Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters Hydrology and Earth System Sciences, 6(6), 959970 (2002) EGS  

E-Print Network [OSTI]

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters This paper addresses the assessment of terrestrially derived organic carbon in sediments from two Scottish

Paris-Sud XI, Université de

2

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

3

Organic modification of carbon nanotubes  

Science Journals Connector (OSTI)

The organic modification of carbon nanotubes is a novel research field being developed ... and newest progress of organic modification of carbon nanotubes are reviewed from two aspects: organic covalent modificat...

Luqi Liu; Zhixin Guo; Liming Dai; Daoben Zhu

2002-03-01T23:59:59.000Z

4

Carbon nanotubes for organic electronics.  

E-Print Network [OSTI]

??This thesis investigated the use of carbon nanotubes as active components in solution processible organic semiconductor devices. We investigated the use of functionalized carbon nanotubes… (more)

Goh, Roland Ghim Siong

2008-01-01T23:59:59.000Z

5

Carbon Sequestration in Organic Farming  

Science Journals Connector (OSTI)

Organic farming has been developed as a new mode of farming vs. conventional farming. Evidence showed that organic farming management can well maintain the soil carbon up to 2–3 times higher in organic matter ...

Raymond Liu; Jianming M. Xu; C. Edward Clapp

2013-01-01T23:59:59.000Z

6

ARM - Measurement - Organic Carbon Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

7

5, 11391174, 2008 Organic carbon and  

E-Print Network [OSTI]

BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

Boyer, Edmond

8

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

9

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network [OSTI]

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD… (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

10

Excretion of dissolved organic carbon by eelgrass  

Science Journals Connector (OSTI)

Abstract. The release of dissolved organic carbon (DOC) by eelgrass (Zosteru marina) and its epiphytic ... tive agreement between the U.S. Energy Research.

2000-01-05T23:59:59.000Z

11

Long-term patterns of dissolved organic carbon in lakes across ...  

Science Journals Connector (OSTI)

... dynamics of dissolved organic carbon (DOC) in 55 lakes during ice-free periods in five regions across eastern Canada in relation to total solar radiation (

12

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. NDP-052 (1995) data Download the Data and ASCII Documentation files of NDP-052 PDF Download a PDF of NDP-052 image Contributed by Marilyn F. Lamb and Richard A. Feely Pacific Marine Environmental Laboratory Seattle, Washington and Lloyd Moore and Donald K. Atwood Atlantic Oceanographic and Meteorological Laboratory Miami, Florida Prepared by Alexander Kozyr* Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee, U.S.A. *Energy, Environment, and Resources Center The University of Tennessee Knoxville, Tennessee Environmental Sciences Division Publication No. 4420 Date Published: September 1995

13

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network [OSTI]

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

14

Analysis and removal of assimilable organic carbon (AOC) from treated drinking water using a biological activated carbon filter system  

Science Journals Connector (OSTI)

Abstract This study is focused on reducing the concentration of assimilable organic carbon (AOC) in treated drinking water. Experiments were conducted to evaluate the efficiency of AOC removal by biological activated carbon filters (BACF) in a pilot-scale system. The results show that BACF reduces the total concentration of AOC. The concentration of AOC primarily indicates microorganism growth in a water supply network, and the amount of AOC in water is significantly reduced after BACF treatment. The predicted and measured values of AOC in output water treated by the BACF system show linear relationships, and their correlation coefficients are high. An AOC empirical equation was established by determining the relationship between water quality parameters such as total organic carbon, dissolved organic carbon, UV254, ammonia nitrogen, and total phosphorous. These findings may be relevant to conventional water treatment plants or to water distribution systems to provide treated drinking water with a high level of biological stability.

Jie-Chung Lou; Chih-Yuan Yang; Che-Jung Chang; Wei-Hsiang Chen; Wei-Bin Tseng; Jia-Yun Han

2014-01-01T23:59:59.000Z

15

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries. The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries....

16

The relation of energy and organic carbon in aquatic invertebrates  

Science Journals Connector (OSTI)

Oct 24, 1975 ... The ratio of energy content to the weight of organic carbon ... Even the use of the mean conversion factor of 46 kJ g-l organic carbon yields.

2000-01-04T23:59:59.000Z

17

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

18

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

SciTech Connect (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

19

Comparison of assimilable organic carbon and UV-oxidizable carbon for evaluation of ultrapure-water systems.  

Science Journals Connector (OSTI)

...by modified assimilable organic carbon (AOC) and UV-oxidizable carbon tests. An...greater than or equal to 0.05) alter AOC values. UV radiation decreased UV-oxidizable carbon and increased AOC. Comparison of assimilable organic carbon...

R A Governal; M T Yahya; C P Gerba; F Shadman

1992-02-01T23:59:59.000Z

20

FROELICH, P. N. Analysis of organic carbon in marine sediments  

Science Journals Connector (OSTI)

Jun 4, 1979 ... is analyzed for dissolved organic carbon, the .... tice is needed to achieve reliable sealing ... oxygenated Cr,O, reactor at 1,600”C. This.

2000-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dissolved Organic Carbon Thresholds Affect Mercury Bioaccumulation in Arctic Lakes  

Science Journals Connector (OSTI)

Barkay, T.; Gillman, M.; Turner, R. R.Effects of dissolved organic carbon and salinity on bioavailability of mercury Appl. ... Barkay, Tamar; Gillman, Mark; Turner, Ralph R. ...

Todd D. French; Adam J. Houben; Jean-Pierre W. Desforges; Linda E. Kimpe; Steven V. Kokelj; Alexandre J. Poulain; John P. Smol; Xiaowa Wang; Jules M. Blais

2014-02-13T23:59:59.000Z

22

Challenges for improving estimates of soil organic carbon stored in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

23

Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio  

Science Journals Connector (OSTI)

Abstract This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67 ± 0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (?30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1 ? 1.2) and polar organic aerosols (OM2/OC2 ? 2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9 ± 0.2 and 1.8 ± 0.2, from paddy- and wheat-residue burning emissions.

Prashant Rajput; M.M. Sarin

2014-01-01T23:59:59.000Z

24

Bacterial Growth in Distribution Systems:? Effect of Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon  

Science Journals Connector (OSTI)

In the distribution systems fed by ozonated water, HPCs were correlated (R2 = 0.96) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. ... Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). ... The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation (R2 = 0.73) with an exponential model based on AOC. ...

Isabel C. Escobar; Andrew A. Randall; James S. Taylor

2001-08-01T23:59:59.000Z

25

Fossil organic carbon in wastewater and its fate in treatment plants  

Science Journals Connector (OSTI)

Abstract This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

Yingyu Law; Geraldine E. Jacobsen; Andrew M. Smith; Zhiguo Yuan; Paul Lant

2013-01-01T23:59:59.000Z

26

Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC):: complementary measurements  

Science Journals Connector (OSTI)

The objective of this study was to evaluate the necessity of measuring both assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) as indicators of bacterial regrowth potential. AOC and BDOC have often been measured separately as indicators of bacterial regrowth, or together as indicators of bacterial regrowth and disinfection by-product formation potential, respectively. However, this study proposes that both AOC and BDOC should be used as complementary measurements of bacterial regrowth potential. In monitoring of full-scale membrane filtration, it was determined that nanofiltration (NF) removed over 90% of the BDOC while allowing the majority of the AOC through. Heterotrophic plate counts (HPC) remained low during the entire period of monitoring due to high additions of disinfectant residual. In a two-year monitoring of a water treatment plant that switched its treatment process from chlorination to chlorination and ozonation, it was observed that the plant effluent AOC increased by 127% while BDOC increased by 49% after the introduction of ozone. Even though AOC is a fraction of BDOC, measuring only one of these parameters can potentially under- or over-estimate the bacterial regrowth potential of the water.

Isabel C Escobar; Andrew A Randall

2001-01-01T23:59:59.000Z

27

Carbon isotope ratios of organic compound fractions in oceanic suspended particles  

E-Print Network [OSTI]

Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

Hwang, Jeomshik; Druffel, Ellen R. M

2006-01-01T23:59:59.000Z

28

Inferring Black Carbon Concentrations in Particulate Organic Matter by Observing Pyrene Fluorescence Losses  

Science Journals Connector (OSTI)

Inferring Black Carbon Concentrations in Particulate Organic Matter by Observing Pyrene Fluorescence Losses ... For example, most atmospheric scientists are interested in the “blackness” of aerosols and the resultant effect on the radiative heat balance (3, 7), while oceanographers and soil scientists are interested in the refractory properties of BC in soils and sediments influencing its role in carbon cycling (5). ... Studies since the late 1970s and early 1980s have suggested that absorption into biogenic and diagenetic organic matter is a key process controlling the fate and effects of hydrophobic organic pollutants (8, 9), and this process has been described using a linear sorption model where Kd is the solid?water distribution coefficient (L/kgsolid), and this parameter is estimated using the product of the total organic carbon (TOC) fraction (fTOC, kgTOC/kgsediment) and the TOC-normalized distribution coefficient (KTOC, L/kgTOC). ...

D. Xanat Flores-Cervantes; Christopher M. Reddy; Philip M. Gschwend

2009-05-29T23:59:59.000Z

29

Contribution of organic carbon to wood smoke particulate matter absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

30

Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

31

A versatile metal-organic framework for carbon dioxide capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

versatile metal-organic framework for carbon dioxide capture and cooperative catalysis Previous Next List Jinhee Park, Jian-Rong Li, Ying-Pin Chen, Jiamei Yu, Andrey A. Yakovenko,...

32

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network [OSTI]

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

33

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared and  

E-Print Network [OSTI]

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared reflectance spectroscopy Agriculture Hawaii Mid-infrared Soil carbon Visible near-infrared Accurate assessment of DRS for Ct prediction of Hawaiian ag- ricultural soils by creating visible, near-infrared (VNIR

Grunwald, Sabine

34

Management effects on labile organic carbon pools  

E-Print Network [OSTI]

It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal...

Kolodziej, Scott Michael

2005-08-29T23:59:59.000Z

35

Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries  

Science Journals Connector (OSTI)

Thermal instability of lithiated cathode materials with organic...4, LiMn2O4, and LiCoO2...were mixed with diethyl carbonate, dimethyl carbonate, ethylene carbonate, ethyl methyl carbonate, and propylene carbonat...

Wei-Jie Ou; Chen-Shan Kao; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

36

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

37

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions  

Science Journals Connector (OSTI)

...the SOA potential of diesel emissions, especially...improve heavy-duty diesel engine performance with postcombustion...attention to gasoline and diesel fuel composition and emissions...carbon. Although total consumption of oil is minor relative...

Drew R. Gentner; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Timothy R. Dallmann; Laura Davis; Shang Liu; Douglas A. Day; Lynn M. Russell; Kevin R. Wilson; Robin Weber; Abhinav Guha; Robert A. Harley; Allen H. Goldstein

2012-01-01T23:59:59.000Z

38

Uncorrected Latitudinal Trends in Organic Carbon  

E-Print Network [OSTI]

of freshwater wetlands to sequester C. Keywords Cesium-137 (137 Cs), climate change, Histosol, precipitation author: e-mail: ccraft@indiana.edu J. Vymazal (ed.), Wastewater Treatment, Plant Dynamics and Management relation- ships between climate (temperature) and C accumulation. Organic C accumulation was inversely

Craft, Christopher B.

39

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect (OSTI)

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

40

Total Carbon Measurement in Soils Using Laser-Induced Breakdown Spectroscopy: Results from the Field and Implications for Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Carbon Measurement in Soils using Laser-Induced Breakdown Total Carbon Measurement in Soils using Laser-Induced Breakdown Spectroscopy: Results from the Field and Implications for Carbon Sequestration Michael H. Ebinger (mhe@lanl.gov, 505-667-3147) Environmental Dynamics and Spatial Analysis Group (EES-10), MS J495 Earth and Environmental Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545, USA. David A. Cremers (cremers_david@lanl.gov, 505-665-4180) Advanced Chemical Diagnostics and Instrumentation Group, MS J565 Chemistry Division Los Alamos National Laboratory, Los Alamos, NM 87545 David D. Breshears (daveb@lanl.gov, 505-665-2803) Environmental Dynamics and Spatial Analysis Group (EES-10), MS J495 Earth and Environmental Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

42

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

43

Characterization of Bioluminescent Derivatives of Assimilable Organic Carbon Test Bacteria  

Science Journals Connector (OSTI)

...Jersey 08043 The assimilable organic carbon (AOC) test is a standardized measure of the bacterial...describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation...

Pryce L. Haddix; Nancy J. Shaw; Mark W. LeChevallier

2004-02-01T23:59:59.000Z

44

Development of a Rapid Assimilable Organic Carbon Method for Water  

Science Journals Connector (OSTI)

...measurement of assimilable organic carbon (AOC) is proposed. The time needed to perform...There was no significant difference between AOC values determined with strain P17 for the...bacterial levels in some samples. Comparison of AOC values obtained by the Belleville laboratory...

Mark W. LeChevallier; Nancy E. Shaw; Louis A. Kaplan; Thomas L. Bott

1993-05-01T23:59:59.000Z

45

Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?  

E-Print Network [OSTI]

Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? David J. Burdige* Department of Ocean, Earth and Atmospheric Sciences, Old.1. Organic Geochemistry of Marine Sediments: General Considerations 468 2. Molecularly Uncharacterized

Burdige, David

46

Emission and Chemistry of Organic Carbon in the Gas and Aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Chemistry of Organic Carbon in the Gas and Aerosol Phase at a Sub-Urban Site Near Mexico City in March 2006 During Emission and Chemistry of Organic Carbon in the Gas and...

47

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

48

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

49

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

50

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

51

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

52

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

53

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

54

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

55

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

56

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

57

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

58

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

59

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2  

E-Print Network [OSTI]

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

Pittendrigh, Barry

60

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Z .Marine Chemistry 67 1999 3342 Differences in seawater particulate organic carbon concentration  

E-Print Network [OSTI]

of the organic carbon retained by a glass-fiber filter against the volume filtered. The interceptZ .Marine Chemistry 67 1999 33­42 Differences in seawater particulate organic carbon concentration August 1998; accepted 11 May 1999 Abstract Z . Z . ZParticulate organic carbon POC data collected

62

Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites  

SciTech Connect (OSTI)

By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

2014-05-14T23:59:59.000Z

63

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

64

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network [OSTI]

, and carbon dioxide. Introduction Carbon dioxide emissions resulting from the burning of fossil fuels 20 metric tons of carbon dioxide per capita are released annually into the atmosphere.1a,b CarbonStorage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks

Yaghi, Omar M.

65

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING AND CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated-carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 giL potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent adsorption tube breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. Linear response was checked using both non-volatile TOX species (trichlorophenol) an

JG DOUGLAS; HK MEZNARICH, PHD; JR OLSEN; GA ROSS PHD; M STAUFFER

2009-02-13T23:59:59.000Z

66

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)  

SciTech Connect (OSTI)

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S&GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S&GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 g/L potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent column breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. (3) Improper sample preservation: ion-chromatographic analysis of several samples wit

DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

2008-09-30T23:59:59.000Z

67

RESPONSES OF PRIMARY PRODUCTION AND TOTAL CARBON STORAGE TO CHANGES IN CLIMATE AND ATMOSPHERIC CO2 CONCENTRATION  

E-Print Network [OSTI]

Model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total. For contemporary climate with 315 ppmv CO2, TEM estimated that global NPP is 47.9 PgC/yr and global total carbon-q climate and +20.6% (9.9 PgC/yr) for the GISS climate. The responses of global total carbon storage are +17

68

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector  

E-Print Network [OSTI]

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

Zhou, Chongwu

69

Atomic-Scale Detection of Organic Molecules Coupled to Single-Walled Carbon Nanotubes  

E-Print Network [OSTI]

Atomic-Scale Detection of Organic Molecules Coupled to Single-Walled Carbon Nanotubes Sung You Hong.green@chem.ox.ac.uk; ben.davis@chem.ox.ac.uk Functionalized carbon nanotubes (f-CNTs) bearing organic molecules functionalization of single-walled carbon nanotubes (SWNTs) can tailor critical proper- ties such as solubility

Davis, Ben G.

70

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

71

Questions and Answers - Is carbon found in all organic and inorganic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

72

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration  

E-Print Network [OSTI]

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

Grunwald, Sabine

73

REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C). Surprisingly, the ability of activated carbon to remove organics from the water is better at a high temperature than at room temperature. These initial results are opposite to those expected from chromatographic theory, since the solubility of the organics is about 100,000-fold higher in the hot water than in ambient water. At present, the physicochemical mechanism accounting for these results is unknown; however, it is possible that the lower surface tension and lower viscosity of subcritical water (compared to water at ambient conditions) greatly increases the available area of the carbon by several orders of magnitude. Regardless of the mechanism involved, the optimal use of activated carbon to clean the wastewater generated from subcritical water remediation will depend on obtaining a better understanding of the controlling parameters. While these investigations focused on the cleanup of wastewater generated from subcritical water remediation, the results also apply to cleanup of any wastewater contaminated with nonpolar and moderately polar organics such as wastewaters from coal and petroleum processing.

Steven B. Hawthorne; Arnaud J. Lagadec

1999-08-01T23:59:59.000Z

74

Investigation of assimilable organic carbon (AOC) in flemish drinking water  

Science Journals Connector (OSTI)

The aim of the study was to investigate the drinking water supplied to majority of residents of Flanders in Belgium. Over 500 water samples were collected from different locations, after particular and complete treatment procedure to evaluate the efficiency of each treatment step in production of biologically stable drinking water. In this study assimilable organic carbon (AOC) was of our interest and was assumed as a parameter responsible for water biostability. The influence of seasons and temperature changes on AOC content was also taken into account. The AOC in most of the non-chlorinated product water of the studied treatment plants could not meet the biostability criteria of 10 ?g/l, resulting in the mean AOC concentration of 50 ?g/l. However, majority of the examined chlorinated water samples were consistent with proposed criteria of 50–100 ?g/l for systems maintaining disinfectant residual. Here, mean AOC concentration of 72 ?g/l was obtained. Granular activated carbon filtration was helpful in diminishing AOC content of drinking water; however, the nutrient removal was enhanced by biological process incorporated into water treatment (biological activated carbon filtration). Disinfection by means of chlorination and ozonation increased the water AOC concentration while the ultraviolet irradiation showed no impact on the AOC content. Examination of seasonal AOC variations showed similar fluctuations in six units with the highest values in summer and lowest in winter.

Monika Polanska; Koen Huysman; Chris van Keer

2005-01-01T23:59:59.000Z

75

Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers  

SciTech Connect (OSTI)

Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

Lin, S.H.; Hsu, F.M. [Yuan Ze Inst. of Tech., Taoyuan (Taiwan, Province of China). Dept. of Chemical Engineering

1995-06-01T23:59:59.000Z

76

Using rare earth elements to constrain particulate organic carbon flux in marginal seas.  

E-Print Network [OSTI]

??Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer… (more)

Chen, Ya-Feng

2014-01-01T23:59:59.000Z

77

Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin  

E-Print Network [OSTI]

an organic-rich coastal sediment. Geochim. Cosmochim. Actaorganic carbon in sediments from the North Carolinaexchange between deep ocean sediments and sea water. Nature

2013-01-01T23:59:59.000Z

78

Sorption of polycyclic aromatic hydrocarbons to minerals and low-organic-carbon aquifer sediments  

E-Print Network [OSTI]

The molecular mechanisms and major geochemical factors ics. controlling the sorption of nontoxic organic chemicals (NOC) to mineral surfaces in low-organic-carbon soils and sediments remain unclear. The objectives of this research were to study...

Grimaldi, Gabriel Orlando

2012-06-07T23:59:59.000Z

79

Sorption of polycyclic aromatic hydrocarbons to minerals and low-organic-carbon aquifer sediments.  

E-Print Network [OSTI]

??The molecular mechanisms and major geochemical factors ics. controlling the sorption of nontoxic organic chemicals (NOC) to mineral surfaces in low-organic-carbon soils and sediments remain… (more)

Grimaldi, Gabriel Orlando

2012-01-01T23:59:59.000Z

80

Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC  

SciTech Connect (OSTI)

Simulation models integrate our knowledge of soil organic C (SOC) dynamics and are useful tools for evaluating impacts of crop management on soil C sequestration; yet, they require local calibration. Our objectives were to calibrate the Environmental Policy Integrated Climate (EPIC) model, and evaluate its performance for simulating SOC fractions as affected by soil landscape and management. An automated parameter optimization procedure was used to calibrate the model for a site-specific experiment in the Coastal Plain of central Alabama. The ability of EPIC to predict corn (Zea mays L.) and cotton (Gossypium hirsutum L.) yields and SOC dynamics on different soil landscape positions (summit, sideslope and drainageway) during the initial period of conservation tillage adoption (5 years) was evaluated using regression and mean squared deviations. Simulated yield explained 88% of measured yield variation, with greatest disagreement on the sideslope position and highest agreement in the drainageway. Simulations explained approximately 1, 34 and 40% of the total variation in microbial biomass C (MBC), particulate organic C (POC) and total organic C (TOC), respectively. Lowest errors on TOC simulations (0-20 cm) were found on the sideslope and summit. We conclude that the automated parameterization was generally successful, although further work is needed to refine the MBC and POC fractions, and to improve EPIC predictions of SOC dynamics with depth. Overall, EPIC was sensitive to spatial differences in C fractions that resulted from differing soil landscape positions. The model needs additional refinement for accurate simulations of field-scale SOC dynamics affected by short-term management decisions.

Causarano, Hector J.; Shaw, Joey N.; Franzluebbers, A. J.; reeves, D. W.; Raper, Randy L.; Balkcom, Kipling S.; Norfleet, M. L.; Izaurralde, R Cesar

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants  

Science Journals Connector (OSTI)

Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms...254, and AOC) from water, experimental results indicate th...

Jie-Chung Lou; Chung-Yi Lin; Jia-Yun Han…

2012-06-01T23:59:59.000Z

82

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic  

E-Print Network [OSTI]

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents requires drastic modifications to the current energy infrastructure. Thus, carbon capture and sequestration for use as carbon capture adsorbents. Ideal adsorbed solution theory (IAST) estimates of CO2 selectivity

Kamat, Vineet R.

83

Highly efficient carbon dioxide capture with a porous organic polymer impregnated with  

E-Print Network [OSTI]

Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

Paik Suh, Myunghyun

84

Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for  

E-Print Network [OSTI]

Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon) across landscapes and soil carbon emissions (van Oost et al., 2007). The dust cycle rep- resents

85

Sample storage impact on the assimilable organic carbon (AOC) bioassay  

Science Journals Connector (OSTI)

The effects of sample storage on the assimilable organic carbon (AOC) bioassay using Pseudomonas fluorescens strain P17 and Spirillum strain NOX have not been fully quantified to date, and in the current Standard Method, it is stated that samples can “probably be held for several days” (Standard Methods for the Examination of Water and Wastewater, ed. A. D. Eaton, L. S. Clesceri, A. E. Greenberg, 19th Edn., (1995)). Experiments were performed by splitting 22 samples after chlorine residual neutralization and pasteurization at 70°C for 30 min, and holding one half of the replicate samples at 4°C for one week prior to analysis. The majority of the samples were taken from a local water treatment plant and distribution system with source water from the deep Floridan aquifer. The others were taken from the laboratory tap water, whose source was also the Floridan aquifer. All collected samples were tested for effects due to storage, with each sample tested for AOC as soon as possible while an identical replicate was stored for one week. After one week, the AOC of the held samples was also determined. By comparing the AOC of samples that were not stored with samples that were stored, it was observed that after one week of storage, the AOC of the stored identical sample replicates increased by approximately 65%. This was determined to result from BOM (biodegradable organic matter) fermentation to AOC by a yeast, Cryptococcus neoformans. Of the 22 samples tested, only four displayed no significant change in AOC and none displayed a significant decrease in AOC. It was then determined that samples heat treated at 70°C for 30 min could be stored for less than 2 days, but a modified pasteurization of 72°C for 30 min immediately followed by an ice bath for 30 min allowed storage for at least 7 days without significant changes in AOC.

Isabel C Escobar; Andrew A Randall

2000-01-01T23:59:59.000Z

86

Biogeochemical cycling in an organic-rich coastal marine basin. 10. The role of amino acids in sedimentary carbon and nitrogen cycling  

SciTech Connect (OSTI)

Hydrolyzable amino acids were measured in cores and surface sediment samples collected over a 14 month period from the rapidly accumulating, anoxic sediments of Cape Lookout Bight, NC. The concentration of total hydrolyzable amino acids (THAAs) shows an exponential decrease with depth, in a manner similar to total organic carbon and total nitrogen. Carbon and nitrogen in THAAs averages 10-15% of the total organic carbon and 30-40% of the total nitrogen in these sediments. In surface sediments the concentration of THAAs do not show strong seasonal variations, with the exception of a small apparent decrease during the winter months. Aspartic acid, glutamic acid, glycine and alanine are the most abundant individual amino acids in Cape Lookout Bight sediments. The distribution of individual amino acids in these sediments is very similar to that observed in the two major sources of organic matter, vascular salt marsh plants and marine plankton. The mole fractions of most amino acids show no depth variation in Cape Lookout Bight sediments. Kinetic modeling of these data indicates that the deposition of amino acids to the surface of these sediments is 5.8 {plus minus} 1.0 mol{center dot}m{sup {minus}2}{center dot}yr{sup {minus}1}. Approximately 46 {plus minus} 16% of this input is remineralized in the upper 40 cm. The recycling of amino acids accounts for 82 {plus minus} 43% of the total nitrogen regeneration and 27 {plus minus} 11% of the regeneration of total organic carbon in these sediments. The mean residence time of metabolizable amino acids is approx. 9 months, a value which is comparable to the mean residence time of both metabolizable organic carbon and nitrogen in these sediments.

Burdige, D.J.; Martens, C.S. (Univ. of North Carolina, Chapel Hill (USA))

1988-06-01T23:59:59.000Z

87

Indoor air pollutants from unvented kerosene heater emissions in mobile homes: studies on particles, semivolatile organics, carbon monoxide, and mutagenicity  

Science Journals Connector (OSTI)

Indoor air pollutants from unvented kerosene heater emissions in mobile homes: studies on particles, semivolatile organics, carbon monoxide, and mutagenicity ...

Judy L. Mumford; Ron W. Williams; Debra B. Walsh; Robert M. Burton; David J. Svendsgaard; Jane C. Chuang; Virginia S. Houk; Joellen Lewtas

1991-10-01T23:59:59.000Z

88

Unexpected carbon-carbon coupling between organic cyanides and isopropyl {beta}-carbon in a hafnium ene diamide complex  

SciTech Connect (OSTI)

Reaction of the ene diamide complex Cp*Hf({sigma}{sup 2},{pi}-iPr-DAB)Cl (1; Cp* = {eta}{sup 5}-C{sub 5}Me{sub 5}, iPr-DAB = 1,4-diisopropyl-1,4-diaza-1,3-butadiene) with organic cyanides was investigated. The crystal structure of the product, Cp*Hf[iPrNCH{double_bond}CHNC(Me){double_bond}CHC(tBu){double_bond}NH]Cl, is reported. The reaction is thought to proceed by two hydrogen transfers and a C-C coupling on the {beta}-carbon of an isopropyl group. NMR was used to identify reaction intermediates in the hydrogen transfer scheme.

Bol, J.E.; Hessen, B.; Teuben, J.H. [Univ. of Groningen (Netherlands); Smeets, W.J.J.; Spek, A.L. [Univ. of Utrecht (Netherlands)

1992-06-01T23:59:59.000Z

89

Multi-Walled Carbon Nanotubes-Modified Polymer Organic Photovoltaics.  

E-Print Network [OSTI]

??Since the carbon nanotubes were first discovered by Iijima in 1991, CNTs have been the focus of intense research by many groups. Nearly 7000 papers… (more)

Chen, Tzu-Fan

2009-01-01T23:59:59.000Z

90

A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming  

Science Journals Connector (OSTI)

Abstract The tidal freshwater marshes dominated by Phragmites australis (common reed) in the Chongxi Wetland are important components of the Yangtze River estuary in China. The litter from P. australis is exported to the surrounding estuarine area and the sea with the tidal flushing in the form of plant residue, particulate organic matter, and dissolved organic matter and is an important organic carbon resource of the East China Sea. A model was constructed using STELLA® software (version 9.1.3) to simulate the contribution of macrophyte-derived organic carbon to surrounding estuary and ocean ecosystems. The model is based on the monitoring and observational data from field surveys and published information on the Chongxi Wetland from 2008 to 2011, and the response of the total organic carbon flowing out of the wetland to global changes was also predicted in conditions of plant shoots that were annually harvested in winter. The results demonstrate the following: (1) the annual contributed organic carbon is 891 g C m?2, of which 612 g C m?2 flows out of the wetland directly as plant residue; (2) total organic carbon continually increases after a short decrease at the start of April of 2010, retains a high value from mid-July to mid-November and rapidly decreases to approximately zero during the harvest of the aboveground plant organs; and (3) accumulated annual organic carbon contributions to the surrounding estuarine and oceanic ecosystems are predicted to increase as the global average temperature rises, and the sea level increases.

Jiarui Zhang; Sven E. Jørgensen; Jianjian Lu; Søren N. Nielsen; Qiang Wang

2014-01-01T23:59:59.000Z

91

Snowball Earth prevention by dissolved organic carbon remineralization  

Science Journals Connector (OSTI)

... model of the co-evolution of Neoproterozoic climate and the carbon cycle that provides an alternative interpretation to the ‘hard snowball’ hypothesis of the origin of the observed ?13C variations ... carbon cycle component of the model. Supplementary Fig. 4 shows equivalent results for the case X = 1. ...

W. Richard Peltier; Yonggang Liu; John W. Crowley

2007-12-06T23:59:59.000Z

92

Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) was prepared by a carbonization of resorcinol–formaldehyde (RF) polymer gels, and it was chemically activated with KOH to obtain activated carbon aerogel (ACA) for electrode material for EDLC in organic electrolyte. Coin-type EDLC cells with two symmetrical carbon electrode were assembled using the prepared carbon materials. Electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods. Activated carbon aerogel (20.9 F/g) showed much higher specific capacitance than carbon aerogel (7.9 F/g) and commercial activated carbon (8.5 F/g) at a scan rate of 100 mV/s. This indicates that chemical activation with KOH served as an efficient method to improve electrochemical performance of carbon aerogel for EDLC electrode in organic electrolyte. The enhanced electrochemical performance of activated carbon aerogel was attributed to the high effective surface area and the well-developed pore structure with appropriate pore size obtained from activation with KOH.

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim; Sang-Gil Kim; Byung-Jun Lee; Myung-Soo Kim; Ji Chul Jung

2014-01-01T23:59:59.000Z

93

Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks Previous Next List A. Dzubak, L.-C. Lin, J. Kim, J. A. Swisher, R. Poloni, S. N. Maximoff, B. Smit, and L. Gagliardi,...

94

Improvement of the assimilable organic carbon (AOC) analytical method for reclaimed water  

Science Journals Connector (OSTI)

Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which dete...

Xin Zhao; Hongying Hu; Shuming Liu…

2013-08-01T23:59:59.000Z

95

Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.  

Science Journals Connector (OSTI)

...A modified assimilable organic carbon (AOC) bioassay is proposed. We evaluated all aspects of the AOC bioassay technique, including inoculum...raw waters need to be filtered prior to an AOC analysis. Glass fiber filters used with either...

L A Kaplan; T L Bott; D J Reasoner

1993-05-01T23:59:59.000Z

96

Development and Application of a Bioluminescence-Based Test for Assimilable Organic Carbon in Reclaimed Waters  

Science Journals Connector (OSTI)

...Jersey 08043 Assimilable organic carbon (AOC) is an important parameter governing the...protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the difficulty of the...

Lauren A. Weinrich; Eugenio Giraldo; Mark W. LeChevallier

2009-10-09T23:59:59.000Z

97

Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system  

Science Journals Connector (OSTI)

This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced ... (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associat...

Jie-Chung Lou; Bi-Hsiang Chen; Ting-Wei Chang…

2011-07-01T23:59:59.000Z

98

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network [OSTI]

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

99

Highly efficient separation of carbon dioxide by a metal-organic framework replete with  

E-Print Network [OSTI]

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 from

Yaghi, Omar M.

100

Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte  

Science Journals Connector (OSTI)

Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte ... The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. ... More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. ...

Jinwoo Park; Byungwoo Kim; Young-Eun Yoo; Haegeun Chung; Woong Kim

2014-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide  

E-Print Network [OSTI]

LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject: Chemical Engineering LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted...

Orejuela, Mauricio

1994-01-01T23:59:59.000Z

102

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separation with Separation with Novel Microporous Metal Organic Frameworks Background UOP LLC, the University of Michigan, and Northwestern University are collaborating on a three-year program to develop novel microporous metal organic frameworks (MOFs) suitable for CO 2 capture and separation. MOFs are hybrid organic/inorganic structures in which the organic moiety is readily derivatized. This innovative program is using sophisticated molecular modeling to evaluate the structurally

103

Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes  

E-Print Network [OSTI]

There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

Choi, Kyung Who

2013-12-03T23:59:59.000Z

104

Recent advances in carbon dioxide capture with metal-organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U. Wang, Hong-Cai Zhou, Greenhouse Gas Sci Technol, 2: 239-259, 2012 DOI: 10.1002ghg.1296 Abstract: Uncontrolled massive release of the primary greenhouse gas carbon...

105

A method for the determination of dissolved organic carbon in sea water by gas chromatography  

E-Print Network [OSTI]

of organic matter was carried out at elevated temperature and pressure after collection of a large number of samples. The resulting carbon dioxide was flushed through a gas chromatograph with helium as the carrier gas and the signal was recorded on a strip... chart recorder. Chromatographic analysis time was approximately eleven minutes per sample with a precision of + Q. 1 mg C/l. The organic carbon content of the sample was determined by measurement of the peak area using an appropriate carbon dioxide...

Fredericks, Alan D

1965-01-01T23:59:59.000Z

106

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network [OSTI]

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

107

Attenuator design for organs at risk in total body irradiation using a translation technique  

SciTech Connect (OSTI)

Total body irradiation (TBI) is an efficient part of the treatment for malignant hematological diseases. Dynamic TBI techniques provide great advantages (e.g., dose homogeneity, patient comfort) while overcoming treatment room space restrictions. However, with dynamic techniques come additional organs at risk (OAR) protection challenges. In most dynamic TBI techniques, lead attenuators are used to diminish the dose received by the OARs. The purpose of this study was to characterize the dose deposition under various shapes of attenuators in static and dynamic treatments. This characterization allows for the development of a correction method to improve attenuator design in dynamic treatments. The dose deposition under attenuators at different depths in dynamic treatment was compared with the static situation based on two definitions: the coverage areas and the penumbra regions. The coverage area decreases with depth in dynamic treatment while it is stable for the static situation. The penumbra increases with depth in both treatment modes, but the increasing rate is higher in the dynamic situation. Since the attenuator coverage is deficient in the dynamic treatment mode, a correction method was developed to modify the attenuator design in order to improve the OAR protection. The correction method is divided in two steps. The first step is based on the use of elongation charts, which provide appropriate attenuator coverage and acceptable penumbra for a specific depth. The second point is a correction method for the thoracic inclination, which can introduce an orientation problem in both static and dynamic treatments. This two steps correction method is simple to use and personalized to each patient's anatomy. It can easily be adapted to any dynamic TBI techniques.

Lavallee, Marie-Claude; Aubin, Sylviane; Chretien, Mario; Larochelle, Marie; Beaulieu, Luc [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, CHUQ Pavillon L'Hotel-Dieu de Quebec, 11 Cote du Palais, Quebec, Quebec, G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec, G1K 7P4 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, CHUQ Pavillon L'Hotel-Dieu de Quebec, 11 Cote du Palais, Quebec, Quebec, G1R 2J6 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, CHUQ, Pavillon L'Hotel-Dieu de Quebec, 11 Cote du Palais, Quebec, Quebec, G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec, G1K 7P4 (Canada)

2008-05-15T23:59:59.000Z

108

Developing carbon-based "organic" compounds for microelectronic applications is a promising, rapidly  

E-Print Network [OSTI]

· Performance and production solutions to electronics, displays, solar cells, white lighting and room lightingDeveloping carbon-based "organic" compounds for microelectronic applications is a promising inorganic materials such as silicon and copper, organic microelectronics are flexible, lighter weight, less

Hayden, Nancy J.

109

Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton  

Science Journals Connector (OSTI)

Ozonation of natural surface water increases the concentration of oxygen-containing low molecular weight compounds. Many of these compounds support microbiological growth and as such are termed assimilable organic carbon (AOC). Phytoplankton can contribute substantially to the organic carbon load when surface water is used as source for drinking water treatment. We have investigated dissolved organic carbon (DOC) formation from the ozonation of a pure culture of Scenedesmus vacuolatus under defined laboratory conditions, using a combination of DOC fractionation, analysis of selected organic acids, aldehydes and ketones, and an AOC bioassay. Ozonation of algae caused a substantial increase in the concentration of DOC and AOC, notably nearly instantaneously upon exposure to ozone. As a result of ozone exposure the algal cells shrunk, without disintegrating entirely, suggesting that DOC from the cell cytoplasm leaked through compromised cell membranes. We have further illustrated that the specific composition of newly formed AOC (as concentration of organic acids, aldehydes and ketones) in ozonated lake water differed in the presence and absence of additional algal biomass. It is therefore conceivable that strategies for the removal of phytoplankton before pre-ozonation should be considered during the design of drinking water treatment installations, particularly when surface water is used.

Frederik Hammes; Sébastien Meylan; Elisabeth Salhi; Oliver Köster; Thomas Egli; Urs von Gunten

2007-01-01T23:59:59.000Z

110

August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle in  

E-Print Network [OSTI]

1 August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle. This problem is highlighted by a recent study of the carbon budget of the Mackenzie shelf by Macdonald et al

Eicken, Hajo

111

Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models  

SciTech Connect (OSTI)

Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

Xu, Xiaofeng [ORNL] [ORNL; Schimel, Joshua [University of California, Santa Barbara] [University of California, Santa Barbara; Thornton, Peter E [ORNL] [ORNL; Song, Xia [ORNL] [ORNL; Yuan, Fengming [ORNL] [ORNL; Goswami, Santonu [ORNL] [ORNL

2014-01-01T23:59:59.000Z

112

Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

1995-05-01T23:59:59.000Z

113

Enhanced top soil carbon stocks under organic farming  

Science Journals Connector (OSTI)

...the farming systems was still significant...zero net input systems for all data...compost or waste products from...by returning plant residues and...into the system. It is therefore...those from integrated or conventional...and do not control for potential...the organic treatment is ?1.0 ELU...

Andreas Gattinger; Adrian Muller; Matthias Haeni; Colin Skinner; Andreas Fliessbach; Nina Buchmann; Paul Mäder; Matthias Stolze; Pete Smith; Nadia El-Hage Scialabba; Urs Niggli

2012-01-01T23:59:59.000Z

114

Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations  

E-Print Network [OSTI]

R. J. , Sullivan, A. P. , Peltier, R. E. , Atlas, E. L. , deB. M. , Middlebrook, A. M. , Peltier, R. E. , Sullivan, A. ,R. J. , Sullivan, A. P. , Peltier, R. E. , et al. : A study

2008-01-01T23:59:59.000Z

115

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source  

E-Print Network [OSTI]

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment : deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input

Wehrli, Bernhard

116

Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment  

E-Print Network [OSTI]

Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment Upal Ghosh1 , Richard G. Luthy1 , J. Seb Gillette2 , and Richard N long-term issue confronting sediment bioremediation is the lack of understanding of contaminant-sediment

117

Deep-Sea Research II 50 (2003) 655674 Determining true particulate organic carbon: bottles, pumps  

E-Print Network [OSTI]

Deep-Sea Research II 50 (2003) 655­674 Determining true particulate organic carbon: bottles, pumps or by in situ filtration with pumps and analyzing the filters. The concentrations measured by these two methods-latitude waters. Here we report that the ratio of bottle POC to pump POC ranged between 20 and 200 in the Ross Sea

Hansell, Dennis

118

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

119

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water  

E-Print Network [OSTI]

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

Yaghi, Omar M.

120

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S. Walker, and Geraldine L. Richmond*  

E-Print Network [OSTI]

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S remediation. The carbon tetrachloride-water interface in particular has been the subject of numerous the density profile across the interface. No detailed studies of the carbon tetrachloride structure

Richmond, Geraldine L.

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

122

Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene  

E-Print Network [OSTI]

Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon for organic pseudo-bilayer solar cells J. Appl. Phys. 112, 084511 (2012) Addition of regiorandom poly(3 (2012) Tunable open-circuit voltage in ternary organic solar cells Appl. Phys. Lett. 101, 163302 (2012

Hone, James

123

T E C H N I C A L A D V A N C E Soil organic carbon dust emission: an omitted global  

E-Print Network [OSTI]

T E C H N I C A L A D V A N C E Soil organic carbon dust emission: an omitted global source emission, soil organic carbon Received 16 April 2013 and accepted 21 May 2013 Introduction Uncertainty, Gunnedah, NSW 2380, Australia Abstract Soil erosion redistributes soil organic carbon (SOC) within

124

Kinetics and Yields of Pesticide Biodegradation at Low Substrate Concentrations and under Conditions Restricting Assimilable Organic Carbon  

Science Journals Connector (OSTI)

...occurrence of assimilable organic carbon (AOC) in experimental systems which can be present...the target substrate. The occurrence of AOC effectively makes biodegradation assays...biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing...

Damian E. Helbling; Frederik Hammes; Thomas Egli; Hans-Peter E. Kohler

2013-12-06T23:59:59.000Z

125

New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum  

Science Journals Connector (OSTI)

The concentration of easily assimilable organic carbon (AOC) largely determines the microbiological stability of drinking water. However, AOC determination is often neglected in practice due to the complex and tedious nature of the conventional bioassay. ...

Frederik A. Hammes; Thomas Egli

2005-03-31T23:59:59.000Z

126

Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater  

SciTech Connect (OSTI)

Reuse of treated wastewater through groundwater recharge has emerged as an integral part of water and wastewater management in arid regions of the world. Aerated-lagoon wastewater treatment followed by surface infiltration offers a simple low-tech, low-cost treatment option for developing countries. This study investigated the fate of dissolved organic carbon (DOC) through laboratory-scale soil aquifer treatment (SAT) soil columns over a 64-week period. Aerated-lagoon wastewater (average DOE = 17 mg/l) and two soils were collected near the USA/Mexico border near Nogales, AZ. Laboratory-scale SAT columns exhibited three phases of aging where infiltration rates and DOC removals were delineated. DOC removal ranged from 39% to greater than 70% during the study, with DOC levels averaging 3.7 and 5.8 mg/l for the SAT columns packed with different soils. Soil with a higher fraction of organic carbon content had higher effluent DOC levels, presumably due to leaching of soil organic matter. UV absorbance data indicated preferential biodegradation removal of low molecular weight, low aromatic DOC. Overall, SAT reduced the potential towards forming trihalomethanes (THMs) during disinfection, although the reactivity ({mu}g THM/mg DOC) increased. SAT and groundwater recharge would provide a high degree of DOC removal in an integrated low-tech wastewater reuse management strategy, especially for developing countries in arid regions of the world.

Westerhoff, P.; Pinney, M.

2000-07-01T23:59:59.000Z

127

Bioavailable organic carbon in wetland soils across a broad climogeographic area  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE Approved as to style and content by; David A. Zuberer (Co-Chair of Committee) Larry P. Wilding (Co-Chair of Committee) Thomas W. Boutton (Member) Mark A s ey (Head of Department) May 2002 Major Subject: Soil Science... ABSTRACT Bioavailable Organic Carbon in Wetland Soils Across a Broad Climogeographic Area. (May 2002) Andrew Dwight Baker, B. S. , Texas A&M University Co-Chairs of Advisory Committee. Dr. David A. Zuberer Dr. Larry P. Wilding Soils from a broad...

Baker, Andrew Dwight

2012-06-07T23:59:59.000Z

128

Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites  

SciTech Connect (OSTI)

Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

2014-05-06T23:59:59.000Z

129

Designing a Dynamic Data-Driven Application System for Estimating Real-Time Load of Dissolved Organic Carbon in a River  

Science Journals Connector (OSTI)

Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determinat...

Ying Ouyang

2012-10-01T23:59:59.000Z

130

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves  

Science Journals Connector (OSTI)

Abstract In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.

Muhammad Shahid; Tiantian Xiong; Maryse Castrec-Rouelle; Tibo Leveque; Camille Dumat

2013-01-01T23:59:59.000Z

131

The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast  

SciTech Connect (OSTI)

The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

2007-08-08T23:59:59.000Z

132

Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system  

Science Journals Connector (OSTI)

This paper investigated the variation of assimilable organic carbon (AOC) concentrations in water from several typical water treatment plants and distribution systems in a northern city of China. It is concluded from this study that: (1) The AOC in most of the product water of the studied water treatment plants and the water from the associated distribution systems could not meet the biostability criteria of 50–100 ?g/L. (2) Only 4% of the measured AOC concentrations were less than 100 ?g/L. However, about half of the measured AOC values were less than 200 ?g/L. (3) Better source water quality resulted in lower AOC concentrations. (4) The variation of AOC concentrations in distribution systems was affected by chlorine oxidation and bacterial activity: the former resulted in an increase of AOC value while the latter led to a reduction in AOC. (5) The variation of AOC concentration followed different patterns in different distribution systems or different seasons due to their respective operational characteristics. (6) Less than 30% of AOC could be removed by a conventional treatment process, whereas 30–60% with a maximum of 50–60% could be removed by granular activated carbon (GAC). (7) The observation via scanning electron microscope (SEM) on distribution pipe tubercle samples demonstrated that the pipe inner wall was not smooth and bacteria multiplied in the crevice as well as in the interior wall of distribution pipes.

W Liu; H Wu; Z Wang; S.L Ong; J.Y Hu; W.J Ng

2002-01-01T23:59:59.000Z

133

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries  

SciTech Connect (OSTI)

The effect of different kinds of aprotic organic solvents on the discharge performance and discharge products in Li-O2 batteries was systematically investigated. The discharge products deposited in air cathodes were analyzed by X-ray diffraction, in situ gas chromatography/mass spectroscopy and X-ray photoelectron spectroscopy. We found that a significant amount of Li2O2 can be formed in glyme-based electrolytes during the discharge process, while only small amount of Li2O2 is produced in electrolytes of phosphate, nitrile, ionic liquid and sulfoxide. However, in all the seven types of solvent systems we studied, Li2CO3 and LiF were still formed as byproducts whose compositions are strongly related to the solvents. Li2CO3 is produced not from the carbon air electrode but from oxidation and decomposition of the solvent as we verified by using a 13C-labeled carbon electrode and the solid-state 13C-MAS NMR technique. The formation of Li2CO3 and LiF during discharge will greatly reduce the Coulombic efficiency and cycle life of the Li-air batteries. Therefore, better electrolytes that can ensure the formation of Li2O2 but minimize other reaction products formed on air electrodes of Li-air batteries need to be further investigated.

Xu, Wu; Hu, Jian Z.; Engelhard, Mark H.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Feng, Ju; Hu, Mary Y.; Zhang, Jian; Ding, Fei; Gross, Mark E.; Zhang, Jiguang

2012-05-18T23:59:59.000Z

134

Effects of Organic Carbon Supply Rates on Uranium Mobility in a  

E-Print Network [OSTI]

respiration caused increased (bi)carbonate concentration and formation of stable uranyl carbonate complexes remediation. Dissolved oxygen, nitrate and denitrification products have been demonstrated to mobilize U

Hazen, Terry

135

Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97  

SciTech Connect (OSTI)

'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

Blake, D.M.; Bryant, D.L.; Reinsch, V.

1997-09-30T23:59:59.000Z

136

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect (OSTI)

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

137

Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars  

SciTech Connect (OSTI)

This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

2013-03-16T23:59:59.000Z

138

Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer  

SciTech Connect (OSTI)

Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in the water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.

Guo, L. Santschi, P.H.

2000-02-01T23:59:59.000Z

139

Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination  

Science Journals Connector (OSTI)

...bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the...luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a...treatment. This article presents a marine AOC test for determining the biological growth...

Lauren A. Weinrich; Orren D. Schneider; Mark W. LeChevallier

2010-12-10T23:59:59.000Z

140

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4 viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network [OSTI]

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

142

Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

None

1981-04-01T23:59:59.000Z

143

Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water  

Science Journals Connector (OSTI)

Ozonation of drinking water results in the formation of low molecular weight (LMW) organic by-products. These compounds are easily utilisable by microorganisms and can result in biological instability of the water. In this study, we have combined a novel bioassay for assessment of assimilable organic carbon (AOC) with the detection of selected organic acids, aldehydes and ketones to study organic by-product formation during ozonation. We have investigated the kinetic evolution of LMW compounds as a function of ozone exposure. A substantial fraction of the organic compounds formed immediately upon exposure to ozone and organic acids comprised 60–80% of the newly formed AOC. Based on experiments performed with and without hydroxyl radical scavengers, we concluded that direct ozone reactions were mainly responsible for the formation of small organic compounds. It was also demonstrated that the laboratory-scale experiments are adequate models to describe the formation of LMW organic compounds during ozonation in full-scale treatment of surface water. Thus, the kinetic and mechanistic information gained during the laboratory-scale experiments can be utilised for upscaling to full-scale water treatment plants.

Frederik Hammes; Elisabeth Salhi; Oliver Köster; Hans-Peter Kaiser; Thomas Egli; Urs von Gunten

2006-01-01T23:59:59.000Z

144

A Review and a Limited Comparison of Methods for Measuring Total Volatile Organic Compounds in Indoor Air  

E-Print Network [OSTI]

the sample to obtain a total-ion-current (TIC) chromatogram.The TIC of the sample can thenand calibrated against the TIC response of a standard(s).

Hodgson, A.T.

2011-01-01T23:59:59.000Z

145

Organic carbon and nitrogen in the surface sediments of world oceans and seas: distribution and relationship to bottom topography  

SciTech Connect (OSTI)

Information dealing with the distribution of organic carbon and nitrogen in the top sediments of world oceans and seas has been gathered and evaluated. Based on the available information a master chart has been constructed which shows world distribution of sedimentary organic matter in the oceans and seas. Since organic matter exerts an influence upon the settling properties of fine inorganic particles, e.g. clay minerals and further, the interaction between organic matter and clay minerals is maximal, a relationship between the overall bottom topography and the distribution of clay minerals and organic matter should be observable on a worldwide basis. Initial analysis of the available data indicates that such a relationship does exist and its significance is discussed.

Premuzic, E.T.

1980-06-01T23:59:59.000Z

146

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

SciTech Connect (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

147

Total and Partial Fragmentation Cross-Section of 500 MeV/nucleon Carbon Ions on Different Target Materials  

E-Print Network [OSTI]

By using an experimental setup based on thin and thick double-sided microstrip silicon detectors, it has been possible to identify the fragmentation products due to the interaction of very high energy primary ions on different targets. Here we report total and partial cross-sections measured at GSI (Gesellschaft fur Schwerionenforschung), Darmstadt, for 500 MeV/n energy $^{12}C$ beam incident on water (in flasks), polyethylene, lucite, silicon carbide, graphite, aluminium, copper, iron, tin, tantalum and lead targets. The results are compared to the predictions of GEANT4 (v4.9.4) and FLUKA (v11.2) Monte Carlo simulation programs.

Behcet Alpat; Ercan Pilicer; Sandor Blasko; Diego Caraffini; Francesco Di Capua; Vasile Postolache; Giorgio Saltanocchi; Mauro Menichelli; Laurent Desorgher; Marco Durante; Radek Pleskac; Chiara La Tessa

2014-01-20T23:59:59.000Z

148

Stable Carbon Isotope Ratios of Phenolic Compounds in Secondary Particulate Organic Matter Formed by Photooxidation of Toluene  

E-Print Network [OSTI]

Compound-specific stable carbon isotope ratios for phenolic compounds in secondary particulate organic matter (POM) formed by photooxidation of toluene were studied. Secondary POM generated by photooxidation of toluene using a continuous-flow reactor and an 8 cubic meter indoor smog chamber was collected, and then extracted with acetonitrile. Eight phenolic compounds were identified in the extracts by a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined by a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of the products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5 to 6 permil compared to the initial isotope ratio for toluene, whereas the isotope ratio for 4_nitrophenol remained the same as the initial isotope ratio for toluene. Based on the reaction mechanisms postulated in literature, stable carbon isotope ratios of these produc...

Irei, Satoshi; Huang, Lin; Auld, Janeen; Collin, Fabrice; Hastie, Donald

2014-01-01T23:59:59.000Z

149

Impacts of Labile Organic Carbon Concentration on Organic and Inorganic Nitrogen Utilization by a Stream Biofilm Bacterial Community  

Science Journals Connector (OSTI)

...High DON bioavailability in boreal streams during a spring flood. Limnol. Oceanogr. 45 :1298-1307. 32. Mulholland...organic nitrogen in minimally disturbed montane streams of Colorado, U. S. A. Biogeochemistry 74 :303-321. 44. Chrost...

Suchismita Ghosh; Laura G. Leff

2013-09-13T23:59:59.000Z

150

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

SciTech Connect (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

151

Organic carbon contents of sediments from Lake Schalkenmehrener Maar: A paleoclimate indicator  

Science Journals Connector (OSTI)

Investigations on orgnaic carbon in sediments of Maar lakes reveal a relationship to paleotemperatures as reconstructed from Camp Century ice cores. Of great influence are also...

B. Rein; J. F. W. Negendank

1993-01-01T23:59:59.000Z

152

Organic removal from domestic wastewater by activated alumina adsorption  

E-Print Network [OSTI]

of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina..., which is a polar adsorbent, to remove total organic carbon (TOC) and some trace organics from domestic wastewater has been evaluated. Batch adsorption experiments were used to investigate the effect of pH and total dissolved solids on activated...

Yang, Pe-Der

2012-06-07T23:59:59.000Z

153

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms  

Science Journals Connector (OSTI)

...strategy for capturing electrical energy in carbon-carbon bonds of...strategy for converting electrical energy harvested with renewable strategies, such as solar or wind, into forms that can be stored...particular concern for solar energy, because it is a vast energy...

Kelly P. Nevin; Sarah A. Hensley; Ashley E. Franks; Zarath M. Summers; Jianhong Ou; Trevor L. Woodard; Oona L. Snoeyenbos-West; Derek R. Lovley

2011-03-04T23:59:59.000Z

154

Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon  

Science Journals Connector (OSTI)

Additional measurements made aboard the ship and used in this analysis include concentrations of SO2 and total particle number (27), O3 (28), CO (29), and radon (30). ... This research is a contribution to the International Global Atmospheric Chemistry (IGAC) Core Project of the International Geosphere Biosphere Program (IGBP) and is part of the IGAC Aerosol Characterization Experiments (ACE). ...

H.-J. Lim; B. J. Turpin; L. M. Russell; T. S. Bates

2003-06-12T23:59:59.000Z

155

[Namour P., Jaffrezic N. (2010) Trends in Analytical Chemistry, 29(8) 848-857, doi:10.1016/j.trac.2010.04.013] Sensors for measuring biodegradable and total organic matter in water1  

E-Print Network [OSTI]

Organic Nitrogen; MFC: Microbial Fuel20 Cell; OM: Organic Matter; PCA: Principal Component Analysis; PLS carbon (TOC or DOC) or nitrogen (TON or DON)]. These analyses do19 offer alternatives to COD and operation costs, and the need for21 sampling and sample

Paris-Sud XI, Université de

156

Investigation of the organic matter in inactive nuclear tank liquids  

SciTech Connect (OSTI)

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

157

Carbon Sequestration Rates in Organic Layers of Soils Under the Grey Poplar (Populus x canescens) Stands Impacted by Heavy Metal Pollution  

Science Journals Connector (OSTI)

To describe carbon sequestration processes in organic layers of forest soils ... limit-value method was used to estimate C sequestration rate in poplar litters. A two-year ... using the ignition method. Input of ...

Agnieszka Medy?ska-Juraszek; Leszek Kuchar

2013-01-01T23:59:59.000Z

158

Bacterioplankton and Organic Carbon Dynamics in the Lower Mesohaline Chesapeake Bay  

Science Journals Connector (OSTI)

...organic matter fuels the upper mesohaline...organic matter fuels the upper mesohaline...of the oxygen consumption (25-27) and...aboard the research vessel immediately after...north, serving to fuel bacterial oxygen consumption. Major differences...

Robert B. Jonas; Jon H. Tuttle

1990-03-01T23:59:59.000Z

159

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...extracellular organic compounds...directly to the cells with a graphite...dioxide to organic compounds...microbial production of multicarbon...to convert solar energy that...hydrogen production was verified...outlet, but a solar-powered...a) H-cell device for...errors of the organic acid and...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

160

A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs  

E-Print Network [OSTI]

Carbonate acidizing has been carried out using HCl-based stimulation fluids for decades. However, at high temperatures, HCl does not produce acceptable results because of its fast reaction, acid penetration, and hence surface dissolution, and its...

Al-Douri, Ahmad F

2014-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Changes in soil organic carbon storage predicted by Earth system models during the 21st century  

E-Print Network [OSTI]

carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

2013-01-01T23:59:59.000Z

162

Design, Synthesis and Evaluation of Liquid-like Nanoparticle Organic Hybrid Materials for Carbon Dioxide Capture.  

E-Print Network [OSTI]

??Given the rapid increase in atmospheric concentration of CO2, the development of efficient CO2 capture technologies is critical for the future of carbon-based energy. Currently,… (more)

Lin, Kun-Yi

2012-01-01T23:59:59.000Z

163

Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean  

Science Journals Connector (OSTI)

As a part of the JGOFS synthesis and modeling project, researchers have been working to synthesize the WOCE/JGOFS/DOE/NOAA global CO2...survey data to better understand carbon cycling processes in the oceans. Wor...

Richard A. Feely; Christopher L. Sabine; Reiner Schlitzer…

164

The carbon isotope composition of ancient CO2 based on higher-plant organic matter  

Science Journals Connector (OSTI)

...carbon dioxide, and global warming. Geophys. Res...an indicator of global ecological change...invertebrates and coals from the Australian...potential of humic coals from dry pyrolysis...Fossil plants and global warming at the TriassicJurassic...

2002-01-01T23:59:59.000Z

165

Chlorine Decay and Disinfection By-product Formation of Dissolved Organic Carbon Fractions with Goethite.  

E-Print Network [OSTI]

??Water from the raw water intake at Barberton, Ohio water treatment plant was collected on two separate dates and fractionated into operationally defined dissolved organic… (more)

Wannamaker, Christopher L.

2008-01-01T23:59:59.000Z

166

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms  

Science Journals Connector (OSTI)

...powered by solar energy is...converted to organic compounds...strategies for the production of fuels...harvesting solar energy...electrodes to cells, has received...microbial fuel cells. Bioresour...microbial production platform...challenges in solar energy utilization...conversion of organic matter to...

Kelly P. Nevin; Sarah A. Hensley; Ashley E. Franks; Zarath M. Summers; Jianhong Ou; Trevor L. Woodard; Oona L. Snoeyenbos-West; Derek R. Lovley

2011-03-04T23:59:59.000Z

167

Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes  

Science Journals Connector (OSTI)

......synthesized by the conventional DC arc discharge method. Synthesized carbon nanotubes...aligned on a glass plate. An ac electric field of 5 MHz and 1.8 kV cm...Hl-induced compaction in aligned in an arc. The largest subunit was always......

Ken I. Hohmura; Yutakatti Itokazu; Shige H. Yoshimura; Gaku Mizuguchi; Yu-suke Masamura; Kunio Takeyasu; Yasushi Shiomi; Toshiki Tsurimoto; Hidehiro Nishijima; Seiji Akita; Yoshikazu Nakayama

2000-01-01T23:59:59.000Z

168

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...Microbiology, University of Massachusetts, Amherst, Massachusetts, USA Citation Nevin, K...attractive strategy to convert solar energy that is harvested intermittently...photosynthesis that might convert solar energy to organic products...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

169

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...photosynthesis that might convert solar energy to organic products more effectively...nature of renewable sources of energy, most notably solar and wind, is leading to a search for strategies to capture the electrical energy produced from these sources in...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

170

Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate  

Science Journals Connector (OSTI)

Abstract The role of abiotic processes on dissolved organic matter (DOM) production is often underappreciated. However, abiotic processes appear to be especially important in subsoils where, with increasing depth, microbial activity declines and soil organic matter (SOM) becomes a progressively more important contributor to DOM. Within three soil depths (20, 40, and 60 cm) in a temperate forest, soil temperature was positively associated with dissolved organic carbon (DOC) concentration (R2 = 0.23–0.77) and the DOM humification index (R2 = 0.35–0.72) for soil solutions in slow and fast flowpaths. With increasing soil temperature from 5 to 24 °C, average DOC concentrations increased by 86% at 20 cm, 12% at 40 cm and 12% at 60 cm soil depths. Our data suggest that DOM supply, especially in subsoils, is temperature dependent. We attribute this to the influence of temperature on DOM replenishment through direct processes such as SOM dissolution, diffusion and exchange reactions as well as indirect processes such as rhizodeposition and exoenzyme activity. In contrast, negative relationships (R2 = 0.71–0.88) between temperature and nitrate concentrations in subsoil suggested that the temperature-dependent supply of DOM drives microbial processes such as dissimilatory and assimilatory nitrate consumption.

Ehsan R. Toosi; John P. Schmidt; Michael J. Castellano

2014-01-01T23:59:59.000Z

171

Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets  

Science Journals Connector (OSTI)

...fig. S14 and table S3). This membrane thus offers an innovative ultrafiltration membrane for organic solvents. The observed flux is overwhelmingly...synthesis (23), production of biofuels (24), environmental remediation (25), and oil extraction in the food industry (19...

Santanu Karan; Sadaki Samitsu; Xinsheng Peng; Keiji Kurashima; Izumi Ichinose

2012-01-27T23:59:59.000Z

172

Potential responses of soil organic carbon to global environmental?change  

Science Journals Connector (OSTI)

...this organic matter fraction. The Bomb 14 C Tracer. The incorporation of 14 C produced in the early 1960s by atmospheric thermonuclear weapons testing (bomb 14 C) into SOM during the past 30 years provides a direct measure of the amount of fast-cycling...

Susan E. Trumbore

1997-01-01T23:59:59.000Z

173

Organization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

174

The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon  

SciTech Connect (OSTI)

The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch [Dresden University of Technology, Dresden (Germany). Institute of Water Chemistry

2007-09-15T23:59:59.000Z

175

Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia  

E-Print Network [OSTI]

-Phenols ............................................................................................. 80 3.3.4 Plant Pigments .............................................................................................. 87 3.3.5 PCA and Cluster Analysis ............................................................................ 88 3.4 Discussion...). Lambda-8 (?8), defined as the total weight in milligrams of the sum of V, S, and C phenols, normalized to 100 mg of OC, has been commonly used as an index of LOP concentrations (Hedges and Parker 1976). ?6, which does not have the C LOPs included, can...

Li, Xinxin

2013-01-03T23:59:59.000Z

176

Investigation of the organic matter in inactive nuclear tank liquids. Environmental Restoration Program  

SciTech Connect (OSTI)

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

177

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents [OSTI]

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

178

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

179

Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds  

Science Journals Connector (OSTI)

Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15–36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0–30 cm depth were studied for the period of 1939–1999 at the North Appalachian Experimental Watersheds (pool ranged from 24.5 Mg ha?1 in the 32-years moldboard tillage corn (Zea mays L.)–wheat (Triticum aestivum L.)–meadow–meadow rotation with straight row farming and annual application of fertilizer (N:P:K=5:9:17) of 56–112 kg ha?1 and cattle (Bos taurus) manure of 9 Mg ha?1 as the prevalent system (MTR-P) to 65.5 Mg ha?1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170–225 kg N ha?1 and appropriate amounts of P and K, and 6–11 Mg ha?1 of cattle manure as the improved system (NTC-M). The difference in SOC pool among management systems ranged from 2.4 to 41 Mg ha?1 and was greater than 25 Mg ha?1 between NTC-M and the other five management systems. The difference in the SOC pool of NTC-M and that of no tillage continuous corn (NTC) were 16–21 Mg ha?1 higher at the lower slope position than at the middle and upper slope positions. The effect of slope positions on SOC pools of the other management systems was significantly less (water conservation farming on SOC pool were accumulative. The NTC-M treatment with application of NPK fertilizer, lime, and cattle manure is an effective cropland management system for SOC sequestration.

Y Hao; R Lal; L.B Owens; R.C Izaurralde; W.M Post; D.L Hothem

2002-01-01T23:59:59.000Z

180

US EPA (Environmental Protection Agency) perspective on AOC (assimilable organic carbon) research as related to coliform colonization and compliance problems  

SciTech Connect (OSTI)

The biological stability of treated drinking water has become a major concern for water utilities. The U.S. E.P.A. is concerned from the perspective of coliform MCL compliance and remediation of coliform biofilm problems. The levels of readily assimilable nutrients present in treated water are affected by water treatment processes, but of greatest concern are those processes, such as ozonation, that cause increases in the levels of assimilable organic carbon (AOC) and therefore contribute to biological instability of the water. Thus, the combined use of ozonation (pre-oxidant) and a lower disinfectant residual as an approach to reducing disinfectant byproducts may result in increased bacterial growth, including coliforms, in the distribution system. Information is needed on: the AOC flux level that stimulate coliform growth in biofilm: the specific nutrients and concentrations that can stimulate growth of both coliforms and HPC; treatment strategies to reduce AOC levels and strategies to effectively control biofilm formation where AOC levels cannot be reduced.

Reasoner, D.J.; Rice, E.W.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The effect of low concentrations of assimilable organic carbon (AOC) in water on biological clogging of sand beds  

Science Journals Connector (OSTI)

Infiltration of pretreated surface water with recharge wells is hampered by biological clogging processes in the aquifer. The influence of the concentration of easily assimilable organic carbon (AOC) in water on clogging was investigated in filter beds operated under well-defined laboratory conditions using acetate as a model substrate. Acetate concentrations in the water as low as 0.01 mg C/l promoted clogging with the main head loss, caused by bacterial growth, in the first centimeter of the sand bed. An empirical model was developed describing a linear relationship between the operation period to reach a certain increase in head loss (TPi) and the reciprocal value of the acetate concentration or acetate load [Lac g C/ (m2 · d)] at a constant filtration rate. The rate of clogging, designated as the microbiological clogging factor (Cr), is defined by the slope of the linear relationship between the square root of the increase of the head loss (P112) and the operation time. This linear relationship demonstrated that the increase in clogging rate was constant with time. Observations at several locations with experimental recharge wells revealed that the AOC concentration is an important parameter for the biological clogging potential of water. The AOC concentration of water used for infiltration in a recharge well should be less than 0.01 mg acetate-C equiv/l to prevent biological clogging for a period of more than a year.

W.A.M. Hijnen; D. Van der Koou

1992-01-01T23:59:59.000Z

182

Tracing the Fate of Enhanced Organic Carbon Production during a Southern Ocean Fe Fertilization Experiment using Natural Variations in Carbon and Nitrogen Isotopic Composition  

SciTech Connect (OSTI)

This project focused on the N and C natural stable isotope response during SOFeX--a purposeful iron (Fe) addition experiment in the Fe limited Southern Ocean. One purpose of the study was to determine if relief of phytoplankton Fe stress would increase productivity sufficiently to enhance C export from surface to deep waters. We proposed that N and C stable isotopes would be useful for tracing this export. Iron was added to waters north and south of the Antarctic Polar Front in waters to the southwest of New Zealand. While both sites have high-nutrient, low chlorophyll conditions (HNLC) typical of Fe limitation, [SiO4] a required nutrient for diatoms was low at the northerly site and high at the southern location. The most extensive coverage occurred at the southern site. Here, FeSO4 was added four different times over an {approx}two week period. We found that: (1) Particulate organic nitrogen and carbon in the mixed layer increased by a factor of 2-3 in response to the Fe addition in the southern patch. (2) PN accumulation and NO3- drawdown were both 1-2 {micro}M during the occupation of the bloom, suggesting retention of particulates within the mixed layer of the southern patch. (3) {sub 15}N of PN and of NO{sub 3}{sup -} increased by 1-2{per_thousand} as [NO{sub 3}{sup -}] decreased, and there is a clear contrast between in- and out-patch stations with respect to particulate {sub 15}N. The isotopic fractionation factor for NO{sub 3}{sup -} was near 5-6{per_thousand} and appears to have been unaffected by Fe fertilization. In contrast, there was little change in {delta}{sup 13}C. (4) The > 54 {micro}m size fraction was typically lighter than the 1-54 {micro}m size fraction by about 0.5 {per_thousand} in {delta}{sup 13}C. In the south patch, this difference increased as the bloom progressed, and with increasing PN concentration. This result may have been caused by large chain-forming diatoms responded to the Fe addition and were likely isotopically lighter than smaller flagellates. Similar observations were made for {delta}{sup 13}C.

Altabet, M.A.

2005-02-05T23:59:59.000Z

183

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

184

Influence of Stand Composition on Soil Organic Carbon Stabilization and Biochemistry in Aspen and Conifer Forests of Utah.  

E-Print Network [OSTI]

?? Quacking aspen (Populus tremuloides Michx.) is an iconic species in western United States that offers multiple ecosystem services, including carbon sequestration. A shift in… (more)

Roman Dobarco, Mercedes

2014-01-01T23:59:59.000Z

185

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

186

Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control  

Science Journals Connector (OSTI)

The advantages of printed electronics and semiconducting single-walled carbon nanotubes (SWCNTs) are combined for the first time for display electronics. Conductive silver ink and 98% semiconductive SWCNT solutions are used to print back-gated thin film ...

Pochiang Chen; Yue Fu; Radnoosh Aminirad; Chuan Wang; Jialu Zhang; Kang Wang; Kosmas Galatsis; Chongwu Zhou

2011-11-03T23:59:59.000Z

187

Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific  

E-Print Network [OSTI]

considering TdR conversion factors 1 and 2 x 10 18 cellsrates using TdR conversion factors of 1 - 2 x 10 18mol -1 and a carbon conversion factor of 15 fg C cell -1 ;

Dehairs, F.

2008-01-01T23:59:59.000Z

188

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network [OSTI]

B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

189

Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles  

E-Print Network [OSTI]

between proxy records in a sediment drift, Science, 298,the Japan Sea measured with sediment traps, Mar. Chem. , 91,and organic constituents in sediments from the con- tinental

Hwang, Jeomshik; Druffel, Ellen R. M; Eglinton, Timothy I

2010-01-01T23:59:59.000Z

190

Acetylenic carbon allotrope  

DOE Patents [OSTI]

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

191

PII S0016-7037(99)00066-6 Fluxes of dissolved organic carbon from California continental margin sediments  

E-Print Network [OSTI]

sediments DAVID J. BURDIGE,1, * WILLIAM M. BERELSON,2 KENNETH H. COALE,3 JAMES MCMANUS,4 and KENNETH S) from marine sediments represent a poorly constrained component of the oceanic carbon cycle that may measurements of DOC fluxes from continental margin sediments (water depths ranging from 95 to 3,700 m

Burdige, David

192

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network [OSTI]

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

193

Microbial carbon sources on the shelf and slope of the northwestern Gulf of Mexico  

E-Print Network [OSTI]

:0 and total organic carbon isotope ratios. Deviations from the 1:1 line in the former indicate living or recently senescent sources of organic matter are not predominantly bacterial. Deviations from the 1:1 line in the latter indicate living or recently...

Rauschenberg, Carlton David

2006-10-30T23:59:59.000Z

194

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

SciTech Connect (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

195

Organic Aerosols in the Earth's J O O S T D E G O U W *  

E-Print Network [OSTI]

, and indirectly through their role as cloud-condensation nuclei. A large fraction (50%) of the submicron aerosol(primaryorganicaerosolorPOA) are distinguished from secondary organic aerosol (SOA) formed in the atmosphere from gas-phase precursors. Both POA scales of minutes: particle-into-liquid sampling combined with total organic carbon analysis for measure

Jimenez, Jose-Luis

196

Can Rock-Eval pyrolysis assess the biogeochemical composition of organic matter during peatification?  

E-Print Network [OSTI]

as a screening tool to investigate soil organic matter (SOM) chemistry and vulnerability. In order to test the validity of Rock-Eval as an indicator of SOM chemistry and of OM transformations, we compared classical Rock-Eval-derived parameters (Total Organic Carbon - TOC, Hydrogen Index - HI and Oxygen Index - OI

Boyer, Edmond

197

On carbon footprints and growing energy use  

SciTech Connect (OSTI)

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

198

Total Ecosystem Approach to Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7RWDO(FRV\VWHP$SSURDFKWR 7RWDO(FRV\VWHP$SSURDFKWR 7HUUHVWULDO&DUERQ 6HTXHVWUDWLRQ Coal Industry Perspective November 6, 2001 685)$&(0,1,1* * Surface mining is the preferred mining method - Cheaper - Employees are above ground - More coal is recovered - Less preparation (washing) required * Prior to 1977 overburden (soil) was left loose (uncompacted) - Many disturbed areas have supported growth of new forest with growth rates greater than adjacent undisturbed lands 685)$&(0,1($&72) * Act Required Mine Operators to take steps to reclaim mined lands. - Post Reclamation Bond - Return Land to Approximate Original Contour * Mining Companies routinely made the surface smooth by making multiple passes over the surface compacting soils 5(&/$,0('0,1(/$1'327(17,$/

199

The Total Carbon Column Observing Network  

Science Journals Connector (OSTI)

...scientific community for satellite validation, data assimilation...explained by synoptic (weather)-scale advection...tropospheric CH4 VMR. (b) Satellite validation The Park...information content in satellite measurements for an...data assimilationMon. Weather Rev. 136 26332650 10...

2011-01-01T23:59:59.000Z

200

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect (OSTI)

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

202

Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature  

Science Journals Connector (OSTI)

Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance o...

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim…

2014-11-01T23:59:59.000Z

203

Solubility and speciation results from oversaturation experiments on neptunium, plutonium and americium in a neutral electrolyte with a total carbonate similar to water from Yucca Mountain Region Well UE- 25p No. 1  

SciTech Connect (OSTI)

Solubility and speciation are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are a part of predictive transport models. Solubility experiments will approach solution equilibrium from both oversaturation and undersaturation. In these experiments, we have approached the solubility equilibrium from oversaturation, Results are given for solubility and speciation experiments from oversaturation of {sup 237} NpO{sub 2}{sup +} {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in a neutral electrolyte containing a total carbonate concentration similar to groundwater from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site, at 25{degrees}C and three pH values. In these experiments, the solubilitycontrolling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined.

Torretto, P.; Becraft, K.; Prussin, T.; Roberts, K.; Carpenter, S.; Hobart, D.; Nitsche, H. [Lawrence Berkeley Lab., CA (United States)

1995-12-01T23:59:59.000Z

204

Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N -T E I X E I R A *, S A R A H C . D AV I S w , M I C H A E L D . M A S T E R S * and  

E-Print Network [OSTI]

Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N - T E I X E of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality

DeLucia, Evan H.

205

The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas)  

Science Journals Connector (OSTI)

Concentrations of many trace elements in aquatic systems can become enriched due to anthropogenic as well as natural processes. In order to investigate particle enrichment processes from the river through an estuary, the changes in solid phase speciation and particle–water partitioning of a number of trace metals (e.g., Fe, Pb, Cd, Cu, Ni, Zn, Co, V) were evaluated from the Trinity River through Galveston Bay to the Ocean. An established way to detect anthropogenic contamination is by normalization of contaminant concentrations to Fe, Al, and/or organic carbon (OC). Particulate metal (Mn, Co, Ni, Cu, Pb, V, Ni, Zn, Cd) to Fe, Al, and metal to OC ratios were determined in waters of the Trinity River and Galveston Bay, in order to test 1) if the system is contaminated, and 2) whether Fe, Al, or organic carbon act as a master variable for determining metal concentrations. All particulate trace metals from Trinity River were present in ratios to Fe or Al similar to those from drainage basin soils, which were similar to world world-average soil. As expected, concentrations of Fe, Al and OC in particles from both the Trinity River as well as Galveston Bay were strongly correlated, from which one might conclude that Fe can be used as a reference element that is representative for all three of them. However, ratios to Fe of particle-reactive elements, such as Pb, were found to be significantly and positively correlated to the Fe content of particles from Galveston Bay, while nutrient-type elements, such as Cu, Ni, and Cd, were negatively correlated to their Fe content. Interestingly, suspended particles from the Trinity River did not exhibit any such correlations at all and only varied within a very limited range. The reason for such distinctive correlative behavior that distinguishes riverine from estuarine particles is likely caused by internal cycling of these elements within Galveston Bay, and their relationship to OC. Relationships of trace metals to OC revealed that differences in sources and cycling of OC in the estuary significantly altered the soil imprinted particle make-up. Results from selective leaching experiments of suspended particles in Galveston Bay confirmed the selective enrichment and fractionation processes for the different metals.

Liang-Saw Wen; Kent W. Warnken; Peter H. Santschi

2008-01-01T23:59:59.000Z

206

4, 1367, 2007 Modelling carbon  

E-Print Network [OSTI]

BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

Paris-Sud XI, Université de

207

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

208

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

209

Terrestrial Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

210

Organic geochemistry and organic petrography  

SciTech Connect (OSTI)

The Vermillion Creek coals and shales contain dominantly humic organic matter originating from woody plant tissues except for one shale unit above the coals, which contains hydrogen-rich kerogen that is mostly remains of filamentous algae, of likely lacustrine origin. The coals have two unusual features - very low inertinite content and high sulfur content compared to mined western coals. However, neither of these features points to the limnic setting reported for the Vermillion Creek sequence. The vitrinite reflectance of Vermillion Creek shales is markedly lower than that of the coals and is inversely proportional to the H/C ratio of the shales. Rock-Eval pyrolysis results, analyses of H, C, and N, petrographic observations, isotope composition of organic carbon, and amounts and compositions of the CHCl/sub 3/-extractable organic matter all suggest mixtures of two types of organic matter in the Vermillion Creek coals and clay shales: (1) isotopically heavy, hydrogen-deficient, terrestrial organic matter, as was found in the coals, and (2) isotopically light, hydrogen-rich organic matter similar to that found in one of the clay-shale samples. The different compositions of the Vermillion Creek coal, the unnamed Williams Fork Formation coals, and coals from the Middle Pennsylvanian Marmaton and Cherokee Groups are apparently caused by differences in original plant composition, alteration of organic matter related to different pH conditions of the peat swamps, and slightly different organic maturation levels.

Bostick, N.H.; Hatch, J.R.; Daws, T.A.; Love, A.H.; Lubeck, S.C.M.; Threlkeld, C.N.

1987-01-01T23:59:59.000Z

211

Woodland development and soil carbon and nitrogen dynamics and storage in a subtropical savanna ecosystem  

E-Print Network [OSTI]

succession over the past century to subtropical thorn woodlands dominated by C3 trees/shrubs. To elucidate mechanisms of soil organic carbon (SOC) and soil total N (STN) storage and dynamics in this ecosystem, I measured the mass and isotopic composition...

Liao, Julia Den-Yue

2005-02-17T23:59:59.000Z

212

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

213

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

214

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

215

Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field  

E-Print Network [OSTI]

Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field S. Q. LANG,1 G environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA carbon (2.5­15.1%). The amino acid distributions, and the relative concentrations of these compounds

Gilli, Adrian

216

Category:Non-governmental Organizations | Open Energy Information  

Open Energy Info (EERE)

governmental Organizations governmental Organizations Jump to: navigation, search Non-governmental Organizations For our purposes here, Non-governmental Organizations are defined as organizations that are classified under section 501(c)(3) of the Internal Revenue Code Pages in category "Non-governmental Organizations" The following 39 pages are in this category, out of 39 total. 2 25 x 25 America s Energy Future A Alliance for Clean Energy New York Alliance for Climate Protection B Bonneville Environmental Foundation Boston Area Solar Energy Association C California Center for Sustainable Energy California Fuel Cell Partnership Carbon War Room Clean Energy States Alliance Clean Tech Los Angeles Clean Tech San Diego CleanTX Foundation Colorado Renewable Energy Society C cont. Community Environmental Council

217

11, 26552696, 2011 Organic functional  

E-Print Network [OSTI]

) name biomass burning (BB) as the largest (42%) combustion source of pri- mary organic carbon fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM

Russell, Lynn

218

Correlation of Soil and Sediment Organic Matter Polarity to Aqueous  

E-Print Network [OSTI]

and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC to their organic carbon-normalized sorption coefficients (Koc) for carbon tetrachloride (CT) and 1

219

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

220

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 2. 2011 State energy-related carbon dioxide emisssions...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2011 State energy-related carbon dioxide emissions by fuel million metric tons of carbon dioxide shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Alabama...

222

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

223

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

224

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

225

CarbonSolve | Open Energy Information  

Open Energy Info (EERE)

CarbonSolve CarbonSolve Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarbonSolve Agency/Company /Organization: CarbonSolve Sector: Climate Focus Area: Greenhouse Gas Resource Type: Software/modeling tools User Interface: Website Website: www.carbonsolve.com Web Application Link: www.carbonsolve.com Cost: Paid CarbonSolve Screenshot References: CarbonSolve[1] Logo: CarbonSolve The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability objectives - including carbon, water, waste, employee engagement, or supply chain related initiatives into measureable metrics and trackable processes. Overview The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability

226

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

227

Hydrogen storage on activated carbon. Final report  

SciTech Connect (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

228

The effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystem  

E-Print Network [OSTI]

land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non-harvested...

Londo, Andrew James

1995-01-01T23:59:59.000Z

229

The Carbon balance of sorghum from anthesis to black layer  

E-Print Network [OSTI]

Measured Changes in Y and m The Integrated Carbon Balance Parameters dS, dW, and dSm as Functions of Biomass Page 87 96 Effects of Tissue Composi tion on Y g V CONCLUSIONS REFERENCES VI TA 101 117 122 125 LIST OF FIGURES Figure Page 2. 1 2... dSm and dR plotted as functions of biomass, W. 4. 7 Plot of organ biomass, by organ, over time. 97 98 109 4. 8 Plot of the total biomass of a simulated plant, over time, in the model of Y 9 4. 9 Plot of the change in Y due to a simulated...

Stahl, Randal Scott

2012-06-07T23:59:59.000Z

230

E-Print Network 3.0 - authigenic carbonate formation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the flux of carbon... to the deep sea. However, the accumulation rate of authigenic uranium depends not only on the organic carbon... into an organic carbon rain rate (export...

231

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

232

Carbon for Farmers: Assessing the Potential for Soil Carbon Sequestration in the Old Peanut Basin of Senegal  

Science Journals Connector (OSTI)

Carbon sequestration in soil organic matter of degraded Sahelian ... could play a significant role in the global carbon (C) uptake through terrestrial sinks while,...in situ soil and biomass carbon

Petra Tschakert

2004-12-01T23:59:59.000Z

233

Black Carbon and the Carbon Cycle  

Science Journals Connector (OSTI)

...reduces net CO 2 release by permanent deforestation...constitute a substantial fraction of the “missing carbon...estimate of oxygen release assuming 10% of...constitute a substantial fraction of sedimentary organic...formation by vegetation fires may be important...from soils becoming airborne by wind erosion...

Thomas A. J. Kuhlbusch

1998-06-19T23:59:59.000Z

234

JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 2000 / 865 CARBON FIBER ADSORPTION USING QUANTITATIVE  

E-Print Network [OSTI]

JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 2000 / 865 CARBON FIBER ADSORPTION USING carbon fiber (ACF) adsorbents. The DR isotherm parameter, k, depends on the adsorbate as well volatile organic compound adsorbates and activated carbon fiber adsorbents. INTRODUCTION Activated carbon

Cal, Mark P.

235

Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes  

SciTech Connect (OSTI)

The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

2011-04-15T23:59:59.000Z

236

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

237

Metal-Organic Frameworks with Precisely Designed Interior for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water...

238

Methods and systems for chemoautotrophic production of organic compounds  

DOE Patents [OSTI]

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

239

Carbon and Energy Reporter | Open Energy Information  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Carbon and Energy Reporter AgencyCompany Organization: Johnson Controls Sector: Energy User Interface: Website, Mobile Device ComplexityEase of...

240

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

242

Carbon Sequestration  

Science Journals Connector (OSTI)

Carbon sequestration” refers to a portfolio of activities for ... capture, separation and storage or reuse of carbon or CO2. Carbon sequestration technologies encompass both the prevention of CO2 emissions into ...

Robert L. Kane MS; Daniel E. Klein MBA

2005-01-01T23:59:59.000Z

243

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

244

CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE  

E-Print Network [OSTI]

of carbon emissions Other factors driving companies to reduce carbon emissions of their supply chain of carbon dioxide emitted to develop tools to measure the amount of carbon emissions produced from footprint of a can of food is the total amount of carbon emissions from production, transportation

Su, Xiao

245

OrganicHybrid PV Background.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excitonic solar cells, comprised of materials such as organic semiconductors, inorganic colloidal quantum dots, and carbon nanotubes, are fundamentally different than crystalline,...

246

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

247

WithCarbonSequestration Biological-  

E-Print Network [OSTI]

WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological BARRIERS · Cost · Feedstock availability · Fermentative micro-organisms #12;Targets and Status 322726Net

248

Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs  

Science Journals Connector (OSTI)

Abstract Studies of carbon sources in plankton communities are important because carbon content has become the main currency used in functional studies of aquatic ecosystems. We evaluated the contribution to the total organic carbon pool from different plankton communities (phytoplankton, bacterioplankton, and zooplankton – C-biota) and its drivers in eight tropical hydroelectric reservoirs with different trophic and hydrological status and different physical features. Our systems were separated into three groups based on trophic status and water residence time: (i) mesotrophic with low residence time (ML); (ii) mesotrophic with high residence time (MH); and (iii) eutrophic with low residence time (EL). Our hypothesis that reservoirs with low water residence times and low nutrient concentrations would show the lowest C-biota was supported. Phytoplankton carbon (C-phy) showed the highest concentrations in the EL, followed by MH and ML systems. The EL group also showed significantly higher zooplankton carbon (C-zoo). No significant difference was observed for bacteria carbon (C-bac) among the three system groups. In addition to trophic status and water residence time, regression analyses revealed that water temperature, light, pH, and dissolved organic carbon concentrations were the main drivers of plankton communities in these large tropical hydroelectric reservoirs.

Lúcia H.S. Silva; Vera L.M. Huszar; Marcelo M. Marinho; Luciana M. Rangel; Jandeson Brasil; Carolina D. Domingues; Christina C. Branco; Fábio Roland

2014-01-01T23:59:59.000Z

249

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

250

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

251

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

252

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

253

E-Print Network 3.0 - anestesia venosa total Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 degrading strain a disadvantage when competing for nutrients... to Total Bacterial Carbon Demand... 5 found no correlation between PAH biodegradation and nutrient Source:...

254

Carbon Smackdown: Carbon Capture  

SciTech Connect (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-07-12T23:59:59.000Z

255

Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States  

SciTech Connect (OSTI)

A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

Krystinik, K.B.; Charpentier, R.R.

1987-01-01T23:59:59.000Z

256

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

257

Emission factors for particles, elemental carbon, and trace gases from the Kuwait oil fires  

SciTech Connect (OSTI)

Emission factors are presented for particles, elemental carbon (i.e., soot), total organic carbon in particles and vapor, and for various trace gases from the 1991 Kuwait oil fires. Particle emissions accounted for {approximately} 2% of the fuel burned. In general, soot emission factors were substantially lower than those used in recent {open_quotes}nuclear winter{close_quotes} calculations. Differences in the emissions and appearances of some of the individual fires are discussed. Carbon budget data for the composite plumes from the Kuwait fires are summarized; most of the burned carbon in the plumes was in the form of CO{sub 2}. Fluxes are presented for several combustion products. 26 refs., 1 fig., 5 tabs.

Laursen, K.K.; Ferek, R.J.; Hobbs, P.V. [Univ. of Washington, Seattle, WA (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)

1992-09-20T23:59:59.000Z

258

VOLUME 89, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JULY 2002 Self-Organization of a Carbide Superlattice during Deposition of Carbon on Mo  

E-Print Network [OSTI]

of carbides in transition metals has long been a subject of interest since the Industrial Revolution. Re- cently, many of the same transition metals have been used as catalysts for the production of single-Organization of a Carbide Superlattice during Deposition of Carbon on Mo F. Tsui* and P. A. Ryan Department of Physics

259

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

260

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Biogeochemical cycling in an organic-rich coastal marine basin. 9. Sources and accumulation rates of vascular plant-derived organic material  

SciTech Connect (OSTI)

The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 {plus minus} 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 {plus minus} 17% of the total organic carbon buried over the past decade. When combined with a previously established sedimentary organic carbon budget for this site a vascular plant derived carbon burial rate of 26 {plus minus}20 mole C m{sup {minus}2} yr{sup {minus}1} is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

Haddad, R.I.; Martens, C.S. (Univ. of North Carolina, Chapel Hill (USA))

1987-11-01T23:59:59.000Z

262

Double Counting in Supply Chain Carbon Footprinting  

Science Journals Connector (OSTI)

Carbon footprinting is a tool for firms to determine the total greenhouse gas GHG emissions associated with their supply chain or with a unit of final product or service. Carbon footprinting typically aims to identify where best to invest in emission ... Keywords: carbon footprint, emissions allocation, supply chain, sustainable operations

Felipe Caro; Charles J. Corbett; Tarkan Tan; Rob Zuidwijk

2013-10-01T23:59:59.000Z

263

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

264

Introduction to carbon physics Carbon is in many ways a unique element. Most importantly, it is crucial for life on earth as  

E-Print Network [OSTI]

out of carbon. Scientifically, the whole huge field of organic chemistry deals entirely with carbon with producing nanotubes with specific properties. A number of reviews and books about carbon nanotubes have been

Johannesson, Henrik

265

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

266

Category:Clean Energy Organizations | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Clean Energy Organizations Jump to: navigation, search This is the Clean Energy Organizations category. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Clean Energy Organizations" The following 200 pages are in this category, out of 13,430 total. (previous 200) (next 200) 1 1 Solar Inc 10Charge Inc 12 Voltz Limited 1366 Technologies 1Soltech Inc 1st Light Energy, Inc. 1st Mile 2 21 Century Solar Inc 21-Century Silicon, Inc. 21st century Green Solutions LLC 25 x 25 America s Energy Future 2degrees 2DHeat Ltd 2e Carbon Access

267

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

268

Carbon Conference  

Science Journals Connector (OSTI)

Carbon Conference ... The Fourth Hienninl Conference on Carbon will be held at the University of Buffalo, June 15 to 19. ... The Pittsburgh Section's coal technology group will meet in the conference room at Mellon Institute, Pittsburgh, June ... ...

1959-06-01T23:59:59.000Z

269

MST: Organizations: Organic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

270

Organic Vegetable Organic Vegetable  

E-Print Network [OSTI]

marketed separately from conventionally grown produce in order to be profitably sold. Because of the amount of organic material include compost, Purdue University · Cooperative Extension Service · Knowledge to Go

271

Reaction studies of hot silicon, germanium and carbon atoms  

SciTech Connect (OSTI)

The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

Gaspar, P.P.

1990-11-01T23:59:59.000Z

272

Forest Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Portal Forest Carbon Portal Jump to: navigation, search Tool Summary Name: Forest Carbon Portal Agency/Company /Organization: United Nations Development Programme, United States Agency for International Development, United Kingdom Department for International Development, Forest Trends Sector: Land Focus Area: Forestry Topics: GHG inventory Resource Type: Lessons learned/best practices Website: www.forestcarbonportal.com/ Forest Carbon Portal Screenshot References: FCP[1] "Ecosystem Marketplace's Forest Carbon Portal is a clearinghouse of information, feature stories, event listings, project details, 'how-to' guides, news, and market analysis on forest-based carbon sequestration projects. Deforestation and land-use change are responsible for 17% of the

273

Common Carbon Metric | Open Energy Information  

Open Energy Info (EERE)

Common Carbon Metric Common Carbon Metric Jump to: navigation, search Tool Summary Name: Common Carbon Metric Agency/Company /Organization: United Nations Environment Programme, World Resources Institute Sector: Energy Focus Area: Buildings, Energy Efficiency, Industry Topics: GHG inventory, Implementation Resource Type: Guide/manual, Publications Website: www.unep.org/sbci/pdfs/Common-Carbon-Metric-for_Pilot_Testing_220410.p Common Carbon Metric Screenshot References: Common Carbon Metrics [1] "This paper is offered by the United Nations Environment Programme's Sustainable Buildings & Climate Initiative (UNEP-SBCI), a partnership between the UN and public and private stakeholders in the building sector, promoting sustainable building practices globally. The purpose of this

274

Carbon Capture and Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

275

Lesson Summary Students will learn about different carbon  

E-Print Network [OSTI]

Lesson Summary Students will learn about different carbon sources and sinks and the release · Knowledge of carbon as the main constituent of living organisms AAAS Science Benchmarks The Physical Setting Materials · 1 copy of The Carbon Cycle (Figure 1) · 1 copy of The Carbon Cycle A4 sheet for each student · 1

Mojzsis, Stephen J.

276

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

277

Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon  

E-Print Network [OSTI]

the Coupled Carbon Cycle Climate Model Intercomparison Project model projections H A I F E N G Q I A N *, R E Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase

Zeng, Ning

278

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

279

Carbon Isotopes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

280

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

282

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

283

10 Carbon Capture and Storage in the UK Yasmin E. Bushby Scottish Centre for Carbon Storage, School  

E-Print Network [OSTI]

10 Carbon Capture and Storage in the UK Yasmin E. Bushby � Scottish Centre for Carbon Storage fossil fuels which in turn produces approximately one third of total UK CO2 emissions. Carbon Capture stations and industrial facilities. Existing power stations can be retrofitted with carbon capture

284

Offsetting China's CO2 Emissions by Soil Carbon Sequestration  

Science Journals Connector (OSTI)

Fossil fuel emissions of carbon (C) in China in 2000 was ... % or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted ... . A crude estimated potential of soil C sequestration in China is 1...

R. Lal

2004-08-01T23:59:59.000Z

285

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

of Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And SequestrationW H SAMMIS WILLOW ISLAND TOTAL Carbon capture In the plant

Ogden, Joan

2004-01-01T23:59:59.000Z

286

1994 conceptual model of the carbon tetrachloride contamination in the 200 West Area at the Hanford Site  

SciTech Connect (OSTI)

Between 1955 and 1973, a total of 363,000 to 580,000 L (577,000 to kg) of liquid carbon tetrachloride, in mixtures with other organic and aqueous, actinide-bearing fluids, were discharged to the soil column at three disposal facilities -- the 216-Z-9 Trench, the 216-Z-lA TiTe Field, and the 216-Z-18 Crib -- in the 200 West Area at the Hanford Site. In the mid-1980`s, dissolved carbon tetrachloride was found in the uppermost aquifer beneath the disposal facilities, and in late 1990, the US Environmental Protection Agency and the Washington State Department of Ecology requested that the US Department of Energy proceed with planning and implementation of an expedited response action (ERA) to minimize additional carbon tetrachloride contamination of the groundwater. In February 1992, soil vapor extraction was initiated to remove carbon tetrachloride from the unsaturated zone beneath these disposal facilities. By May 1994, a total of 10,560 L (16,790 kg) of carbon tetrachloride had been removed, amounting to an estimated 2% of the discharged inventory. In the spring of 1991, the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) program selected the carbon tetrachloride-contaminated site for demonstration and deployment of new technologies for evaluation and cleanup of volatile organic compounds and associated contaminants in soils and groundwater at arid sites. Site investigations conducted in support of both the ERA and the VOC-Arid ID have been integrated because of their shared objective to refine the conceptual model of the site and to promote efficiency. Site characterization data collected in fiscal year 1993 have supported and led to refinement of the conceptual model of the carbon tetrachloride site.

Rohay, V.J.

1994-08-01T23:59:59.000Z

287

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

288

SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION  

SciTech Connect (OSTI)

The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

Brian McPherson

2004-04-01T23:59:59.000Z

289

November 2012 Key Performance Indicator (KPI): Carbon Management  

E-Print Network [OSTI]

provided. The carbon emissions are calculated using Carbon Trust conversion factors, as used in NTU's EMS statistics, to convert energy consumption data. The totals are calculated using electricity, gas and district

Evans, Paul

290

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

291

Carbon Nanotubes.  

E-Print Network [OSTI]

?? Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also… (more)

Fredriksson, Tore

2014-01-01T23:59:59.000Z

292

Aged black carbon identified in marine dissolved organic carbon  

E-Print Network [OSTI]

pool in the northeast Pacific Ocean, Deep Sea Res. , Part I,?445‰ in the deep NE Pacific Ocean (Table S1). The Suwanneein the northeast Pacific Ocean. If the BC in the Amazon

Ziolkowski, Lori A; Druffel, Ellen R.M.

2010-01-01T23:59:59.000Z

293

Aged black carbon identified in marine dissolved organic carbon  

E-Print Network [OSTI]

South Asia: Biomass or fossil fuel combustion? , Science,of combustion, in Sediment Records of Biomass Burning andduring biomass burning and fossil fuel combustion, the sinks

Ziolkowski, L. A; Druffel, E. R. M

2010-01-01T23:59:59.000Z

294

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation in the  

E-Print Network [OSTI]

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation traditional deep water formation via entrainment of carbon dioxide and other greenhouse-active species collected for oxygen, total carbon, alkalinity, nutrients, and CFCs. The alkalinity and total carbon data

Talley, Lynne D.

295

Metal binding in an aluminum based metal-organic framework for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal binding in an aluminum based metal-organic framework for carbon dioxide capture Link to article...

296

Capturing carbon | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing carbon Capturing carbon New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

297

Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

298

Sandbag Carbon Offset Map | Open Energy Information  

Open Energy Info (EERE)

Sandbag Carbon Offset Map Sandbag Carbon Offset Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sandbag Carbon Offset Map Agency/Company /Organization: Sandbag Sector: Energy, Land Focus Area: Renewable Energy, Biomass, Energy Efficiency, Forestry, Geothermal, Hydrogen, Industry, Solar, Wind Topics: Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: sandbag.org.uk/carbondata/cers Sandbag Carbon Offset Map Screenshot References: Sandbag Carbon Offset Map[1] Thinking about climate change can be a depressing occupation. It's a massive issue and personal actions like switching off lights and unplugging televisions can feel like small contributions. Background "Thinking about climate change can be a depressing occupation. It's a

299

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

300

Ukraine-Capacity Building for Low Carbon Growth | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations Development Programme Sector Energy,...

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigation of the stress induced properties of coke during carbonization.  

E-Print Network [OSTI]

??The large polycyclic aromatic plates within coal tar pitches do not flow freely enough to organize into large anisotropic domains during pyrolytic carbonization. It was… (more)

Maybury, James Joshua.

2007-01-01T23:59:59.000Z

302

Sorbents and Carbon-Based Materials for Hydrogen Storage Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

303

Philippines-Low Carbon Plan (LCP) | Open Energy Information  

Open Energy Info (EERE)

LCP) Jump to: navigation, search Name Philippines-Low Carbon Plan (LCP) AgencyCompany Organization World Wildlife Fund Sector Energy Topics Background analysis, Low emission...

304

Turkey-Low Carbon Plan (LCP) | Open Energy Information  

Open Energy Info (EERE)

LCP) Jump to: navigation, search Name Turkey-Country Specific Low Carbon Plans (LCP) AgencyCompany Organization World Wildlife Fund Sector Energy Topics Background analysis, Low...

305

Waterjet injection of powdered activated carbon for sediment remediation .  

E-Print Network [OSTI]

??"In situ sediment remediation through waterjet-activated carbon amendment delivery is an innovative means to mitigate the dangers posed by hydrophobic organic compounds. Ease of use… (more)

Redell, Chris J.

2011-01-01T23:59:59.000Z

306

Low Carbon World | Open Energy Information  

Open Energy Info (EERE)

Low Carbon World Low Carbon World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: LowCarbonWorld Agency/Company /Organization: LowCarbonEconomy Partner: United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset, Maps Website: www.lowcarboneconomy.com/Low_Carbon_World/Data/Home LowCarbonWorld Screenshot References: LowCarbonWorld[1] Background The idea behind this project was conceived at the 2008 United Nations Conference of Parties (COP14) event in Poznan (Poland). By listening to many speeches by energy ministers from numerous countries in the high level segment of the event, Toddington Harper Managing Director of The Low Carbon Economy Ltd (TLCE) became aware of the depth of valuable information being

307

Science Organizations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organizations Science Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place...

308

Assimilable Organic Carbon (AOC) in Drinking Water  

Science Journals Connector (OSTI)

Developments in water treatment The removal in water treatment of microorganisms causing the so-called “water-borne” diseases and the prevention of contamination of drinking water with these orga...

D. van der Kooij

1990-01-01T23:59:59.000Z

309

Regional Carbon Sequestration Partnerships | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Carbon Capture and Storage » Regional Science & Innovation » Carbon Capture and Storage » Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent of industrial CO2 emissions; 96 percent of the total land mass; and essentially all the geologic sequestration sites in the U.S. potentially available for carbon storage.

310

MESERAN Calibration for Low Level Organic Residues  

SciTech Connect (OSTI)

Precision cleaning studies done at Honeywell Federal Manufacturing & Technologies (FM&T), the Kansas City Plant (KCP), and at other locations within the Department of Energy (DOE) Weapons complex over the last 30 years have depended upon results from MESERAN Evaporative Rate Analysis for detecting low levels of organic contamination. The characterization of the surface being analyzed is carried out by depositing a Carbon-14 tagged radiochemical onto the test surface and monitoring the rate at which the radiochemical disappears from the surface with a Geiger-Mueller counter. In the past, the total number of counts over a 2-minute span have been used to judge whether a surface is contaminated or not and semi-quantitatively to what extent. This technique is very sensitive but has not enjoyed the broad acceptance of a purely quantitative analysis. The work on this project developed calibrations of various organic contaminants typically encountered in KCP operations. In addition, a new analysis method was developed to enhance the ability of MESERAN Analyzers to detect organic contamination and yield quantitative data in the microgram and nanogram levels.

Benkovich, M.G.

2004-04-08T23:59:59.000Z

311

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

312

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

313

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in  

Open Energy Info (EERE)

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Agency/Company /Organization: Asian Development Bank Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Low emission development planning, Policies/deployment programs, Background analysis Resource Type: Publications, Case studies/examples Website: www.adb.org/documents/studies/carbon-efficiency-prc/carbon-efficiency- Country: China UN Region: Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Organization | Department of Energy  

Energy Savers [EERE]

About Us Organization Organization Organization Printable PDF News & Blog CIO Leadership Organization Contact Us...

315

Organization | Department of Energy  

Office of Environmental Management (EM)

About Us Organization Organization Organization News Leadership Organization History Careers Contact Us...

316

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

317

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

318

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

319

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

320

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

322

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

323

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

324

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

325

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

326

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

327

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

328

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

329

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

330

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

331

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

332

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

333

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

334

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

335

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

336

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

337

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

338

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

339

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

340

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

342

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

343

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

344

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

345

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

346

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

347

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

348

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

349

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

350

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

351

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

352

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

353

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

354

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

355

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

356

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

357

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

358

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

359

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

360

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

362

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

363

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

364

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

365

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

366

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

367

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

368

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

369

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

370

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

371

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

372

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

373

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

374

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

375

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

376

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

377

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

378

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

379

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

380

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

382

Notices Total Estimated Number of Annual  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

383

CARBON DIOXIDE AND OUR OCEAN LEGACY  

E-Print Network [OSTI]

to energy-consuming activities that burn fossil fuels. On a yearly basis, the average Ameri- can produces 22 of carbon dioxide from the atmosphere, or nearly half of the fossil fuel carbon emissions over this period sea life that depend on the health and avail- ability of these shelled organisms. At present, ocean

384

Allied Carbon Credit GmbH | Open Energy Information  

Open Energy Info (EERE)

Carbon Credit GmbH Carbon Credit GmbH Jump to: navigation, search Name Allied Carbon Credit GmbH Place Hessen, Germany Sector Carbon Product Frankfurt-based carbon advisory and consultancy firm. References Allied Carbon Credit GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Allied Carbon Credit GmbH is a company located in Hessen, Germany . References ↑ "Allied Carbon Credit GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Allied_Carbon_Credit_GmbH&oldid=342020" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

385

Recycling of organic matter in Antarctic sediments: A transect ...  

Science Journals Connector (OSTI)

The first porewater distributions of O2 and NO3= and organic carbon data in the solid phase in this part of the ocean were used to model the recycling of organic ...

386

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network [OSTI]

2011. “Technology Roadmaps: Carbon Capture and Storage inOrganization (UNIDO). 2010. Carbon Capture and Storage in92 3.9. Carbon Capture and Storage Technologies for the Iron

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

387

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

388

Carbon Nanotubes  

Science Journals Connector (OSTI)

A broad review of the structure and properties of carbon nanotubes is presented. Particular emphasis is given to ... dimensional density of states predicted for single-wall nanotubes of small diameter. The eviden...

M. S. Dresselhaus; G. Dresselhaus…

2000-01-01T23:59:59.000Z

389

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

390

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

391

Gas adsorption on metal-organic frameworks  

DOE Patents [OSTI]

The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

2012-07-24T23:59:59.000Z

392

Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles  

SciTech Connect (OSTI)

Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ? To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ? ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ? PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ? The findings suggest that ELF has a protective role against PM. ? The synthetic ELF system could reduce the use of animals in PM-driven ROS testing.

Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China) [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China) [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

2013-02-01T23:59:59.000Z

393

Organic aerogel microspheres  

DOE Patents [OSTI]

Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

394

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

395

BOOKS & MEDIA UPDATE Carbon Nanotechnology  

E-Print Network [OSTI]

of organic semiconductors are introduced in this book, which also gives a clear impression of the rangeBOOKS & MEDIA UPDATE Carbon Nanotechnology Liming Dai (ed.) Elsevier · 2006 · 750 pp ISBN: 0 are reviewed. Contributions by different authors are grouped into three sections on the synthesis, chemistry

Elliott, James

396

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

397

NETL: Carbon Storage - Southwest Regional Partnership on Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwest Regional Partnership on Carbon Sequestration Southwest Regional Partnership on Carbon Sequestration MORE INFO Additional information related to ongoing SWP efforts can be found on their website. The Southwest Regional Partnership on Carbon Sequestration (SWP) is led by the New Mexico Institute of Mining and Technology and represents a coalition composed of a diverse group of experts in geology, engineering, economics, public policy, and outreach. The 50 SWP partners represent state and federal agencies, universities, electric utilities, non-governmental organizations, coal, oil and gas companies, and the Navajo Nation. The partners are engaged in several aspects of SWP projects and contribute to the efforts to deploy carbon capture and storage (CCS) projects in the southwestern region of the United States. SWP encompasses Arizona,

398

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

399

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

400

Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau  

E-Print Network [OSTI]

RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

Xiao, Jingfeng

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

402

The ebullition of hydrogen, carbon monoxide, methane, carbon dioxide and total gaseous mercury  

E-Print Network [OSTI]

of gaseous species depends of their solubility in the water. Since CH4 is relatively insoluble, ebullition-product of the respiration and is highly soluble in the water, leading ofte h- 1 . Measurements of H2, CO, CH4 and CO2 trapped gas concentrations and fluxes were used

O'Driscoll, Nelson

403

Organic geochemistry and correlation of Paleozoic source rocks and Trenton crude oils, Indiana  

SciTech Connect (OSTI)

Shale samples from four cores of the New Albany and Antrim Shales (Devonian) and from six cores of the Maquoketa Group (Ordovician), representing a broad geographic area of Indiana, have been analyzed for total organic carbon, total sulfur, pyrolysis yield (Rock-Eval), bitumen content, and illite crystallinity data. These data indicate that the New Albany, Antrim, and Maquoketa shales contain a sufficient quantity and quality of organic matter to be good petroleum source rocks. Bitumen ratios, Rock-Eval yields, gas chromatography of saturated hydrocarbons, and illite crystallinity data show that the Maquoketa shales have reached a higher level of thermal maturity than the New Albany and Antrim shales. The level of thermal maturity of the Maquoketa shales suggested a maximum burial depth considerably greater than the present depth.

Guthrie, J. (Indiana Geological Survey, Bloomington (USA))

1989-08-01T23:59:59.000Z

404

Distant harvest : the production and price of organic food  

E-Print Network [OSTI]

Organic food is growing in popularity, enjoying a 15 to 20% increase in sales, yearly, since about 1997, according to the Organic Trade Association. Organic produce makes up about 2% of the United States' total food sales ...

Sherburne, Morgan (Morgan L.)

2010-01-01T23:59:59.000Z

405

Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study  

E-Print Network [OSTI]

1 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Students #12;2 #12;3 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha with electricity generation accounting for 40% of the total1 . Carbon capture and sequestration (CCS) is one

406

Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna  

E-Print Network [OSTI]

1 Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna , Fritz Simeona. ___________________________________________________________________________________ Abstract Carbon capture technology has been proposed as an effective approach for the mitigation potential for facilitating CO2 capture at industrial-scale carbon emitters; however, the total operational

407

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

408

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

409

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

410

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

411

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

412

Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source  

Science Journals Connector (OSTI)

...bacterial production beneath the...terrestrial organic matter (33...terrestrial organic matter diminishes...to weeks, solar insolation...Phytoplankton production reaches its...Bacterioplankton production in humic Lake...of bacterial cells and input of allochthonous organic carbon. Microb...

Byron C. Crump; George W. Kling; Michele Bahr; John E. Hobbie

2003-04-01T23:59:59.000Z

413

Low Carbon Economy Index 2010 | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Economy Index 2010 Low Carbon Economy Index 2010 Jump to: navigation, search Tool Summary Name: Low Carbon Economy Index 2010 Agency/Company /Organization: PricewaterhouseCoopers Sector: Energy, Land Topics: Co-benefits assessment, Low emission development planning Resource Type: Publications Website: www.pwc.co.uk/ Low Carbon Economy Index 2010 Screenshot References: Low Carbon Economy Index 2010[1] "PwC re-examines the progress of the G20 economies against the Low Carbon Achievement and Low Carbon Challenge Index. This post- Copenhagen report provides an update on the progress over 2009." Low Carbon Economy Index 2010 References ↑ "Low Carbon Economy Index 2010" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Economy_Index_2010&oldid=3841

414

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

415

Forest Carbon Partnership Facility | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Partnership Facility Forest Carbon Partnership Facility Jump to: navigation, search Logo: Forest Carbon Partnership Facility Name Forest Carbon Partnership Facility Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Co-benefits assessment, Finance Resource Type Lessons learned/best practices, Training materials Website http://www.forestcarbonpartner Country Argentina, Bolivia, Cambodia, Cameroon, Central African Republic, Chile, Colombia, Costa Rica, Democratic Republic of Congo, El Salvador, Equatorial Guinea, Ethiopia, Gabon, Ghana, Guatemala, Guyana, Honduras, Indonesia, Kenya, Laos, Laos, Liberia, Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam

416

Centennial black carbon turnover observed in a Russia steppe soil  

SciTech Connect (OSTI)

Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

2008-09-15T23:59:59.000Z

417

Polarons in Carbon Nanotubes  

Science Journals Connector (OSTI)

We use ab initio total-energy calculations to predict the existence of polarons in semiconducting carbon nanotubes (CNTs). We find that the CNTs' band edge energies vary linearly and the elastic energy increases quadratically with both radial and with axial distortions, leading to the spontaneous formation of polarons. Using a continuum model parametrized by the ab initio calculations, we estimate electron and hole polaron lengths, energies, and effective masses and analyze their complex dependence on CNT geometry. Implications of polaron effects on recently observed electro- and optomechanical behavior of CNTs are discussed.

M. Verissimo-Alves; R. B. Capaz; Belita Koiller; Emilio Artacho; H. Chacham

2001-04-09T23:59:59.000Z

418

Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses?  

Science Journals Connector (OSTI)

Crop residue removal for bioenergy can deplete soil organic carbon (SOC) ... been, however, widely discussed. This paper reviews potential practices that can be used to offset the SOC lost with residue removal. Literature

Humberto Blanco-Canqui

2013-03-01T23:59:59.000Z

419

Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol  

SciTech Connect (OSTI)

The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

2014-06-17T23:59:59.000Z

420

Delayed carbon sequestration and rising carbon prices  

Science Journals Connector (OSTI)

We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dy...

Alejandro Caparrós

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low Carbon Development: Planning & Modelling Course | Open Energy  

Open Energy Info (EERE)

Low Carbon Development: Planning & Modelling Course Low Carbon Development: Planning & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course Agency/Company /Organization: World Bank Sector: Climate Focus Area: Renewable Energy, Economic Development, People and Policy Topics: Low emission development planning, Pathways analysis, Resource assessment Resource Type: Training materials, Workshop Website: einstitute.worldbank.org/ei/course/low-carbon-development Cost: Paid References: Low Carbon Development: Planning & Modelling[1] Program Overview This course has the following modules - (i) Introduction to Low Carbon Development Planning; (ii) Overview for Policymakers; (iii) Power; (iv) Household; (v) Transport - which introduce you to climate change

422

Frustrated Organic Solids Display Unexpected Gas Sorption  

SciTech Connect (OSTI)

Calixarene based organic solid can hold guests such as toluene and other organic molecules we have discovered a new type of material which believe involves a frustration of the solvate lattice as it moves toward the thermodynamically stable desolvated state. The intermediated phase with partial solvent content unexpectedly sorbs gases such as carbon dioxide and highly explosive acetylene deep inside the crystal lattice.

Thallapally, Praveen K.; Dalgarno, Scott J.; Atwood, Jerry L.

2006-11-27T23:59:59.000Z

423

Organic Photovoltaics  

Science Journals Connector (OSTI)

Satisfying the world's growing demand for energy is an urgent societal challenge. Organic photovoltaics holds promise as a cost-efficient and environmentally friendly solution.

Kippelen, Bernard

2007-01-01T23:59:59.000Z

424

Variable ageing and storage of dissolved organic components in the open ocean  

Science Journals Connector (OSTI)

... Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ... carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the ‘biological pump’, relative to their recycling by ...

Ai Ning Loh; James E. Bauer; Ellen R. M. Druffel

2004-08-19T23:59:59.000Z

425

Forest Carbon Index | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Index Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index Agency/Company /Organization: Resources for the Future Partner: United Nations Foundation Sector: Land Focus Area: Forestry Topics: Finance, GHG inventory, Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.forestcarbonindex.org/ Web Application Link: www.forestcarbonindex.org/maps.html Cost: Free References: Forest Carbon Index [1] The Forest Carbon Index (FCI) compiles and displays global data relating to biological, economic, governance, investment, and market readiness conditions for every forest and country in the world, revealing the best places and countries for forest carbon investments. Please use this site to

426

Structure of middle distillate fuels on the atomic carbon and hydrogen to carbon ratio at alpha position to aromatic rings  

SciTech Connect (OSTI)

The alkyl, naphthenic, or total carbon atoms of the functional groups at alpha position to aromatic rings and their hydrogen to carbon ratio are some of the important parameters for structural analysis of fossil fuel products. In this paper, the authors present a number of novel formula-structure relationships for precise determination of different carbon atom types at alpha position to aromatic rings and the average number of hydrogens per alpha-carbon.

Glavincevski, B.; Gulder, O.L.; Gardner, L

1988-01-01T23:59:59.000Z

427

Carbon Additionality: Discussion Paper  

E-Print Network [OSTI]

ahead, and identifying the carbon pools and other green house gas emissions sources and savings coveredCarbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 Carbon

428

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

429

Carbon Value Analysis Tool (CVAT) | Open Energy Information  

Open Energy Info (EERE)

Carbon Value Analysis Tool (CVAT) Carbon Value Analysis Tool (CVAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Value Analysis Tool (CVAT) Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, Finance, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.wri.org/publication/carbon-value-analysis-tool Cost: Free Carbon Value Analysis Tool (CVAT) Screenshot References: CVAT[1] he Carbon Value Analysis Tool (CVAT) is a screening tool to help companies integrate the value of carbon dioxide emissions reductions into energy-related investment decisions. The tool has two main purposes: To test the sensitivity of a project's internal rate of return (IRR) to "carbon value" (the value of GHG emissions reductions). CVAT integrates this value into traditional financial analysis by ascribing a market price, either actual or projected, to carbon emissions reductions.

430

Tools for Forest Carbon Inventory, Management, and Reporting | Open Energy  

Open Energy Info (EERE)

Tools for Forest Carbon Inventory, Management, and Reporting Tools for Forest Carbon Inventory, Management, and Reporting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tools for Carbon Inventory, Management, and Reporting Agency/Company /Organization: United States Forest Service, United States Department of Agriculture Sector: Land Focus Area: Forestry Topics: GHG inventory, Resource assessment Resource Type: Guide/manual, Lessons learned/best practices, Publications, Training materials, Software/modeling tools User Interface: Desktop Application, Website Website: nrs.fs.fed.us/carbon/tools/ Cost: Free Tools for Carbon Inventory, Management, and Reporting Screenshot References: Carbon Tools[1] Logo: Tools for Carbon Inventory, Management, and Reporting "Accurate estimates of carbon in forests are crucial for forest carbon

431

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

432

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

433

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

434

Selecting activated carbon for water and wastewater treatability studies  

SciTech Connect (OSTI)

A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

2007-10-15T23:59:59.000Z

435

Carbon Trading, Carbon Taxes and Social Discounting  

E-Print Network [OSTI]

Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

Weiblen, George D

436

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

437

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

438

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

439

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

440

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AirShares EU Carbon Allowances Fund | Open Energy Information  

Open Energy Info (EERE)

AirShares EU Carbon Allowances Fund AirShares EU Carbon Allowances Fund Jump to: navigation, search Name AirShares EU Carbon Allowances Fund Place New York, New York Zip 10170 Product AirShares is a commodity pool for exchange-traded futures contracts for EUAs. References AirShares EU Carbon Allowances Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AirShares EU Carbon Allowances Fund is a company located in New York, New York . References ↑ "AirShares EU Carbon Allowances Fund" Retrieved from "http://en.openei.org/w/index.php?title=AirShares_EU_Carbon_Allowances_Fund&oldid=341942" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

442

Carbon Capture and Storage in Southern Africa | Open Energy Information  

Open Energy Info (EERE)

Southern Africa Southern Africa Jump to: navigation, search Name Carbon Capture and Storage in Southern Africa: An assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia Agency/Company /Organization Energy Research Centre of the Netherlands Topics Background analysis, Technology characterizations Resource Type Publications Website http://www.ecn.nl/docs/library Country Mozambique, Namibia, Botswana Eastern Africa, Southern Africa, Southern Africa References CCS in Southern Africa[1] Abstract "In April 2010, a series of workshops on CO2 capture and storage were held in Botswana, Mozambique and Namibia, attended by a total of about 100 participants. The objectives of the workshops were to provide a thorough

443

Temperature-driven decoupling of key phases of organic matter degradation in marine sediments  

E-Print Network [OSTI]

Temperature-driven decoupling of key phases of organic matter degradation in marine sediments for review August 29, 2005) The long-term burial of organic carbon in sediments results in the net and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon

Weston, Nathaniel B.

444

RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE  

SciTech Connect (OSTI)

The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy reinforced composites.

Hoffman, E; Eric Skidmore, E

2008-12-12T23:59:59.000Z

445

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

446

Microsoft Word - Cropland Carbon metadata.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimates for Carbon Distribution in U.S. Croplands, 1990-2005 Estimates for Carbon Distribution in U.S. Croplands, 1990-2005 Method of Estimation The United Sates Department of Agriculture (USDA), National Agricultural Statistics Survey (NASS) produces estimates of crop yields per county per year. These yield estimates can be converted to carbon by converting units reported by NASS to one standard unit (kg), converting to dry matter, and multiplying by a carbon content factor of 0.45 (Brady and Weil, 1996). Yield estimates are divided by the harvest index to estimate total above-ground biomass. Multiplying aboveground biomass with the root:shoot ratio provides an estimate of below-ground biomass. Finally, summing above- and below-ground biomass provides an estimate for total net primary productivity (NPP). This method follows approaches used by Prince et al. (2001), Hicke and

447

Effect of potassium carbonate on char gasification by carbon dioxide  

SciTech Connect (OSTI)

A differential packed-bed reactor has been employed to study the gasification of 7.5 wt% K/sub 2/CO/sub 3/-catalyzed Saran char in carbon dioxide/carbon monoxide mixtures at a total pressure near 1 atm (101.3 kPa) and temperatures between 922 and 1046 K. The rate data were tested with a model which involves two-site adsorption and subsequent dissociation of CO/sub 2/ on the char surface. The results indicate that this model adequately explains the catalyzed gasification data. Moreover, the activation energy for desorption of carbon-oxygen complex is lower for the catalyzed case than for the uncatalyzed case. Adsorption of CO and CO/sub 2/ on both catalyzed and uncatalyzed chars was also followed with a volumetric adsorption apparatus at pressures between 1 and 100 kPa and temperatures from 273 to 725 K. The catalyzed char adsorbed an order of magnitude more CO/sub 2/ at 560 K than the uncatalyzed char. Subsequent dissociation of CO/sub 2/ on the carbon surface does not appear to be catalyzed by potassium. Thus, the catalyst's role is to enhance CO/sub 2/ adsorption, thereby creating more oxygen on the surface, and lowering the activation energy for desorption of the resultant carbon-oxygen species.

Koenig, P.C.; Squires, R.G.; Laurendeau, N.M.

1986-07-01T23:59:59.000Z

448

Carbon Fiber Consortium | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

449

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

450

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

451

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

452

Carbon sequestration  

Science Journals Connector (OSTI)

...world's total primary energy supply of 11.2Pg...22% of the primary energy was contributed by hydro, solar, wind and geothermal...soils are converted to energy plantations, and...impact on food prices in Mexico and elsewhere. Some...

2008-01-01T23:59:59.000Z

453

Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

454

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

455

Catalyzing Low Carbon Growth in Developing Countries | Open Energy  

Open Energy Info (EERE)

Catalyzing Low Carbon Growth in Developing Countries Catalyzing Low Carbon Growth in Developing Countries Jump to: navigation, search Tool Summary Name: Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Finance, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Website: sefi.unep.org/fileadmin/media/sefi/docs/publications/PublicPrivateWeb. Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Screenshot References: Catalyzing Low Carbon Growth in Developing Countries[1]

456

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

457

Vietnam-Rapid Assessment of City Emissions (RACE) for Low Carbon...  

Open Energy Info (EERE)

Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use AgencyCompany Organization Clean Air Asia, Chreod Ltd. Partner Asian...

458

Bangladesh-NIES Low-Carbon Society Scenarios 2050 | Open Energy...  

Open Energy Info (EERE)

NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for Environmental Studies Topics Background analysis, Low emission development planning...

459

E-Print Network 3.0 - affects marine carbon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the organic carbon content of marine aerosols... . Potential impact of ocean ecosystem changes due to global warming on marine341 ... Source: Russell, Lynn - Scripps...

460

State Externalities Policy and Carbon Dioxide Emissions: Who Bears the Risks of Future Regulation?  

Science Journals Connector (OSTI)

ITEM...: In January 1991, representatives of 38 state consumer advocacy offices and 17 environmental organizations warned utilities that failures to anticipate future carbon-dioxide-emission cost i...

Ralph Cavanagh; Ashok Gupta; Dan Lashof; Marika Tatsutani

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - affecting carbon tetrachloride Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: affecting carbon tetrachloride Page: << < 1 2 3 4 5 > >> 1 Glossary of Volatile Organic Compounds...

462

Carbon Initiative for Development (Ci-Dev) | Open Energy Information  

Open Energy Info (EERE)

Ci-Dev) Ci-Dev) Jump to: navigation, search Name Carbon Initiative for Development (Ci-Dev) Agency/Company /Organization World Bank Sector Climate Topics Finance, GHG inventory, Low emission development planning Website http://wbcarbonfinance.org/Rou References Carbon Initiative for Development (Ci-Dev)[1] "The World Bank is proposing a new initiative, the Carbon Initiative for Development (Ci-Dev), which aims at helping low-income countries create sustainable access to financing for low-carbon investments through carbon markets. This initiative has three components: A Readiness Fund will support carbon capacity building, knowledge development and advocacy work for improving carbon market mechanisms, asset creation, and developing innovative approaches to leveraging carbon

463

Calorific and porosity development in carbonized wood  

SciTech Connect (OSTI)

Wood of four species (red oak, southern yellow pine, black cherry, and hybrid poplar) were carbonized in a flowing nitrogen atmosphere at an average heating rate of 3 degrees Centigrade/minute to selected final temperatures up to 700 degrees Centigrade. The effects of final carbonization temperature on selected properties of the char were obtained using an adiabatic oxygen bomb calorimeter to investigate heat of combustion and a mercury porosimeter to investigate total porosity, real density, apparent density, and pore size distribution. Pore characteristics of carbonized wood developed before 300 degrees Centigrade in southern yellow pine and before 400 degrees Centigrade in red oak, black cherry, and hybrid poplar. Statistical analysis established linear relationships between heat of combustion versus final carbonization temperature in the carbonization temperature ranges investigated. The results of this study will aid in understanding optimum pryrolysis conditions for the development of calorific and porosity values. (Refs. 22).

Baileys, R.T.; Blankenhorn, P.R.

1982-07-01T23:59:59.000Z

464

Carbon Sequestration Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

465

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

466

Carbon dioxide and climate  

SciTech Connect (OSTI)

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

467

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for ‘small scale’ combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85°C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include ‘residential’ use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

468

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

469

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

470

Review of China's Low-Carbon City Initiative and Developments in the Coal Industry  

E-Print Network [OSTI]

total energy consumption, energy mix and carbon emission;current coal- dominated energy mix. In conjunction with theproduct mix; low production costs; high energy conversion

Fridley, David

2014-01-01T23:59:59.000Z

471

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network [OSTI]

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

472

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network [OSTI]

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

473

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Organizations and Networks Organizations and Networks (Redirected from Gateway:International/Networks) Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and

474

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

475

Carbon Capture (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Smit, Berend

2011-06-08T23:59:59.000Z

476

Property:Event/Organizer | Open Energy Information  

Open Energy Info (EERE)

Organizer Organizer Jump to: navigation, search Property Name Event/Organizer Property Type String Description The entity or entities responsible for organizing the event. This is typically a person or organization. More than one organizer can be attributed to each event. Pages using the property "Event/Organizer" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + International Energy Agency (IEA) + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + International Energy Agency (IEA) + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + German Agency for International Cooperation (GIZ) + 18th Africa Partnership Forum + African Partnership Forum +

477

Overview of Carbon Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

478

Carbon sequestration in soils of cool temperate regions (introductory and editorial)  

Science Journals Connector (OSTI)

The cool temperate climate, dominance of perennial land use, and relatively large proportion of peat and organically rich soils, make the northern European regions to have a large potential of soil organic carbon

Bal Ram Singh

2008-06-01T23:59:59.000Z

479

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

480

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "total organic carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

482

Carbon dioxide capture-related gas adsorption and separation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

483

Energy Carrier Transport In Surface-Modified Carbon Nanotubes  

E-Print Network [OSTI]

of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties...

Ryu, Yeontack

2012-11-30T23:59:59.000Z

484

West, T.O., and W.M. Post. 2002. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Depa  

E-Print Network [OSTI]

). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak 41 27 32 24 1968 Arg01 Cordoba Argentina -32.42 -62.05 900 17 Marcos Juarez silty loam 10 65 25 17 1975 Arg02 Balcarce Argentina -37.45 -58.18 870 13.7 #10 #65 #25 1984 Arg03 Buenos Aires Argentina -37

485

Appropriateness Criteria and Elective Procedures — Total Joint Arthroplasty  

Science Journals Connector (OSTI)

...the importance of such criteria and have already started developing them as guidelines for other orthopedic procedures. Second, accountable care organizations and other institutions pursuing similar health care delivery models are becoming influential, and as they move away from procedure-based payments... The implementation of appropriateness criteria that help to identify the patients likely to benefit most from a given procedure could help to combat increasing health care costs while enhancing access and quality. Total joint arthroplasty offers a prime example.

Ghomrawi H.M.K.Schackman B.R.Mushlin A.I.

2012-12-27T23:59:59.000Z

486

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

487

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

488

E-Print Network 3.0 - alkene-alkyne coupling total Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: alkene-alkyne coupling total Page: << < 1 2 3 4 5 > >> 1 ORGANIC CHEMISTRY I Instructor: Professor Hyun-Soon Chong Chemistry Division, BCPS Dept, IIT, LS 398,...

489

Dimethyl carbonate as a modern green reagent and solvent  

Science Journals Connector (OSTI)

Published data on dimethyl carbonate as a safe reagent and solvent in organic synthesis are generalized and analyzed. The methods of dimethyl carbonate preparation and its use as methylating and carboxymethylating reagent are considered. The attention is focused on the environmentally safe processes corresponding to the green chemistry principles.

F Aricò; Pietro Tundo

2010-01-01T23:59:59.000Z

490

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

491

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.  

E-Print Network [OSTI]

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover. Changes to the ice cover have important consequences for organic carbon cycling, especially over the continental shelves. When sea ice is formed, dissolved organic...

Smith, Stephanie 1990-

2012-04-16T23:59:59.000Z

492

Carbon Capture and Storage Experiences Limited Growth in 2011  

Science Journals Connector (OSTI)

Funding for large-scale carbon capture and storage (CCS) projects remained relatively...1 (See Figure 1.) Overall, the number of active and planned largescale CCS projects declined in 2011, although the total ope...

Matt Lucky

2013-01-01T23:59:59.000Z

493

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

494

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

495

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

496

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

497

Metal-Organic Frameworks as Adsorbents for Hydrogen Purification...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal-Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture Previous Next List Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna, and J....

498

non living organic particle formation from bubble dissolution  

Science Journals Connector (OSTI)

Jul 8, 1975 ... 446. iVOteS. Table 1. Particulate organic carbon retained by 0.8-p Flotronics silver filters before and after many small bubbles were dissolved in ...

2000-01-04T23:59:59.000Z

499

The Woodland Carbon Code  

E-Print Network [OSTI]

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

500