs) have begun to participate directly in windpower projects by owning and financing their own facilities rather than purchasing windpower from independent non-utility generators (NUGs) through power purchase agreements (PPAs). In these utility-ownership arrangements, the wind turbine equipment vendor/developer typically designs and constructs a project under a turnkey contract for the eventual project owner (the utility). The utility will also frequently sign an operations and maintenance (O&M) contract with the project developer/equipment vendor. There appear to be a number of reasons for utility involvement in recent and planned U.S. wind projects. One important claim is that utility ownership and self-finance provides substantial cost savings compared to contracting with private NUGs to supply wind-generated power. In this report, we examine that assertion.

Wiser, R.; Kahn, E.

1996-05-01T23:59:59.000Z

11

Bringing Energy Efficiency and Cost of Ownership to Online Shopping  

NLE Websites -- All DOE Office Websites (Extended Search)

no easy way to calculate how much it will cost to operate a product based on one's local electricity rate (there are over 3,000 different US utilities) and personalized usage...

12

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

13

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

14

The Total Cost and Measured Performance of Utility-Sponsored...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency Programs Title The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency...

15

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

SciTech Connect

Flashlight usage is widespread across much of sub-Saharan Africa.1 In Kenya in particular, over half of all households report owning a flashlight (Kamfor, 2002). Aside from household use, flashlights are also widely used to perform income-earning jobs in Kenya. Lumina Research Note No.4, the first report in this series documenting flashlight use in Kenya, highlights flashlight use patterns of night watchmen and bicycle taxi drivers. Both of these are occupations that rely on the use of flashlights on a nightly basis (Tracy et al., 2009). Also highlighted by Research Note No.4, flashlight users in Kenya have reported being highly dissatisfied with the quality of the low-cost LED flashlights that are available, and they identify several reoccurring problems they have faced as flashlight end-users (Tracy et al., 2009). The fact that there exists a substantial dependency upon flashlights in Kenya and that users are disgruntled with the available products suggests reasons for concern about flashlight quality. This concern is present despite two recent technological transitions in the flashlight market. First, LED technology has quickly emerged as the dominant source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs, and low-cost LEDs have achieved price levels that make them cost competitive with conventional lighting sources for a number of applications (Mills, 2005). Second, rechargeable sealed-lead acid (SLA) batteries are also becoming more prevalent alternatives to disposable dry cell batteries. Flashlights using rechargeable SLA batteries tend to have a lower total cost of ownership over a two-year period than a flashlight using dry cell batteries (Radecsky, 2009); however, as this current report highlights, this may vary depending on the intensity of use patterns. To avoid a potential market spoiling effect for off-grid lighting products based on LED technology (Mills and Jacobson, 2008; Lighting Africa, 2007) a better understanding of flashlight use-patterns is crucial (Tracy et al., 2009). In addition, the economic implications faced by rural flashlight end-users provide further incentive for a move toward higher quality low-cost flashlights. In this report, our team uses interviews with 46 end users of flashlights to collect information about their use patterns and costs associated with owning and operating flashlight products. While flashlights used in their portable mode typically do not represent a substitute for kerosene or other forms of fuel-based lighting, at times they are used in stationary applications in place of a fuel-based lamp. In either case, these products often represent end users first exposure to LED technology and rechargeable dry cell batteries, and thus stand to either provide a positive or negative impression of these technologies for a diversity of lighting applications.

Tracy, Jennifer; Jacobson, Arne; Mills, Evan

2010-02-16T23:59:59.000Z

16

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fee 0 May 2011 - September 2015 June 2013 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 419,202,975...

17

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$ 3,422,994.00 $ 3,422,994.00 FY2011 4,445,142.00 $ FY2012 $ 5,021,951.68 FY2013 $ 3,501,670.00 FY2014 $0 FY2015 $0 FY2016 $0 FY2017 $0 FY2018 $0 FY2019 $0 Cumulative Fee Paid $16,391,758 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee $989,000,000 Contract Period: Contract Type: January 2010 - December 2019 Contract Number: EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name: Comprehensive Security Services September 2013 Fee Information Maximum Fee $55,541,496 $5,204,095 $3,667,493 $5,041,415 Minimum Fee 0 Fee Available $5,428,947 $6,326,114

18

Developing a total replacement cost index for suburban office projects  

E-Print Network (OSTI)

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

19

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

20

Ownership Codes  

National Nuclear Security Administration (NNSA)

2 NMMSS Users Annual Training Meeting San Antonio, Texas-May 20-22, 2008 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Who has "G" ownership...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Review of the Literature on the Social Cost of Motor Vehicle Use in the United States  

E-Print Network (OSTI)

accidents, air pollution, noise, land use, and “dissociationpollution Total societal costs Unquantified costs Wetlands lost Agricultural landland use Vehicle ownership and operation Vibration damage to buildings Water pollution

Murphy, James; Delucchi, Mark

1998-01-01T23:59:59.000Z

22

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive...

23

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

24

Geographic and dynamic heterogeneity of home ownership  

Science Conference Proceedings (OSTI)

ownership, by considering the demand for owner-occupied residential units relative to total demand for these units. Based on Danish data, empirically significant ...

25

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network (OSTI)

of flashlights and their users in Kenya Photo 1. One of theof LED Flashlights in Kenya and a One-Year Cost Analysis ofthanks to the many people in Kenya who participated in this

Tracy, Jennifer

2010-01-01T23:59:59.000Z

26

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network (OSTI)

with torches? Failure of: ? LEDs/Bulb [1] ? Battery [2] ?http://light.lbl.gov Component Bulb Type LED Incandescentto incandescent bulbs, and low-cost LEDs have achieved price

Tracy, Jennifer

2010-01-01T23:59:59.000Z

27

Characterizing opportunities for short reach optical interconnect adoption : a market survey and total cost of ownership model approach  

E-Print Network (OSTI)

Over the past decade, the demand for digital information has increased dramatically with the rising use of the Internet and various types of multimedia data - text, audio, graphics, video, and voice. As a consequence, the ...

Lindsey, Johnathan Jake, III

2010-01-01T23:59:59.000Z

28

Cutting costs through substation ownership  

SciTech Connect

The term applied to service through a customer-owned main substation is primary service, and such customers are billed at primary metering rates. These terms denote that the customer accepts service (and billing metering is located) on the primary, rather than secondary, side of the main transformer. Some electric utilities are prepared to offer extremely attractive billing reductions to those customers willing to invest in their own main substations instead of renting a substation purchased with utility company capital. Depending on the utility and the particular circumstances, some plants can recover their investment in primary substation equipment in as little as 1 or 2 years.

Keithly, D. (ABB Electric, Waukesba, WI (US))

1989-06-22T23:59:59.000Z

29

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

30

Robust Optimization Strategies for Total Cost Control in Project ...  

E-Print Network (OSTI)

Feb 13, 2010 ... We describe robust optimization procedures for controlling total ... does not consider correlation between past and future performance ... probability of meeting the overall project budget, compared to less ... used in practice, Monte Carlo simulation is not (Schonberger 1981, Kwak and ...... given statistics.

31

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

32

10 MWe Solar Thermal Central Receiver Pilot Plant total capital cost  

DOE Green Energy (OSTI)

A detailed breakdown of the capital cost of the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, California is presented. The total capital requirements of the pilot plant are given in four cost breakdown structures: (1) project costs (research and development, design, factory, construction, and start-up); (2) plant system costs (land, structures and improvements, collector system, receiver system, thermal transport system, thermal storage system, turbine-generator plant system, electrical plant system, miscellaneous plant equipment, and plant level); (3) elements of work costs (sitework/earthwork, concrete work, metal work, architectural work, process equipment, piping and electrical work); and (4) recurring and non-recurring costs. For all four structures, the total capital cost is the same ($141,200,000); however, the allocation of costs within each structure is different. These cost breakdown structures have been correlated to show the interaction and the assignment of costs for specific areas.

Norris, H.F. Jr.

1985-02-01T23:59:59.000Z

33

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

34

Total capital cost data base: 10MWe Solar Thermal Central Receiver Pilot Plant  

DOE Green Energy (OSTI)

This report describes the total capital cost data base of the 10 MWe Solar Thermal Central Receiver Pilot Plant. This Solar One cost data base was created using the computer code ''Cost Data Management System (CDMS)''. The cost data base format was developed to be used as a common method of presentation of capital costs for power plants. The basic format is a plant system cost breakdown structure. Major accounts are land; structures and improvements; collector, receiver, thermal transport, thermal storage, and stream generation systems; turbine plant; electrical plant; miscellaneous plant systems and equipment; and plant-level indirect costs. Each major account includes subaccounts to as many as nine level of detail. The data base can be accessed to provide elements-of-work costs at any subaccount level or at the plant level. The elements-of-work include sitework/earthwork; concrete work; metal work; architectural; process equipment; piping; electrical; and miscellaneous work. Each of these elements-of-work can be or are broken into finer detail and costs can be accumulated to identify more specific needs, e.g., pipe insulation or heat exchangers. The cost data base can be accessed and various reports can be generated. These vary from a single page summary to detailed listings of costs and notes. Reported costs can be stated in dollars, dollars per kilowatt or percentage of the total plant cost. Reports or samples of reports for the pilot plant capital cost are included.

Norris, H.F. Jr.

1986-05-01T23:59:59.000Z

35

Comparing maintenance costs of geothermal heat pump systems with other HVAC systems: Preventive maintenance actions and total maintenance costs  

SciTech Connect

Total annual heating, ventilating, and air-conditioning (HVAC) maintenance costs were determined for 20 schools in the Lincoln, Nebraska, Public School District. Each school examined provides cooling to over 70% of its total floor area and relies on one of the following heating and cooling systems to provide the majority of space conditioning: vertical-bore, geothermal heat pumps (GHPs), air-cooled chiller with gas-fired hot water boiler (ACC/GHWB), or water-cooled chiller with gas-fired steam boiler (WCC/GSB). A precursor to this study examined annual costs associated with repair, service, and corrective maintenance activities tracked in a work order database. This follow-up study examines costs associated with preventive maintenance (PM) activities conducted by the district. Annual PM costs were 5.87 {cents}/yr-ft{sup 2} (63.14 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 7.14 {cents}/yr-ft{sup 2} (76.86 {cents}/yr-m{sup 2}) for GHP, 9.82 {cents}/yr-ft{sup 2} (105.39 {cents}/yr-m{sup 2}) for WCC/ GSB, and 12.65 {cents}/yr-ft{sup 2} (136.30 {cents}/yr-m{sup 2}) for WCC/GHWB. The results of the two analyses are combined to produce an estimate of total annual maintenance costs, by system type, for the 20 schools. Total annual maintenance costs were 8.75 {cents}/yr-ft{sup 2} (94.20 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 9.27 {cents}/yr-ft{sup 2} (99.76 {cents}/yr-m{sup 2}) for GHP, 13.54 {cents}/yr-ft{sup 2} (145.49 {cents}/yr-m{sup 2}) for WCC/GSB, and 18.71 {cents}/yr-ft{sup 2} (201.61 {cents}/yr-m{sup 2}) for WCC/GHWB. It should be noted that these costs represent only the trends seen in the maintenance database of the Lincoln School District. Because of differences in the number of schools using each system type, varying equipment age, and the small total number of schools included in the study, the maintenance costs presented here may not be representative of the maintenance costs seen for similar equipment in other locations.

Martin, M.A.; Madgett, M.G.; Hughes, P.J.

2000-07-01T23:59:59.000Z

36

Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource  

SciTech Connect

Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

Wright, G.W.

1978-09-18T23:59:59.000Z

37

Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource  

DOE Green Energy (OSTI)

Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

Wright, G.W.

1978-09-18T23:59:59.000Z

38

Cost of Radiotherapy Versus NSAID Administration for Prevention of Heterotopic Ossification After Total Hip Arthroplasty  

Science Conference Proceedings (OSTI)

Purpose: Heterotopic ossification (HO), or abnormal bone formation, is a common sequela of total hip arthroplasty. This abnormal bone can impair joint function and must be surgically removed to restore mobility. HO can be prevented by postoperative nonsteroidal anti-inflammatory drug (NSAID) use or radiotherapy (RT). NSAIDs are associated with multiple toxicities, including gastrointestinal bleeding. Although RT has been shown to be more efficacious than NSAIDs at preventing HO, its cost-effectiveness has been questioned. Methods and Materials: We performed an analysis of the cost of postoperative RT to the hip compared with NSAID administration, taking into account the costs of surgery for HO formation, treatment-induced morbidity, and productivity loss from missed work. The costs of RT, surgical revision, and treatment of gastrointestinal bleeding were estimated using the 2007 Medicare Fee Schedule and inpatient diagnosis-related group codes. The cost of lost wages was estimated using the 2006 median salary data from the U.S. Census Bureau. Results: The cost of administering RT was estimated at $899 vs. $20 for NSAID use. After accounting for the additional costs associated with revision total hip arthroplasty and gastrointestinal bleeding, the corresponding estimated costs were $1,208 vs. $930. Conclusion: If the costs associated with treatment failure and treatment-induced morbidity are considered, the cost of NSAIDs approaches that of RT. Other NSAID morbidities and quality-of-life differences that are difficult to quantify add to the cost of NSAIDs. These considerations have led us to recommend RT as the preferred modality for use in prophylaxis against HO after total hip arthroplasty, even when the cost is considered.

Strauss, Jonathan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States)], E-mail: Jonathan_Strauss@rush.edu; Chen, Sea S.; Shah, Anand P.; Coon, Alan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States); Dickler, Adam [Department of Radiation Oncology, Little Company of Mary Hospital, Evergreen Park, IL (United States)

2008-08-01T23:59:59.000Z

39

Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

NONE

1989-05-01T23:59:59.000Z

40

A cost/benefit model for insertion of technological innovation into a total quality management program  

E-Print Network (OSTI)

This study provides economic justification for insertion of technological innovation into a total quality management (TQM) program in a remanufacturing environment. One of the core principles of TQM is continuous improvement. A preferred metric for measuring quality improvement is the cost of quality. Traditionally, comprehensive quality cost reports have regularly been issued in a fixed format to identify opportunities for improvement and provide guidelines for improvement over time. However, current research has shown that continuous improvement is enhanced by a quality cost approach that is much more flexible [1]. This approach is based upon exposure of the cost savings directly related to quality improvement. in many cases a process-level engineer, who may not be trained in quality costing techniques, will be responsible for the economic analysis to justify a quality improvement initiative. Research has shown that most engineers, simply do not have the training or experience to adequately cost justify quality improvement. The results of this study provide process-level engineers with a cost/benefit model template, which can be used to cost justify technological improvement based upon total quality costs.

Ratliff, William L

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interim report on GAO's review of the total cost estimate for the Clinch River Breeder Reactor project  

Science Conference Proceedings (OSTI)

The following sctions discuss (1) the process used by the DOE to estimate CRBR project costs; (2) the inflation allowance used in DOE's cost estimate, which could overstate CRBR costs; (3) the cost of plutonium, revenue projections, and contingency allowances, which may understate the total cost estimate; and (4) several items which are not included in the cost estimate but which, in our view, either will or could result in cost to the Government.

Not Available

1982-09-23T23:59:59.000Z

42

Effect of longer combination vehicles on the total logistic costs of truckload shippers  

SciTech Connect

The purpose of the research described in this paper was to examine the effects of using longer and heavier tractor-trailer combinations from the standpoint of the individual firm or shipper rather than from the viewpoint of the motor carrier. The objective was to determine the effect of longer combination vehicles (LCVS) not only on shippers freight costs but on their inventory and other logistical costs as well. A sample of companies in selected industries provided data on their principal products, traffic flows, and logistics costs in a mail survey. These data were entered into a computer program called the Freight Transportation Analyzer (FTA) which calculated the component logistics costs associated with shipping by single trailers and by two alternative types of double trailer LCVS. A major finding of the study was that, given sufficient flows of a company`s product in a traffic lane, LCVs would in most cases greatly reduce the total logistics cost of firms that currently ship in single trailer truckload quantities. Annual lane volume, lane distance, and annual lane ton-mileage appeared to be good indicators of whether or not shipping by LCVs would benefit a company, whereas product value had surprisingly little influence on the cost-effectiveness of LCVS. An even better indicator was the ratio of current annual freight costs to current annual inventory carrying costs for a firm`s single trailer truckload shipments. Given the current trend toward maintaining small inventories and shipping in small quantities, it is not clear to what extent shippers will abandon single trailer transport to take advantage of the potential reduction in total logistics cost afforded by LCVS.

Middendorf, D.P.; Bronzini, M.S. [Oak Ridge National Lab., TN (United States); Jacoby, J. [Federal Highway Administration, Washington, DC (United States); Coyle, J.J. [Pennsylvania State Univ., University Park, PA (United States)

1994-10-12T23:59:59.000Z

43

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

44

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

45

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

46

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

47

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

48

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

49

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

50

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

51

Work and Car Ownership Among Welfare Recipients  

E-Print Network (OSTI)

Work and Car Ownership Among Welfare Recipients Paul Ongregulation. or Work and Car Ownership Among Welfareexamining the pivotal role of car ownershipin facilitating

Ong, Paul

1995-01-01T23:59:59.000Z

52

Analysis of refiners' total barrel costs and revenues from the sale of petroleum products, 1976 to 1979  

SciTech Connect

In this report, the Economic Regulatory Administration has evaluated refiners' costs and revenues from the sale of major petroleum products from July 1976 through December 1979. This report represents a continuing effort to assess No. 2 heating oil prices and margins in that it updates prior middle distillate studies through March 1980. The analysis examines selling prices and costs associated with each major petroleum product category and a combination of petroleum products (total barrel) from a sample of nine refiners. The total barrel approach was adopted to reduce distortions caused by varying methods of allocation of costs among regulated and unregulated products by refiners. This report determines the extent to which increased costs were recovered on controlled products and whether refiners obtained greater cost recoupment on decontrolled products than would have been allowed under continued controls. The principal methods of measurement used to evaluate product pricing levels for the nine refiners surveyed were cost recoupment (Chapter III), gross margins (Chapter IV), and net margins (Chapter V). Gross margins were derived by subtracting average crude oil costs from average product selling prices for individual product categories and the total barrel. Net margins were derived by subtracting average crude oil costs as well as average marketing, manufacturing, and purchased product costs from average selling prices for individual product categories and the total barrel.

1980-11-01T23:59:59.000Z

53

Coal mine methane ownership issues  

Science Conference Proceedings (OSTI)

The article summarizes the CMM ownership conditions in the US and the obstacles they present for project development. The first section discusses CMM resources and rights on lands controlled by the US Government, the case in several western states. The second section reviews the situation on private lands, such as in much of the eastern US, where ownership of the mineral; resources is governed by state laws. Each of the two sections analyses the ownership procedures and rules that govern both the relationship between the surface and subsurface owners and the relationship between two or more subsurface resource owners. 8 refs., 1 tab.

NONE

2007-09-30T23:59:59.000Z

54

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

55

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

56

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

57

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are artificially low and that these fake costs are used to 'sell'...

58

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

59

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

60

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

62

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

63

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

64

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

65

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

66

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

67

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

68

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

69

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

70

Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy`s Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program`s life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs.

NONE

1990-12-01T23:59:59.000Z

71

Vehicle ownership and mode use: the challenge of sustainability  

E-Print Network (OSTI)

this issue examined car ownership and usage decisions. Thecar-ownership over time. The next two examine the vehicle ownership and usage

Srinivasan, Sivaramakrishnan; Walker, Joan L.

2009-01-01T23:59:59.000Z

72

Probit Model Estimation Revisited: Trinomial Models of Household Car Ownership  

E-Print Network (OSTI)

Household Ownership of Car Davidon, W. C. (1959) VariableStudy Report 9: Models of Car Ownership and License Holding.Trinomial Models of Household Car Ownership. Transportation

Bunch, David S.; Kitamura, Ryuichi

1991-01-01T23:59:59.000Z

73

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

74

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network (OSTI)

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

75

Car Ownership and Welfare-to-Work  

E-Print Network (OSTI)

Problems Related to Child Car, Transportation, and IllnessCar Ownership and Welfare-to-Work Paul M Ong Reprint UCTC Nofor conte~ts thereof oruse Car Ownership and Welfare-to-Work

Ong, Paul M.

2001-01-01T23:59:59.000Z

76

Total System Cost Analysis of Master-Slave Multi-super-Hypercube DX-tree Architecture  

Science Conference Proceedings (OSTI)

In recent years the area of High Performance Computing (HPC) has received an outstanding support both from the users as well as the computer system designers. This support is mainly due to the increase of the complexity and density of the data processing ... Keywords: DX-Tree architecture, XTree architecture, cost analysis, high performance computing, super-hypercube architecture

Hamid Abachi

2013-07-01T23:59:59.000Z

77

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

78

Sustainable Transportation Decision-Making: Spatial Decision Support Systems (SDSS) and Total Cost Analysis  

E-Print Network (OSTI)

Building a new infrastructure facility requires a significant amount of time and expense. This is particularly true for investments in transportation for their longstanding and great degree of impact on society. The scope of time and money involved does not mean, however, we only focus on the economies of scale and may ignore other aspects of the built environment. To this extent, how can we achieve a more balanced perspective in infrastructure decision-making? In addition, what aspects should be considered when making more sustainable decisions about transportation investments? These two questions are the foundations of this study. This dissertation shares its process in part with a previous research project – Texas Urban Triangle (TUT). Although the TUT research generated diverse variables and created possible implementations of spatial decision support system (SDSS), the methodology still demands improvement. The current method has been developed to create suitable routes but is not designed to rank or make comparisons. This is admittedly one of the biggest shortfalls in the general SDSS approach, but is also where I see as an opportunity to make alternative interpretation more comprehensive and effective. The main purpose of this dissertation is to develop a Spatial Decision Support System (SDSS) that will lead to more balanced decision-making in transportation investment and optimize the most sustainable high-speed rail (HSR) route. The decision support system developed here explicitly elaborates the advantages and disadvantages of a transportation corridor in three particular perspectives: construction (fixed costs); operation (maintenance costs); and externalities (social and environmental costs), with a specific focus on environmental externalities. Considering more environmental features in rail routing will offset short-term economic losses and creates more sustainable environments in long-term infrastructure planning.

Kim, Hwan Yong

2013-05-01T23:59:59.000Z

79

Transformation of California's Residential Photovoltaics Market Through Third-Party Ownership  

Science Conference Proceedings (OSTI)

Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption.

Drury, E.; Miller, M.; Macal, C. M.; Graziano, D. J.; Heimiller, D.; Ozik, J.; Perry, T. D.

2012-03-01T23:59:59.000Z

80

A Study of United States Hydroelectric Plant Ownership  

Science Conference Proceedings (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems  

DOE Green Energy (OSTI)

This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

1980-07-01T23:59:59.000Z

82

A Joint Household Travel Distance Generation and Car Ownership Model  

E-Print Network (OSTI)

at a~ljustmentsof car ownership usage that representare from previous car ownership, train usage, and bus-tram-car usageare moreimportantthan the laggedeffects of public transport usage.

Golob, Thomas F.; Van Wissen , Leo

1989-01-01T23:59:59.000Z

83

A Joint Household Travel Distance Generation And Car Ownership Model  

E-Print Network (OSTI)

at a~ljustmentsof car ownership usage that representare from previous car ownership, train usage, and bus-tram-car usageare moreimportantthan the laggedeffects of public transport usage.

Golob, Thomas F.; Van Wissen, Leo

1989-01-01T23:59:59.000Z

84

EA-1236: Preparation for Transfer of Ownership of Naval Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3,...

85

Costs  

Science Conference Proceedings (OSTI)

Table 9   Pricing of automotive coiled spring steel...3 kg (20 tons) per car � Total $40.75 (a) 1989 prices...

86

Work and Car Ownership Among Welfare Recipients  

E-Print Network (OSTI)

examining the pivotal role of car ownership in facilitatingincluding the need for car-based transportation. WelfareEversole, 1993) Solo travel by car is the most widely used

Ong, Paul M.

1995-01-01T23:59:59.000Z

87

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

88

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Max Wei (Primary Contact), Tom McKone, Tim Lipman 1 , David Dornfeld 2 , Josh Chien 2 , Chris Marnay, Adam Weber, Paul Beattie 3 , Patricia Chong 3 Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, CA 94706 Phone: (510) 486-5220 Email: mwei@lbl.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Subcontractors: 1 University of California, Berkeley, Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center, Berkeley, CA 2 University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, CA

89

Property:CompanyOwnership | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:CompanyOwnership Jump to: navigation, search Property Name Company Ownership Property Type String Description Describes whether the company is privately or publicly owned. Allows Values Public, Private This is a property of type String. The allowed values for this property are: Public Private Pages using the property "CompanyOwnership" Showing 16 pages using this property. 4 4C Offshore Limited + Private + A ALDACOR + Private + ALDACOR INC + Private + Alternate Energy LLC + Private + B Balloon Eólica + Private + Buffalo Software + Private + C CarbonFree Technology + Private + Community Energy Inc + Private + E EXEN Holdings LLC + Private + Ecoforest + Private + I Inovus + Private +

90

Body Mass Index, Neighborhood Fast Food and Restaurant Concentration, and Car Ownership  

E-Print Network (OSTI)

Restaurant Concentration, and Car Ownership Sanae Inagami,body mass index and whether car ownership might moderateRESTAURANT CONCENTRATION, AND CAR OWNERSHIP Quiznos, Little

Inagami, Sanae; Cohen, Deborah A.; Brown, Arleen F.; Asch, Steven M.

2009-01-01T23:59:59.000Z

91

1) Ullage Protection Ownership Cost for KC-130J: Explosion ...  

Science Conference Proceedings (OSTI)

... polyether polyurethane, explosion suppressant charcoal colored, Type IV ... personnel; witnessed maintenance activities; incorporated actual hours 5 ...

2011-10-20T23:59:59.000Z

92

DOE G 430.1-1 Chp 6, Project Functions and Activities Definitions for Total Project Cost  

Directives, Delegations, and Requirements

This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated ...

1997-03-28T23:59:59.000Z

93

Media Ownership Workshop on Diversity Issues  

E-Print Network (OSTI)

I appreciate the opportunity to speak with you all this morning, particularly since I seem to be the only non?attorney in the line?up. My training is in social science research. For two decades I have been concerned with examining the dynamic relationship of women and people of color to the news and other media. With me today are two of my colleagues, Professor Reggie Miles and Dr. Yong Jin Park. We are part of a research collaborative called the Howard Media Group, and, thus, my comments represent our shared concern, hope, and suggestions for how the Commission might proceed toward its quadrennial review of women’s and minorities ’ media ownership. We will leave it for our legal scholars today to speak to the finer points of the policies and laws regarding constitutional issues, while we try to identify some related social questions that we believe research needs to address. My remarks today focus specifically on broadcast stations. Media ownership in the United States today divides along the historical fault lines of gender and race. The low single?digit ownership rates for women and people of color in broadcast say quite loudly that the nation is faced with both a women’s rights and civil rights crisis in policy. The seriousness of the situation must be understood within the context of a nation moving rapidly toward racial and ethnic plurality, with no group having a majority. The media today do not and cannot serve the public interest

Carolyn M. Byerly

2010-01-01T23:59:59.000Z

94

Property:EIA/861/Ownership | Open Energy Information  

Open Energy Info (EERE)

Ownership Ownership Jump to: navigation, search This is a property of type String. Description: Ownership Ownership Type: One of 10 different types of ownership categories: Federal; Political Subdivision; Municipal Marketing Authority; Cooperative; State; Municipal; Investor-Owned; Retail Power Marketer (Energy Service Provider); (Wholesale) Power Marketer; Transmission Company. "State" ownership refers to statewide organizations whose scope is larger than county level. [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/Ownership" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + R + 4 4-County Electric Power Assn + C + A A & N Electric Coop (Virginia) + C +

95

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

96

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

97

Busting the Myth That Green Costs More Green  

E-Print Network (OSTI)

Buildings are one of the largest consumers of resources and energy in this country, and according to the AIA (American Institute of Architects) are responsible for almost half of all carbon emissions in the United States. Since Americans spend nearly 90 percent of their lives indoors, buildings are clearly important to our way of life. The most common misconception about green building is that these approaches cost more to implement than traditional strategies and techniques of design and construction. Any decision made in the early stages of programming and design will have economic impact on the overall building cost. How many floors will our building have? Will we use marble in the lobby? Can we use fancy fixtures in the bathrooms? But according to a Davis Langdon study, there was “…no significant difference in the construction costs for LEED®-seeking versus non- LEED® buildings…” In addition to this widely referenced report, other independent studies by the State of California and the GSA indicate that cost premiums are minimal. More importantly, first cost is only a small part of the total cost of building ownership. Cost-of-ownership studies agree that first cost only accounts for around 10 percent of all costs a building owner will spend over the life of the building. The other 90 percent comes in the form of operation and maintenance – two areas in which designing for LEED® certification can save enormously. Any additional costs for building green are recouped in one to two years on average, with exponential cost savings thereafter that leave traditional construction far behind.

Qualk, J. D.; McCown, P.

2008-10-01T23:59:59.000Z

98

A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment  

E-Print Network (OSTI)

household car ownership, mode usage, and sociodemographictrip making and mode usage upon car ownership appears to beto predict car ownership and mode usage by the panel

Kitamura, Ryuichi

2009-01-01T23:59:59.000Z

99

Total supply chain cost model  

E-Print Network (OSTI)

Sourcing and outsourcing decisions have taken on increased importance within Teradyne to improve efficiency and competitiveness. This project delivered a conceptual framework and a software tool to analyze supply chain ...

Wu, Claudia

2005-01-01T23:59:59.000Z

100

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology commercialization cost model and component case study. Final report  

DOE Green Energy (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

102

Technology commercialization cost model and component case study  

DOE Green Energy (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen Hamilton Inc. and Michael A. Cobb Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

103

Property:Building/OwnershipCategory | Open Energy Information  

Open Energy Info (EERE)

OwnershipCategory OwnershipCategory Jump to: navigation, search This is a property of type String. Ownership category Pages using the property "Building/OwnershipCategory" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Government building + Sweden Building 05K0002 + Government building + Sweden Building 05K0003 + Private company + Sweden Building 05K0004 + Private company + Sweden Building 05K0005 + Private company + Sweden Building 05K0006 + Government building + Sweden Building 05K0007 + Government building + Sweden Building 05K0008 + Government building + Sweden Building 05K0009 + Government building + Sweden Building 05K0010 + Government building + Sweden Building 05K0011 + Government building + Sweden Building 05K0012 + Government building +

104

Micro-home ownership in a mega-metropolis  

E-Print Network (OSTI)

As a means to keep pace with today's globally networked society, the home is reconceived as a portable, transformable device that adapts and reconfigures itself to coexist within a range of changing terrains. Ownership ...

MacCarroll, Christian D. (Christian David)

2005-01-01T23:59:59.000Z

105

Why Has Home Ownership Fallen Among the Young? ?  

E-Print Network (OSTI)

We document that home ownership of households with “heads ” aged 25– 44 years fell substantially between 1980 and 2000 and recovered only partially during the 2001–2005 housing boom. The 1980–2000 decline in young home ownership occurred as improvements in mortgage opportunities made it easier to purchase a home. This paper uses an equilibrium life-cycle model calibrated to micro and macro evidence to understand why young home ownership fell over a period when it became easier to own a home. Our findings indicate that a trend toward marrying later and the increase in household earnings risk that occurred after 1980 account for 3/5 to 4/5 of the decline in young home ownership.

Jonas D. M. Fisher; Martin Gervais

2009-01-01T23:59:59.000Z

106

Entity State Code Class of Ownership Residential Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

Code Class of Ownership Residential Commercial Industrial Transportation All Sectors DTE Energy Services AL Non-Utility - - 458,868 - 458,868 Riceland Foods Inc. AR Non-Utility -...

107

New Models of Public Ownership in Energy  

E-Print Network (OSTI)

impose significant new investment requirements on the power sector. Continuous technological improvements (combined with reasonably benign fossil fuel prices) ensured significant real unit cost reductions in power costs (and even larger reductions... , there has been a re-emergence of political concerns about fossil fuel energy security in many countries. The EU is a good example of this. Here the Ukrainian gas supply crises of 2006 and 2009 resulted in reduced supplies of Russian gas into the European...

Haney, Aoife Brophy; Pollitt, Michael G.

108

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)  

DOE Green Energy (OSTI)

This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2010-11-01T23:59:59.000Z

109

The Evolution of Aggregate Stock Ownership: A Unified Explanation  

E-Print Network (OSTI)

Since World War II, the fraction of stocks owned directly by households has decreased by more than 50 percentage points in the United States, the United Kingdom, and Sweden. We argue that tax policy is the driving force. Using data from eight countries, we show that tax-favored investors have replaced households as stockholders and that the fraction of household ownership decreases with measures of the effective marginal tax rate. We further show that the changes in stock ownership accelerate during the high-inflation period of the 1970s and the 1980s. These findings are important for policy considerations on effective taxation and for financial economics research on the longterm

Kristian Rydqvist; Joshua Spizman; Ilya Strebulaev

2008-01-01T23:59:59.000Z

110

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

111

The driving forces behind community and corporate ownership of wind energy in Europe, with implications for New Zealand.  

E-Print Network (OSTI)

??This research assesses the mechanisms that have affected community and corporate ownership of wind power in Europe. Community ownership has proven to be a great… (more)

Campbell, Sarah

112

Survey of nuclear power plant construction costs, 1983  

SciTech Connect

This report presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in the construction pipeline, collected on Form EIA-254. The information on US nuclear power plants in the construction pipeline is reported voluntarily each quarter by the electric utilities. This report presents the data collected in the first quarter of 1983 on the 71 nuclear units in the construction pipeline. Historical data on 73 units, totalling 57,287 net megawatts (MWe) of design capacity, in commercial operation as of March 31, 1983, are also given. Three types of information are included: plant characteristics and ownership, construction costs, and construction schedule or chronology. Summary statistics are presented on direct component costs and construction leadtimes for a sample of operating units and units in the construction pipeline. The reactor-specific cost data included in Chapter 4 are the estimated final nuclear production plant costs and, for units in the construction pipeline, the disbursed and sunk costs as of March 31, 1983. 7 figures, 5 tables.

1983-12-01T23:59:59.000Z

113

Community wind power ownership schemes in Europe and their relevance to the United States  

DOE Green Energy (OSTI)

With varying success, the United States and Europe have followed a more or less parallel path of policies to support wind development over the past twenty years. Feed-in laws and tax incentives first popularized in California in the early 1980s and greatly expanded upon in Europe during the 1990s are gradually giving way to market-based support mechanisms such as renewable portfolio standards, which are being implemented in one form or another in ten US states and at least three European nations. At the same time, electricity markets are being liberalized in both the US and Europe, and many electricity consumers are being given the choice to support the development of renewable energy through higher tariffs, both in traditionally regulated and newly competitive markets. One notable area in which wind development in Europe and United States has not evolved in common, however, is with respect to the level of community ownership of wind turbines or clusters. While community ownership of wind projects is unheard of in the United States, in Europe, local wind cooperatives or other participatory business schemes have been responsible for a large share of total wind development. In Denmark, for example, approximately 80% of all wind turbines are either individually or cooperatively owned, and a similar pattern holds in Germany, the world leader in installed wind capacity. Sweden also has a strong wind cooperative base, and the UK has recently made forays into community wind ownership. Why is it that wind development has evolved this way in Europe, but not in the United States? What incremental effect have community-owned wind schemes had on European wind development? Have community-owned wind schemes driven development in Europe, or are they merely a vehicle through which the fundamental driving institutions have been channeled? Is there value to having community wind ownership in the US? Is there reason to believe that such schemes would succeed in the US? If so, which model seems most appropriate, and what barriers--legal, regulatory, tax, market, or investment--stand in the way of implementing such a scheme? These are the questions this report seeks to address. The report begins with a discussion of the relative advantages and disadvantages of community wind ownership, as opposed to the large commercially-owned projects that have so far dominated US wind development. Next, four detailed case studies relate community-owned wind experience in Denmark, Sweden, the UK, Germany, focusing primarily on the different participatory models employed in each country. The report then categorizes the various models into three main groupings--community-led, developer-led, and investment funds--and draws general conclusions about the success of each category in Europe, and the conditions that dictate the effective use of one approach over another. Finally, the focus shifts to the US, where the report discusses the domestic barriers facing each model category, and identifies the category offering the most value with the fewest barriers to implementation. The report concludes with a high-level introduction to potential applications for community wind ownership within the United States.

Bolinger, Mark

2001-05-15T23:59:59.000Z

114

Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies  

DOE Green Energy (OSTI)

Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

Jones, E.; Eto, J.

1997-09-01T23:59:59.000Z

115

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

116

Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use  

E-Print Network (OSTI)

1996) and the social costs of transportation (Delucchi 2000,Social Cost of Motor Vehicle Use in the United States. Journal of Transportation and

Flamm, Bradley John

2006-01-01T23:59:59.000Z

117

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15,763,807 Contractor: 93,591,118 Fee Available Contract Period: Contract Type: URSCH2M Oak Ridge, LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract...

118

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fee September, 2013 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number:...

119

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 1,516,646 Fee Available...

120

College of Engineering Request for Institutional Waiver of Indirect Cost  

E-Print Network (OSTI)

Investigator Sponsor Project Title Total Direct Costs Total Modified Direct Costs Full Indirect Costs Rate Full Indirect Costs Amount Total Project Costs (with Full IDC) Requested Indirect Costs Rate Requested Indirect Costs Amount Total Project Costs (with req'd IDC) Principal Investigator's Justification for Indirect

Eustice, Ryan

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

DOE Green Energy (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

122

Can Boosting Minority Car-Ownership Rates Narrow Inter-Racial Employment Gaps?  

E-Print Network (OSTI)

the 1990 5% PUMS and the Household Level Car- OwnershipVariable Black CarBlack*Car Female Married High School Graduate Some College

Raphael, Steven; Stoll, Michael

2000-01-01T23:59:59.000Z

123

Can Boosting Minority Car-Ownership Rates Narrow Inter-Racial Employment Gaps?  

E-Print Network (OSTI)

in Bargaining for a New Car. ” American Economic Review 85 (Price Discrimination in New Car Pur- chases: Evidence fromand Lorien Rice. 2000. “Car Ownership, Employment, and Earn-

Raphael, Steven; Stoll, Michael

2001-01-01T23:59:59.000Z

124

World Port Institutions and Productivity: Roles of Ownership, Corporate Structure, and Inter-port Competition  

E-Print Network (OSTI)

market structure: (a) the capital intensity and long life oflocation, ownership, capital intensity, time fixed effectsize Dummy for size*4 Capital intensity SPF- translog Ratio

Cheon, SangHyun

2007-01-01T23:59:59.000Z

125

Ownership Unbuilding in Electricity Markets - A Social Cost Benefit Analysis of the German TSO'S  

E-Print Network (OSTI)

) suggest that there will be inadequate capacity as from 2014, and suggest two key reasons First, the nuclear phase-out law mandates the phasing out of nuclear generation by 2021 and thus more nuclear power plants will need to be decommissioned in the near... difficulty gaining the necessary building permissions. Our approach is the following. We rely on data from especially BDEW, but also company data to estimate decommissioning of existing plants and plans for new construction. Beyond about 2018, we have...

Brunekreeft, Gert

126

Spontaneous centralization of control in a network of company ownerships  

E-Print Network (OSTI)

We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy.

Krause, Sebastian M; Bornholdt, Stefan

2013-01-01T23:59:59.000Z

127

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

the use of Persian-Gulf oil by motor vehicles The sociallye r s i a n - G u l f Oil f o r Motor Vehicles 16. T h e C ofor motor vehicles: lost consumer surplus in other oil-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

128

transportation Total Percent delivered cost transportation Percent ...  

U.S. Energy Information Administration (EIA)

$12.75 - - - - - 36.0% - 2005 $13.64 - $13.64 - - - - - 36.8% - 2006; $14.50 - $14.04 - - - - - 34.3% - 2007 $15 ...

129

Social media ownership: using twitter as a window onto current attitudes and beliefs  

Science Conference Proceedings (OSTI)

Social media, by its very nature, introduces questions about ownership. Ownership comes into play most crucially when we investigate how social media is saved or archived; how it is reused; and whether it can be removed or deleted. We investigate these ... Keywords: information rights, reuse, social media, survey, twitter

Catherine C. Marshall; Frank M. Shipman

2011-05-01T23:59:59.000Z

130

Rethinking the ownership of information in the21st century: Ethical implications  

Science Conference Proceedings (OSTI)

This paper discusses basic concepts and recent developments in intellectual property ownership in the United States. Various philosophical arguments have previously been put forward to support the creation and maintenance of intellectual property ... Keywords: access, copyright, ethics, intellectual property, new media, ownership, patent, trade secret, trademark

Tomas A. Lipinski; Johannes Britz

2000-05-01T23:59:59.000Z

131

Non-Federal Participation Capacity Ownership Contracts and Section 9(C) Policy; Record of Decision.  

SciTech Connect

On March 25, 1994, the BPA Administrator`s Record of Decision (ROD) on Non-Federal Participation Capacity Ownership was signed. Such ROD documented the decision to proceed with 725 MW of Capacity Ownership in the PNW-PSW AC Intertie for non-Federal parties, and specifically discussed (1) the background of the PNW-PSW AC Intertie and BPA`s access policies and proposals; (2) the general features of the Capacity Ownership proposal and its supporting NFP EIS analysis; (3) PNW-PSW AC Intertie capacity allocations between BPA and non-Federal parties; and (4) BPA`s Protected Area provisions and how they would be applied to Capacity Ownership. The Capacity Ownership decision followed extensive review and analysis by BPA, and expressions of interest by utilities and members of Congress to give full consideration to non-Federal participation in the financing and use of the Third AC Intertie expansion. As specified in Section 1.3.3.2 of the Non-Federal Participation Capacity Ownership ROD, BPA would address the final Capacity Ownership contract terms and the Northwest Power Act Section 9(c) Policy, and how it relates to BPA`s Capacity Ownership offering, in a separate ROD. Accordingly, such items are discussed herein.

United States. Bonneville Power Administration

1994-07-01T23:59:59.000Z

132

UCSC Major Capital Improvement Projects -Anticipated Construction Times Showing Total Project Costs 11/20/07 2007-8 July 2008-9 July 2009-10 July 2010-11 July 2011-12 July 2012-13 July 2013-14 July  

E-Print Network (OSTI)

Projects - Anticipated Construction Times Showing Total Project Costs 11/20/07 2007-8 July 2008-9 July 2009UCSC Major Capital Improvement Projects - Anticipated Construction Times Showing Total Project Costs 11/20/07 2007-8 July 2008-9 July 2009-10 July 2010-11 July 2011-12 July 2012-13 July 2013-14 July

California at Santa Cruz, University of

133

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

134

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

135

Percent of 2010 Luminaire Cost LED Luminaire Cost  

E-Print Network (OSTI)

LEDs promise to change the world, and few doubt that they will, but a key limiter to more rapid adoption is the cost of the LED themselves. The cost breakdown of LED luminaires vary, but it is safe to put the cost of the LED at around 25% to 40 % of the total luminaire cost. It is projected to remain a significant cost of the total luminaire for many years.

unknown authors

2012-01-01T23:59:59.000Z

136

The Dynamics of Household Travel Time Expenditures and Car Ownership Decisions  

E-Print Network (OSTI)

or more of the others (say, car usage as a function of carnumberof workers, explains car usage, but not car ownership;locations imply higher car usage in terms of travel times

Golob, Thomas F.

1990-01-01T23:59:59.000Z

137

CUSTODY/OWNERSHIP DICHOTOMIES IN THE U.S. PETROLEUM SUPPLY SYSTEM  

E-Print Network (OSTI)

to vary from the legal owner of the oil. regards its own thesomeone elseps crude oil (frequently the case understandablyan ownership chain to affect oil custodially held at a given

Cahn, David F.

2013-01-01T23:59:59.000Z

138

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network (OSTI)

This paper examines the relationships between the built environment—both ‘neighborhood’ design characteristics and relative location—and motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

139

Non-Federal Participation Capacity Ownership : Administrator`s Final Record of Decision.  

Science Conference Proceedings (OSTI)

In a September 1988 Record of Decision (ROD), Bonneville Power Administration (BPA) explained its decision to proceed with the Third Alternating Current (Third AC) Intertie addition construction project using its own funding. At that time, BPA`s decision on non-Federal ownership access to the added capacity was deferred to a separate non-Federal participation policy development process. BPA`s preferred alternative for providing non-Federal Intertie access is to adopt Capacity Ownership for 725 MW. Capacity Ownership allows non-Federal PNW scheduling utilities to purchase contract rights to use protions of BPA`s share of AC Intertie capacity for the life of the Intertie facilities. This ROD documents BPA`s decision to proceed with Capacity Ownership for non-Federal parties.

United States. Bonneville Power Administration.

1994-03-01T23:59:59.000Z

140

Evaluation of I-15 Devore (08-0A4224) Long-Life Pavement Rehabilitation Costs  

E-Print Network (OSTI)

the expenditures for these projects, costs were divided intoemulsion. Table 1 Project Cost Breakdown Direct CostsTotal Cost)/(Lane Miles) Project Cost Breakdown Original Bid

Fermo, Mary G; Santero, Nicholas J; Nokes, William; Harvey, John T

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Arguments For and Against Ownership Unbundling of Energy Transmission Networks  

E-Print Network (OSTI)

.g. PJM), hybrid independent system operator/independent transmission owner (e.g. Nord Pool) and vertical integration (e.g. traditional European model). • We address the question: What is the evidence for the superiority of the ownership unbundled... transmission operation from the rest of the sector while transmission assets remain under the same ownership as generation/production or retail. This is an increasingly common model. 3. The independent system operator - ISO - model, e.g. PJM in the US...

Pollitt, Michael G.

142

Ownership unbundling in electricity distribution: empircal evidence from New Zealand  

E-Print Network (OSTI)

electricity generation, respectively. Other fuel types including oil, biogas, waste heat, wood, and wind represented the remaining 3 percent. The reliance on hydro implies that (marginal) costs of generation will be low and depend on water inflow (rain...

Nillesen, Paul; Pollitt, Michael G.

143

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

144

What solar heating costs  

SciTech Connect

Few people know why solar energy systems cost what they do. Designers and installers know what whole packages cost, but rarely how much goes to piping, how much for labor and how much for the collectors. Yet one stands a better chance of controlling costs if one can compare where the money is going against where it should be going. A detailed Tennessee Valley Authority study of large solar projects shows how much each component contributes to the total bill.

Adams, J.A.

1985-05-01T23:59:59.000Z

145

Ownership and usage of small passenger vehicles: findings from the 1977 National Personal Transportation Study  

SciTech Connect

This report examines current patterns in the ownership and usage of small vehicles by private households. The analysis was conducted to shed additional light on the market potential for smaller, energy efficient vehicles, in particular, electric cars. The 1977 Nationwide Personal Transportation Survey (NPTS) was used to obtain information on the socio-demographic characteristics and the travel and vehicle ownership behavior of US households based on a national probability sample. The issues posed to direct the investigation of small vehicle ownership and use behavior include: the ownership of small vehicles; the proportion of the private vehicle population accounted for by small vehicles; how small and large vehicles compare in terms of physical characteristics and performance and terms of usage; and how small/large vehicle ownership and usage differences are explained by household differences or physical differences in the vehicles themselves. The study's approach to these issues has focused on descriptive data analysis, employing such tools as cross-classification tables, distributions, and graphic displays. (MCW)

1981-12-01T23:59:59.000Z

146

SOM ARRA Grant Activity Proposals Submitted as of 7-15-2010 Project Costs*  

E-Print Network (OSTI)

SOM ARRA Grant Activity Proposals Submitted as of 7-15-2010 Project Costs* Total # of Proposals 1,264 Total Project Costs $1,093,036,719 Total Direct Costs $803,739,425 Total Indirects $290,408,131 Awards Received as of 2-11-2011 Project Costs* Year 1 Costs Total # of Awards 333 Total Project Costs $186

Bushman, Frederic

147

The road to renewables : a case study of wind energy, local ownership and social acceptance at Samsř.  

E-Print Network (OSTI)

??The aim of this thesis is to investigate how local participation and local ownership enhances social acceptance of wind energy. In Norway many planned wind… (more)

Jakobsen, Ina

2008-01-01T23:59:59.000Z

148

A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance  

E-Print Network (OSTI)

This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams to very low dewpoints unattainable with conventional cooling approaches. The system allows for precise control of the indoor space humidity while delivering high quantities of outdoor air, at both peak and part load conditions, and during both occupied and unoccupied modes. Low operating cost, reasonable first cost and a significant reduction in cooling plant capacity requirements provide a life cycle cost that is substantially less than that of more conventional system approaches.

Fischer, J. C.

2000-01-01T23:59:59.000Z

149

Oh, the Joys of Energy-Inefficient Smartphone Ownership! | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oh, the Joys of Energy-Inefficient Smartphone Ownership! Oh, the Joys of Energy-Inefficient Smartphone Ownership! Oh, the Joys of Energy-Inefficient Smartphone Ownership! August 22, 2011 - 1:23pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory So, I recently purchased my first smartphone. For the most part, I love the daylights out of it. But you know what? Its battery life is horrible. Smartphones take a lot of charging. I was horrified when one of my friends got a smartphone about a year ago and promptly announced that his phone couldn't survive a full 24 hours without a charge. I clearly wasn't that horrified, though, because mine isn't that much better. During my first day at work, my smartphone promptly wore its battery down to nearly nothing. (And I wasn't actually using it at work, I swear! It was just sitting

150

EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

236: Preparation for Transfer of Ownership of Naval Petroleum 236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY SUMMARY This EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation. Proposed activities would include accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the development of the Rocky Mountain Oilfield Testing Center (RMOTC).

151

Chapter_4_Foreign_Ownership_Control_or_Influence_Facility_Clearance_and_Classified_Contract_Registration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreign Ownership, Control, or Influence; Foreign Ownership, Control, or Influence; Facility Clearance; and Classified Contract Registration This chapter summarizes the process that contractors undergo to be authorized to perform classified work for DOE HQ. The process involves three-steps: obtaining a Foreign Ownership, Control, or Influence (FOCI) determination, obtaining a Facility Clearance; and registering classified contracts within DOE's Safeguards and Security Information Management System (SSIMS). At HQ, all these actions are performed within the Office of Information Security (HS- 92), within the Office of Health, Safety and Security. HS-92 has developed a website (see the Helpful Websites subsection, below) containing instructional handbooks for completing the forms identified in this chapter. These handbooks

152

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

153

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

154

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

155

Does Ownership Matter? The Performance and Efficiency of State Oil vs. Private Oil (1987-2006)  

E-Print Network (OSTI)

deflators; the annual average real-terms crude oil price and global refining margin (average of US Gulf Coast, North-West Europe and Singapore), sourced from the BP Statistical Review of World Energy; a dummy variable for countries with OPEC membership... the forms and degree of State Oil vs. Private Oil involvement. For the upstream, the most fundamental decision is between public or private ownership of the subsoil. As of today, the U.S. is the only country to have opted for private ownership – all...

Wolf, C

156

Projects Completed Year-to-Date Grand Total: $114,360,905 1,038,467Grand Total SF:Text25:09-Nov-10  

E-Print Network (OSTI)

Project Location: Branch Campus Architect Project Cost Project Name SFContractor Project Start/End Project,983,29974,624Total SF:Total Projects 5Totals for Branch Campus Project Location: HSC Architect Project Cost Project/30/2010 Mary Gauer Total Cost: $13,070,289118,332Total SF:Total Projects 12Totals for HSC Project Location

New Mexico, University of

157

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

158

Evaluation of I-15 Devore (08-0A4224) Long-Life Pavement Rehabilitation Costs  

E-Print Network (OSTI)

Cost Indirect Costs Engineer's Estimate Category Amount2 lane-mi. Administrative Costs Engineer's Estimate CategoryMiles) Total (All Costs) Engineer's Estimate Amount Original

Fermo, Mary G; Santero, Nicholas J; Nokes, William; Harvey, John T

2005-01-01T23:59:59.000Z

159

Photovoltaic balance-of-system designs and costs at PVUSA  

DOE Green Energy (OSTI)

This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA`s main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

Reyes, A.B.; Jennings, C.

1995-05-01T23:59:59.000Z

160

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beyond participation: empowerment, control and ownership in youth-led collaborative design  

Science Conference Proceedings (OSTI)

We describe a collaborative design project with a group of young people in which an interactive educational information pack for teenagers was implemented. Instead of just providing input to a design project, the young people initiated, controlled and ... Keywords: DIY, control, empowerment, engagement, initiative, interactivity, ownership, participatory design, youth

Lalya Gaye; Atau Tanaka

2011-11-01T23:59:59.000Z

162

Geopressured geothermal resources of Texas: a report on legal ownership and royalty issues  

DOE Green Energy (OSTI)

Legal issues affecting ownership of the geopressured resources were examined. It was concluded that consideration of royalty interests indicates that the greatest promise for geothermal resource development would be offered if the geopressured resources were held to be entirely mineral in character. Further, the energy of the geopressured water should be held to be embraced by the standard term other minerals. (MHR)

Oberbeck, A.W.

1977-01-27T23:59:59.000Z

163

COST SHARING ON SPONSORED PROJECTS  

E-Print Network (OSTI)

COST SHARING ON SPONSORED PROJECTS 1 California Institute of Technology Issuing Authority: Office is that portion of the total cost of an externally funded project that is not funded by the sponsor. Depending as a demonstration of its commitment to the project. When voluntary cost sharing is included in the proposal budget

Tai, Yu-Chong

164

Policy 1306 Cost Sharing on Sponsored Projects  

E-Print Network (OSTI)

Policy 1306 Cost Sharing on Sponsored Projects Responsible Office Office of Research Administration committed cost sharing, and in-kind/matching requirements associated with sponsored projects. Definitions Cost Sharing A portion of total sponsored project costs not funded by the sponsor. Mandatory Cost

165

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

DOE Green Energy (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

166

Improved supplier selection and cost management for globalized automotive production  

E-Print Network (OSTI)

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

167

The Cost of Debt ?  

E-Print Network (OSTI)

We estimate firm-specific marginal cost of debt functions for a large panel of companies between 1980 and 2007. The marginal cost curves are identified by exogenous variation in the marginal tax benefits of debt. The location of a given company’s cost of debt function varies with characteristics such as asset collateral, size, book-to-market, asset tangibility, cash flows, and whether the firm pays dividends. By integrating the area between benefit and cost functions we estimate that the equilibrium net benefit of debt is 3.5 % of asset value, resulting from an estimated gross benefit of debt of 10.4 % of asset value and an estimated cost of debt of 6.9%. We find that the cost of being overlevered is asymmetrically higher than the cost of being underlevered and that expected default costs constitute approximately half of the total ex ante cost of debt. We thank Rick Green (the Acting Editor), and an anonymous referee, Heitor Almeida, Ravi Bansal,

Jules H. Van Binsbergen; John R. Graham; Jie Yang

2010-01-01T23:59:59.000Z

168

MHV Fleet Testing - Summary Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .17mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 116,785 Cumulative MPG: 27.9 Major Operations & Maintenance Events: None...

169

VIN# WME4513341K406476 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: 0.23mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 54,201 Cumulative MPG: 37 Major Operations & Maintenance Events: *Purchase...

170

MHV Fleet Testing - Summary Fact Sheet - 2010 Smartfortwo - VIN...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .16mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 58,973 Cumulative MPG: 36.3 Major Operations & Maintenance Events: None...

171

VIN# JMZBLA4G601112736 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .17mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 103,460 Cumulative MPG: 28.2 Major Operations & Maintenance Events: None...

172

VIN# WVWZZZ1KZAP125777 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .14mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 120,177 Cumulative MPG: 43.5 Major Operations & Maintenance Events: 92012:...

173

VIN# WME4513341K406644 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .16mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 58,973 Cumulative MPG: 36.3 Major Operations & Maintenance Events: None...

174

MHV Fleet Testing - Summary Fact Sheet - 2010 Volkswagen Golf...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .13mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 103,642 Cumulative MPG: 42.8 Major Operations & Maintenance Events: None...

175

VIN# WVWZZZ1KZAW388111 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .13mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 99,036 Cumulative MPG: 42.9 Major Operations & Maintenance Events: None...

176

MHV Fleet Testing - Summary Fact Sheet - 2010 Smartfortwo - VIN...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: 0.17mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 49,578 Cumulative MPG: 36.8 Major Operations & Maintenance Events: 711...

177

VIN# WME4513341K406659 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: 0.17mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 49,578 Cumulative MPG: 36.8 Major Operations & Maintenance Events: 711...

178

MHV Fleet Testing - Summary Fact Sheet - 2010 Volkswagen Golf...  

NLE Websites -- All DOE Office Websites (Extended Search)

mile Operating Cost: .13mile** Total Ownership Cost: *** Operating Performance: Total miles driven: 99,036 Cumulative MPG: 42.9 Major Operations & Maintenance Events: None...

179

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

180

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"2012 Utility Bundled Retail Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16180,399144,41820,10.477422 "Alaska Power and Telephone Co","AK","Investor Owned",6976,64788,18175,28.053035 "Alaska Village Elec Coop, Inc","AK","Cooperative",7923,73956,42708,57.74785 "Anchorage Municipal Light and Power","AK","Municipal",30747,1100665,100959.2,9.1725639 "Barrow Utils & Elec Coop, Inc","AK","Cooperative",1871,49580,5293,10.675676

182

"2012 Retail Power Marketers Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from form EIA-861 schedule 4B)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "3 Phases Renewables","CA","Power Marketer",354,148820,7268.5,4.8840882 "Calpine Power America LLC","CA","Power Marketer",1,1072508,54458,5.0776311 "City of Corona - (CA)","CA","Municipal",859,65933,5749.5,8.720216 "Commerce Energy, Inc.","CA","Power Marketer",23386,596604,37753,6.3279831 "Constellation NewEnergy, Inc","CA","Power Marketer",362,4777373,250287.4,5.2390173

183

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

184

The Influence of Availability Costs on Optimal Heat Exchanger Size  

E-Print Network (OSTI)

Optimizing heat exchangers based on second law rather than first law considerations ensures that the most efficient use of available energy is being made. Techniques for second-law optimizing heat exchangers have been developed recently that are straightforward and simple. The main difficulty lies in determining the proper cost of irrreversibility that is to be used in the optimization process. This paper demonstrates how this issue can be handled by including the irreversibility cost in a dimensionless parameter that represents the ratio of annual ownership costs to annual operating costs that include irreversibility costs. In this way, each heat exchanger designer can estimate the costs of irreversibilities for his particular system, and use the generalized method for determining the optimal heat exchanger size.

Witte, L. C.

1987-09-01T23:59:59.000Z

185

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network (OSTI)

no name, i.e. number of LEDs, rechargeable/dry cell, numberthe name, i.e. number of LEDs, rechargeable/dry cell, numberno name, i.e. number of LEDs, rechargeable/dry cell, number

Tracy, Jennifer

2010-01-01T23:59:59.000Z

186

A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment  

E-Print Network (OSTI)

1987) Why do people buy cars? Paper presented at the 5thRegression Model of Private Car Use. Report AE 4/87, FacultyEffects of Income and Car Ownership on Trip Generation: A

Kitamura, Ryuichi

2009-01-01T23:59:59.000Z

187

2013-2014 Projected Aviation Program Costs  

E-Print Network (OSTI)

06/21/13 2013-2014 Projected Aviation Program Costs UND Aerospace offers two aviation degree the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey Certificate $ 11,574 **NOTE: Total flight costs are based on averages and are subject to change. Also, the ATC

Delene, David J.

188

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network (OSTI)

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 total installed cost #12;6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and downtown data Verified that historical natural gas pipeline cost data

189

Evaluation of land ownership, lease status, and surface features in five geopressured geothermal prospects  

DOE Green Energy (OSTI)

This study was accomplished for the purpose of gathering information pertaining to land and lease ownership, surface features and use and relevant environmental factors in the Lake Theriot (West and East), Kaplan, Bayou Hebert and Freshwater Bayou geopressured geothermal prospects in Louisiana, and the Blessing geopressured geothermal prospect in Texas. This information and recommendations predicated upon it will then be used to augment engineering and geological data utilized to select geopressured geothermal test well sites within the prospects. The five geopressured geothermal prospects are briefly described and recommendations given.

Hackenbracht, W.N.

1981-05-01T23:59:59.000Z

190

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

net median commissioning project cost was reduced by 49% oncommissioning project costs and savings. Commissioning isproportional to total project cost. The nature of activities

Mills, Evan

2010-01-01T23:59:59.000Z

191

The Health and Visibility Cost of Air Pollution: A Comparison of Estimation Methods  

E-Print Network (OSTI)

whether the visibility cost estimates from CVM and HPA aredetermine the overall cost estimates. 6 And the considerableuncertainty in the total cost estimate, as manifested by the

Delucchi, Mark; Murphy, James; McCubbin, Donald

2002-01-01T23:59:59.000Z

192

Market failures, consumer preferences, and transaction costs in energy efficiency purchase decisions  

E-Print Network (OSTI)

Transaction Costs, Energy Efficiency and InstitutionalTransaction Costs in Energy Efficiency Purchase Decisionsof total project costs than energy efficiency projects.

Sathaye, Jayant; Murtishaw, Scott

2004-01-01T23:59:59.000Z

193

Trenton ICES: demonstration of a grid-connected integrated community energy system. Phase II. Volumes 1 and 2. Preliminary design of ICES system and analysis of community ownership  

SciTech Connect

Preliminary design and evaluation for the system has been carried out. The findings of this study are: (1) it is technically feasible, utilizing commercially available hardware; (2) under utility ownership and operation, it will not be economically competitive with conventional alternatives for heating and cooling buildings (analysis contained in companion report under separate cover); (3) under utility ownership and operation, no restrictions have been identified that would prevent the project from proceeding; (4) under community ownership, preliminary analysis indicates that thermal energy produced by Trenton ICES will be approximately 12 percent less expensive than thermal energy produced by oil-fired boilers; and (5) a review and update of institutional analyses performed during Phase 2 has identified no factors that would preclude community ownership and operation of the Trenton ICES. The background data produced for the analysis of the Trenton ICES based on utility ownership and operation can, in large part, be used as the bases for a detailed analysis of community ownership.

1978-03-22T23:59:59.000Z

194

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

195

C. ESTIMATED COSTS OF LRDP PROPOSALS C. ESTIMATED COSTS OF LRDP PROPOSALS  

E-Print Network (OSTI)

, categorized by project category by site and with total estimated project costs. Table 38 compares and the Medical Center). /d/ Aldea housing project only; additional housing is planned, but the costs are highly renovation for the laboratory buildings). Recent projects comprised 19% of the total costs compared with 17

Mullins, Dyche

196

Shared money, less conflict, stronger marriages: The relationship between money ownership perceptions, negative communication, financial satisfaction, marital satisfaction and marital instability.  

E-Print Network (OSTI)

??The current study tests a conceptual model exploring the relationship between perceived money ownership (PMO) in marriage, negative communication, financial satisfaction, marital satisfaction and marital… (more)

Boyle, Jeremy

2012-01-01T23:59:59.000Z

197

Impact of Flow Control and Tax Reform on Ownership and Growth in the U.S. Waste-to-Energy Industry  

Reports and Publications (EIA)

This article analyzes two key issues that could be influencing growth and ownership (both public and private) in the Waste To Energy (WTE) industry.

Information Center

1994-09-01T23:59:59.000Z

198

Production cost analysis of Euphorbia lathyris. Final report  

DOE Green Energy (OSTI)

The purpose of this study is to estimate costs of production for Euphorbia lathyris (hereafter referred to as Euphorbia) in commercial-scale quantities. Selection of five US locations for analysis was based on assumed climatic and cultivation requirements. The five areas are: nonirrigated areas (Southeast Kansas and Central Oklahoma, Northeast Louisiana and Central Mississippi, Southern Illinois), and irrigated areas: (San Joaquin Valley and the Imperial Valley, California and Yuma, Arizona). Cost estimates are tailored to reflect each region's requirements and capabilities. Variable costs for inputs such as cultivation, planting, fertilization, pesticide application, and harvesting include material costs, equipment ownership, operating costs, and labor. Fixed costs include land, management, and transportation of the plant material to a conversion facility. Euphorbia crop production costs, on the average, range between $215 per acre in nonirrigated areas to $500 per acre in irrigated areas. Extraction costs for conversion of Euphorbia plant material to oil are estimated at $33.76 per barrel of oil, assuming a plant capacity of 3000 dry ST/D. Estimated Euphorbia crop production costs are competitive with those of corn. Alfalfa production costs per acre are less than those of Euphorbia in the Kansas/Oklahoma and Southern Illinois site, but greater in the irrigated regions. This disparity is accounted for largely by differences in productivity and irrigation requirements.

Mendel, D.A.

1979-08-01T23:59:59.000Z

199

Production cost analysis of Euphorbia lathyris. Final report  

SciTech Connect

The purpose of this study is to estimate costs of production for Euphorbia lathyris (hereafter referred to as Euphorbia) in commercial-scale quantities. Selection of five US locations for analysis was based on assumed climatic and cultivation requirements. The five areas are: nonirrigated areas (Southeast Kansas and Central Oklahoma, Northeast Louisiana and Central Mississippi, Southern Illinois), and irrigated areas: (San Joaquin Valley and the Imperial Valley, California and Yuma, Arizona). Cost estimates are tailored to reflect each region's requirements and capabilities. Variable costs for inputs such as cultivation, planting, fertilization, pesticide application, and harvesting include material costs, equipment ownership, operating costs, and labor. Fixed costs include land, management, and transportation of the plant material to a conversion facility. Euphorbia crop production costs, on the average, range between $215 per acre in nonirrigated areas to $500 per acre in irrigated areas. Extraction costs for conversion of Euphorbia plant material to oil are estimated at $33.76 per barrel of oil, assuming a plant capacity of 3000 dry ST/D. Estimated Euphorbia crop production costs are competitive with those of corn. Alfalfa production costs per acre are less than those of Euphorbia in the Kansas/Oklahoma and Southern Illinois site, but greater in the irrigated regions. This disparity is accounted for largely by differences in productivity and irrigation requirements.

Mendel, D.A.

1979-08-01T23:59:59.000Z

200

U.S. Total Refiner Acquisition Cost of Crude Oil  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History Composite 67.94 94.74 59.29 76.69 101.87 100.93 1968-2012 Domestic 69.65 98.47 59.49 78.01 100.71 100.72 1968-2012 Imported 67.04 92.77...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Introduction to production cost models 1.0 Introduction  

E-Print Network (OSTI)

(t) is total maintenance costs in year t. · O(t) is the cost associated with outages. and the overbar in (1 · I(t) is total investment costs at year t · S(t) is total salvage value of retired plants at year t (and for all plants still in operation at year T). · F(t) is total fuel costs in year t. · M

McCalley, James D.

202

Source choice in agricultural news coverage: impacts of reporter specialization and newspaper location, ownership, and circulation  

E-Print Network (OSTI)

This study examined coverage of the December 2003 bovine spongiform encephalopathy event to discover reporters’ sources for breaking agricultural news, the impact of reporter specialization on source choices, and the impact of newspaper differences, including location, circulation, and ownership, on coverage. Quantitative content analysis was performed on 62 stories selected through a keyword search for the period December 23, 2003 through October 31, 2004 from U.S. newspapers included in the LexisNexis database. These stories were divided into two equal groups based on reporter work-role identity and were analyzed by length, number of sources, and source variety, and by location, circulation, and ownership of the newspapers in which they appeared. ANOVA, bivariate correlation, and forced entry regression were statistical techniques used. Results indicated numbers of stories, story length, and numbers of sources per story appear related to newspaper location, and use of scientists and agricultural scientists as sources to be correlated with type of newspaper. Newspaper circulation and ownership type were found to explain a statistically significant amount of variance in number of sources used. No statistically significant differences between mean length or mean number of sources used were found between stories written by science-specialty beat reporters and those written by reporters not assigned to such beats, contradicting previous research. However, while mean overall source variety did not differ between the two reporters groups, work-role identity was found to be correlated with use of scientists and agricultural scientists as sources. Extrapolation from this study suggests it is open to question whether (a) reporters would be well-advised to pursue courses of study or to seek additional training to build defined areas of expertise, better equipping themselves to cover more complex issues; (b) editors should seek candidates with such special training and structure their newsroom routines to accommodate specialty reporters when considering adding employees to their reporting staffs; and (c) universities should offer journalism curricula that facilitate both acquisition of basic reporting skills and registration for substantive electives which build subject-matter knowledge. Answers to these questions should be actively pursued, since they may shape the future of journalism education and practice.

White, Judith McIntosh

2006-12-01T23:59:59.000Z

203

2012 2013 Projected Aviation Program Costs  

E-Print Network (OSTI)

2012 ­ 2013 Projected Aviation Program Costs UND Aerospace offers two aviation degree programs with a total of seven academic majors. Each has its own flight course requirements, which affect the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey of Flight

Delene, David J.

204

PROJECT COST $53,108,617  

E-Print Network (OSTI)

PROJECT COST $53,108,617 CONSTRUCTION COST $42,730,152 FURNISHING & EQUIPMENT $1,671.580 TOTAL SPRING 2001 Review of Documents and Cost Estimate Reconciliation APRIL 20, 2001 Formal Ground Breaking of the Campus Intramural and Recreation Advisory Committee SPRING/SUMMER1998 Campus Needs Assessment Process

Bittner, Eric R.

205

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network (OSTI)

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

206

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

207

Sample Invoice Cost Share UT-B Contracts Div August 2009  

E-Print Network (OSTI)

SHIPPED VIA CUSTOMER NUMBER TERMS NET DAYS COST ELEMENT DESCRIPTION CURRENT COSTS CUMULATIVE COSTS DIRECT for the Department of Energy COMMENTS OR SPECIAL INSTRUCTIONS: SUBCONTRACT NUMBER BILLING PERIOD Begin/End Date AMOUNT PREVIOUSLY PAID TOTAL COST INCURRED COMPANY COST SHARE * SELLERS COST SHARE * TOTAL INVOICED *If

208

Ownership transfer for non-federate object and time management in developing an hla compliant logistics model.  

Science Conference Proceedings (OSTI)

A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD) at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a seaport and provides throughput capability, resource utilization, and other important information on the bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets, are objects having asset attributes. Cargo comes to a seaport for loading or unloading. The ownership of a cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the cargo object is responsible for publishing and updating the attributes of the cargo object when it has the ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM federate. The ownership management service provided by the current RTI does not directly address this issue. The second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization with other simulation models. This paper attempts to address these two issues and methodologies developed for solving these two problems.

Li, Z.

1998-01-12T23:59:59.000Z

209

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

210

Cogeneration Plant is Designed for Total Energy  

E-Print Network (OSTI)

This paper describes application considerations, design criteria, design features, operating characteristics and performance of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle cogeneration in an energy intensive electrochemical manufacturing process has resulted in an efficient reliable energy supply that has significantly reduced energy cost and therefore manufacturing cost.

Howell, H. D.; Vera, R. L.

1987-09-01T23:59:59.000Z

211

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

212

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

213

U.S. Department of Energy Releases Revised Total System Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost...

214

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Kwh/mile) d Total Battery Capacity (Kwh) Cost per Battery (this study. in Total battery capacity was calculated as:calculated as total battery capacity multiplied by per-unit-

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

215

Minimum Changeover Cost Arborescence  

E-Print Network (OSTI)

having minimum changeover cost, a cost that we now describe. ... We define the changeover cost at j, denoted by d(j), as the sum of the costs at j paid for each of  ...

216

Brownstone and Fang 1 A VEHICLE OWNERSHIP AND UTILIZATION CHOICE MODEL WITH ENDOGENOUS RESIDENTIAL DENSITY  

E-Print Network (OSTI)

This paper explores the impact of residential density on households ’ vehicle type and usage choices using the 2001 National Household Travel Survey (NHTS). Attempts to quantify the effect of urban form on households ’ vehicle choice and utilization often encounter the problem of sample selectivity. Household characteristics that are unobservable to the researchers might determine simultaneously where to live, what vehicles to choose, and how much to drive them. Unless this simultaneity is modeled, any relationship between residential density and vehicle choice may be biased. This paper extends the Bayesian multivariate ordered probit and tobit model developed in Fang (2008) to treat local residential density as endogenous. The model includes equations for vehicle ownership and usage in terms of number of cars, number of trucks (vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by trucks. We carry out policy simulations which show that an increase in residential density has a negligible effect on car choice and utilization, but slightly reduces truck choice and utilization. We also perform an out-of-sample forecast using a holdout sample to test the robustness of the model. * Corresponding author.

David Brownstone; Hao (audrey Fang

2009-01-01T23:59:59.000Z

217

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

SciTech Connect

Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

Letschert, Virginie; McNeil, Michael A.

2009-03-23T23:59:59.000Z

218

Status Production Energy Efficiency % 72 70 Storage, Compression, Dispensing Efficiency Total Hydrogen Costs Hydrogen Production Costs  

E-Print Network (OSTI)

By 2012, develop and demonstrate distributed reforming technology for producing hydrogen from bio-oil at $3.80/kilogram (kg) purified hydrogen. By 2011, develop a prototype that incorporates the key operations: bio-oil injection, catalytic autothermal reforming, water-gas shift, and hydrogen isolation. Develop the necessary understanding of process chemistry, bio-oil compositional effects, catalyst chemistry, and deactivation and regeneration strategy to form a basis for process definition for automated distributed reforming to meet the DOE targets. In Fiscal Year (FY) 2010, demonstrate the process of auto-thermal reforming of bio-oil including a longterm catalyst performance, yields of hydrogen, and mass balances. Using a bench-scale reactor system, demonstrate catalytic conversion consistent with $3.80/kg hydrogen.

Richard French; Michael Penev; Rick Farmer

2010-01-01T23:59:59.000Z

219

Unit costs of waste management operations  

SciTech Connect

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

220

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

222

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

223

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

224

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

225

Total number of longwall faces drops below 50  

Science Conference Proceedings (OSTI)

For the first time since Coal Age began its annual Longwall Census the number of faces has dropped below 50. A total of five mines operate two longwall faces. CONSOL Energy remains the leader with 12 faces. Arch Coal operates five longwall mines; Robert E. Murray owns five longwall mines. West Virginia has 13 longwalls, followed by Pennsylvania (8), Utah (6) and Alabama (6). A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs., 1 photo.

Fiscor, S.

2009-02-15T23:59:59.000Z

226

Cost Study for Large Wind Turbine Blades  

SciTech Connect

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

227

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

228

Allocation of Space and the Costs of Multimodal Transport in Cities  

E-Print Network (OSTI)

B) ), the total social cost of transportation in the city issocial cost of motor vehicle use in the United States. Journal of Transportation and

Gonzales, Eric Justin

2011-01-01T23:59:59.000Z

229

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Cost of Wind Power Also important to how renewable energyenergy considered in these plans. Not surprisingly, the total modeled cost of wind

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

230

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

DOE Green Energy (OSTI)

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

231

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

SciTech Connect

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O' Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

232

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

d Total Battery Capacity (Kwh) Cost per Battery ($)e Totalcosts to consumersto purchase a EV fuel economy in miles per kwhKwh equivalent to per-mile gasoline road tax was included. Table 11 Performance and Cost

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

233

Incorporating uncertainty in the Life Cycle Cost Analysis of pavements  

E-Print Network (OSTI)

Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

Swei, Omar Abdullah

2012-01-01T23:59:59.000Z

234

Cost analysis and policy implications in psychiatric care.  

E-Print Network (OSTI)

??The economic burden of mental health constitutes a substantial part of the total costs of illnesses. Most estimates of cost-of-illness focus on somatic illnesses and… (more)

Tiainen, Anne

2009-01-01T23:59:59.000Z

235

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

236

Optimization of Transmission Line Design Using Life Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life or life-cycle cost of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select an ...

2009-12-22T23:59:59.000Z

237

Optimization of Transmission Line Design Using Life-Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life, or life-cycle cost, of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability-associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select a...

2008-12-09T23:59:59.000Z

238

Cost Study Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

239

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

240

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

to be less. Item Battery Mode Cost Hours required Backgroundwiring Total battery mode capital costs Adjustments fora detailed list of costs in the battery mode of operation.

Kay, J.

2009-01-01T23:59:59.000Z

242

Consumer Acceptance and Public Policy Consumer Acceptance Group...  

NLE Websites -- All DOE Office Websites (Extended Search)

HOV incentives, free charging (advertise locations), adverting free charging locations, car-sharing. * EducationCommunication: * Understand total cost of ownership, greater...

243

Hardware/Software Co-design for Energy-Ef?cient Seismic Modeling  

the capital expense of acquiring the HPC platform domi-nated total cost of ownership (TCO), ... metic intensity (as well as ops per point) increases ...

244

Solid State Gas Sensors - Energy Innovation Portal  

The total cost of ownership (TCO) for gas sensors today is a limiting factor in improving safety, air quality, and energy efficiency.

245

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

246

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

247

Include in Column B cost of all composition produced by plant. Include in Column C cost of all operations not involving printing (Col. A)  

E-Print Network (OSTI)

occupied (whether Government-owned or rented), utilities, etc. (14.5 cents per month per square foot. Amount spent for rental of equipment Total cost (Use col.A total from this line to compute cost per 1 units produced in plant this fiscal quarter Total units produced in plant this fiscal year Cost per 1

US Army Corps of Engineers

248

Total Building Air Management: When Dehumidification Counts  

E-Print Network (OSTI)

Industry trends toward stringent indoor air quality codes, spearheaded by ASHRAE 62-89: Ventilation for Acceptable Indoor Air Quality, present four challenges to the building industry in hot and humid climates: 1. Infusion of large quantities of make-up air to code based on zone requirements 2. Maintenance of tight wet bulb and dry bulb temperature tolerances within zones based on use 3. Energy management and cost containment 4. Control of mold and mildew and the damage they cause Historically, total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform specific, independent functions in the total control of the indoor air environment. Composite systems have a high up-front cost, are difficult to maintain and are costly to operate. Today, emerging technologies allow the implementation of fully integrated system for total building air management. These systems provide a single-vendor solution that is cost effective to purchase, maintain and operate. Operating saving of 23% and ROIs of 2.3 years have been shown. Equipment specification is no longer based primarily on total building load. Maximum benefits of these dynamic systems are realized when systems are designed with a total operating strategy in mind. This strategy takes into consideration every factor of building air management including: 1. Control of sensible heat 2. Balance management of heat rejection 3. Latent heat management 4. Control of process hot water 5. Indoor air quality management 6. Containment of energy consumption 7. Load shedding

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

249

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

250

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

251

Information erasure without an energy cost  

E-Print Network (OSTI)

Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell's demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.

Joan A. Vaccaro; Stephen M. Barnett

2010-04-29T23:59:59.000Z

252

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

253

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

254

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

255

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

256

Transaction-Cost Economic Analysis of Institutional Change toward Design-Build Contracts for Public Transportation  

E-Print Network (OSTI)

for example, compare DOT cost estimates to the price paid toscope are supported by cost estimates from WSDOT, which wereComplete at Bid DOT Cost Estimate at Bid Bid Price Total

Whittington, Jan; Dowall, David E.

2006-01-01T23:59:59.000Z

257

FY 1996 cost savings report  

SciTech Connect

Cost savings are an integral part of Hanford site operations. Congressional actions towards establishing a balanced budget have resulted in reductions to funding for all federal agencies, including the Department of Energy (DOE) Environmental Management (EM) cleanup mission. In September 1994 the DOE Richland Operations Office (RL) approved the FY 1995 multi-year baseline that included a cost estimate of $1.9 billion for FY 1996. However, Congress only appropriated $1.3 billion for that year. The shortfall of $600 million resulted in a significant challenge to accomplish the required workscope. Therefore, RL initiated an aggressive cost savings program to eliminate the shortfall by deleting workscope that was unnecessary and performing the remaining workscope more efficiently. RL initiated baseline planning actions (including deletions, deferrals, transfers, and additions) during the FY 1996 multi-year baseline development process to match workscope and anticipated funding and identified $205 million of workscope deletions. CFR (Contract Finance and Review Division) then reviewed over 200 cost baseline change requests during FY 1996 and documented an additional $95 million of FY 1996 cost savings. This included $73 million of workscope deletions and $22 million of efficiencies. Total savings as a result of FY 1996 initiatives, including baseline planning actions and current year initiatives, were $300 million.

Andrews-Smith, K.L.

1997-08-15T23:59:59.000Z

258

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

259

Commissioning : The Total Process  

E-Print Network (OSTI)

In recent years, most new buildings have been equipped with increasingly sophisticated heating, ventilating, and air-conditioning (HVAC) systems, energy conservation equipment, lighting systems, security systems, and environmental control devices that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs, and increased liability for building owners, operators, employers, and design professionals. Building commissioning was developed in response to these concerns. Commissioning involves the examining and testing of building systems to verify aspects of the building design, ensure that the building is constructed in accordance with the contract documents, and verify that the building and its systems function according to the design intent documents. The process helps to integrate and organize the design, construction, operations, and maintenance of a building's systems to produce a healthy, comfortable, and efficient facility.

Kettler, G. J.

1998-01-01T23:59:59.000Z

260

An analysis of the costs of running a station car fleet  

SciTech Connect

Station cars are electric vehicles available at transit stations which may be used for transportation between the transit station and home, work, and/or for errands. This transportation service would be provided by the local transit agency. This report discusses an economic model of the costs of running a station car fleet. While some of these costs are highly uncertain, this analysis is a first look at the required user fees for full cost recovery. The model considers the capital costs of the vehicles and the required infrastructure; the annual fixed vehicle costs for insurance, registration, etc.; the mileage-based costs; and the annual non-vehicle costs for administration, infrastructure maintenance, etc. The model also includes various factors such as the fleet size, the annual mileage, the number of transit stations that would have facilities for station cars, and the number of users. The model specifically examines the cost of using of electric vehicles; however, for comparison, the cost of using a fleet of gasoline-powered vehicles also is calculated. This report examines the sensitivity of the model to the various factors. A principal conclusion from the analysis is that the largest cost contributor is the initial vehicle purchase price. For a given initial purchase price, the factor driving the user fee required for full cost recovery is the number of different daily users of a vehicle. The model also compares the annual cost of transportation using station cars and mass transit to the annual cost of solo commuting. If a station car is used by more than one person a day, and this use replaces the ownership of a conventional vehicle, the annual cost of transportation may be similar. However, for the base case assumptions, the station car user fee required for full cost recovery is higher than the cost of solo commuting.

Zurn, R.M.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

262

Minimum Cost Arborescences ?  

E-Print Network (OSTI)

In this paper, we analyze the cost allocation problem when a group of agents or nodes have to be connected to a source, and where the cost matrix describing the cost of connecting each pair of agents is not necessarily symmetric, thus extending the well-studied problem of minimum cost spanning tree games, where the costs are assumed to be symmetric. The focus is on rules which satisfy axioms representing incentive and fairness properties. We show that while some results are similar, there are also significant differences between the frameworks corresponding to symmetric and asymmetric cost matrices.

Bhaskar Dutta; Debasis Mishra; We Thank Daniel Granot; Anirban Kar; Herve Moulin For Comments

2011-01-01T23:59:59.000Z

263

PHENIX Work Breakdown Structure. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

264

PHENIX WBS notes. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

265

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

DOE Green Energy (OSTI)

Installations of solar photovoltaic (PV) systems have been growing at a rapid pace in recent years. In 2009, approximately 7,500 megawatts (MW) of PV were installed globally, up from approximately 6,000 MW in 2008, consisting primarily of grid-connected applications. With 335 MW of grid-connected PV capacity added in 2009, the United States was the world's fourth largest PV market in 2009, behind Germany, Italy, and Japan. The market for PV in the United States is driven by national, state, and local government incentives, including up-front cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy, and by the positive attributes of PV - modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the possible deployment of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. Despite the significant year-on-year growth, however, the share of global and U.S. electricity supply met with PV remains small, and annual PV additions are currently modest in the context of the overall electric system. To address this need, Lawrence Berkeley National Laboratory initiated a report series focused on describing trends in the installed cost of grid-connected PV systems in the United States. The present report, the third in the series, describes installed cost trends from 1998 through 2009, and provides preliminary cost data for systems installed in 2010. The analysis is based on project-level cost data from approximately 78,000 residential and non-residential PV systems in the U.S., all of which are installed at end-use customer facilities (herein referred to as 'customer-sited' systems). The combined capacity of systems in the data sample totals 874 MW, equal to 70% of all grid-connected PV capacity installed in the United States through 2009 and representing one of the most comprehensive sources of installed PV cost data for the U.S. The report also briefly compares recent PV installed costs in the United States to those in Germany and Japan. Finally, it should be noted that the analysis presented here focuses on descriptive trends in the underlying data, serving primarily to summarize the data in tabular and graphical form; later analysis may explore some of these trends with more-sophisticated statistical techniques. The report begins with a summary of the data collection methodology and resultant dataset (Section 2). The primary findings of the analysis are presented in Section 3, which describes trends in installed costs prior to receipt of any financial incentives: over time and by system size, component, state, system ownership type (customer-owned vs. third party-owned), host customer segment (residential vs. commercial vs. public-sector vs. non-profit), application (new construction vs. retrofit), and technology type (building-integrated vs. rack-mounted, crystalline silicon vs. thin-film, and tracking vs. fixed-axis). Section 4 presents additional findings related to trends in PV incentive levels over time and among states (focusing specifically on state and utility incentive programs as well as state and federal tax credits), and trends in the net installed cost paid by system owners after receipt of such incentives. Brief conclusions are offered in the final section, and several appendices provide additional details on the analysis methodology and additional tabular summaries of the data.

Barbose, Galen; Darghouth, Naim; Wiser, Ryan

2010-12-13T23:59:59.000Z

266

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

267

A brief study into the impact University of Bath has had on CO2 emissions and the cost of ownership of passenger cars.  

E-Print Network (OSTI)

working for Ford Motor Company. He is now an independent consultant. The University of Bath have an excellent history of collaborating with Ford Motor Company and others in the UK over the last 25 years [1]. This technology has been applied to several Ford engines including the 1.0L EcoBoost gasoline

Collomosse, John

268

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

269

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

270

Documents: Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Search Documents: Search PDF Documents View a list of all documents Cost Analysis PDF Icon Summary of the Cost Analysis Report for the Long-term Management of Depleted UF6...

271

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

272

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

273

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network (OSTI)

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7 is that portion of the total cost of a research or other externally funded project that is not funded as a demonstration of its commitment to the project. When voluntary cost sharing is included in the proposal budget

Goddard III, William A.

274

Cost Estimation Recommendations  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

275

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

276

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

277

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

278

SunShot Initiative: Transformational Approach to Reducing the Total System  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Approach to Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics to someone by E-mail Share SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Facebook Tweet about SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Twitter Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Google Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Delicious Rank SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Digg

279

CUSTODY/OWNERSHIP DICHOTOMIES IN THE U.S. PETROLEUM SUPPLY SYSTEM  

E-Print Network (OSTI)

7a NONREFJNING z X w W.J co :X: J/) EXXON lL _j PLANTS (viC)SHELL I: OWNED OIL MOBIL EXXON GULF J/) j--o z REFlNING~~~~~~~ (Slt·1AS' OIL AT EXXON PLANTS. ) U.S. TOTAL STOCKS "

Cahn, David F.

2013-01-01T23:59:59.000Z

280

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

282

Life-Cycle Cost Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Life-Cycle Cost Analysis Life-Cycle Cost Analysis Life-Cycle Cost Analysis October 16, 2013 - 4:41pm Addthis Constructed Costs of a Net-Zero Office Building Facility: Research Support Facility at the National Renewable Energy Laboratory in Golden, Colorado Operational: August 2010 Constructed cost: $259/ft2 to achieve 50% less energy use than code Constructed cost of similar office buildings in area: $225 to $300/ft2 Reaching Net-Zero: A 1.27 MW photovoltaic system was added to the project in two phases to bring the system to net-zero. This system was financed through a power purchase agreement and did not add to the constructed cost of the building. If those costs were included in the capital costs, the total constructed cost would have been 291/ft2 to reach net-zero energy use. Learn more about the Research Support

283

VIN# JHMCN36495C000657 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.13mile** Total Ownership Cost: 0.34mile Operating Performance: Total miles driven: 160,457 Cumulative MPG: 28.5 Major Operations & Maintenance Events: None...

284

MHV Fleet Testing - Summary Fact Sheet for 2010 Mazda 3 VIN#JMZBLA4G60...  

NLE Websites -- All DOE Office Websites (Extended Search)

0.03mile Operating Cost: 0.17 Total Ownership Cost: *** Operating Performance: Total miles driven: 108,787 Cumulative MPG: 28.5 Major Operations & Maintenance Events: None...

285

VIN# JHMCN36405C001096 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.14mile** Total Ownership Cost: 0.38mile Operating Performance: Total miles driven: 160,093 Cumulative MPG: 27.7 Major Operations & Maintenance Events: Replaced...

286

Vehicle Specifications Engine: 6.0 L V8  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.14mile** Total Ownership Cost: 0.44mile Operating Performance: Total miles driven: 160,374 Cumulative MPG: 21.7 Major Operations & Maintenance Events: None...

287

VIN# JTEDW21A860005681 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.16mile** Total Ownership Cost: 0.38mile Operating Performance: Total miles driven: 160,754 Cumulative MPG: 23.8 Major Operations & Maintenance Events: None...

288

VIN# JMZBLA4G601111865 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

0.03mile Operating Cost: 0.19 Total Ownership Cost: *** Operating Performance: Total miles driven: 122,269 Cumulative MPG: 28.8 Major Operations & Maintenance Events: None...

289

VIN# JHMZF1C67BS004466 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.13mile** Total Ownership Cost: 0.32 Operating Performance: Total miles driven: 130,235 Cumulative MPG: 37.1 Major Operations & Maintenance Events: None...

290

VIN# JHMZF1C64BS002982 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.14mile** Total Ownership Cost: 0.34mile Operating Performance: Total miles driven: 122,692 Cumulative MPG: 35.4 Major Operations & Maintenance Events: 1015...

291

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.22mile Total Ownership Cost: 1.30mile Operating Performance: Total miles driven: 8,962 Cumulative MPG: 46.38 * Purchase includes dealer price with options...

292

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.12mile Total Ownership Cost: 0.65mile Operating Performance: Total miles driven: 18,612 Cumulative MPG: 49.36 * Purchase includes dealer price with options...

293

VIN# JTJHW31U660004807 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.17mile** Total Ownership Cost: 0.54mile Operating Performance: Total miles driven: 160,531 Cumulative MPG: 23.1 Major Operations & Maintenance Events: Replaced...

294

Vehicle Specifications Engine: 6.0 L V8  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.15mile** Total Ownership Cost: 0.46mile Operating Performance: Total miles driven: 161,200 Cumulative MPG: 21.4 Major Operations & Maintenance Events: Replaced...

295

VIN# WDDNG9FB5AA296231 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.19mile** Total Ownership Cost: 0.77mile Operating Performance: Total miles driven: 132,123 Cumulative MPG: 26.1 Major Operations & Maintenance Events: 311...

296

HEV Fleet Testing - 2000 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.08mile Total Ownership Cost: 0.29mile Operating Performance: Total miles driven: 68,287 Cumulative MPG: 47.10 * Purchase includes dealer price with options...

297

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.20mile Operating Performance: Total miles driven: 161,075 Cumulative MPG: 37.32 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric...

298

VIN# JTJHW31U160002575 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost: 0.28mile** Total Ownership Cost: 0.61mile Operating Performance: Total miles driven: 160,454 Cumulative MPG: 23.1 Major Operations & Maintenance Events: Replaced...

299

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.14mile Total Ownership Cost: 0.79mile Operating Performance: Total miles driven: 15,746 Cumulative MPG: 44.38 * Purchase includes dealer price with options...

300

VIN# WDDNG9FBXAA295883 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: .18mile** Total Ownership Cost: 0.74mile Operating Performance: Total miles driven: 160,478 Cumulative MPG: 25.6 Major Operations & Maintenance Events: None...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.29mile Operating Performance: Total miles driven: 145,902 Cumulative MPG: 44.05 Engine: 3-cylinder, 48 kW @ 5700 rpm Electric...

302

Pollution prevention cost savings potential  

SciTech Connect

The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

Celeste, J.

1994-12-01T23:59:59.000Z

303

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

304

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

E-Print Network (OSTI)

in 2007-2010. Tracking the Sun IV: The Installed Cost of$/W) Total Tracking the Sun IV: The Installed Cost of$/W) Total Tracking the Sun IV: The Installed Cost of

Darghouth, Naim

2012-01-01T23:59:59.000Z

305

Estimated Cost Description Determination Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and posted 2/10/2011 and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next 12 Months Department of Energy (DOE) Savannah River Site (SRS) Jan-11 Estimated Schedule (**NEPA Milestones) South Carolina Department of Health and Environmental Control (SCDHEC) issued a National Pollutant Discharge Elimination System (NPDES) Industrial Stormwater General Permit (IGP) # SCR000000 November 12, with an effective date of January

306

Minimum cost model energy code envelope requirements  

SciTech Connect

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

307

Baseline Costs and Performance of Fabric Drying Curing Processes  

Science Conference Proceedings (OSTI)

With the increasing of imports of textile products, especially apparel products, the domestic manufacturers must minimize their production costs in order to stay competitive. A knowledge of the different aspects of the costs associated with the total manufacturing cost will provide a means for better management of the production process. This study examined the efficiency and the costs for a number of thermal processing steps used in the manufacturing of textile products

2000-12-22T23:59:59.000Z

308

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

309

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

310

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

311

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

312

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

313

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

314

Target Cost Management Strategy  

E-Print Network (OSTI)

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

315

Cost Affordable Titanium IV  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Enhancing the Cost Effectiveness of High Performance Titanium Alloy Component Production by Powder Metallurgy · Evolution of Texture in ...

316

Cost Effective Single Crystals  

Science Conference Proceedings (OSTI)

three relevant technologies, namely casting, alloy development and orientation measurement, developed by Rolls-Royce to enable the cost effective production.

317

Sharing Supermodular Costs  

E-Print Network (OSTI)

the costs collectively incurred by a group of cooperating agents. ..... Mixed integer programming formulations for production planning and scheduling prob- lems.

318

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia?s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

319

COST REVIEW and ESTIMATING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programming Guide. OMB Circular A-94, Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, dated October 29, 1992 Page | 41 APPENDIX A ICRICE...

320

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reducing Energy Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy expense is becoming increasingly dominant in the operating costs of high-performance computing (HPC) systems. At the same time, electricity prices vary significantly at...

322

Analysis of facility location model using Bayesian Networks  

Science Conference Proceedings (OSTI)

In this study, we propose an integrated approach that combines Bayesian Networks and Total Cost of Ownership (TCO) to address complexities involved in selecting an international facility for a manufacturing plant. Our goal is to efficiently represent ... Keywords: Bayesian Networks, Facility location, Total Cost of Ownership (TCO)

Ibrahim Dogan

2012-01-01T23:59:59.000Z

323

Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1981-01-01T23:59:59.000Z

324

Costs of Oil Dependence: A 2000 Update  

SciTech Connect

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

325

Cost of Oil Dependence: A 2000 Update  

Science Conference Proceedings (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

326

Breakeven costs of storage in optimized solar energy systems  

DOE Green Energy (OSTI)

The results are described of an analysis of the breakeven cost, or value, of energy storage to solar energy systems. It is shown that the value of storage depends strongly both on solar fraction of the solar energy system in which the storage is employed, and on the cost of the collectors used in the system. Various strategies for dealing with this ambiguity are presented, and it is shown that for a broad class of technically and economically practical solar energy systems, storage costs need only be low enough to make a system employing very small amounts of storage practical. Reductions in cost of collectors will thereafter produce greater reductions in the total system costs or provide greater fuel displacement at constant total system cost than will reductions in the cost of storage, within limits discussed. The analysis makes use of a simple, accurate representation of solar energy system performance which may prove useful in other contexts.

Leigh, R. W.

1981-09-01T23:59:59.000Z

327

Cost Estimating Handbook for Environmental Restoration  

Science Conference Proceedings (OSTI)

Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

NONE

1990-09-01T23:59:59.000Z

328

Cost-Affordable Titanium III  

Science Conference Proceedings (OSTI)

Cost-Effective Production and Thermomechanical Consolidation of Titanium Alloy Powders · Cost Affordable Developments in Titanium Technology and ...

329

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network (OSTI)

from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

Barbose, Galen

2011-01-01T23:59:59.000Z

330

Software Cost Estimation  

E-Print Network (OSTI)

Software cost estimation is the process of predicting the effort required to develop a software system. Many estimation models have been proposed over the last 30 years. This paper provides a general overview of software cost estimation methods including the recent advances in the field. As a number of these models rely on a software size estimate as input, we first provide an overview of common size metrics. We then highlight the cost estimation models that have been proposed and used successfully. Models may be classified into 2 major categories: algorithmic and non-algorithmic. Each has its own strengths and weaknesses. A key factor in selecting a cost estimation model is the accuracy of its estimates. Unfortunately, despite the large body of experience with estimation models, the accuracy of these models is not satisfactory. The paper includes comment on the performance of the estimation models and description of several newer approaches to cost estimation.

Hareton Leung Zhang; Zhang Fan

2002-01-01T23:59:59.000Z

331

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

332

Transmission line capital costs  

Science Conference Proceedings (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

333

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

334

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

335

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

336

Lookin g for data personnel costs, indirect costs, equipment costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Negotiating Group Question/Answer Sessions November 19, 2009 Q: What happens now? A: The negotiation process starts tomorrow [November 20, 2009], when DOE will be sending the Awardees an e-mail with information about which website to go to for clarification and direction, information from the Office of Civil Rights, and answers to some of the questions that came up in the meeting. DOE will be gathering information about the questions concerning cyber requirements, metrics, and reporting requirements and will be getting back to the awardees about those issues the week after Thanksgiving. We have done a review of the budgets, and emails will be sent giving opportunities to address any issues. We will also re-review technical and cost proposals.

337

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

338

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

339

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

340

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

342

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

343

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

344

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

345

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

346

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

347

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

348

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

349

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

350

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

351

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

352

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

353

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

354

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

355

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

356

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

357

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

358

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

359

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

360

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

362

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

363

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

364

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

365

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

366

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

367

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

368

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

369

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

370

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

371

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

372

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

373

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

374

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

375

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

376

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

377

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

378

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

379

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

380

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

382

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

383

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

384

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

385

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

386

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

387

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

388

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

389

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

390

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

391

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

392

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

393

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

394

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

395

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

396

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

397

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

398

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

399

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

400

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

402

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

403

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

404

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

405

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

406

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

407

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

408

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

409

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

410

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

411

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

412

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

413

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

414

Question: What is the cost threshold for providing cost detail for subrecipient  

NLE Websites -- All DOE Office Websites (Extended Search)

Question: What is the cost threshold for providing cost detail for subrecipients or consultant Question: What is the cost threshold for providing cost detail for subrecipients or consultant information? Is there a cost threshold set for third parties? Answer: Each subawardee/subrecipient/subcontractor whose work is expected to exceed $650,000 or 50% of the total work effort (whichever is less) should complete a Budget Justification package to include the SF 424A budget form, Budget Justification Guideline Excel document, and a narrative supporting the Budget Justification Guidelines. This information may be saved as a separate file or included with the Prime Applicant's Budget.pdf file. Summary level information for subawardees is not sufficient. Detailed explanations and supporting

415

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B Âľ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B Âľ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

416

Long-run incremental costs and the pricing of electricity. Part II. [Comparative evaluation of marginal cost pricing and average cost pricing  

SciTech Connect

Total costs have essentially the same cost components whether long-run average costs or long-run incremental costs are used. The variable components, chiefly fuel, may be somewhat different in the new incremental plant compared to the old average plant; where the difference is between nuclear fuel and fossil fuel, its size is substantial. However, given the same kind of plant, the current prices of materials and labor will be essentially the same whether used in the new or the old plant with long-run incremental costs (LRIC) or long-run average costs (LRAC). The lower cost of electricity produced in nuclear plants constructed today, as compared to fossil fuel plants constructed at the same time, is not to be confused with the relation between LRIC and LRAC. LRAC is the average cost of electricity from all existing plants priced at their historical costs, which were generally lower than current costs. These average historical costs per kilowatt are still likely to be lower than the current incremental cost per kilowatt of the newest nuclear plant built at present price levels. LRAC is, therefore, still likely to be lower than LRIC for either fossil or nuclear. Data from the Wisconsin Power and Light Company, the Madison Gas and Electric Company, and Tuscon Gas and Electric Company are examined to study some comparisons. Some pricing principles that vary seasonally for resort hotels are reviewed. (MCW)

Morton, W.A.

1976-03-25T23:59:59.000Z

417

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

418

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

419

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

420

A weighted CSP approach to cost-optimal planning  

Science Conference Proceedings (OSTI)

For planning to come of age, plans must be judged by a measure of quality, such as the total cost of actions. This paper describes an optimal-cost planner which guarantees global optimality whenever the planning problem has a solution. We code the extraction ... Keywords: Optimal planning, planning graph, soft arc consistency, soft constraints

Martin C. Cooper; Marie de Roquemaurel; Pierre Régnier

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

OGJ300; Smaller list, bigger financial totals  

SciTech Connect

This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

Beck, R.J.; Biggs, J.B.

1991-09-30T23:59:59.000Z

422

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

423

Roadway Improvement Project Cost Allocation  

E-Print Network (OSTI)

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

424

Wind Electrolysis: Hydrogen Cost Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

which needs to be 44% or better along with relatively high wind speeds. Along with low production costs, however, delivery and storage costs will also factor into the final cost...

425

Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California  

DOE Green Energy (OSTI)

The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

Blackett, Robert

1985-09-01T23:59:59.000Z

426

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

427

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

428

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

429

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

430

Cost estimate for muddy water palladium production facility at Mound  

SciTech Connect

An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

McAdams, R.K.

1988-11-30T23:59:59.000Z

431

Cooling Energy and Cost Savings with Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

432

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

433

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

434

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

435

Service Provider Competition: Delay Cost Structure, Segmentation, and Cost Advantage  

Science Conference Proceedings (OSTI)

We model competition between two providers who serve delay-sensitive customers. We compare a generalized delay cost structure, where a customer's delay cost depends on her service valuation, with the traditional additive delay cost structure, where the ... Keywords: delay cost structure, service competition, value-based market segmentation

Maxim Afanasyev; Haim Mendelson

2010-04-01T23:59:59.000Z

436

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

437

Heliostat cost reduction study.  

DOE Green Energy (OSTI)

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

2007-06-01T23:59:59.000Z

438

Performance Period Total Fee Paid FY2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

439

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

Northern California Power Agny Northern California Power Agny CA Political Subdivision 1 366,159 20,892.0 5.71 Constellation NewEnergy, Inc CT Power Marketer 2 33,816 2,550.5 7.54 HESS CORPORATION CT Power Marketer 1 106,596 5,490.0 5.15 American PowerNet DC Power Marketer 1 148,928 8,161.0 5.48 Reliant Energy Northeast LLC DC Power Marketer 1 200,803 13,152.0 6.55 Constellation NewEnergy, Inc IL Power Marketer 3 781,822 37,958.5 4.86 Massachusetts Bay Trans Authority MA Political Subdivision 3 55,875 6,106.0 10.93 NextEra Energy Power Marketing MA Power Marketer 1 284,229 7,954.4 2.80 American PowerNet MD Power Marketer 1 121,566 6,618.0 5.44 Constellation NewEnergy, Inc MD Power Marketer 2 151,684 13,222.6 8.72 PPL EnergyPlus LLC MD Power Marketer 1 9,108 544.5 5.98 Reliant Energy Northeast LLC MD Power Marketer 1 157,011 10,282.7 6.55 Constellation NewEnergy, Inc

440

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

3,912 3,912 142,255 16,970.0 11.93 Alaska Power and Telephone Co AK Investor Owned 4,803 24,391 7,470.0 30.63 Alaska Village Elec Coop, Inc AK Cooperative 6,148 31,085 19,275.0 62.01 Anchorage Municipal Light and Power AK Municipal 24,443 146,789 17,221.2 11.73 Barrow Utils & Elec Coop, Inc AK Cooperative 1,471 11,511 1,364.0 11.85 Bethel Utilities Corp AK Investor Owned 1,671 10,677 5,990.0 56.10 Chugach Electric Assn Inc AK Cooperative 69,495 549,748 76,083.0 13.84 City & Borough of Sitka - (AK) AK Municipal 3,669 47,899 4,570.0 9.54 City of Petersburg - (AK) AK Municipal 1,354 20,803 2,010.2 9.66 City of Seward - (AK) AK Municipal 2,064 16,488 3,344.0 20.28 City of Unalaska - (AK) AK Municipal 686 4,009 1,997.6 49.83 City of Wrangell - (AK) AK Municipal 1,170 15,273 1,604.0 10.50 Copper Valley Elec Assn, Inc AK Cooperative

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

41 41 71,558 3,893.2 5.44 City of Corona - (CA) CA Municipal 7 40,918 3,592.4 8.78 Commerce Energy, Inc. CA Power Marketer 7,862 391,246 24,362.0 6.23 Constellation NewEnergy, Inc CA Power Marketer 38 2,158,578 102,576.2 4.75 Direct Energy Business CA Power Marketer 29 241,690 14,996.0 6.20 Marin Energy Authority CA Power Marketer 6 31,782 2,241.5 7.05 Noble Americas Energy Solutions LLC CA Power Marketer 56 1,875,061 126,908.8 6.77 Pilot Power Group Inc CA Power Marketer 41 498,646 29,521.7 5.92 Shell Energy North America (US), L.P. CA Power Marketer 31 2,259,297 98,489.5 4.36 Constellation NewEnergy, Inc CT Power Marketer 574 1,159,360 96,511.6 8.32 Farmington River Power Company CT Investor Owned 1 23,588 1,484.4 6.29 HOP Energy, LLC CT Power Marketer 2 5,198 409.2 7.87 Integrys Energy Services, Inc. CT Power Marketer 63 109,635

442

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

City of North Little Rock - (AR) City of North Little Rock - (AR) AR Municipal 1 349 41.0 11.75 Entergy Arkansas Inc AR Investor Owned 1 114 11.0 9.65 City & County of San Francisco CA Municipal 1 103,268 4,130.0 4.00 City of Pasadena - (CA) CA Municipal 1 9,538 1,365.5 14.32 Los Angeles Department of Water & Power CA Municipal 2 16,946 2,655.0 15.67 Sacramento Municipal Util Dist CA Political Subdivision 1 28,918 3,485.2 12.05 San Diego Gas & Electric Co CA Investor Owned 4 95,213 6,744.0 7.08 Southern California Edison Co CA Investor Owned 1 51,664 6,759.0 13.08 WAPA-- Western Area Power Administration CA Federal 1 14,049 299.0 2.13 Public Service Co of Colorado CO Investor Owned 1 52,471 5,083.0 9.69 Florida Power & Light Co FL Investor Owned 1 80,521 6,752.0 8.39 JEA FL Municipal 1 3,374 341.1 10.11 Georgia Power Co GA Investor Owned 1 156,955

443

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

2,174 2,174 129,783 12,857.0 9.91 Alaska Power and Telephone Co AK Investor Owned 2,173 40,397 10,705.0 26.50 Alaska Village Elec Coop, Inc AK Cooperative 1,775 42,871 23,433.0 54.66 Anchorage Municipal Light and Power AK Municipal 6,304 953,876 83,738.0 8.78 Barrow Utils & Elec Coop, Inc AK Cooperative 400 38,069 3,929.0 10.32 Bethel Utilities Corp AK Investor Owned 1,017 30,229 16,102.0 53.27 Chugach Electric Assn Inc AK Cooperative 9,204 574,284 67,370.0 11.73 City & Borough of Sitka - (AK) AK Municipal 1,622 58,534 5,638.0 9.63 City of Petersburg - (AK) AK Municipal 717 9,064 1,030.5 11.37 City of Seward - (AK) AK Municipal 503 8,651 1,869.0 21.60 City of Unalaska - (AK) AK Municipal 242 11,183 4,906.4 43.87 City of Wrangell - (AK) AK Municipal 778 19,919 2,132.0 10.70 Copper Valley Elec Assn, Inc AK Cooperative 797 65,757

444

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

354 354 148,820 7,268.5 4.88 Calpine Power America LLC CA Power Marketer 1 1,072,508 54,458.0 5.08 City of Corona - (CA) CA Municipal 859 65,933 5,749.5 8.72 Commerce Energy, Inc. CA Power Marketer 23,386 596,604 37,753.0 6.33 Constellation NewEnergy, Inc CA Power Marketer 362 4,777,373 250,287.4 5.24 Direct Energy Business CA Power Marketer 480 4,028,166 249,932.0 6.20 Glacial Energy Holdings CA Power Marketer 98 74,913 5,896.2 7.87 Liberty Power Corp. CA Power Marketer 26 62,311 3,307.0 5.31 Marin Energy Authority CA Power Marketer 45,658 535,094 41,883.2 7.83 Noble Americas Energy Solutions LLC CA Power Marketer 201 7,533,445 471,887.5 6.26 Northern California Power Agny CA Political Subdivision 1 366,159 20,892.0 5.71 Pilot Power Group Inc CA Power Marketer 921 1,468,892 84,041.1 5.72 Shell Energy North America (US), L.P.

445

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

94 94 127,106 11,993.0 9.44 Chugach Electric Assn Inc AK Cooperative 7 54,804 5,902.0 10.77 City & Borough of Sitka - (AK) AK Municipal 15 4,968 476.0 9.58 City of Petersburg - (AK) AK Municipal 39 19,905 2,208.6 11.10 City of Seward - (AK) AK Municipal 126 33,599 5,828.0 17.35 City of Unalaska - (AK) AK Municipal 16 27,024 10,572.0 39.12 Cordova Electric Coop, Inc AK Cooperative 5 8,004 1,902.0 23.76 Golden Valley Elec Assn Inc AK Cooperative 496 855,521 160,872.2 18.80 Homer Electric Assn Inc AK Cooperative 23 127,076 11,094.0 8.73 Ketchikan Public Utilities AK Municipal 13 24,453 2,046.9 8.37 Kodiak Electric Assn Inc AK Cooperative 102 87,040 14,770.0 16.97 Alabama Power Co AL Investor Owned 5,839 22,157,722 1,345,850.0 6.07 Albertville Municipal Utilities Board AL Municipal 18 293,204 21,775.0 7.43 Arab Electric Coop Inc AL

446

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

447

LBNL-54244 Life-cycle Cost and Payback Period Analysis for Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

costs (increased LCC). Moving towards the right on the axis, values greater than zero indicate reductions in LCC (LCC savings). LCC savings occur when increased total...

448

Estimating decommissioning costs: The 1994 YNPS decommissioning cost study  

Science Conference Proceedings (OSTI)

Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

Szymczak, W.J.

1994-12-31T23:59:59.000Z

449

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

450

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with the goal of being applicable to all types of CSP systems * Several heliostat design options being considered to address driving requirements: * Facets that are compliant to winds > 35 mph * Deep structures for optimizing structural efficiency * Pointing accuracy achieved with mechanism design * Simple precision components * Easy on-site assembly with pre-fab components * Structural foam properties and strengthening trades being conducted to reduce overall costs with FEM models Goal: Typical costs for a concentrator (heliostat or parabolic dish) can range between 40-50% of the total costs. To meet SunShot

451

FUEL CELLS IN SHIPPING: HIGHER CAPITAL COSTS AND REDUCED FLEXIBILITY  

E-Print Network (OSTI)

Abstract: The paper discusses some main economic characteristics of fuel cell power production technology applied to shipping. Whenever competitive fuel cell systems enter the market, they are likely to have higher capital costs and lower operating costs than systems based on traditional combustion technology. Implications of the difference are investigated with respect to investment flexibility by the use of a real options model of ship investment, lay-up and scrapping decisions under freight rate uncertainty. A higher capital share of total expected costs can represent a significant opportunity cost in uncertain markets. The paper highlights the significance of accounting properly for value of flexibility prior to investment in new technology.

Sigbjřrn Sřdal

2003-01-01T23:59:59.000Z

452

Reported Energy and Cost Savings from the DOE ESPC Program  

SciTech Connect

The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

Shonder, John A [ORNL; Slattery, Bob S [ORNL; Atkin, Erica [ORNL

2012-01-01T23:59:59.000Z

453

Back-end costs of alternative nuclear fuel cycles  

Science Conference Proceedings (OSTI)

As part of its charter, the Alternate Fuel Cycle Evaluation Program (AFCEP) was directed to evaluate the back-end of the nuclear fuel cycle in support of the Nonproliferation Alternative Systems Assessment Program (NASAP). The principal conclusion from this study is that the costs for recycling a broad range of reactor fuels will not have a large impact on total fuel cycle costs. For the once-through fuel cycle, the costs of fresh fuel fabrication, irradiated fuel storage, and associated transportation is about 1.2 to 1.3 mills/kWh. For the recycle of uranium and plutonium into thermal reactors, the back-cycle costs (i.e., the costs of irradiated fuel storage, transportation, reprocessing, refabrication, and waste disposal) will be from 3 to 3.5 mills/kWh. The costs for the recycle of uranium and plutonium into fast breeder reactors will be from 4.5 to 5 mills/kWh. Using a radioactive spikant or a denatured /sup 233/U-Th cycle will increase power costs for both recycle cases by about 1 mill/kWh. None of these costs substantially influence the total cost of nuclear power, which is in the range of 4 cents/kWh. The fuel cycle costs used in this study do not include costs incurred prior to fuel fabrication; that is, the cost of the uranium or thorium, the costs for enrichment, or credit for fissile materials in the discharged fuel, which is not recycled with the system.

Rainey, R.H.; Burch, W.D.; Haire, M.J.; Unger, W.E.

1980-01-01T23:59:59.000Z

454

costs | OpenEI  

Open Energy Info (EERE)

7 7 Varnish cache server costs Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

455

Cost Study Manual | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Study Manual Cost Study Manual Update 62912. Memo regarding Cost Study Manual Cost Study Manual More Documents & Publications Technical Standards, Newsletter-June 1999 Build...

456

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

E. Hydrogen Supply: Cost Estimate for Hydrogen Pathways -costs are compared with cost estimates of similar stationsHydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

457

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

458

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

459

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network (OSTI)

In 1984 and 1986, 35.3 million square feet of state owned buildings were audited to identify cost saving retrofit projects. Originally intended for direct legislative funding or bond sales, funding became available in 1989 through oil overcharge moneys in a program known as LoanSTAR. Due to the time between the audits and availability of funds, update of the reports for current energy and equipment cost, and for accomplishment of projects was necessary. Audits in 1984 and 1986 identified total savings of $21.3 million per year and investment costs of $42.3 million per year. The 1989 update revealed retrofit projects remaining worth $10.9 million per year in savings and costing $30.5 million. The reduction in savings and costs is primarily due to changes in prices and accomplishment of projects. The methodology for updating prices and surveying facility energy contacts to determine accomplishment will be discussed. Both the accomplishment of maintenance and operation (M&O) type projects and capital-intensive retrofit/measures will be discussed. For example, the surveys revealed that 69% of 291 M&O's have already been accomplished, along with 24% of the 750 retrofit/measures.

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

460

Electric power transmission and distribution systems: costs and their allocation. Research report  

SciTech Connect

Transmission and distribution costs contribute significantly to the total costs of providing electrical service. The costs derived from the transmission and distribution (TandD) system have historically comprised about 2/3 the costs of producing and delivering electricity to residential-commercial customers, and over 1/3 the total costs supplying electricity to large industrial customers. This report: (1) estimates the differences in transmission and distribution equipment required to serve industrial and residential-commercial customers and allocates to the above two customer classes the average costs of installing this equipment; (2) estimates the costs of operation and maintenance of the transmission and distribution system, and allocates these costs to the customer classes; and (3) calculates the TandD derived average costs for the two customer classes. (GRA)

Baughman, M.L.; Bottaro, D.J.

1975-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pennsylvania life cycle costing manual  

SciTech Connect

Until the 1970s, it was commonplace for institutions and governments to purchase equipment based on lowest initial (first) costs. Recurring costs such as operational, maintenance, and energy costs often were not considered in the purchase decision. If an agency wanted to buy something, it published specifications and requested bids from several manufacturers. Often, the lowest bidder who met the specifications won the job, with no consideration given to the economic life of the equipment or yearly recurring costs such as energy and maintenance costs. The practice of purchasing based on lowest initial costs probably did not make good economic sense prior to 1970, and it certainly does not make good sense now. The wise person will consider all costs and benefits associated with a purchase, both initial and post-purchase, in order to make procurement decisions that are valid for the life of the equipment. This describes a method of financial analysis that considers all pertinent costs: life cycle costing (LCC).

1996-02-01T23:59:59.000Z

462

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

463

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

464

LIFE Cost of Electricity, Capital and Operating Costs  

Science Conference Proceedings (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

465

Cost-sensitive classifier evaluation using cost curves  

Science Conference Proceedings (OSTI)

The evaluation of classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2008-05-01T23:59:59.000Z

466

Cost Sensitive Conditional Planning  

E-Print Network (OSTI)

While POMDPs provide a general platform for conditional planning under a wide range of quality metrics they have limited scalability. On the other hand, uniform probability conditional planners scale very well, but many lack the ability to optimize plan quality metrics. We present an innovation to planning graph based heuristics that helps uniform probability conditional planners both scale and generate high quality plans when using actions with non uniform costs. We make empirical comparisons with two state of the art planners to show the benefit of our techniques.

Daniel Bryce; Subbarao Kambhampati

2005-01-01T23:59:59.000Z

467

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

468

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

469

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

470

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

471

Cost effective multimedia courseware development  

Science Conference Proceedings (OSTI)

Multimedia technology offers considerable potential for education though the costs of production of courseware are prohibitive especially in a rapidly changing discipline such as computer science. This paper proposes a cost-effective technique which ...

C. J. Pilgrim; Y. K. Leung; D. D. Grant

1997-06-01T23:59:59.000Z

472

Overview and Low Cost Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The major reason that there is not more widespread use of titanium and its alloys is the high cost. Developments in reducing the cost of titanium ...

473

Cost and Impacts of Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Policies RESULTS 2010-2025 and long-run impacts 2010-2025 GovernmentIndustry Costs Hydrogen production, infrastructure & cost HyTrans merges the early transition...

474

User cost in oil production  

E-Print Network (OSTI)

The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

Adelman, Morris Albert

1990-01-01T23:59:59.000Z

475

Cost-sensitive classifier evaluation  

Science Conference Proceedings (OSTI)

Evaluating classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2005-08-01T23:59:59.000Z

476

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

as the product of the cost per kWh and the total number ofmethod assumes that the cost per kWh does not vary with theper kg (rather than the cost per kWh) as a function of the

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

477

An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles  

E-Print Network (OSTI)

product of an assumed cost per kWh and the total number ofmethod assumes that the cost per kWh does not vary with thethis battery has a low cost per kWh, and relatively few kWh

Delucchi, Mark; Lipman, Timothy

2001-01-01T23:59:59.000Z

478

Cash Flow Forecasting Model for General Contractors Using Moving Weights of Cost Categories  

E-Print Network (OSTI)

. Navon's model 1995, 1997 automatically in- tegrates the bill of quantity BOQ , cost estimate. Moreover, the main obstacle to automating the integration process is compatibility between cost items, and equipment which are specified as percentages of total cost. This approach is very realistic because

Sheridan, Jennifer

479

Wind Integration Cost and Cost-Causation: Preprint  

DOE Green Energy (OSTI)

The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

2013-10-01T23:59:59.000Z

480

3800 Green Series Cost Elements  

Energy.gov (U.S. Department of Energy (DOE))

Stoller - Legacy ManagementSustainable Acquisition (formerly EPP) Program 3800 Series Cost Elements01/30/2012 (Rev. 4)

Note: This page contains sample records for the topic "total ownership cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Empirical Methods of Cost Estimation  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

482

Bifacial Efficiency at Monofacial Cost  

solar cells; photovoltaics; PV; bifacial efficiency; Monofacial Cost, Bifacial Cells; bifacial Modules; industry growth forum; gamma solar Created ...

483

Bread Basket: a gaming model for estimating home-energy costs  

SciTech Connect

An instructional manual for answering the twenty variables on COLORADO ENERGY's computerized program estimating home energy costs. The program will generate home-energy cost estimates based on individual household data, such as total square footage, number of windows and doors, number and variety of appliances, heating system design, etc., and will print out detailed costs, showing the percentages of the total household budget that energy costs will amount to over a twenty-year span. Using the program, homeowners and policymakers alike can predict the effects of rising energy prices on total spending by Colorado households.

1982-01-01T23:59:59.000Z

484

Determining the adaptive decision zone of discrete lot sizing model with changes of total cost  

Science Conference Proceedings (OSTI)

The Economic Order Quantity (EOQ) zone is beneficial for giving some latitude in picking the lot sizes in a continuous time inventory problem, but it is not suitable for a discrete time inventory problem, the discrete lot sizing (DLS) problem. In this ... Keywords: Alternative solutions, Decision making, Discrete lot sizing, EOQ zone

Dong-Shang Chang; Fu-Chiao Chyr; Fu-Chiang Yang

2010-10-01T23:59:59.000Z

485

The cost-effectiveness of computer-assisted navigation in total knee arthroplasty  

E-Print Network (OSTI)

B, Picard F, Leitner F. Computer assisted knee replacement.Breitenfelder J, Ottersbach A. Computer-assisted navigation25. Holt G, Gregori AG. Computer assisted knee arthroplasty

Novak, Erik J.; Silverstein, Marc D.; Bozic, Kevin J.

2007-01-01T23:59:59.000Z

486

Total cost of 46-Mw Borax cogen system put at $30M  

SciTech Connect

The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in less than 5 years of service.

de Biasi, V.

1983-03-01T23:59:59.000Z

487

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

488

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

489

Low-cost flywheel demonstration program. Final report  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

490

NREL: News - NREL Reports Soft Costs Now Largest Piece of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

News Release NR-6313 News Release NR-6313 NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar. "The two new reports, along with previous reports, provide a comprehensive look at the full cost of installing solar, while delineating and quantifying the various contributors to that final cost," NREL analyst Barry Friedman said. The first new report, "Benchmarking Non-Hardware Balance-of-System (Soft)

491

17.2 - Cost Participation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17.2 (June 2004) 17.2 (June 2004) 1 Cost Participation [Reference: FAR 35.003(b), DEAR 917.70] Overview This section discusses DOE treatment of cost participation by organizations performing research, development, and demonstration projects under DOE prime contracts. This section does not cover efforts and projects performed for DOE by other Federal agencies. Background Cost participation is a generic term denoting any situation where the Government does not fully reimburse the contractor for all allowable costs necessary to accomplish the project or effort under the contract. The term includes, but is not limited to: * Cost Sharing * Cost Matching * Cost Limitation, which may be direct or indirect * Participation in-kind

492

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

493

Solar total energy systems final technical summary report. Volume I. Solar total energy systems market penetration  

SciTech Connect

The results of the market penetration analysis of Solar Total Energy Systems (STES) for the industrial sector are described. Performance data derived for STES commercial applications are included. The energy use and price forecasts used in the analysis are summarized. The STES Applications Model (SAM), has been used to develop data on STES development potential by state and industry as a function of time from 1985 through 2015. A second computer code, the Market Penetration Model (MPM), has been completed and used to develop forecasts of STES market penetration and national energy displacement by fuel type. This model was also used to generate sensitivity factors for incentives, and variations in assumptions of cost of STES competing fuel. Results for the STES performance analysis for commercial applications are presented. (MHR)

Bush, L.R.; Munjal, P.K.

1978-03-31T23:59:59.000Z

494

Methodology for Costing Ancillary Services from Hydro Resources  

Science Conference Proceedings (OSTI)

Due to the unique flexibility of Hydro resources, Hydro resource owners perceive a unique opportunity to profit from emerging markets for Ancillary Services (A/S) service products. Effective pricing and profitability measurement tools, however, are not widely available. This report creates a framework for defining A/S products and develops a methodology for calculating total incremental costs of providing A/S in terms of five cost elements.

2000-11-29T23:59:59.000Z

495

Fuel cycle cost study with HEU and LEU fuels  

SciTech Connect

Fuel cycle costs are compared for a range of /sup 235/U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors.

Matos, J.E.; Freese, K.E.

1984-01-01T23:59:59.000Z

496

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

497

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

498

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z