Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

2

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

3

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

4

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

5

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

6

Notices Total Estimated Number of Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

7

California Natural Gas Total Liquids Extracted (Thousand Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Extracted (Thousand Barrels) California Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

8

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

9

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

10

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

11

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

12

What is the total Betti number of a random real hypersurface?  

E-Print Network (OSTI)

What is the total Betti number of a random real hypersurface? Damien Gayet, Jean-Yves Welschinger July 12, 2011 Abstract We bound from above the expected total Betti number of a high degree random real of Smith's theory in equivariant homology, that the total Betti number of the real locus of a smooth real

Paris-Sud XI, Université de

13

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

14

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

15

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

16

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

17

Bounds on the locating-total domination number of a tree  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs, introduced by Haynes et al. [T.W. Haynes, M.A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (8) (2006) 1293–1300]. A total dominating set S in a graph G = ( V , E ) is a locating-total dominating set of G if, for every pair of distinct vertices u and v in V ? S , N G ( u ) ? S ? N G ( v ) ? S . The minimum cardinality of a locating-total dominating set is the locating-total domination number ? t L ( G ) . We show that, for a tree T of order n ? 3 with l leaves and s support vertices, n + l + 1 2 ? s ? ? t L ( T ) ? n + l 2 . Moreover, we constructively characterize the extremal trees achieving these bounds.

Xue-gang Chen; Moo Young Sohn

2011-01-01T23:59:59.000Z

18

OSTI Increases Total Number of Documents Available to the Public | OSTI, US  

Office of Scientific and Technical Information (OSTI)

Total Number of Documents Available to the Public Total Number of Documents Available to the Public June 2005 Oak Ridge, TN - OSTI is pleased to announce the addition of 1994 full-text records in digital form to the DOE Information Bridge, increasing by more than 15 percent the total number of documents available to the public through this Web product. Currently viewable are more than 108,000 DOE scientific and technical reports. Information Bridge provides the open source to full-text and bibliographic records of DOE R&D reports in physics, chemistry, materials, biology, environmental sciences, energy technologies, engineering, computer and information science, renewable energy, and other topics. The Information Bridge consists of full-text documents produced and made available by the DOE National Laboratories and grantees from 1994 forward.

19

Total number of slots consumed in long_excl.q (exclusive nodes) will be  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of slots consumed in long_excl.q Total number of slots consumed in long_excl.q (exclusive nodes) will be restricted to 320 slots on June 4, 2013 Total number of slots consumed in long_excl.q (exclusive nodes) will be restricted to 320 slots on June 4, 2013 May 28, 2013 (0 Comments) The long queue has had a per-user limit of 320 slots (or 40 8-core nodes) for several months. The long_excl.q has not had a similar limit. On June 4, a per-user 320 slot limit will be introduced on the exclusive nodes (or 20 16-core nodes). This will ensure that a single user cannot consume too many resources simultaneously in the long queues. For large calculations requiring a great deal of resources, the normal queues should be targeted (jobs < 12 hours), as there are no per-user slots limits on those queues.

20

Table B1. Summary Table: Totals and Means of Floorspace, Number of Workers, and  

U.S. Energy Information Administration (EIA) Indexed Site

. Summary Table: Totals and Means of Floorspace, Number of Workers, and Hours of Operation, 1999" . Summary Table: Totals and Means of Floorspace, Number of Workers, and Hours of Operation, 1999" ,"All Buildings (thousand)","Total Floorspace (million square feet)","Total Workers in All Buildings (thousand)","Mean Square Feet per Building (thousand)","Mean Square Feet per Worker","Mean Hours per Week" "All Buildings ................",4657,67338,81852,14.5,823,60 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,6774,11125,2.9,609,57 "5,001 to 10,000 ..............",1110,8238,10968,7.4,751,53 "10,001 to 25,000 .............",708,11153,11378,15.7,980,65 "25,001 to 50,000 .............",257,9311,9243,36.2,1007,78

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table B2. Summary Table: Totals and Medians of Floorspace, Number of Workers,  

U.S. Energy Information Administration (EIA) Indexed Site

. Summary Table: Totals and Medians of Floorspace, Number of Workers, Hours of Operation, and Age of Building, 1999" . Summary Table: Totals and Medians of Floorspace, Number of Workers, Hours of Operation, and Age of Building, 1999" ,"All Buildings (thousand)","Total Floorspace (million square feet)","Total Workers in All Buildings (thousand)","Median Square Feet per Building (thousand)","Median Square Feet per Worker","Median Hours per Week","Median Age of Buildings (years)" "All Buildings ................",4657,67338,81852,5,909,50,30.5 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,6774,11125,2.5,667,50,30.5 "5,001 to 10,000 ..............",1110,8238,10968,7,1000,50,34.5 "10,001 to 25,000 .............",708,11153,11378,15,1354,55,28.5

22

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

23

Award Number: Federal Non-Federal Federal Non-Federal Total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prescribed by OMB Circular A-102 Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary

24

Award Number: Federal Non-Federal Federal Non-Federal Total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

j. Indirect Charges j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies Prescribed by OMB Circular A-102 Previous Edition Usable

25

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

26

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

27

Domain wall of the totally asymmetric exclusion process without particle number conservation  

E-Print Network (OSTI)

In this research, the totally asymmetric exclusion process without particle number conservation is discussed. Based on the mean field approximation and the Rankine-Hugoniot condition, the necessary and sufficient conditions of the existence of the domain wall have been obtained. Moreover, the properties of the domain wall, including the location and height, have been studied theoretically. All the theoretical results are demonstrated by the computer simulations.

Yunxin Zhang

2008-10-07T23:59:59.000Z

28

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

29

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

30

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

31

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

32

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

33

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

34

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

35

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

36

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

37

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

38

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

39

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

40

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

42

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

43

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

44

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

45

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

46

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network (OSTI)

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

Manning, Norman Willis William

2012-06-07T23:59:59.000Z

47

Applicability of Total Acid Number Analysis to Heavy Oils and Bitumens  

Science Journals Connector (OSTI)

The standard method employed for TAN, ASTM D664, was not even developed for crude oils, let alone heavy oil and bitumens. ... Funding from the following CCQTA TAN II project members is acknowledged:? Alberta Research Council, Inc., BP, Baker Petrolite, ConocoPhillips Canada, Enbridge Pipelines, Inc., ENCANA Corp., GE Betz, Husky Energy, Japan Canada Oil Sands Ltd., Marathon Petroleum Co., Maxxam Analytics, Inc., Nalco Canada, Inc., National Centre for Upgrading Technology, Petro-Canada, Shell Pipelines US, Suncor Energy, Inc., Terasen Pipelines, and Total E&P Canada Ltd. ...

Bryan Fuhr; Branko Banjac; Tim Blackmore; Parviz Rahimi

2007-04-17T23:59:59.000Z

48

PHYSICAL RKVIE W A VOLUME 9, NUMBER 2 FEBRUARY 1974 Caialr3 waves in a quantum liquid  

E-Print Network (OSTI)

PHYSICAL RKVIE W A VOLUME 9, NUMBER 2 FEBRUARY 1974 Caial»r3 waves in a quantum liquid George F- ing the hydrodynamic equation of Gross. ' He de- rives the pair of equations 9--R =-VR' VS --HARV as follows: #12;820 GEORGE F. BERTSCH moves infinitesimally in the z direction, with an amplitude

Bertsch George F.

49

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

50

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

51

PA_Format_WAP April Production Numbers and Total ARRA and Non-ARRA production to date_6 23 10.xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

**Homes **Homes Weatherized in April 2010 (Recovery Act) Total Number of Homes Weatherized through April 2010 (Recovery Act) ***Total Number of Homes Weatherized Calendar Year 2009 - April 2010 (Recovery Act + Annual Program Funding) Alabama 263 1,493 2,168 Alaska 0 0 709 Arizona 136 1,360 2,545 Arkansas 258 1,509 2,639 California 1,825 4,233 6,201 Colorado 291 2,490 6,482 Connecticut 189 690 1,759 Delaware 253 940 1,110 District of Columbia 27 137 213 Florida 602 2,356 3,432 Georgia 430 2,002 2,694 Hawaii 368 Idaho 317 1,683 3,607 Illinois 1,941 5,698 12,636 Indiana 978 3,924 6,333 Iowa 401 1,570 2,873 Kansas 232 1,502 2,318 Kentucky 409 1,690 4,395 Louisiana 186 925 2,588 Maine 277 1,583 2,689 Maryland 278 992 1,817 Massachusetts 395 3,258 6,076 Michigan 987 3,563 8,704 Minnesota 918 4,349 7,793 Mississippi 124 2,584

52

VOLUME 84, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JANUARY 2000 Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation  

E-Print Network (OSTI)

VOLUME 84, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JANUARY 2000 Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation Milind P. Mahajan,1 Mesfin Tsige,1 was discovered for the collapse time of a liquid bridge. A paramagnetic liquid was suspended between the tips

Taylor, Philip L.

53

3D MHD lead–lithium liquid metal flow analysis and experiments in a Test-Section of multiple rectangular bends at moderate to high Hartmann numbers  

Science Journals Connector (OSTI)

Abstract Experiments with liquid lead–lithium (Pb–Li) were carried out in a stainless steel (SS) Test Section (TS) consisting of multiple 90° bends for various flow rates and applied magnetic fields of up to 4 T. Characteristic MHD flow parameter Hartmann number, Ha ( = B 0 a ? / ? , Ha2 is the ratio of electromagnetic force to viscous force) and interaction parameter, N ( = ? a B 0 2 / ? U , N is the ratio of electromagnetic force to inertial force) of these experiments were varied from Ha = 515 to 2060 and N = 25 to 270 by changing the applied magnetic field and flow rates respectively. Three dimensional numerical simulations have been carried out using MHD module of FLUENT code. The measured Hartmann and side wall electric potential distribution at various locations of the Test Section have been compared with the numerical simulation results for different Hartmann numbers and interaction parameters (Ha = 1030, N = 25, 40, 67 for B = 2 T and Ha = 2060, N = 129, 161, 270 for B = 4 T). The numerical predictions based on laminar flow model are matching well with the measured values at all locations including bend regions for high magnetic field and low flow rates. However, at higher flow rates and lower magnetic fields (smaller Ha/Re values), the agreement was not good near the bend regions. This may be attributed to the significant presence of turbulence that was not accounted in the present simulation. The core velocity, estimated from the measured Hartmann wall potential at the locations far away from the bends, matched well with the numerical results. The analysis indicates that the flow distribution becomes rapidly symmetric when it turns at the bend where both the legs are perpendicular to the applied magnetic field. In contrast, flow distribution remains asymmetric for a longer distance when it turns from parallel to perpendicular direction of the applied field. The code is predicting reasonably well for MHD parameters relevant to Blanket Modules for single channel flows with bends.

P.K. Swain; P. Satyamurthy; R. Bhattacharyay; A. Patel; A. Shishko; E. Platacis; A. Ziks; S. Ivanov; A.V. Despande

2013-01-01T23:59:59.000Z

54

VOLUME 77, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER 1996 Nonlinear Control of Remote Unstable States in a Liquid Bridge Convection Experiment  

E-Print Network (OSTI)

VOLUME 77, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER 1996 Nonlinear Control of Remote Unstable States in a Liquid Bridge Convection Experiment Valery Petrov,* Michael F. Schatz, Kurt A bridge to compute control perturbations which are applied by a thermoelectric element. The algorithm

Texas at Austin. University of

55

Contractor: Contract Number: Contract Type: Total Estimated  

Energy Savers (EERE)

Services Support Contract Fee Information Contract Period: Cost Plus Award Fee 3,311,479,516 September 2014 May 2009 - May 2019 Mission Support Alliance, LLC DE-AC06-09RL14728...

56

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

57

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996  

SciTech Connect

The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.

NONE

1997-06-06T23:59:59.000Z

58

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

59

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

60

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 11, January 1--March 31, 1997  

SciTech Connect

During this quarter, the third draft of the Topical Report on Process Economics Studies was issued for review. A recommendation to continue with design verification testing on the coproduction of methanol and dimethyl ether (DME) was made. A liquid phase dimethyl ether (LPDME) catalyst system with reasonable long-term activity and stability is being developed, and a decision to proceed with a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) is pending the release of a memo from Air Products on the catalyst targets and corresponding economics for a commercially successful LPDME catalyst. The off-site product-use test plan is to be updated in June of 1997. During this quarter, Air Products and Acurex Environmental Corporation continued developing the listing of product-use test participants who are involved in fuel cell, transportation, and stationary power plant applications. Start-up activities (Task 3.1) began during the reporting period, and coal-derived synthesis gas (syngas) was introduced to the demonstration unit. The recycle compressor was tested successfully on syngas at line pressure of 700 psig, and the reactor loop reached 220 C for carbonyl burnout. Iron carbonyl in the balanced gas feed remained below the 10 ppbv detection limit for all samples but one. Within the reactor loop, iron carbonyl levels peaked out near 200 ppbv after about 40 hours on-stream, before decreasing to between 10--20 ppbv at 160 hours on -stream. Nickel carbonyl measurements reached a peak of about 60 ppbv, and decreased at all sampling locations to below the 10 ppbv detection limit by 70 hours on-stream. Catalyst activation of the nine 2,250 lb batches required for the initial catalyst charge began and concluded. All batches met or slightly exceeded the theoretical maximum uptake of 2.82 SCF of reducing gas/lb catalyst.

NONE

1997-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

62

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network (OSTI)

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

63

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

64

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

65

Determinants of Hospital's Financial Liquidity  

Science Journals Connector (OSTI)

Abstract The purpose of the articles is to identify key factors that may affect the level of hospital's liquidity ratio. We’ve posed four research hypotheses, assuming that, the level of financial liquidity in hospitals depends on several factors (number of beds, annual income per bed, profitability ratios, debt ratio). We’ve found that: 1) there is a positive relationship between debt ratio and liquidity and profitability ratio and liquidity 2) the relationship between the size of the hospital and the financial liquidity is not statistically significant. In the study we’ve use statistical tools: Pearson's correlation coefficient, T-Student's test with Cohran-Cox's correction.

Agnieszka Bem; Katarzyna Pr?dkiewicz; Pawe? Pr?dkiewicz; Paulina Ucieklak-Je?

2014-01-01T23:59:59.000Z

66

Integrated plant for treatment of liquid radwaste  

SciTech Connect

In the early 1980`s, AECL Research, at its Chalk River Laboratories (CRL) site, built a Waste Treatment Centre for managing low-level radioactive aqueous liquid wastes. At present, two industrial liquid waste streams are being routinely treated. One stream originates from the central Decontamination Centre (DC), where reactor components, protective plastic clothing, and respirators are cleaned. The other Active Drain (AD) stream is produced from a large and diverse number of research laboratories and radioisotope production facilities. The two waste streams, totalling about 2500 m per year (0.66 million US gallons), are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies; two thin-film evaporators (TFE) are employed for (i) the final volume reduction step, and (ii) the subsequent solidification of evaporator bottom with bitumen for containment of the radioactivity.

Sen Gupta, S.K. [Chalk River Laboratories, Ontario (Canada)

1995-05-01T23:59:59.000Z

67

VOLUME 86, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 21 MAY 2001 Self-Similarity and Pattern Selection in the Roughening of Binary Liquid Films  

E-Print Network (OSTI)

-Similarity and Pattern Selection in the Roughening of Binary Liquid Films Harald Hoppe, Marcus Heuberger, and Jacob Klein the interfacial tension of the roughened film. DOI: 10.1103/PhysRevLett.86.4863 PACS numbers: 68.15.+e, 47.20.Dr coarsening leads to roughening of the film at that surface [7], and the eventual formation of droplets

Klein, Jacob

68

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

69

EMSL - liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

liquids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate...

70

Turbulent convection in liquid metal with and without rotation  

E-Print Network (OSTI)

is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal=ðkT�, where q is total heat flux and k is the fluid's thermal conductivity. Heat flux q is total heat power P by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more

71

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

72

Total Number of Existing Underground Natural Gas Storage Fields  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 400 401 409 411 410 414 1989-2012 Alabama 2 2 2 2 2 2 1995-2012 Arkansas 2 2 2 2 2 2 1989-2012 California 12 12 13 13 13 14 1989-2012 Colorado 8 8 9 9 9 10 1989-2012 Illinois 29 28 28 28 28 28 1989-2012 Indiana 22 22 22 22 22 22 1989-2012 Iowa 4 4 4 4 4 4 1989-2012 Kansas 19 19 19 19 19 19 1989-2012 Kentucky 23 23 23 23 23 23 1989-2012 Louisiana 15 17 18 18 18 18 1989-2012 Maryland 1 1 1 1 1 1 1989-2012 Michigan 45 45 45 45 45 45 1989-2012 Minnesota 1 1 1 1 1 1 1989-2012

73

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

74

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

75

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

76

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

77

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

78

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

79

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

80

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

82

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

83

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

84

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

85

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

86

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

87

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

88

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

89

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

90

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

91

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

92

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

93

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

94

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

95

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

96

A Low Mach Number Model for Moist Atmospheric Flows  

E-Print Network (OSTI)

We introduce a low Mach number model for moist atmospheric flows that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius--Clapeyron formula for moist thermodynamics. Unlike the pseudo--incompressible formulation, this model allows a general equation of state. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here, latent heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. We numerically assess the validity of the l...

Duarte, Max; Bell, John B

2014-01-01T23:59:59.000Z

97

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

98

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

99

UNIT NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

100

UNIT NUMBER  

NLE Websites -- All DOE Office Websites (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LNG liquid-liquid immiscibility  

SciTech Connect

Although natural gas species rarely exhibit liquid-liquid immiscibility in binary systems, the presence of additional components can extend the domain of immiscibility in those few binary systems where it already exists or produce immiscibility in binary systems where it had not existed. If the solute has the proper molecular relation to the solvent mixture background, liquid-liquid-vapor (LLV) behavior will occur; such phenomena greatly complicate the design of LNG processing equipment. To aid LNG engineers, researchers mapped the thermodynamic behavior of four ternary LLV systems and examined the effects of the second solvents - ethane, propane, n-butane, and CO/sub 2/ - on the binary methane + n-octane system.

Luks, K.D.; Kohn, J.P.

1981-09-01T23:59:59.000Z

102

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

103

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

104

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

105

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

106

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

107

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

108

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

109

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

110

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

111

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

112

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

113

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

114

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

115

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

116

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

117

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

118

Gas-liquid critical point in ionic fluids  

E-Print Network (OSTI)

Based on the method of collective variables we develop the statistical field theory for the study of a simple charge-asymmetric $1:z$ primitive model (SPM). It is shown that the well-known approximations for the free energy, in particular DHLL and ORPA, can be obtained within the framework of this theory. In order to study the gas-liquid critical point of SPM we propose the method for the calculation of chemical potential conjugate to the total number density which allows us to take into account the higher order fluctuation effects. As a result, the gas-liquid phase diagrams are calculated for $z=2-4$. The results demonstrate the qualitative agreement with MC simulation data: critical temperature decreases when $z$ increases and critical density increases rapidly with $z$.

O. Patsahan; I. Mryglod; T. Patsahan

2006-06-27T23:59:59.000Z

119

EIA - International Energy Outlook 2007-Liquids Production Projections  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production Projection Tables (1990-2030) Liquids Production Projection Tables (1990-2030) International Energy Outlook 2007 Liquids Production Projections Tables (1990-2030) Formats Data Table Titles (1 to 19 complete) Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800. Table G2 World Conventional Liquids Production by Region and Country, Reference Case Table G2. World Conventional Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

120

VOLUME 87, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001 Fermi Liquid to Luttinger Liquid Transition at the Edge of a Two-Dimensional Electron Gas  

E-Print Network (OSTI)

. Grayson,2 L.N. Pfeiffer,3 and K. W. West3 1 Department of Electrical Engineering, Princeton University an Ohmic tunneling resistance between the edge and a three-dimensional contact, typical for a Fermi liquid and the elementary excitations are replaced by bosonic charge and spin fluctuations dispers- ing with different

Hilke, Michael

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

122

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

123

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

124

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

125

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

126

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

127

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

128

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

129

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

130

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

131

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

132

Guidance Document Cryogenic Liquids  

E-Print Network (OSTI)

Guidance Document Cryogenic Liquids [This is a brief and general summary. Read the full MSDS for more details before handling.] Introduction: All cryogenic liquids are gases at normal temperature liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids

133

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

134

Locating-total domination in claw-free cubic graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices of a graph G is a total dominating set of G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . A claw-free graph is a graph that does not contain K 1 , 3 as an induced subgraph. We show that the locating-total domination number of a claw-free cubic graph is at most one-half its order and we characterize the graphs achieving this bound.

Michael A. Henning; Christian Löwenstein

2012-01-01T23:59:59.000Z

135

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

136

A liquid film motor  

Science Journals Connector (OSTI)

It is well known that electro-hydrodynamical effects in freely suspended liquid films can force liquids to flow. Here, we report a purely electrically driven rotation in water and some other liquid suspended film...

A. Amjadi; R. Shirsavar; N. Hamedani Radja…

2009-05-01T23:59:59.000Z

137

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

138

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

139

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

140

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

142

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

143

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

144

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

145

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

146

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

147

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

148

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

149

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

150

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

151

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

152

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

153

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

154

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

155

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

156

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

157

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

158

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

159

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

160

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

162

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

163

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

164

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

165

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

166

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

167

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

168

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

169

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

170

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

171

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

172

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

173

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

174

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

175

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

176

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

177

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

178

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

179

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

180

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

182

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

183

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

184

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

185

Development of a Polarizable Intermolecular Potential Function (PIPF) for Liquid Amides and Alkanes  

E-Print Network (OSTI)

and Supercomputing Institute, Digital Technology Center, UniVersity of Minnesota, Minneapolis, Minnesota 55455 and for liquid amides through molecular dynamics simulations. The computed heats of vaporization and liquid amides. Furthermore, the computed polarization energies contribute to the total intermolecular

Minnesota, University of

186

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

187

Safetygram #9- Liquid Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

188

milestone_control_number  

NLE Websites -- All DOE Office Websites (Extended Search)

the cleanup and management of Tritiated Waste Water (e.g., the 242-A Evaporator Process Condensate Liquid Effluent) and tritium contaminated groundwater at the Hanford site. 03...

189

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

190

Fermi liquid theory for high temperature superconductors  

SciTech Connect

In this article the Fermi liquid theory of metals is discussed starting from Luttinger's theorem. The content of Luttinger's Theorem and its implications for microscopic theories of high temperature superconductors are discussed. A simple quasi-2d Fermi liquid theory is introduced and some of its properties are calculated. It is argued that a number of experiments on YBa/sub 2/Cu/sub 3/O/sub 6+x/, x > 0.5, strongly suggest the existence of a Fermi surface and thereby a Fermi liquid normal state. 25 refs., 1 fig.

Bedell, K.S.

1988-01-01T23:59:59.000Z

191

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

192

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

193

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

194

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

195

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

196

A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics  

SciTech Connect

The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

Menary, Scott [York University, Toronto (Canada)

2006-07-11T23:59:59.000Z

197

Number of elastic coefficients in a biaxial nematic liquid crystal  

Science Journals Connector (OSTI)

It is shown by explicit calculation that there are 12 bulk elastic constants and 3 surface terms in the elastic energy of biaxial nematics.

H. Brand and H. Pleiner

1982-09-01T23:59:59.000Z

198

Parent--daughter system: D Number of daughter atoms, today  

E-Print Network (OSTI)

- t ) + # , - #12;) . Parent--daughter system: D = N0 ­N D ­ Number of daughter atoms, today N ­ Number of parent atoms, today N0 ­ Number of parent atoms, initially present N0 = D + N, hence: D + N = Net , or D = N et as atoms are transferred from the liquid melt to the solid crystal. Some of the elements incorporated

Siebel, Wolfgang

199

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

200

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

202

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

203

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

204

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

205

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

206

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

207

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

208

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

209

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

210

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

211

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

212

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

213

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

214

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

215

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

216

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

217

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

218

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

219

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

220

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

222

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

223

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

224

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

225

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

226

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

227

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

228

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

229

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

230

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

231

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

232

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

233

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

234

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

235

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

236

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

237

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

238

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

239

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

240

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

242

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

243

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

244

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

245

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

246

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

247

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

248

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

249

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

250

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

251

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

252

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

253

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

254

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

255

Viscosity, specific (for liquids)  

Science Journals Connector (OSTI)

n. The ratio between the viscosity of a liquid and the viscosity of water at the same temperature. Specific viscosity is sometimes used interchangeably with relative viscosity for liquids.

2007-01-01T23:59:59.000Z

256

Liquid Piston Stirling Engines  

Science Journals Connector (OSTI)

The Fluidyne liquid piston engine is a simple free-piston Stirling engine that can be made from nothing more...

Graham Walker Ph. D.; J. R. Senft Ph.D.

1985-01-01T23:59:59.000Z

257

Investigation of the organic matter in inactive nuclear tank liquids  

SciTech Connect

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

258

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network (OSTI)

liquid s sensible T total LITERATURE CITED Bharathan, D., Parsons, B. K., Althof, J. A., "Direct-Contac Condensers for Open-Cycle OTEC Applications", Solar Energy Research Institute Report SERlfTR-252 3108, Golden, Colorado, May 1988. 268 ESL... liquid s sensible T total LITERATURE CITED Bharathan, D., Parsons, B. K., Althof, J. A., "Direct-Contac Condensers for Open-Cycle OTEC Applications", Solar Energy Research Institute Report SERlfTR-252 3108, Golden, Colorado, May 1988. 268 ESL...

Fair, J. R.; Bravo, J. L.

259

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

260

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Analytical Services & Testing Contract June 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bubble departure in the direct-contact boiling field with a continuous liquid-liquid interface  

SciTech Connect

Behavior of vapor bubbles was experimentally investigated in the boiling field where a volatile liquid layer of per-fluorocarbon PF5050 (boiling point 306K) was directly in contact with an immiscible hot liquid layer of water above it. Heat was supplied to the continuous liquid-liquid interface by the impingement of the downward hot water jet. Vapor bubbles were generated not only from this continuous interface but from a large number of PF5050 droplets floating on it. According to precise observation, incipience of boiling did not occur at the liquid-liquid interface but in the PF5050 liquid close to the interface in both cases of continuous and dispersed interfaces. As a result, the bubbles broke up the thin PF5050 liquid film above them and rose up into the water layer. This bubble departure phenomenon, which does not occur in the ordinary pool boiling field on the solid heating wall, is very important to evaluate the heat transfer performance in the present direct-contact boiling system. For modeling this behavior, sizes of the bubbles were measured at the moment just after they were released into the water pool. Volumes of the bubbles were larger in the case of departing from the continuous liquid-liquid interface than from the droplets. This tendency could be explained by taking into account the buoyancy force acting on unit area of the thin PF5050 liquid film above the bubble before departure, which was one of the most important parameters for the liquid film breakdown. (author)

Kadoguchi, Katsuhiko [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

2007-01-15T23:59:59.000Z

262

Liquid Wall Chambers  

SciTech Connect

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

263

Sliding Luttinger liquid phases  

Science Journals Connector (OSTI)

We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T?0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

Ranjan Mukhopadhyay; C. L. Kane; T. C. Lubensky

2001-07-09T23:59:59.000Z

264

Total Sky Imager (TSI) Handbook  

SciTech Connect

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

265

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers (EERE)

Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

266

Total Estimated Contract Cost:) Performance Period Total Fee...  

Office of Environmental Management (EM)

Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,251,328,348 Fee Information 0 Maximum Fee 337,699,252...

267

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy Savers (EERE)

& Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee June, 2014 Site: Portsmouth Paducah Project Office...

268

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

269

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

2011 - September 2015 June 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 419,202,975 Contract Period:...

270

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee June 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,245,814,927 Contract Period: EM Contractor Fee Site:...

271

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

272

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 16,098,142 EM Contractor Fee Site: Oak Ridge Office - Oak Ridge, TN...

273

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

Tshishiku, Eugene M. (Augusta, GA)

2011-08-09T23:59:59.000Z

274

Ultrasonic liquid level detector  

DOE Patents (OSTI)

An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

2010-09-28T23:59:59.000Z

275

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

276

Totally Unimodular Multistage Stochastic Programs  

E-Print Network (OSTI)

Nov 23, 2014 ... be the workforce level with a cost of ck per worker. The number of ... to the variable of the previous workforce level y?(k). Remark 4. ... planning.

2014-11-23T23:59:59.000Z

277

Compare Activities by Number of Computers  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Computers Number of Computers Compare Activities by ... Number of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type with more than one computer per employee. Religious worship and food sales buildings had the fewest computers per square foot. Percent of All Computers by Building Type Figure showing percent of all computers by building type. If you need assistance viewing this page, please call 202-586-8800. Computer Data by Building Type Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Computers (thousand) Computers per Million Square Feet Computers per Thousand Employees All Buildings 4,657

278

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

279

Carbon monoxide absorbing liquid  

SciTech Connect

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

280

Precision liquid level sensor  

DOE Patents (OSTI)

A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

282

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

283

Oil/Liquids | Open Energy Information  

Open Energy Info (EERE)

Oil/Liquids Oil/Liquids < Oil Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 93. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 11. Liquid Fuels Supply and Disposition Table 12. Petroleum Product Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South

284

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

285

Reading Comprehension - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

286

Elements of number theory  

E-Print Network (OSTI)

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

287

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

288

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

289

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

290

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

291

Frostbite Theater - Just for Fun - How to Make Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Lunar Eclipse of December 21, 2010 The Total Lunar Eclipse of December 21, 2010 Previous Video (The Total Lunar Eclipse of December 21, 2010) Frostbite Theater Main Index Next Video (Liquid Nitrogen Viewer Requests!) Liquid Nitrogen Viewer Requests! How to Make Liquid Nitrogen Ice Cream What do you do if you need to make ice cream in a hurry? Liquid nitrogen to the rescue! [ Show Transcript ] Steve: Okay! So, We are here at Jefferson Lab and it's about 100 degrees outside and we though "Why not make a little bit of ice cream?" Now, of course we don't have a lot of ice cream on hand, but we do have half-and-half, sugar and vanilla and, since we are at Jefferson Lab where we have a superconductive accelerator, we have lots of liquid nitrogen. So, we're going to make ourselves some liquid nitrogen ice cream. So, Joanna

292

Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions  

SciTech Connect

Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H., E-mail: RMichelsen@rmc.edu [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)] [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)

2013-12-28T23:59:59.000Z

293

Air Liquide - Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

294

Sandia National Laboratories: ionic liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

liquid Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass, Energy,...

295

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (2006-2035) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (2006-2035) International Energy Outlook 2010 Projections of Petroleum and Other Liquids Productions in Three Cases Tables (2006-2035) Formats Data Table Titles (1 to 15 complete) Appendix G. Projections of Petroleum and Other Liquids Production in Three Cases Tables (2006-2035). Need help, contact the National Energy Information Center at 202-586-8800. Appendix G. Projections of Petroleum and Other Liquids Production in Three Cases Tables (2006-2035). Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

296

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) International Energy Outlook 2009 Projections of Petroleum and Other Liquids Productions in Three Cases Tables (1990-2030) Formats Data Table Titles (1 to 15 complete) Projections of Petroleum and Other Liquids Production in Three Cases Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Projections of Petroleum and Other Liquids Production in Three Cases Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

297

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) International Energy Outlook 2008 Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Formats Data Table Titles (1 to 19 complete) Projections of Petroleum and Other Liquids Production in Five Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

298

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

299

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

300

Fluctuations of the number of neutral pions at high multiplicity in pp interactions at 50 GeV  

SciTech Connect

Results obtained by measuring fluctuations of the number of neutral pions in the SERP-E-190 Experiment (Thermalization Project) upon irradiating a liquid-hydrogen target of the SVD-2 setup with a beam of 50-GeV protons are presented. A simulation of the detection of photons from the decay of neutral pions with the aid of an electromagnetic calorimeter revealed a linear relation between the number of detected photons and the mean number of neutral pions in an event. After the introduction of corrections for the loss of charged tracks because of a limited acceptance of the setup, trigger operation, and the efficiency of the data-treatment system, distributions of the number of neutral pions, N{sub 0}, were obtained for each value of the total number of particles in an event, N{sub tot} = N{sub ch} + N{sub 0}. The fluctuation parameter {omega} = D/ Left-Pointing-Angle-Bracket N{sub 0} Right-Pointing-Angle-Bracket was measured. In the region N{sub tot} > 22, fluctuations of the number of neutral pions increase, which, within statistical models (GCE, CE, MCE), indicates that the system involving a large number of pions approaches the pion-condensate state. This effect was observed for the first time.

Ryadovikov, V. N., E-mail: riadovikov@ihep.ru [Institute for High Energy Physics (Russian Federation)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Liquid-level detector  

DOE Patents (OSTI)

Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

Not Available

1981-01-29T23:59:59.000Z

302

Liquid metal electric pump  

DOE Patents (OSTI)

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

303

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

304

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

305

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

306

Renewable Liquid Fuels Reforming  

Energy.gov (U.S. Department of Energy (DOE))

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

307

LHC by the numbers  

Science Journals Connector (OSTI)

... 88,000 tonnes = total weight of the aircraft carrier USS Ronald Reagan. 361 megajoules = energy of the USS ... Reagan. 361 megajoules = energy of the USS Ronald Regan when cruising at 5.6 knots. ...

Geoff Brumfiel

2008-09-09T23:59:59.000Z

308

Local energy landscape in a simple liquid  

Science Journals Connector (OSTI)

It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in the structure that defies precise definition. The potential energy landscape (PEL) approach is a very insightful way to conceptualize the structure-property relationship in liquids and glasses, particularly the effect of temperature and history. However, because of the highly multidimensional nature of the PEL it is hard to determine, or even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the local energy landscape (LEL), which is limited in phase space, and demonstrate its usefulness using molecular dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of the local coordination number, the number of the nearest-neighbor atoms. The excitation in the LEL corresponds to the so-called ?-relaxation process. The LEL offers a simple but useful starting point to discuss complex phenomena in liquids and glasses.

T. Iwashita and T. Egami

2014-11-26T23:59:59.000Z

309

Local Energy Landscape in a Simple Liquid  

E-Print Network (OSTI)

It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in the structure which defies precise definition. The potential energy landscape (PEL) approach is a very insightful way to conceptualize the structure-property relationship in liquids and glasses, particularly on the effect of temperature and history. However, because of the highly multi-dimensional nature of the PEL it is hard to determine, or even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the local energy landscape (LEL) which is limited in phase space, and demonstrate its usefulness using molecular dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of the local coordination number, the number of the nearest neighbor atoms. The excitations in the LEL corresponds to the so-called beta-relaxation process. The LEL offers a simple but useful starting point to discuss complex phenomena in liquids and glasses.

Takuya Iwashita; Takeshi Egami

2014-10-31T23:59:59.000Z

310

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$ 3,422,994.00 $ 3,422,994.00 FY2011 4,445,142.00 $ FY2012 $ 5,021,951.68 FY2013 $ 3,501,670.00 FY2014 $0 FY2015 $0 FY2016 $0 FY2017 $0 FY2018 $0 FY2019 $0 Cumulative Fee Paid $16,391,758 Wackenhut Services, Inc. DE-AC30-10CC60025 Contractor: Cost Plus Award Fee $989,000,000 Contract Period: Contract Type: January 2010 - December 2019 Contract Number: EM Contractor Fee Site: Savannah River Site Office - Aiken, SC Contract Name: Comprehensive Security Services September 2013 Fee Information Maximum Fee $55,541,496 $5,204,095 $3,667,493 $5,041,415 Minimum Fee 0 Fee Available $5,428,947 $6,326,114

311

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

312

Total Heart Transplant: A Modern Overview  

E-Print Network (OSTI)

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

313

Liquid-Liquid Transition at Tg and Stable-Glass Phase Nucleation Rate Maximum at the Kauzmann Temperature TK  

E-Print Network (OSTI)

An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Dp accompanying the enthalpy change -Vm*Dp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at temperatures smaller than Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atoms, touching and interpenetrating, are evaluated from nucleation rates.

Robert Felix Tournier

2014-04-10T23:59:59.000Z

314

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

315

Numerical simulation of the Tayler instability in liquid metals  

E-Print Network (OSTI)

The electrical current through an incompressible, viscous and resistive liquid conductor produces an azimuthal magnetic field that becomes unstable when the corresponding Hartmann number exceeds a critical value in the order of 20. This Tayler instability, which is not only discussed as a key ingredient of a non-linear stellar dynamo model (Tayler-Spruit dynamo), but also as a limiting factor for the maximum size of large liquid metal batteries, was recently observed experimentally in a column of a liquid metal (Seilmayer et al., Phys. Rev. Lett. 108, 244501, 2012}. On the basis of an integro-differential equation approach, we have developed a fully three-dimensional numerical code, and have utilized it for the simulation of the Tayler instability at typical viscosities and resistivities of liquid metals. The resulting growth rates are in good agreement with the experimental data. We illustrate the capabilities of the code for the detailed simulation of liquid metal battery problems in realistic geometries.

Weber, Norbert; Stefani, Frank; Weier, Tom; Wondrak, Thomas

2012-01-01T23:59:59.000Z

316

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

317

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

318

Oklahoma's Native Languages with Total Population c. 1993 and Estimated Numbers of Speakers c. 2004  

E-Print Network (OSTI)

,927) 0 0 5 1(?) 24 0 Tonkawan Tonkawa (186) 0 Iroquoian Cherokee (122,000) Keetoowah Band Cherokee (7,450) Wyandotte (3,617) Seneca-Cayuga# (2,460) 9,000 (w/Cherokee) 0 0 Uto-Aztecan Comanche (8,500) Uchean Euchee

Oklahoma, University of

319

Consequence of total lepton number violation in strongly magnetized iron white dwarfs  

E-Print Network (OSTI)

The influence of neutrinoless electron to positron conversion on cooling of strongly magnetized iron white dwarfs is studied. It is shown that they can be good candidates for soft gamma-ray repeaters and anomalous X-ray pulsars.

V. B. Belyaev; P. Ricci; F. Simkovic; J. Adam, Jr.; M. Tater; E. Truhlik

2014-06-04T23:59:59.000Z

320

Consequence of total lepton number violation in strongly magnetized iron white dwarfs  

SciTech Connect

The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied.

Belyaev, V. B. [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ricci, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Firenze) (Italy); Šimkovic, F. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 15, Bratislava, Slovakia and Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Adam, J. Jr.; Tater, M.; Truhlík, E. [Institute of Nuclear Physics ASCR, CZ-250 68 ?ež (Czech Republic)

2013-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network (OSTI)

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

322

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

323

Notices OMB Control Number: 1850-0803.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

870 Federal Register 870 Federal Register / Vol. 78, No. 140 / Monday, July 22, 2013 / Notices OMB Control Number: 1850-0803. Type of Review: Extension without change of an existing collection of information. Respondents/Affected Public: Individuals or households. Total Estimated Number of Annual Responses: 135,000. Total Estimated Number of Annual Burden Hours: 27,000. Abstract: This is a request for a 3-year renewal of the generic clearance to allow the National Center for Education Statistics (NCES) to continue to develop, test, and improve its survey and assessment instruments and methodologies. The procedures utilized to this effect include but are not limited to experiments with levels of incentives for various types of survey operations, focus groups, cognitive laboratory

324

Liquid Scintillator Purification  

SciTech Connect

The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

Kishimoto, Y. [Research Center for Neutrino Science, Tohoku University (Japan)

2005-09-08T23:59:59.000Z

325

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

326

Lyophilic liquid porosimetry and a new liquid autoporosimeter  

SciTech Connect

Lyophilic liquid porosimetry determines the volumes of different size pores by measuring the amount of liquid in these pores, thus, providing pore volume distribution (PVD) data for porous structures. Any liquid that wets the sample may be used. This opens unique opportunities for porous structure evaluation. It provides realistic PVD analysis when the liquid of interest changes the porous structure. It determines uptake/drainage hysteresis of real liquids. It allows direct measurements of uptake and retention capillary pressures with different amounts of liquid in a sample. Lyophilic liquid porosimetry determines liquid/solid contact angles of different size pores within the sample. It can also be used for PVD analysis of both soft, brittle materials and porous metal materials.

Tyomkin, I. [TRI/Princeton, NJ (United States)

1998-12-31T23:59:59.000Z

327

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

328

Viscosity of Liquids  

Science Journals Connector (OSTI)

6 November 1952 research-article Viscosity of Liquids E. N. da C. Andrade The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. www.jstor.org

1952-01-01T23:59:59.000Z

329

The Viscosity of Liquids  

Science Journals Connector (OSTI)

... of momentum between them. In the case of a gas, Maxwell showed how the viscosity can be derived by considering this momentum as being communicated by molecules transferring themselves bodily ... fulfilment of the conditions postulated in Maxwell's treatment, and the fact that while gas viscosity goes up with temperature liquid ...

E. N. DA C. ANDRADE

1930-04-12T23:59:59.000Z

330

Detonation in Liquid Explosives  

Science Journals Connector (OSTI)

... Laboratory, on the initiative of Dr. A. H. Davis, into the process of detonation in explosives, the programme including a photographic study of the ... in explosives, the programme including a photographic study of the detonation Waves in transparent liquid explosives—the sensitivity of some of which can be varied by ...

D. CRONEY

1948-09-25T23:59:59.000Z

331

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

332

Dosimetry of Y-90 Liquid Brachytherapy in a Dog with Osteosarcoma Using PET/CT  

E-Print Network (OSTI)

receive a total dose of over 1000 Gy. Y-90 liquid brachytherapy has the potential to be used as an adjuvant therapy or for palliation purposes. Future work includes evaluation of pharmacokinetics of the Y-90 radiopharmaceutical, calibration of PET...

Zhou, Jingjie

2011-08-08T23:59:59.000Z

333

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

334

Performance Period Total Fee Paid FY2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

335

Air Liquide- Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

336

Liquid and liquid–gas flows at all speeds  

SciTech Connect

All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquid–gas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup ?3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

LeMartelot, S., E-mail: sebastien.lemartelot@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); Nkonga, B., E-mail: boniface.nkonga@unice.fr [RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University of Nice, LJAD UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex (France); Saurel, R., E-mail: richard.saurel@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University Institute of France, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France)

2013-12-15T23:59:59.000Z

337

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

338

Investigation of the organic matter in inactive nuclear tank liquids. Environmental Restoration Program  

SciTech Connect

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

339

Studies of a Liquid Argon Time Projection Chamber  

E-Print Network (OSTI)

, industrial- scale purification of argon to 0.1 ppb of O2. Here, we propose to undertake R&D on the two of these topics that can be addressed by a relatively small-scale effort: 1. Verification that a liquid argon phase could be studied. At this scale of detector, the best technology ­ a total absorption tracking

McDonald, Kirk

340

ALARA notes, Number 8  

SciTech Connect

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CHROMOSOME NUMBERS IN MAMMALS  

Science Journals Connector (OSTI)

...variables for which the double inte-gral does not exist: R. L. JEFFERY. On the number of elements in a group which have a power in...society will meet at Columbia University, MA ay 2, 1925. W. BENJAMIN FITE Acting Secretary 424 SCIENCE

Theophilus S. Painter

1925-04-17T23:59:59.000Z

342

Baryon Number Violation  

E-Print Network (OSTI)

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

K. S. Babu; E. Kearns; U. Al-Binni; S. Banerjee; D. V. Baxter; Z. Berezhiani; M. Bergevin; S. Bhattacharya; S. Brice; R. Brock; T. W. Burgess; L. Castellanos; S. Chattopadhyay; M-C. Chen; E. Church; C. E. Coppola; D. F. Cowen; R. Cowsik; J. A. Crabtree; H. Davoudiasl; R. Dermisek; A. Dolgov; B. Dutta; G. Dvali; P. Ferguson; P. Fileviez Perez; T. Gabriel; A. Gal; F. Gallmeier; K. S. Ganezer; I. Gogoladze; E. S. Golubeva; V. B. Graves; G. Greene; T. Handler; B. Hartfiel; A. Hawari; L. Heilbronn; J. Hill; D. Jaffe; C. Johnson; C. K. Jung; Y. Kamyshkov; B. Kerbikov; B. Z. Kopeliovich; V. B. Kopeliovich; W. Korsch; T. Lachenmaier; P. Langacker; C-Y. Liu; W. J. Marciano; M. Mocko; R. N. Mohapatra; N. Mokhov; G. Muhrer; P. Mumm; P. Nath; Y. Obayashi; L. Okun; J. C. Pati; R. W. Pattie Jr.; D. G. Phillips II; C. Quigg; J. L. Raaf; S. Raby; E. Ramberg; A. Ray; A. Roy; A. Ruggles; U. Sarkar; A. Saunders; A. Serebrov; Q. Shafi; H. Shimizu; M. Shiozawa; R. Shrock; A. K. Sikdar; W. M. Snow; A. Soha; S. Spanier; G. C. Stavenga; S. Striganov; R. Svoboda; Z. Tang; Z. Tavartkiladze; L. Townsend; S. Tulin; A. Vainshtein; R. Van Kooten; C. E. M. Wagner; Z. Wang; B. Wehring; R. J. Wilson; M. Wise; M. Yokoyama; A. R. Young

2013-11-21T23:59:59.000Z

343

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

344

High temperature liquid level sensor  

DOE Patents (OSTI)

A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

345

Icosahedral order and defects in metallic liquids and glasses  

Science Journals Connector (OSTI)

Molecular-dynamics simulations of 500 particles have been performed to study the icosahedral order and the defects in the supercooled liquid and glass states of metallic Mg3Ca7. Not only are Frank-Kasper polyhedra and Bernal ‘‘hole’’ polyhedra detected, but also a variety of defective icosahedra. Especially, the number of the type of defective icosahedron defined by eight 1551 bonds, two 1661 bonds, and two 1441 bonds is much greater than the number of any kind of Frank-Kasper and Bernal polyhedra. This strongly supports the physical picture of liquids and glasses being a disordered, entangled array of +72° and -72° disclination lines in an icosahedral medium.

D. W. Qi and S. Wang

1991-07-01T23:59:59.000Z

346

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

347

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

348

Ion Distributions Near a Liquid-Liquid Interface  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Distributions Near a Liquid-Liquid Interface Ion Distributions Near a Liquid-Liquid Interface Researchers from the University of Illinois at Chicago; Northern Illinois University; the University of California, Santa Cruz; and ChemMatCARS (sector 15 at the APS) used x-ray reflectivity from ion distributions at the liquid-liquid interface to provide strong evidence that the interfacial structure of a liquid alters the ion distributions near a charged interface, contrary to earlier theories about ions at charged surfaces. Coulomb's Law describes the interaction between two, otherwise isolated, point charges. If many charges are present in the region between these two charges, the net interaction between them is modified. This is commonly found in real systems, such as a plasma gas of electrons and ionized

349

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

350

Frostbite Theater - Liquid Nitrogen Experiments - Let's Freeze Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Shattering Pennies! Shattering Pennies! Previous Video (Shattering Pennies!) Frostbite Theater Main Index Next Video (Liquid Nitrogen in a Microwave!) Liquid Nitrogen in a Microwave! Let's Freeze Liquid Nitrogen! By removing the hottest molecules, we're able to freeze liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Today, we're going to freeze liquid nitrogen! Joanna and Steve: Yeah! Joanna: The obvious way to do this is to put the liquid nitrogen into something colder. Something that we have lots of around here! Something like... liquid helium! Steve: Yes! Joanna: Yeah, but we're not going to do that. Instead, we're going to freeze the nitrogen by removing the hottest molecules!

351

Team Total Points Beta Theta Pi 2271  

E-Print Network (OSTI)

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

352

Direct Liquid Cooling for Electronic Equipment  

SciTech Connect

This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

Coles, Henry; Greenberg, Steve

2014-03-01T23:59:59.000Z

353

High figure-of-merit nematic mixtures based on totally unsaturated isothiocyanate liquid crystals  

E-Print Network (OSTI)

. 1. Introduction The continuous demand for faster electro-optic response times is the driving force of figure-of-merit were observed at room temperature for the formulated nematic mixtures. Potential phased arrays (OPAs) for laser communications, require faster response times. In order to achieve a fast

Wu, Shin-Tson

354

Four-dimensional optical coherence tomography imaging of total liquid ventilated rats  

Science Journals Connector (OSTI)

Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the...

Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

355

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

356

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

357

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

358

Quantal Ising Liquid  

Science Journals Connector (OSTI)

An example is presented of a model of an amorphous quantum mechanical system, a liquid of quantal Ising spins, which can be solved exactly within certain many-body theories. Analytical solutions of the model in mean-field theory are shown to reveal a decrease in the extent of the ferromagnetic region (compared to an equivalent classical system) and the occurrence of some degree of quantum localization. Both phenomena are analyzed as a competition between quantum mechanics and the condensed phase.

Richard M. Stratt

1984-10-01T23:59:59.000Z

359

RHIC The Perfect Liquid  

ScienceCinema (OSTI)

Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

BNL

2009-09-01T23:59:59.000Z

360

Theory of fermion liquids  

Science Journals Connector (OSTI)

We develop a general theory of fermion liquids in spatial dimensions greater than 1. The principal method, bosonization, is applied to the cases of short- and long-range longitudinal interactions and to transverse gauge interactions. All the correlation funtions of the system may be obtained with the use of a generating functional. Short-range and Coulomb interactions do not destroy the Landau-Fermi fixed point. Non-Fermi liquid fixed points are found, however, in the cases of a super-long-range longitudinal interaction in two dimensions and transverse gauge interactions in two and three spatial dimensions. We consider in some detail the (2+1)-dimensional problem of a Chern-Simons gauge action combined with a longitudinal two-body interaction V(q)??q?y-1, which controls the density, and hence gauge, fluctuations. For y0 the interaction is relevant and the fixed point cannot be accessed by bosonization. Of special importance is the case y=0 (Coulomb interaction), which describes the Halperin-Lee-Read theory of the half-filled Landau level. We obtain the full quasiparticle propagator, which is of a marginal Fermi-liquid form. Using Ward identities, we show that neither the inclusion of nonlinear terms in the fermion dispersion nor vertex corrections alters our results: the fixed point is accessible by bosonization. As the two-point fermion Green’s function is not gauge invariant, we also invetigate the gauge-invariant density response function. Near momentum Q=2kF, in addition to the Kohn anomaly we find other nonanalytic behavior. In the appendies we present a numerical calculation of the spectral function for a Fermi liquid with Landau parameter f0?0. We also show how Kohn’s theorem is satisfied within the bosonization framework.

H.-J. Kwon; A. Houghton; J. B. Marston

1995-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

362

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

363

What constitutes a simple liquid?  

E-Print Network (OSTI)

Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlation between virial and potential energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a property of the intermolecular potential only because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, according to the new definition not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of structure and dynamics of 15 atomic and molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. No proof is given that the chemical characterization follows from the strong correlation property, but it is shown to be consistent with the existence of isomorphs in strongly correlating liquids' phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the basis for standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.

Trond S. Ingebrigtsen; Thomas B. Schrøder; Jeppe C. Dyre

2011-11-15T23:59:59.000Z

364

Liquid fossil fuel technology  

SciTech Connect

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

365

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

366

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

367

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

368

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

369

Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report  

SciTech Connect

The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

Kabadi, V.N.

1995-06-30T23:59:59.000Z

370

Colorado Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

371

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

372

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

373

Connecticut Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

374

Connecticut Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

375

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

376

The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids  

SciTech Connect

The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(?{sub DS}) with the local liquid's density on a solid surface being ?{sub DS}. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule.

Amano, Ken-ichi, E-mail: aman@tohoku-pharm.ac.jp; Takahashi, Ohgi [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan)] [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan); Suzuki, Kazuhiro [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Fukuma, Takeshi [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Onishi, Hiroshi [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)] [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

2013-12-14T23:59:59.000Z

377

Frostbite Theater - Liquid Nitrogen Experiments - Let's Pour Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Shattering Flowers! Shattering Flowers! Previous Video (Shattering Flowers!) Frostbite Theater Main Index Next Video (Giant Koosh Ball!) Giant Koosh Ball! Let's Pour Liquid Nitrogen on the Floor! Liquid nitrogen?! On the floor?! Who's going to clean that mess up?! See what really happens when one of the world's most beloved cryogenic liquids comes into contact with a room temperature floor. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: From time to time, we spill a little liquid nitrogen! The reaction we sometimes get is.... Shannon: Did they just pour LIQUID NITROGEN on the FLOOR?!?! Joanna: Yes. Yes we did. Steve: One thing people seem to have a problem with is the mess that liquid

378

ARM - Measurement - Shortwave spectral total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

379

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

380

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

382

Quantized Liquid Drop and Some Ground-State Nuclear Properties  

Science Journals Connector (OSTI)

The liquid drop is adopted as a simple nuclear model. The zero-point motion of the quantized drop is found to alter some of the properties of the classical drop, bringing the model into better agreement with experiment. The properties discussed are the skin thickness, the electric form factor for elastic scattering, and the rms nuclear radius as a function of atomic number.

G. Reading Henry

1968-12-20T23:59:59.000Z

383

Diffraction of light by topological defects in liquid crystals  

E-Print Network (OSTI)

We study light scattering by a hedgehog-like and linear disclination topological defects in a nematic liquid crystal by a metric approach. Light propagating near such defects feels an effective metric equivalent to the spatial part of the global monopole and cosmic string geometries. We obtain the scattering amplitude and the differential and total scattering cross section for the case of the hedgehog defect, in terms of the characteristic parameters of the liquid crystal. Studying the disclination case, a cylindrical partial wave method is developed. As an application of the previous developments, we also examine the temperature influence on the localization of the diffraction patterns.

E. Pereira; F. Moraes

2010-11-22T23:59:59.000Z

384

Radiation Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

385

Construction Project Number  

NLE Websites -- All DOE Office Websites (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

386

KPA Activity Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

387

E-Print Network 3.0 - algebraic spin liquid Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

A 81, 060302(R) (2010) Summary: in liquid-state systems, starting from a spin-spin Ising-type interaction 9. m is the number of loops... quantum interferences within complex...

388

Non-Oberbeck-Boussinesq Effects in Rayleigh-Bénard Convection of Liquids  

Science Journals Connector (OSTI)

The influence of temperature-dependent material properties on Rayleigh–Bénard convection is investigated in three different liquids, ranging from a very small Prandtl number for mercury with Pr?=?0.0232, over a m...

Susanne Horn; Olga Shishkina; Claus Wagner

2014-01-01T23:59:59.000Z

389

Process for preparing liquid wastes  

DOE Patents (OSTI)

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

390

FLARE, Fermilab Liquid Argon Experiments  

E-Print Network (OSTI)

Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

L. Bartoszek

2004-08-24T23:59:59.000Z

391

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network (OSTI)

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

392

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

393

Study on Total Instantaneous Blockage Accident for CEFR  

SciTech Connect

Chinese Experimental Fast Reactor (CEFR) is under construction in China. It is essential to investigate core disruptive accidents (CDAs) for the evaluation of CEFR's safety characteristic. Accident of total instantaneous blockage in single assembly scale had already been modeled and analyzed. The degradation scenario had been calculated by a fluid-dynamics analysis code for liquid-metal fast reactors (LMFRs). For further investigation of accident process and influence to the near bundles, the seven assembly scale were then simulated and calculated. Total instantaneous blockage was assumed to occur in the center assembly under normal operating conditions and consequences to neighboring assemblies were studied. The result shows that the key events such as sodium boiling, clad melting, fuel particles relocation, hexcan failure and melt discharge into neighboring six assemblies symmetrically were adequately simulated. All the key events appeared in the same sequence as the single assembly simulation, while hexcan failure occurred later than that of single assembly simulation. The reason for the different timing may be the boundary condition assumption can influence the heat removal from the blocked assembly. The seven-assembly scale model can reduce the boundary condition's uncertainties and help to give a better understanding and prediction of hypothetical accident scenario in subassembly blockage accidents for CEFR. (authors)

Zhe Wang; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

394

ARM - Evaluation Product - Droplet Number Concentration Value-Added Product  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDroplet Number Concentration Value-Added ProductsDroplet Number Concentration Value-Added Product Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Droplet Number Concentration Value-Added Product 2005.01.01 - 2010.12.30 Site(s) SGP General Description Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al.

395

Table HC6.12 Home Electronics Usage Indicators by Number of...  

Annual Energy Outlook 2012 (EIA)

2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

396

Table HC6.10 Home Appliances Usage Indicators by Number of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

397

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

NLE Websites -- All DOE Office Websites (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

398

A new Diffractometer for Studies of Liquid-Liquid Interfaces  

SciTech Connect

We have designed a novel, dedicated diffractometer for surface x-ray scattering studies of liquid-liquid and liquid-gas interfaces for the PETRA III High Resolution Diffraction Beamline. Using a double crystal beam-tilter in Bragg geometry this new instrument enables reflectivity and grazing incidence diffraction investigations without moving the sample, which is mechanically decoupled from the rest of the diffractometer. This design minimizes external excitation of surface vibrations, a key prerequisite for studies of liquid interfaces. The instrument operates over the energy range 6.4 keV to 30 keV, the higher energy range being optimal for penetration through liquid sample environments. Vertical momentum transfer up to q{sub z} 2.5 A{sup -1} and lateral q{sub ||} up to 4 A{sup -1}will be available.

Murphy, B. M.; Greve, M.; Runge, B.; Koops, C. T.; Elsen, A.; Stettner, J.; Magnussen, O. M. [IEAP, Christian-Albrechts-Universitaet zu Kiel, D-24098 Kiel (Germany); Seeck, O. H. [PETRA III at DESY, Notkestr. 85, D-22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

399

Frostbite Theater - Liquid Nitrogen Experiments - Cells vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductors! Superconductors! Previous Video (Superconductors!) Frostbite Theater Main Index Next Video (Liquid Oxygen and Fire!) Liquid Oxygen and Fire! Cells vs. Liquid Nitrogen! Let's say you've carelessly dunked your hand into a vat of liquid nitrogen and let it freeze solid. Every movie you've seen where this happens tells you that your hand will shatter like fine china should you bump it into something. If you're extremely careful, will your hand be okay once it thaws out? We'll explore this issue, using flower and onion cells rather than our hands! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: By now, we all know what happens when you place a flower in liquid

400

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

On neutron numbers and atomic masses  

Science Journals Connector (OSTI)

On neutron numbers and atomic masses ... Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers. ...

R. Heyrovská

1992-01-01T23:59:59.000Z

402

Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study  

Science Journals Connector (OSTI)

Abstract Fossil fuels (oil, natural gas and coal) presently represent about 90% of the world’s total commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the production of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. In the transport sector, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from biomass, a stored environmentally neutral solar energy. These fuels are compatible with current vehicles and blendable with conventional fuels. Moreover, they share the long-established distribution infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil) since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper discusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. The quantified need for nonconventional sources is presented. Based on a thorough assessment of current and prospective generated agriculture residues as distributed over the political areas, mapping of the number and capacity of plants to be installed for production of bioethanol from available residues namely rice straw, sugar cane residues and cotton stalks has been developed. Annual capacities of 3000, 10,000 and 20,000 tons ethanol/year until year 2021 have been proposed. Capital and operating requirements and economic indicators have been estimated. It has been concluded that at current price of ethanol of about $0.6/kg, the simple rate of return on investments is about 2.8%, 11% and 16% for the 3000, 10,000 and 20,000 tons annual capacity ethanol respectively.

Shadia R. Tewfik; Nihal M. El Defrawy; Mohamed H. Sorour

2013-01-01T23:59:59.000Z

403

Liquid Phase Heating Systems  

E-Print Network (OSTI)

saturation pressure is ju'st under 278 psig. To this, pump head, pump NPSH and static head due to elevated piping must l be added to arrive at total pressure in a steam cushioned HTW system. Nitrogen cushioned systems are more common, and expansion...

Mordt, E. H.

1979-01-01T23:59:59.000Z

404

Number of Retail Customers by State by Sector, 1990-2012  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Retail Customers by State by Sector, 1990-2012" Number of Retail Customers by State by Sector, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",275405,48790,1263,0,"NA",325458 2012,"AL","Total Electric Industry",2150977,357395,7168,0,"NA",2515540 2012,"AR","Total Electric Industry",1332154,181823,33926,2,"NA",1547905 2012,"AZ","Total Electric Industry",2585638,305250,7740,0,"NA",2898628 2012,"CA","Total Electric Industry",13101887,1834779,73805,12,"NA",15010483

405

Enhanced liquid hydrocarbon recovery process  

SciTech Connect

This patent describes a process for recovering liquid hydrocarbons. It comprises: injecting into a fractured subterranean formation a polymer enhanced foam comprising a polymer selected from a synthetic polymer or a biopolymer, a surfactant, an aqueous solvent and a gas, recovering liquid hydrocarbons from the formation.

Sydansk, R.D.

1992-07-14T23:59:59.000Z

406

Laboratory solvent reuse -- Liquid chromatography  

SciTech Connect

The objective of this work was to develop a method for reduction of waste solvent in the Process Engineering Chemistry Laboratory. The liquid chromatographs are the largest generators of explosive-contaminated waste in the laboratory. We developed a successful process for the reuse of solvents from the liquid chromatographs and demonstrated the utility of the process in the assay of hexanitrostilbene.

Quinlin, W.T.; Schaffer, C.L.

1992-11-01T23:59:59.000Z

407

Orifice mixing of immiscible liquids  

E-Print Network (OSTI)

measured with an Ostwald Viscosimeter relative to tap water also, All of these physical measurements were made at 83c F, the average tempera- ture noted during the runs. The liquid upon which these measurements were made were samples of the liquids...

McDonough, Joseph Aloysius

1960-01-01T23:59:59.000Z

408

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

409

Liquid-permeable electrode  

DOE Patents (OSTI)

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, George R. (Lower Burrell, PA)

1980-01-01T23:59:59.000Z

410

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network (OSTI)

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

411

Magnetically focused liquid drop radiator  

DOE Patents (OSTI)

A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

Botts, T.E.; Powell, J.R.; Lenard, R.

1984-12-10T23:59:59.000Z

412

Freezing of a Liquid Marble  

E-Print Network (OSTI)

In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a Thermo-Electric Cooler (TEC) and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation for the observed morphology.

Ali Hashmi; Adam Strauss; Jie Xu

2012-07-03T23:59:59.000Z

413

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

414

Total synthesis and study of myrmicarin alkaloids  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

415

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

416

Provides Total Tuition Charge to Source Contribution  

E-Print Network (OSTI)

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

417

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network (OSTI)

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

418

A GENUINELY HIGH ORDER TOTAL VARIATION DIMINISHING ...  

E-Print Network (OSTI)

(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order .... where the total variation is measured by the standard bounded variation ..... interval Ij and into the jump discontinuities at cell interfaces, see [12].

419

Method of measuring a liquid pool volume  

DOE Patents (OSTI)

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

Garcia, Gabe V. (Las Cruces, NM); Carlson, Nancy M. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

420

| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments for  

E-Print Network (OSTI)

Laboratory | Total Scattering at the Lujan Center Neutron Powder Diffractometer (NPDF) High-Intensity Powder. Shoemaker, et al., Reverse Monte Carlo neutron scattering study of disordered crystalline materials neutron| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments

Magee, Joseph W.

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

422

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

423

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

424

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

425

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

426

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

427

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

428

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

429

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

430

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

431

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

432

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

433

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

434

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

435

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

436

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

437

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

438

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

439

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

440

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

442

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

443

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

444

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

445

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

446

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

447

Number Suppletion in North American Indian Languages  

E-Print Network (OSTI)

been elimina ted from consideration. A total of 32 languages from 13 distinct genetic groupings were found to have suppletive verbs marking ergative plurality, i.e. the suppletive verb form cross-references the number of the subject of an intransitive... cry, die carry, put, stand throw sit go, run handle, put down lie, sit, fall, run stand lie, sit, float/glide carry, give, stand run/fly, put swim, turn, walk/go be locat- .arrive , be little die ed, lie, return sit,stand lie, sit falloff big, long...

Booker, Karen M.

1982-01-01T23:59:59.000Z

448

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

449

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

450

Liquid-Liquid Separation Process: Cooperative Research and Development Final Report, CRADA Number CRD-09-362  

SciTech Connect

The 3M Company, in collaboration with the National Renewable Energy Laboratory (NREL) and others, will develop the concept of the membrane solvent-extraction (MSE) technology for water removal and verify the technology at a pilot scale for bio-ethanol production to increase energy and water savings.

Schell, D.

2014-06-01T23:59:59.000Z

451

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

452

Haze Formation and Behavior in Liquid-Liquid Extraction Processes  

SciTech Connect

Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of {approx}1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment.

Arm, Stuart T.; Jenkins, J. A.

2006-07-31T23:59:59.000Z

453

Transcendental L2 -Betti numbers  

E-Print Network (OSTI)

Transcendental L2 -Betti numbers Atiyah's question Thomas Schick G¨ottingen OA Chennai 2010 Thomas Schick (G¨ottingen) Transcendental L2 -Betti numbers Atiyah's question OA Chennai 2010 1 / 24 #12 = ~M/) with fundamental domain F. L2-Betti numbers:= normalized dimension( space of L2-harmonic forms

Sunder, V S

454

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

455

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

456

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

457

ARM - Measurement - Net broadband total irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

458

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Next-Generation Liquid-Scintillator-Based Detectors: Quantums Dots and Picosecond Timing  

E-Print Network (OSTI)

Liquid-scintillator-based detectors are a robust technology that scales well to large volumes. For this reason, they are attractive for experiments searching for neutrinoless double-beta decay. A combination of improved photo-detection technology and novel liquid scintillators may allow for the extraction of particle direction in addition to the total energy of the particle. Such an advance would find applications beyond searches for neutrinoless double-beta decay.

Lindley Winslow

2013-07-10T23:59:59.000Z

460

Molecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Richard J. Sadus  

E-Print Network (OSTI)

coexistence. 1. Introduction Henry's constant is a well-known measure of a solute's solubility in a particularMolecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Boundaries Richard to determine Henry's constant from the residual chemical potential at infinite dilution at the vapor-liquid

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total Cross Sections for Neutron Scattering  

E-Print Network (OSTI)

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

462

Aerothermoballistics of pyrophoric metal shrapnel in high speed, high Weber number flows. [From non-nuclear detonation of nuclear weapon  

SciTech Connect

A numerical simulation is presented on the aerothermoballistic behavior of pyrophoric metal shrapnel ejected at supersonic speeds from a non-nuclear detonation of a nuclear weapon. The model predicts the aerodynamic and chemical heat transfer rates and the particle thermal responses including the time and position of melt initiation. Due to the high Weber number environment, the melting particle undergoes liquid layer stripping. The theoretical model, which is incorporated in the PLUTO computer code, predicts the liquid mass loss rate, characteristic liquid droplet diameter, temperature rise across the liquid film, and the coupled particle trajectory.

Connell, L.W.

1984-01-01T23:59:59.000Z

463

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

464

The Viscosity of Liquid Helium  

Science Journals Connector (OSTI)

2 September 1935 research-article The Viscosity of Liquid Helium J. O. Wilhelm A. D. Misener A. R. Clark The Royal Society is collaborating with JSTOR to digitize, preserve...

1935-01-01T23:59:59.000Z

465

Liquid Oxygen and its Uses  

Science Journals Connector (OSTI)

... of the liquid. At present, however, there is no known method of rendering them flameless, and their use in the majority of coal-mines is therefore inadmissible. If this ...

HENRY BRIGGS

1924-02-02T23:59:59.000Z

466

Gaseous and Liquid Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

467

Liquid helium cryo TEM | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

cryo TEM Liquid helium cryo TEM The JEOL JEM-3000SFF was designed for high-resolution cryogenic transmission electron microscopy (cryo-EM) of biological samples and expands EMSL...

468

Essays on liquidity and information  

E-Print Network (OSTI)

This dissertation studies the interaction of liquidity and incomplete or asymmetric information. In Chapter 1, I study a dynamic economy with illiquidity due to adverse selection in financial markets. Investment is undertaken ...

Kurlat, Pablo (Pablo Daniel)

2010-01-01T23:59:59.000Z

469

Physical Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Ionic liquids are experiencing explosive growth in many areas of research Ionic liquids are experiencing explosive growth in many areas of research and practical applications. They present a wide range of complex physical and chemical behaviors, including ambient vapor pressures ranging from UHV to weakly volatile, a substantial variety of distinct condensed phases, including multiple crystal isomorphs, glasses, amorphous plastic and liquid crystal phases, deep supercooling, and interesting dynamical and transport phenomena. Experiments and simulations have shown that their intrinsic self-organization at the nanoscale is responsible for several of these properties. The symposium will assemble an international array of speakers to discuss ionic liquids in the context of their heterogeneous environments, solvation, dynamics and transport, interfacial properties,

470

Probability Tables for Mendelian Ratios with Small Numbers.  

E-Print Network (OSTI)

-called ex- Total ...-...-..-..-....-.--. .9999 pected may lead to error in interpretation rather than serving as a valuable aid as it does with large numbers. Examples with other small numbers could be given, but this should iIIustrate the points... is set off so as to show the point beyond which the total probability in that direction is .0050 or less. Mendelian Ratios Combi- 1 130 121 112 10 3 9 4 8 5 7 6 6 7 5 8 4 9 3 10 2 11 .On95 0028 .O002 .. -- I ---- - 1 12 .0016 .0004...

Warwick, B. L. (Bruce L.)

1932-01-01T23:59:59.000Z

471

Study of Magnetohydrodynamic Surface Waves on Liquid Gallium  

SciTech Connect

Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

Hantao Ji; William Fox; David Pace; H.L. Rappaport

2004-05-13T23:59:59.000Z

472

PHASE CHANGE LIQUIDS  

SciTech Connect

Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

Susan S. Sorini; John F. Schabron

2006-03-01T23:59:59.000Z

473

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

474

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network (OSTI)

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SÃ?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

475

Total Solar Irradiance Satellite Composites and their  

E-Print Network (OSTI)

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

476

Electrical detection of liquid lithium leaks from pipe joints  

SciTech Connect

A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

2014-11-15T23:59:59.000Z

477

Extremely Correlated Fermi Liquids B. Sriram Shastry  

E-Print Network (OSTI)

Extremely Correlated Fermi Liquids B. Sriram Shastry Physics Department, University of California the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an underlying auxiliary Fermi liquid Green's function that is further caparisoned by extreme correlations. The theory leads to two

California at Santa Cruz, University of

478

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

479

Commercialization of Coal-to-Liquids Technology  

SciTech Connect

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

480

ARM Evaluation Product : Droplet Number Concentration Value-Added Product  

SciTech Connect

Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

Riihimaki, Laura

2014-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "total number liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points  

E-Print Network (OSTI)

. INTRODUCTION Water is characterized by well-known thermodynamic and kinetic liquid-state anomalies; for examplePREPRINT Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points Evy simulations are used to examine the relationship between water-like anoma- lies and the liquid-liquid critical

Barbosa, Marcia C. B.

482

Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

483

NUMBER:  

NLE Websites -- All DOE Office Websites (Extended Search)

SWMU 161 C-743 Trainina Trailer Comolex- Soil Backfill UNIT NAME: . REGULATORY STATUS: AOC LOCATION: Southwest of C-743 building APPROXIMATE DIMENSIONS: 200 feet wide by 200 feet...

484

Compendium of Experimental Cetane Numbers  

SciTech Connect

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

2014-08-01T23:59:59.000Z

485

Development of a Very Dense Liquid Cooled Compute Platform  

SciTech Connect

The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

Hughes, Phillip N.; Lipp, Robert J.

2013-12-10T23:59:59.000Z

486

ARM - Measurement - Shortwave broadband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

487

Total Neutron Scattering in Vitreous Silica  

Science Journals Connector (OSTI)

The structure of Corning superpure vitreous silica glass has been investigated with neutrons. A new method of analysis using variable neutron wavelengths and the measurement of total scattering cross sections from transmission experiments is developed and the results are compared with those from differential x-ray scattering. The total neutron scattering method permits a simple and direct structure analysis with resolution apparently superior to x-rays. The preliminary results compare well in a first approximation analysis with the basic structure model of Warren and others and in addition the neutron-determined atomic radial distribution curve exhibits some finer details than the x-ray results. Thermal inelastic scattering of neutrons was corrected for in an approximate way.

R. J. Breen; R. M. Delaney; P. J. Persiani; A. H. Weber

1957-01-15T23:59:59.000Z

488

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

489

Frustrated total internal reflection acoustic field sensor  

DOE Patents (OSTI)

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

490

Improved selection in totally monotone arrays  

SciTech Connect

This paper's main result is an O(({radical}{bar m}lgm)(n lg n) + mlg n)-time algorithm for computing the kth smallest entry in each row of an m {times} n totally monotone array. (A two-dimensional A = a(i,j) is totally monotone if for all i{sub 1} < i{sub 2} and j{sub 1} < j{sup 2}, < a(i{sub 1},j{sub 2}) implies a(i{sub 2},j{sub 1})). For large values of k (in particular, for k=(n/2)), this algorithm is significantly faster than the O(k(m+n))-time algorithm for the same problem due to Kravets and Park. An immediate consequence of this result is an O(n{sup 3/2} lg{sup 2}n)-time algorithm for computing the kth nearest neighbor of each vertex of a convex n-gon. In addition to the main result, we also give an O(n lg m)-time algorithm for computing an approximate median in each row of an m {times} n totally monotone array; this approximate median is an entry whose rank in its row lies between (n/4) and (3n/4) {minus} 1. 20 refs., 3 figs.

Mansour, Y. (Harvard Univ., Cambridge, MA (United States). Aiken Computation Lab.); Park, J.K. (Sandia National Labs., Albuquerque, NM (United States)); Schieber, B. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Sen, S. (AT and T Bell Labs., Murray Hill, NJ (United States))

1991-01-01T23:59:59.000Z

491

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Generation of vector beams with liquid crystal disclination lines  

E-Print Network (OSTI)

We report that guiding light beams, ranging from continuous beams to femtosecond pulses, along liquid crystal defect lines can transform them into vector beams with various polarization profiles. Using Finite Difference Time Domain numerical solving of Maxwell equations, we confirm that the defect in the orientational order of the liquid crystal induces a defect in the light field with twice the winding number of the liquid crystal defect, coupling the topological invariants of both fields. For example, it is possible to transform uniformly-polarized light into light with a radial polarization profile. Our approach also correctly yields a zero-intensity region near the defect core, which is always present in areas of discontinuous light polarization or phase. Using circularly polarized incident light, we show that defects with non-integer winding numbers can be obtained, where topological constants are preserved by phase vortices, demonstrating coupling between the light's spin, orbital angular momentum and polarization profile. Further, we find an ultrafast femtosecond laser pulse travelling along a defect line splits into multiple intensity regions, again depending on the defect's winding number, allowing applications in beam steering and filtering. Finally, our approach describing generation of complex optical fields via coupling with topological defect lines in optically birefringent nematic fluids can be easily extended to high-intensity beams that affect nematic ordering.

Miha ?an?ula; Miha Ravnik; Slobodan Žumer

2014-08-12T23:59:59.000Z

493

Performance Period Total Fee Paid FY2008  

Office of Environmental Management (EM)

Type: Maximum Fee 3,129,570 175,160 377,516 1,439,287 Fee Available 175,160 80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number:...

494

Table B15. Number of Establishments in Building, Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

5. Number of Establishments in Building, Floorspace, 1999" 5. Number of Establishments in Building, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",67338,43343,10582,3574,3260,4811,1769 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5358,857,"Q","Q","Q",512 "5,001 to 10,000 ..............",8238,5952,1630,137,"Q","Q","Q" "10,001 to 25,000 .............",11153,7812,1982,784,"Q","Q",296

495

On the Number of Views of Polyhedral Scenes  

Science Journals Connector (OSTI)

It is known that a scene consiing of k convex polyhedra of total complexity n has at most O(n4 k2) distinct orthographic views, and that the number of such views is ¿((nk2 + n2)2) ...

Boris Aronov; Hervé Brönnimann; Dan Halperin; Robert Schiffenbauer

2000-11-01T23:59:59.000Z

496

Recent Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect

Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B{sub toroidal} = 2 kG, I{sub P} =100 kA, T{sub e}(0) {approx} 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers; S. Angelini

2005-05-03T23:59:59.000Z

497

Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect

Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B{sub toroidal} = 2 kG, I{sub P} = 100 kA, T{sub e}(0) = 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers

2004-10-28T23:59:59.000Z

498

Physical Properties of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Properties of Ionic Liquids Consisting of the Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations Hui Jin, Bernie O'Hare, Jing Dong, Sergei Arzhantsev, Gary A. Baker, James F. Wishart, Alan J. Benesi, and Mark Maroncelli J. Phys. Chem. B 112, 81-92 (2008). [Find paper at ACS Publications] Abstract: Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of

499

Liquid soap film generates electricity  

E-Print Network (OSTI)

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

500

ESTIMATION OF TOTAL RADIATIVE POWER FROM THE 6-GEV RING LS-24  

NLE Websites -- All DOE Office Websites (Extended Search)

TOTAL RADIATIVE POWER TOTAL RADIATIVE POWER FROM THE 6-GEV RING LS-24 G. K. Shenoy APRIL 18,1985 Here we make an estimation of the total power radiated from a positron trajectory through the bending magnets, undulators and wigglers. Bending Magnets The power P B per each bending magnet in the ring is given by (1) where E = 6 GeV B = field average over the magnet length = 0.67 T I = stored current = 0.1 A L = trajectory in each dipole magnet = 2.95 m (Ref. LS-12) This gives P B = 6021 watts. Since there are 64 such dipoles in the ring, the total power radiated from dipoles is T P B (watts) = P B (watts) x 64 = 385 kwatts 2 Undulators The total power radiated from a sinosoidal undulator is either given by P u (watts) (2) or by (3) where N = number of undulator periods of length AO (em), K is the deflection