National Library of Energy BETA

Sample records for total liquefied refinery

  1. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes

  2. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  3. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended

  4. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Product Area 2010 2011 2012 2013 2014 2015 View History Total 710,413 -- -- -- -- -- 1982-2015 Crude Oil 180,846 -- -- -- -- -- 1985-2015 Liquefied Petroleum Gases 33,842 -- -- -- ...

  5. Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,583 2,728 2014 5,470 3,783 2,334 2,806 2,175 3,311 1,567 2,871 2,505 2,003 2015 7,729 7,623 5,521 1,673 2,557 7,133 8,237 2,563 2,653 1,541 2,452 2016 10,633 8,593 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  6. Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Imports (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,984 2,621 5,981 2015 2,844 3,045 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point,

  7. Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Imports (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Elba Island, GA LNG Imports from All

  8. Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5.00 5.61 9.05 6.64 6.88 7.63 3.32 2010's 4.05 4.18 2.10 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  9. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  10. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 600,775 608,595 595,141 614,837 579,640 560,048 1981-2016 Liquefied Refinery Gases 17,388 13,536 9,912 10,243 10,719 ...

  11. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  12. U.S. Refinery Yield

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Liquefied Refinery Gases 4.3 4.0 4.1 3.9 4.0 3.7 1993-2015 Finished Motor Gasoline 45.7 44.9 45.0 45.0 45.0 45.3 1993-2015 Finished ...

  13. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 570,498 577,057 563,621 580,680 545,351 529,373 1981-2016 Crude Oil 485,221 479,416 494,682 519,726 495,806 460,629 1981-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 16,371 18,692 20,285 20,130 20,717 16,455 1981-2016 Pentanes Plus 4,804 4,844 4,376 4,155 4,878 3,963 1981-2016 Liquefied Petroleum Gases 11,567 13,848 15,909 15,975 15,839 12,492 1981-2016 Ethane 1981-1992 Normal Butane 4,707 7,699 9,213 9,410 9,502 6,776

  14. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 6,345,372 6,422,710 6,406,693 6,577,077 6,779,342 6,882,105 1981-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 1981-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 161,479 178,884 186,270 181,112 186,601 188,270 1981-2015 Pentanes Plus 56,686 63,385 63,596 60,394 56,037 53,404 1981-2015 Liquefied Petroleum Gases 104,793 115,499 122,674 120,718 130,564 134,866 1981-2015 Ethane 1981-1992 Normal Butane 43,802

  15. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel

  16. Total number of slots consumed in long_excl.q (exclusive nodes) will be

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  17. Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.

    SciTech Connect (OSTI)

    Wang, M.; Lee, H.; Molburg, J.

    2004-01-01

    Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

  18. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 352,148 350,299 353,077 362,368 337,235 321,406 2005-2016 Liquefied Refinery Gases 17,388 13,536 9,912 10,243 10,719 12,130 2005-2016 Ethane/Ethylene 158 202 196 226 165 114 2005-2016 Ethane 133 173 165 194 142 96 2005-2016 Ethylene 25 29 31 32 23 18 2005-2016 Propane/Propylene 15,869 16,121 16,574 17,905 17,998 16,402 2005-2016 Propane 7,955 7,965 8,303 8,831 8,571 8,208 2005-2016 Propylene 7,914 8,156 8,271 9,074 9,427 8,194

  19. U.S. Refinery Net Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12,813 12,516 12,287 12,009 12,148 11,916 2005-2014 Liquefied Refinery Gases 623 659 619 630 623 653 2005-2014 EthaneEthylene 19 20 20 18 7 6 2005-2014 Ethane 14 14 14 13 7 5...

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2014 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 1,348 421 23 513 2,305 Distillate Fuel Oil 0 33 174 0 102 309 Residual Fuel Oil 3 23 28 13 346 413 Still Gas 15,174 48,972 110,958 8,749 46,065 229,918 Marketable Petroleum Coke 0 0 0 493 143 636 Catalyst Petroleum Coke 8,048 16,837 44,599 2,925 12,482 84,891 Natural Gas (million cubic feet)

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  2. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  3. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6,794,407 6,973,710 7,173,730 7,260,943 1981-2015 Liquefied Refinery Gases 240,454 225,992 230,413 227,349 238,485 223,448 1981-2015 EthaneEthylene 7,228 7,148 6,597 2,626 ...

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  5. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (BSD) Catalytic Reforming Charge Capacity (BSD) Catalytic Reforming Low Pressure Charge Capacity (BSD) Catalytic Reforming High Pressure Charge Capacity (BSD) ...

  6. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2015 | Release Date: June 19, 2015 | Next Release Date: June 24, 2016 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of

  8. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Liquefied Refinery Gases 3.5 2.8 2.0 2.0 2.1 2.6 1993-2016 Finished Motor Gasoline 45.4 45.7 46.7 47.3 49.3 47.5 1993-2016 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.0 0.1 1993-2016 Kerosene-Type Jet Fuel 9.3 9.8 9.8 10.1 9.8 9.9 1993-2016 Kerosene 0.1 0.1 0.1 0.2 0.1 0.1 1993-2016 Distillate Fuel Oil 29.9 30.0 30.3 29.6 27.8 28.9 1993-2016 Residual Fuel Oil 2.5 2.6 2.3 2.2 2.5 2.6 1993-2016 Naphtha for Petrochemical Feedstock Use 1.3 1.3

  9. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect (OSTI)

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  10. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  11. Liquefied Natural Gas Safety Research

    Energy Savers [EERE]

    May 2012 Liquefied Natural Gas (LNG) Safety Research | Page 1 Liquefied Natural Gas Safety Research Report to Congress May 2012 United States Department of Energy Washington, DC 20585 Department of Energy | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page i Message from the Assistant Secretary for Fossil Energy The Explanatory Statement accompanying the Consolidated Appropriations Act, 2008 1 and the House Report on the House of Representatives version of the related bill 2 requested

  12. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. ...

  13. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  14. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 135,000 0 45,000 32,000 0 0 0

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 711 3,500 0 7,120 33 245 0 Hunt Refining Co 0 0 15,000 0 3,500 0 7,120

  17. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  18. Outlook for Refinery Outages and Available Refinery Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    level of refinery outages outlined in this report. This report does not consider the impacts of refined product logistics and distribution, which could affect the movement of...

  19. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2014 a b NEW PAD District II 19,000 Dakota Prairie Refining LLC Dickinson, ND 19,000 01/15 PAD District III 42,000 Kinder Morgan Crude & Condensate Galena Park, TX 42,000 01/15 SHUTDOWN PAD District I 28,000 0 Axeon Specialty Products LLC Savannah, GA 28,000 0 09/12 12/14 PAD District II 12,000 0 Ventura Refining & Transmission LLC Thomas, OK 12,000 0 10/10 12/14 PAD District III 0

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  4. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  5. Refinery, petrochemical plant injuries decline

    SciTech Connect (OSTI)

    Not Available

    1994-07-25

    The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

  6. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  7. Case Study - Liquefied Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of

  8. Liquefied Natural Gas: Understanding the Basic Facts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts PDF icon Liquefied Natural Gas: Understanding the Basic Facts More ...

  9. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Petroleum Products 354,511 354,703 353,837 349,090 356,014 363,339 1993-2016 Crude Oil 102,678 105,923 101,530 100,805 101,947 108,660 1981-2016 All Oils (Excluding Crude Oil) 251,833 248,780 252,307 248,285 254,067 254,679 1993-2016 Pentanes Plus 778 711 1,018 718 571 835 1993-2016 Liquefied Petroleum Gases 18,650 18,308 16,631 14,329 12,498 11,825 1993-2016 Ethane/Ethylene 190 215 135 86 94 78 1993-2016 Propane/Propylene 4,567 4,837 5,033 4,107 3,074 2,847 1993-2016 Normal

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2015 PAD District I 570,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Method PAD Districts I II III IV V United States Table 9. Refinery Receipts of Crude Oil by Method of Transportation by PAD District, 2014 (Thousand Barrels) a Pipeline 22,596 1,266,015 1,685,817 168,347 298,886 3,441,661 Domestic 2,632 658,717 1,421,768 82,043 240,522 2,405,682 Foreign 19,964 607,298 264,049 86,304 58,364 1,035,979 Tanker 252,479 0 1,046,008 0 529,319 1,827,806 Domestic 81,055 0 45,006 0 181,307 307,368 Foreign 171,424 0 1,001,002 0 348,012 1,520,438 Barge 39,045 6,360 259,903

  13. U.S. Liquefied Natural Gas Exports to Egypt

    U.S. Energy Information Administration (EIA) Indexed Site

    5-2016 Liquefied Natural Gas Prices -- -- -- -- -- -- 2003

  14. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  15. Relocation and freezing of liquefied fuel-rod material. [PWR

    SciTech Connect (OSTI)

    Moore, R.L.; Broughton, J.M.

    1982-01-01

    Severe degraded core cooling accidents, such as occurred at TMI-2 can potentially reach temperatures in excess of cladding melting. When the molten cladding is in contact with UO/sub 2/ fuel, the UO/sub 2/ will be dissolved contributing significantly to the total amount of liquefied material flowing down the rod and eventually freezing in a lower, cooler region of the core. The primary objectives of this paper are to evaluate the relocation and freezing characteristics of liquefied fuel rod material over a wide range of system conditions, physical characteristics of the fuel rod and liquefied material, and material thermo-physical properties to determine the relative influence of the controlling parameters. First the analytical model used in the analysis is briefly reviewed. The results of the analyses are then presented and discussed, and this is followed by the conclusions.

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  17. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  18. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  20. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    11:34:24 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  1. Motiva Refinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  3. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  5. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  7. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  9. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  10. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  13. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  14. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  15. Mining machinery/equipment/parts/services. Oil and gas field equipment/machinery/parts/supplies (Ecuador). Refinery equipment, parts, and accessories, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The petroleum sector in Ecuador brings in about 65 percent of the country's revenue. Three of the refineries are located in the coastal region. The other two, plus the Liquified Petroleum Gas Plant (LPG), are located in the Oriente region (Amazon jungle). The refineries operate at about 85% of their installation capacity. The Petroindustrial and Petropeninsula investment plan for 1991 comtemplates the expansion of the Esmeraldas refinery to 110,000 barrels a day, and the up-grading of the Shushufindi and Libertad refineries located near the city of Guayaquil. The United States is by far the largest supplier of refinery equipment, parts and accessories, controlling about 90% of the total market.

  16. San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) ...

  17. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  18. Price of Portal, ND Liquefied Natural Gas Exports to Canada ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Portal, ND Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Price of Portal, ND Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet)...

  19. Price of Crosby, ND Liquefied Natural Gas Exports to Canada ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crosby, ND Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Price of Crosby, ND Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet)...

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  1. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,178,588 4,091,601 4,007,375 4,037,265 3,954,862 3,894,471 2005-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 2005-2015 Natural Gas Plant Liquids 154,941 171,074 175,607 168,808 172,563 171,936 2005-2015 Pentanes Plus 54,697 61,059 59,432 56,153 52,853 50,850 2005-2015 Liquefied Petroleum Gases 100,244 110,015 116,175 112,655 119,710 121,086 2005-2015 Normal Butane 39,253 42,087 45,747 42,461 45,916 47,870 2005-2015

  2. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2006-10-11

    a summary of our collaborative 2005 project “Opportunities for Biorenewables in Petroleum Refineries” at the Rio Oil and Gas Conference this September.

  3. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2007-02-01

    A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

  4. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  5. Liquefied Natural Gas Market | OpenEI Community

    Open Energy Info (EERE)

    Liquefied Natural Gas Market Home There are currently no posts in this category. Syndicate content...

  6. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  7. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact ...

  8. Potential Vulnerability of US Petroleum Refineries to Increasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature andor Reduced Water Availability Potential Vulnerability of US Petroleum Refineries to ...

  9. NREL Refinery Process Shows Increased Effectiveness of Producing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 ...

  10. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Connecticut Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious

  11. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  12. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  13. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect (OSTI)

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor has two distinct advantages over rotary motor compressors. One, it is a completely dry system. Because there are no gearbox and roller bearings, there is no requirement for lubricants, which eliminates the cleanup issues associated with lubricants in cryogenic refrigerators driven by conventional compressors. Two, the oscillator is suspended by flexure bearings. Flexure bearings have no wearing parts and have essentially infinite lifetime. Linear motors can also be run in reverse as linear generators and can be driven by acoustic engines. Although most natural gas is still carried from well to user as gas in pipelines, the use of liquefied natural gas (LNG) has been increasing. A typical modern, large liquefaction plant costs a billion dollars, liquefies 10{sup 9} scfd, uses 10-15% of its throughput to power itself, and has substantial operating and maintenance costs.

  14. Liquefied propane carburetor modification system

    SciTech Connect (OSTI)

    Batchelor, D.R.; Batchelor, W.H.

    1983-01-25

    A system which can be retrofit into an existing conventional gasoline powered vehicle for enabling the vehicle to operate on either gasoline or liquefied propane fuel. The system includes a mixer in the form of an adapter to fit on the top of an existing carburetor. The mixer has a unique spring balanced metering device which controls flow of gaseous propane to the carburetor in proportion to airflow through the carburetor. The mixer is connected to a regulator assembly which receives liquid propane in a first chamber, heats the liquid propane to form a vapor, and feeds the vapor through an idle valve to control idling of the engine. The vapor is also passed to a second chamber of the regulator assembly in response to demand from the metering device which is sensed by a diaphragm actuated gas flow valve. From the second chamber, the gaseous propane is fed to a high speed inlet of the mixer. Engine manifold vacuum is also used to provide additional control for the gas flow valve to increase efficiency of the system. Other features include a special purpose fuel tank and an optional exhaust system oxygen sensor for further regulating gas flow to the engine.

  15. Former Soviet refineries face modernization, restructuring

    SciTech Connect (OSTI)

    Not Available

    1993-11-29

    A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

  16. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  17. EIA-815

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Oxygenates 445 Natural Gas Plant Liquids and Liquefied Refinery Gases, TOTAL 242 EthaneEthylene, TOTAL 108 Ethylene 631 PropanePropylene, TOTAL 246 Propylene (nonfuel use) ...

  18. Portal, ND Natural Gas Liquefied Natural Gas Imports from Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquefied Natural Gas to Canada

  19. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10272015 12:31:05 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRXNUS1","MLPRXNUS1","METRXNUS1","MENRXNUS1","MEYRXNUS1","...

  20. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  1. Iran to build new refinery at Arak

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper reports Iranian plans to construct a grassroots 150,000-b/d refinery in Arak. The plant, to be completed in early 1993, will be capable of producing unleaded gasoline and other light products.

  2. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  3. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 321,878 318,765 321,561 328,213 302,955 290,718 2005-2016 Crude Oil 485,221 479,416 494,682 519,726 495,806 460,629 2005-2016 Natural Gas Plant Liquids 14,690 15,903 17,686 18,057 18,673 14,924 2005-2016 Pentanes Plus 4,693 4,431 3,897 3,932 4,389 3,616 2005-2016 Liquefied Petroleum Gases 9,997 11,472 13,789 14,125 14,284 11,308 2005-2016 Normal Butane 3,144 5,323 7,093 7,560 7,947 5,592 2005-2016 Isobutane 6,853 6,149 6,696 6,565

  4. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  5. ,"U.S. Liquefied Natural Gas Imports From Peru (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Peru (MMcf)" "Sourcekey","NGMEPG0NUS-NPEIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Peru (MMcf)" 39263,0 39629,0 39994,0 ...

  6. ,"U.S. Liquefied Natural Gas Imports From Peru (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Peru (MMcf)" "Sourcekey","NGMEPG0NUS-NPEIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Peru (MMcf)" 40193,0 40436,3229 ...

  7. ,"U.S. Liquefied Natural Gas Imports From Australia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Liquefied Natural Gas Imports From Australia (MMcf)" "Sourcekey","N9103AU2" "Date","U.S. Liquefied Natural Gas Imports From Australia (MMcf)" 26845,0 27210,0 27575,0 27941,0 ...

  8. ,"U.S. Liquefied Natural Gas Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Canada (MMcf)" "Sourcekey","NGMEPG0NUS-NCAIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Canada (MMcf)" 41090,0 41455,555 ...

  9. ,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:36 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)" "Sourcekey","N9103MY2" "Date","U.S. Liquefied Natural Gas...

  10. ,"U.S. Liquefied Natural Gas Imports From Oman (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:36 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Oman (MMcf)" "Sourcekey","N9103MU2" "Date","U.S. Liquefied Natural Gas...

  11. ,"U.S. Liquefied Natural Gas Imports From Algeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:33 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Algeria (MMcf)" "Sourcekey","N9103AG2" "Date","U.S. Liquefied Natural Gas...

  12. ,"U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:37 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)" "Sourcekey","N9103NG2" "Date","U.S. Liquefied Natural Gas...

  13. ,"U.S. Liquefied Natural Gas Imports From Brunei (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:34 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Brunei (MMcf)" "Sourcekey","N9103BX2" "Date","U.S. Liquefied Natural Gas...

  14. ,"U.S. Liquefied Natural Gas Imports From Qatar (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:37 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Qatar (MMcf)" "Sourcekey","N9103QR2" "Date","U.S. Liquefied Natural Gas...

  15. ,"U.S. Liquefied Natural Gas Imports From Egypt (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Liquefied Natural Gas Imports From Egypt (MMcf)" "Sourcekey","N9103EG2" "Date","U.S. Liquefied Natural Gas Imports From Egypt (MMcf)" 38533,72540 38898,119528 39263,114580 ...

  16. Global Liquefied Natural Gas Market: Status and Outlook, The

    Reports and Publications (EIA)

    2003-01-01

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  17. Hydrocarbon/Total Combustibles Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues Release date: November 25, 2014 Executive summary Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of

  18. Alternative Fuels Data Center: Liquefied Natural Gas Allows for Cleaner

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Collection in Sacramento Liquefied Natural Gas Allows for Cleaner Refuse Collection in Sacramento to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Allows for Cleaner Refuse Collection in Sacramento on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Allows for Cleaner Refuse Collection in Sacramento on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Allows for Cleaner Refuse Collection in Sacramento on

  19. Energy Department Authorizes Jordan Cove to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    Terminal in Coos Bay, Oregon Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries

  20. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Oxygenates 445 Natural Gas Plant Liquids (NGPL) and Liquefied Refinery Gases (LRG): EthaneEthylene, TOTAL 108 Ethane - LRG 641 Ethylene 631 PropanePropylene, TOTAL 246 ...

  1. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Liquids (NGPL) and Liquefied Refinery Gases (LRG):" "EthaneEthylene, TOTAL",108,,,... "Ethane - LRG",641 "Ethylene",631 "PropanePropylene, TOTAL",246,,,... "Propane - ...

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    change by sulfur content may not equal total residual fuel oil ending stocks and stock change. LRG Liquefied Refinery Gases. - Not Applicable. Notes: Totals may not equal...

  3. Total Refinery Net Input of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    3,070 2,749 2,923 2005-2015 PADD 2 65,167 70,767 68,865 61,444 54,690 59,836 2005-2015 Ind., Ill. and Ky. 39,434 44,601 42,709 39,206 34,355 39,460 2005-2015 Minn., Wis., N....

  4. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  5. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  6. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  7. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the hydropyrolysis oils had low acidity and caused almost no corrosion in comparison to pyrolysis oils, which had high acidity and caused significant levels of corrosion.

  8. Method and apparatus for pressurizing a liquefied gas

    DOE Patents [OSTI]

    Bingham, Dennis N.

    2005-07-26

    Apparatus providing at least one thermoelectric device for pressurizing a liquefied gas container and methods employing same are disclosed. A thermoelectric device including a heating surface and a cooling surface is used for pressurizing a container by vaporizing liquefied gas within the container by transferring heat energy from a portion of the liquefied gas in contact with the cooling surface to another portion of the liquefied gas in contact with the heating surface of the thermoelectric device to convert some of the liquefied gas to a vapor state. Liquefied gas vapor and/or liquid phase may be supplied by disclosed apparatus and methods. The apparatus may also be used as a vapor pump or a liquid pump, or fluid pump. Methods of operation are also disclosed.

  9. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Energy Savers [EERE]

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  10. The Department of Energy's Role in Liquefied Natural Gas Export

    Energy Savers [EERE]

    Applications | Department of Energy The Department of Energy's Role in Liquefied Natural Gas Export Applications The Department of Energy's Role in Liquefied Natural Gas Export Applications November 8, 2011 - 11:34am Addthis Statement of Christopher Smith, Deputy Assistant Secretary for Oil and Natural Gas, Office of Fossil Energy before the Senate Committee on Energy and Natural Resources on DOE's Role in Liquefied Natural Gas Export Applications. Thank you Chairman Bingaman, Ranking Member

  11. DOE Initiates Series of Liquefied Natural Gas Public Education Forums |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Series of Liquefied Natural Gas Public Education Forums DOE Initiates Series of Liquefied Natural Gas Public Education Forums February 15, 2006 - 11:52am Addthis First Forum Set in Boston, Massachusetts WASHINGTON, D.C. - The first in a series of Department of Energy (DOE)-sponsored public education forums on liquefied natural gas (LNG) has been scheduled for Friday, March 10, 2006, at the John B. Hynes Veterans Memorial Convention Center in Boston, Massachusetts. This

  12. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States On May 29, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report).

  13. Energy Department Authorizes Third Proposed Facility to Export Liquefied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas | Department of Energy Third Proposed Facility to Export Liquefied Natural Gas Energy Department Authorizes Third Proposed Facility to Export Liquefied Natural Gas August 7, 2013 - 12:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Lake Charles Exports, LLC (Lake Charles) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with

  14. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  15. Liquefied Natural Gas: Global Challenges (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    U.S. imports of liquefied natural gas (LNG) in 2007 were more than triple the 2000 total, and they are expected to grow in the long term as North Americas conventional natural gas production declines. With U.S. dependence on LNG imports increasing, competitive forces in the international markets for natural gas in general and LNG in particular will play a larger role in shaping the U.S. market for LNG. Key factors currently shaping the future of the global LNG market include the evolution of project economics, worldwide demand for natural gas, government policies that affect the development and use of natural resources in countries with LNG facilities, and changes in seasonal patterns of LNG trade.

  16. Clean Cities Moving Fleets Forward with Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    Learn how local Clean Cities coalitions are helping companies save money on fuel costs and reduce their emissions by switching their fleets to run on liquefied natural gas.

  17. DOE's Program Regulating Liquefied Natural Gas Export Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Program Regulating Liquefied Natural Gas Export Applications June 18, 2013 - 10:15am Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy ...

  18. ,"U.S. Liquefied Natural Gas Imports From Oman (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Oman (MMcf)",1,"Monthly","72015" ,"Release Date:","09302015"...

  19. Proposed Procedures for Liquefied Natural Gas Export Decisions...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE) Office of Fossil Energy announced its Procedures for Liquefied Natural Gas Export Decisions (Procedures). ... the National Environmental Policy Act (NEPA) has been ...

  20. Effect of Increased Levels of Liquefied Natural Gas Exports on...

    Energy Savers [EERE]

    Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets October 2014 ... such as supply disruptions, policy changes, and technological breakthroughs. ...

  1. Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from TrinidadTobago...

  2. Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...

    Gasoline and Diesel Fuel Update (EIA)

    data. Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from All Countries...

  3. U.S. Refineries Competitive Positions

    U.S. Energy Information Administration (EIA) Indexed Site

    Refineries Competitive Positions 2014 EIA Energy Conference July 14, 2014 Joanne Shore American Fuel & Petrochemical Manufacturers Refiners competitive positions Function of optimizing feedstock costs, operating costs, and revenues through mix of products sold 2 Propane/butane Chemicals Gasoline Jet Fuel Diesel/heating oil Lubes Fuel for ships Asphalt FEEDSTOCKS Qualities: - Heavy/Light - Sweet/Sour Location (Distance) - Domestic - International PROCESSING Size Complexity Treating (sulfur)

  4. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  5. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  6. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  7. ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in California | Department of Energy Energy Efficiency Roadmap for Petroleum Refineries in California ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California PDF icon refining_roadmap.pdf More Documents & Publications ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California Bandwidth Study U.S.

  8. Integrating NABC bio-oil intermediates into the petroleum refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrating NABC bio-oil intermediates into the petroleum refinery Integrating NABC bio-oil intermediates into the petroleum refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory PDF icon biomass13_foust_2-d.pdf More Documents & Publications NABC Webinar Opportunities for Biomass-Based Fuels and

  9. Economic impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

  10. Secretary Bodman Tours Refinery and Calls for More Domestic Refining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    called on Congress to simplify the approval process for refiners to expand their refineries, which will help reduce America's imports of foreign oil and the price of energy. ...

  11. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","22016","1151985" ,"Release Date:","4292016" ,"Next Release Date:","5312016" ,"Excel File ...

  12. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. ...

  13. Refinery Upgrading of Hydropyrolysis Oil from Biomass Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Upgrading of Hydropyrolysis Oil from Biomass March 25,2015 Technology Area Review ... first converting biomass to hydropyrolysis oil and then upgrading the hydropyrolysis oil ...

  14. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Informatio...

    Open Energy Info (EERE)

    Company (SAMREF) Name: Saudi Aramco Mobile Refinery Company (SAMREF) Address: P.O. Box 30078 Place: Yanbu, Saudi Arabia Sector: Oil and Gas Product: Crude Oil Refining Phone...

  15. Market Assessment of Refinery Outages Planned for October 2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average values for 2002-2009 excluding months in 2005, 2006, and 2008 affected by hurricanes & refinery closures. Similarly, typical historical values are average planned...

  16. Refinery Outages: First-Half 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Outages: First-Half 2016 March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Refinery Outages: First-Half 2016 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  17. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29

    Pre-extraction–kraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called “near neutral” pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 °C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the “near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid from the extract. When operating the facility will produce 1.5 million gallons per year of butanol and create 16 new “green collar” jobs. Previously, a spare pulp digester was converted to a new extractor, and in 2009 it was demonstrated that a good hemicellulose extract could be produced, while simultaneously producing market pulp. Since then more than 250 hours of operational experience has been acquired by the mill generating a hemicellulose extract while simultaneously producing market pulp at a scale of 1000 tonnes (OD)/day of mixed northern hardwood chips.

  18. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - No Data ...

  19. Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0.512 0.497 2016 2.732 - No ...

  20. Freeport, TX Liquefied Natural Gas Exports to South Korea (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157 ...

  1. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. ,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" ...

  3. ,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" ...

  4. Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Spain (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,911 - No Data ...

  5. Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - No Data ...

  6. Energy Department Approves Gulf Coast Exports of Liquefied Natural...

    Office of Environmental Management (EM)

    Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast ... to receive imports or those with which trade is prohibited by U.S. law or policy. ...

  7. Energy Department Approves Gulf Coast Exports of Liquefied Natural...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) ... those with which trade is prohibited by U.S. law or policy. ...

  8. Cryogenic and Fire Damage Analysis on Liquefied Natural Gas Ships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquefied Natural Gas (LNG) is transported around the globe in ships the size of modern aircraft carriers, carrying as much as 75 million gallons of LNG or the equivalent of over 6 ...

  9. U.S. Liquefied Natural Gas Exports to Egypt

    U.S. Energy Information Administration (EIA) Indexed Site

    160,435 72,990 35,120 2,811 0 0 2005-2014 Liquefied Natural Gas Prices 3.94 4.82 5.85 2.52 -- -- 2003...

  10. Clean Cities Moving Fleets Forward with Liquefied Natural Gas...

    Broader source: Energy.gov (indexed) [DOE]

    Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help...

  11. Portal, ND Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Exports (Million Cubic Feet) Portal, ND Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  12. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  13. Regulatory impact analysis for the petroleum refineries neshap. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The report analyzes the regulatory impacts of the Petroleum Refinery National Emission Standard for Hazardous Air Pollutants (NESHAP), which is being promulgated under Section 112 of the Clean Air Act Amendments of 1990 (CCA). This emission standard would regulate the emissions of certain hazardous air pollutants (HAPs) from petroleum refineries. The petroleum refineries industry group includes any facility engaged in the production of motor gasoline, naphthas, kerosene, jet fuels, distillate fuel oils, residual fuel oils, lubricants, or other products made from crude oil or unfinished petroleum derivatives. The report analyzes the impact that regulatory action is likely to have on the petroleum refining industry.

  14. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  15. Combined-cycle cogeneration to power oil refinery

    SciTech Connect (OSTI)

    Broeker, R.J.

    1986-11-01

    A cogeneration plant now under construction at an oil refinery in Martinez, California, is an example of how the energy industry has been responding to the fundamental economic and technological challenges it has been facing over the past ten years. The industry is re-examining cogeneration as one way of meeting the requirements of the Public Utilities Regulatory Policy Act. The new plant is located at Tosco Corporation's Avon Oil Refinery, 45 miles northeast of San Francisco. It was designed by Foster Wheeler to supply process steam for the refinery as well as for a water-treatment installation that will benefit the Contra Costa Water District. Electric power produced will be used primarily by the refinery, with the balance purchased by the Pacific Gas and Electric Company.

  16. Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the

  17. NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Algae | Department of Energy Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 - 5:07pm Addthis A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Bioenergy Technologies Office (BETO) has proven to be significantly more effective at

  18. ,"Liquefied U.S. Natural Gas Re-Exports to Brazil (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    11:48:48 AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Re-Exports to Brazil (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NBRMMCF" "Date","Liquefied U.S....

  19. ,"Liquefied U.S. Natural Gas Re-Exports to Chile (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    2016 11:48:50 AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Re-Exports to Chile (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NCIMMCF" "Date","Liquefied U.S....

  20. ,"U.S. Liquefied Natural Gas Imports From Other Countries (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:32 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Other Countries (MMcf)" "Sourcekey","N9103982" "Date","U.S. Liquefied...

  1. Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year...

  2. Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    Freeport LNG Terminal on Quintana Island, Texas Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries

  3. Energy Department Authorizes Sabine Pass Liquefaction’s Expansion Project to Export Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    A press release on the final authorization to allow Sabine Pass Liquefaction, LLC to export liquefied natural gas (LNG).

  4. Energy Department Authorizes American LNG Marketing LLC’s Application to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    The Energy Department authorizes American LNG Marketing LLC’s Application to export Liquefied Natural Gas (LNG).

  5. Energy Department Authorizes Dominion’s Proposed Cove Point Facility to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    Terminal in Calvert County, Maryland Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries

  6. Sumas, WA Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Sumas, WA Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 5 2015 4 4 2 1 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sumas, WA LNG Imports from All Countries

  7. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied

  8. Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 63 2015 1 2 1 2 20 2016 56 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Champlain, NY LNG Imports from All Countries

  9. Champlain, NY Natural Gas Liquefied Natural Gas Imports from Canada

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) from Canada (Million Cubic Feet) Champlain, NY Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 63 2015 1 2 1 2 20 2016 56 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Champlain, NY LNG

  10. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  11. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  12. Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 109 2014 41 23 2015 46 39 34 41 41 39 40 41 43 37 2016 41 38 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Highgate

  13. Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI LNG Exports to All Countries

  14. Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied

    Broader source: Energy.gov (indexed) [DOE]

    Liquefied Natural Gas | Department of Energy the Corpus Christi Liquefaction Project (Corpus Christi) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. The Corpus Christi Liquefaction Project in Corpus Christi, Texas is authorized to export LNG up to the equivalent of 2.1 billion standard cubic feet per day (Bcf/d) of natural gas for a period of 20 years. The development of U.S. natural gas resources

  15. Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8.938 8.916 5.241 3.570 4.280 ...

  16. Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 28.552 20.095 25.827 18.229 ...

  17. Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

  18. Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  19. Crosby, ND Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Crosby, ND Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  20. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  1. Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON – The Energy Department announced today that it has issued two final authorizations for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States.

  2. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  3. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  4. EIA-820, Annual Refinery Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil that first traveled 5,000 miles by tanker and then traveled 105 miles by pipeline to the refinery, report pipeline as the method of transportation. * If the refinery...

  5. Mazheikiai refinery modernization study. Executive summary. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

  6. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

  7. Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

  8. Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

  9. Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

  10. DOE - Office of Legacy Management -- International Rare Metals Refinery Inc

    Office of Legacy Management (LM)

    - NY 38 Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a

  11. Refinery Outages: Description and Potential Impact on Petroleum Product Prices

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that the Energy Information Administration conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

  12. Energy Efficiency Roadmap for Petroleum Refineries in California

    SciTech Connect (OSTI)

    none,

    2004-04-01

    Through the California State IOF initiative, the California Energy Commission PIER Program developed a petroleum refining roadmap to identify energy issues and priorities unique to the refining industry in California and create a plan for future R&D that could help California refineries implement energy efficient technologies.

  13. Sabine Pass, LA Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 3,284 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  14. Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  15. Buffalo, NY Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Buffalo, NY Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  16. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 2014 2,664 2015 2,805 2,728 2,947 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  17. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of

  18. Extraction of uranium from spent fuels using liquefied gases

    SciTech Connect (OSTI)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2007-07-01

    For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

  19. DOE's Program Regulating Liquefied Natural Gas Export Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 25, 2014 - 2:49pm Addthis Statement of Paula Gant, Deputy Assistant Secretary for Oil and Natural Gas, Before the House Subcommittee on Energy and Power, Committee on Energy and Commerce Thank you Chairman Whitfield, Ranking Member Rush, and members of the Subcommittee; I appreciate the opportunity to be here today to discuss the Department of Energy's (DOE) program regulating the export of liquefied natural gas (LNG), and to answer questions about H.R. 6, the

  20. Babb, MT Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Babb, MT Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas

  1. Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Cameron, LA Liquefied Natural Gas Exports to Japan

  2. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Egypt

  3. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Turkey

  4. Portal, ND Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Canada (Million Cubic Feet) Portal, ND Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Portal, ND Liquefied Natural Gas to Canada

  5. untitled

    Gasoline and Diesel Fuel Update (EIA)

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 382 8 390 2,072 157 116 2,345 EthaneEthylene 10...

  6. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 331 -18 313 2,398 -147 -220 2,031 EthaneEthylene...

  7. Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Brazil Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,680 4,681 2,108 2016 3,284 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied

  8. Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 3,174 1,863 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to Japan

  9. Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Korea Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,901 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to South Korea

  10. Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Portugal Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2,618 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports

  11. Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Spain Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,007 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to Spain

  12. Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) United kingdom Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,862 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied

  13. Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,120 2,873 2012 3,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas

  14. ,"Price of U.S. Liquefied Natural Gas Imports From Indonesia...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)" ...

  15. ,"Price of U.S. Liquefied Natural Gas Imports From Indonesia...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id3m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)" ...

  16. Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 2,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Kenai, AK Liquefied Natural Gas Exports to

  17. Liquefied U.S. Natural Gas Exports to Barbados (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied U.S. Natural Gas Exports to Barbados (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Barbados (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied Natural Gas Exports To Barbados

  18. Congested site challenges designers of refinery IPP plant

    SciTech Connect (OSTI)

    Collins, S.

    1993-09-01

    This article describes a new IPP plant which has successfully met the challenges of an extremely congested site--including overcoming physical space constraints, meeting low air-emissions regulations, and minimizing water consumption--located next to a busy highway and near a major airport. The 650-MW Linden cogeneration plant is located on a 13.5-acre plot within the confines of Bayway Refinery Co's facility near Newark, NJ. Since starting operation one year ago, the plant has been reliably supplying steam for the refinery's process heating and mechanical drive needs and efficiently generating steam and electricity with minimal environmental impact. To achieve these goals, designers chose a combined-cycle configuration/generators, five supplementary-fired heat-recovery steam generators (HRSGs), and three 90-MW steam turbine/generators. Thus far, the facility has operated with an average availability above 90%.

  19. Alternative future environmental regulatory approaches for petroleum refineries.

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

    2000-01-01

    Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

  20. Martinez Refinery Completes Plant-Wide Energy Assessment

    SciTech Connect (OSTI)

    2002-11-01

    This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

  1. Nogales, AZ Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nogales, AZ Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 12 16 2014 15 12 10 8 6 3 3 2 3 5 12 14 2015 12 9 9 9 8 5 3 2 3 7 15 22 2016 19 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  2. Otay Mesa, CA Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Otay Mesa, CA Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 3 5 2014 6 7 7 8 7 7 9 8 9 8 9 6 2015 8 7 8 8 8 9 9 7 7 7 5 5 2016 6 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  3. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.41 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price

  4. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.44 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  5. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Yemen (Dollars per Thousand Cubic Feet) Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.33 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  6. Nogales, AZ Liquefied Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Nogales, AZ Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 12 16 2014 15 12 10 8 6 3 3 2 3 5 12 14 2015 12 9 9 9 8 5 3 2 3 7 15 22 2016 19 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  7. Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent

  8. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  9. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters - Fact Sheet 2014 | Department of Energy Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 The goal of this research effort was to develop and demonstrate a combustion system capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery

  10. Bio-Oil Co-Processing: Expanding the Refinery Supply System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bio-Oil Co-Processing: Expanding the Refinery Supply System Bio-Oil Co-Processing: Expanding the Refinery Supply System The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) is hosting a workshop on Thursday, April 3, 2014, at the Renaissance New Orleans Arts Hotel in New Orleans, Louisiana. This workshop will explore the resource expansion potential for conventional refineries by considering biomass-derived oils as a supplemental feedstock. BETO wants to identify

  11. Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery

    Reports and Publications (EIA)

    2009-01-01

    The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery.

  12. Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability

    Broader source: Energy.gov [DOE]

    This report discusses potential impacts of increased water temperature and reductions in water availability on petroleum refining and presents case studies related to refinery water use. Report...

  13. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn,...

  14. Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5.12 6.47 9.18 7.03 6.79 9.71 3.73 2010's 4.39 4.20 2.78 3.36 4.33 2.83

  15. Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4.36 4.82 4.58 3.91 2015 3.08 2.74 2.76 2.76

  16. Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4.41 5.16 6.65 7.58 7.32 10.33 5.87 2010's 4.79 4.77 3.70 5.49 8.00 7.6

  17. Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 4.26 8.75 2014 8.68 11.01 9.05 5.99 6.95 9.17 6.56 5.75 5.34 8.91 2015 13.53 10.90 10.29 5.98 6.24 4.51 3.66 4.56 6.25 2.36 6.08 2016 5.26 4.8

  18. Clean air amendments put big burden on refinery planners

    SciTech Connect (OSTI)

    Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. )

    1991-06-10

    The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

  19. Compressed natural gas and liquefied petroleum gas as alternative fuels

    SciTech Connect (OSTI)

    Moussavi, M.; Al-Turk, M. . Civil Engineering Dept.)

    1993-12-01

    The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

  20. Legal nature of LPG (liquefied petroleum gas) regulation

    SciTech Connect (OSTI)

    Liddell, G.

    1986-08-01

    The commercial exploitation of Liquefied Petroleum Gas (LPG) in New Zealand has occurred without a particular and comprehensive concern for any legal implications. The paper in Part I examines definitional questions, assesses in Part II the ability of courts and quasi-courts to evaluate risks associated with the product, examines in Part III the utility of common law remedies for injuries or associated with or arising from LPG, analyzes in Part IV the statutory regulation of LPG, concentrating particularly on the Dangerous Goods (Class 2 - Gases) Regulations 1980, discusses in Part V recent planning case-law concerning LPG development, and concludes that some reform is necessary to produce a more-coherent and precise regulatory regime that takes into account both the needs of developers and those affected by the development of LPG.

  1. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  2. Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Chile (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,910 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to Chile

  3. Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    China (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,354 2,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to China

  4. Sabine Pass, LA Liquefied Natural Gas Exports to India (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    India (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to India (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,072 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to India

  5. U.S. Liquefied Natural Gas Exports to Spain (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Spain (Million Cubic Feet) U.S. Liquefied Natural Gas Exports to Spain (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 3,149 0 0 0 0 0 0 0 0 968 0 2011 3,007 0 0 2,911 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied Natural

  6. Buffalo, NY Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Canada (Million Cubic Feet) Buffalo, NY Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Buffalo, NY Liquefied Natural Gas Exports to Canada

  7. Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Cameron, LA Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.31 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of Liquefied Natural

  8. Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Pipeline Exports to Canada (Million Cubic Feet) Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Crosby, ND Liquefied Natural Gas to Canada

  9. Price of Liquefied U.S. Natural Gas Exports to Barbados (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Barbados (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports to Barbados (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied

  10. Liquefied U.S. Natural Gas Exports to Egypt (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied Natural Gas Exports to Egypt

  11. Liquefied U.S. Natural Gas Exports to Taiwan (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Taiwan (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Taiwan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0 0 0 0 2,748 2,754 0 0 2,755 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied Natural Gas Exports to Taiwan

  12. Liquefied U.S. Natural Gas Exports to United Kingdom (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    United Kingdom (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to United Kingdom (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 3,379 6,206 2011 2,862 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied

  13. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  14. ,"Price of U.S. Liquefied Natural Gas Imports From Australia...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103AU3" "Date","Price of U.S....

  15. Liquefied U.S. Natural Gas Exports to South Korea (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Korea (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2009 0 2,735 2010 0 0 0 ...

  16. ,"Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Imports From Peru (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NPEPMLDMCF" "Date","Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per ...

  17. ,"Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Re-Exports to Russia (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)" ...

  18. ,"Price of U.S. Liquefied Natural Gas Imports From The United...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103UA3" "Date","Price of...

  19. ,"Price of U.S. Liquefied Natural Gas Imports From Australia...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Imports From Australia (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103AU3" "Date","Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand ...

  20. ,"Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NPEPMLDMCF"...

  1. ,"Liquefied U.S. Natural Gas Re-Exports to Spain (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Re-Exports to Spain (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NSPMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to Spain (Million Cubic Feet)" ...

  2. ,"Price of U.S. Liquefied Natural Gas Imports From The United...

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103UA3" "Date","Price of U.S....

  3. ,"Liquefied U.S. Natural Gas Re-Exports to United Kingdom (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    2016 11:48:54 AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Re-Exports to United Kingdom (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NUKMMCF"...

  4. ,"Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NCAPMLDMCF" "Date","Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per ...

  5. ,"U.S. Liquefied Natural Gas Imports From The United Arab Emirates...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:38 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From The United Arab Emirates (MMcf)" "Sourcekey","N9103UA2" "Date","U.S....

  6. Liquefied U.S. Natural Gas Exports to Turkey (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - No Data Reported; ...

  7. ,"Liquefied U.S. Natural Gas Re-Exports to Turkey (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Natural Gas Re-Exports to Turkey (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NTUMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to Turkey (Million Cubic Feet)" ...

  8. ,"Liquefied U.S. Natural Gas Re-Exports to Egypt (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Natural Gas Re-Exports to Egypt (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NEGMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to Egypt (Million Cubic Feet)" ...

  9. ,"Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103EG3" "Date","Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand ...

  10. ,"Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Re-Exports to China (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NCHMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic Feet)" ...

  11. ,"Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103NG3" "Date","Price of U.S....

  12. Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indonesia (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  13. ,"Liquefied U.S. Natural Gas Re-Exports to India (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Re-Exports to India (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NINMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to India (Million Cubic Feet)" ...

  14. Price of Liquefied U.S. Natural Gas Exports by Truck to Canada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  15. ,"Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NCAPMLDMCF"...

  16. Liquefied U.S. Natural Gas Exports by Truck to Canada (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 2 2008 0 0 0 0 0 0...

  17. Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  18. Cameron, LA Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,971 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cameron, LA LNG Imports from Egypt

  19. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  20. Urban leakage of liquefied petroleum gas and its potential impact of Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-12-01

    Seventy eight whole air samples were collected at various park locations throughout Mexico City and later assayed for methane, carbon monoxide, 20 halocarbons and 40 C{sub 2}-C{sub 10} hydrocarbons. Propane had the highest median mixing ratio value of all assayed non-methane hydrocarbon compounds (NMHCs) with a concentration as high as 0.1 ppmv. The concentration of n-butane, i-butane, n-pentane and i-pentane were all notably elevated as well. The only significant identified source of propane in Mexico City is liquefied petroleum gas (LPG), which also has a strong component of C{sub 4} and C{sub 5} alkanes. All of these alkanes were present at concentrations well above those observed in other cities where LPG is not the main domestic fuel. Data strongly suggest that as much as 50% of total Mexico City NMHCs is a result of losses associated with the transfer, storage and delivery of LPG. Additionally, using median concentrations and laboratory determined hydroxyl reaction rate constants, LPG emissions account for about 20% of initial reactivities. This suggests that LPG losses may significantly impact photochemical oxidant levels in Mexico City.

  1. House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece

  2. Mathematical modeling of a Fermilab helium liquefier coldbox

    SciTech Connect (OSTI)

    Geynisman, M.G.; Walker, R.J.

    1995-12-01

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

  3. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect (OSTI)

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  4. Control method for mixed refrigerant based natural gas liquefier

    DOE Patents [OSTI]

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  5. Opportunities for Biomass-Based Fuels and Products in a Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory

  6. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific ...

  7. Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System

    SciTech Connect (OSTI)

    2005-08-01

    This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

  8. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    Purposes of Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions ...

  9. Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based

    Office of Scientific and Technical Information (OSTI)

    Oil Insertions (Technical Report) | SciTech Connect Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions This study examines how existing U.S. refining infrastructure matches in geography and processing capability with the needs projected from anticipated biofuels production. Key findings include:  a potential shortfall in

  10. US DOE Refinery Water Study 01-19-16 PublicE_docx

    Energy Savers [EERE]

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Executive Summary of Final Report Prepared for US Department of Energy January 2016 For Jacobs Consultancy Laura E. Weaver Rob Henderson John Blieszner January 2016 Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Prepared For US Department of Energy 525 West Monroe Chicago, Illinois 60661 Phone: +312.655.9207

  11. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  12. Emission factors for leaks in refinery components in heavy liquid service

    SciTech Connect (OSTI)

    Taback, H.; Godec, M.

    1996-12-31

    The objective of this program was to provide sufficient screening data so that EPA can develop an official set of emission factors (expressed in lb/hr/component) for refinery components (valves, flanged connectors, non-flanged connectors, pumps, open-ended lines, and other) in heavy liquid (BL) service. To accomplish this, 211,000 existing HL screening values from Southern California refineries were compiled and compared with 2,500 new HL screening measurements taken at two refineries in the state of Washington. Since Southern California is an area in extreme non-attainment of the National Ambient Air Quality Standards (NAAQS) and therefore has tight emission control regulations, it was felt that its screening data may not be representative of refineries without tight emission controls. Thus, the Southern California screening data were compared to screening measurements at refineries in an area that is in attainment of the NAAQS and without emissions control, which is the case for those refineries in Washington. It was found that statistically there was no significant difference in emission factors between the two areas and, therefore, there appears to be no difference in emissions from heavy liquid components in areas with and without leak detection and repair (LDAR) programs. The new emission factors range from 1/7 to 1/3 times the current EPA emission factors. This program was sponsored by the American Petroleum Institute (API) and an API report will soon be released providing complete details.

  13. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  14. Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Norway (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,556 2012 3,286 2,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sabine Pass, LA LNG Imports from Norway

  15. Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Yemen (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,115 3,122 3,106 3,109 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sabine Pass, LA LNG Imports from Yemen

  16. Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,006 2,874 2015 6,079 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sabine Pass, LA, CA LNG Exports to All Countries

  17. Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,918 9,000 4,541 4,576 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sabine Pass, LA LNG

  18. Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,568 2012 2,837 2,852 2013 2,874 2,876 2014 3,006 2,874 2015 6,079 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. Sumas, WA Liquefied Natural Gas Imports from Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Canada (Million Cubic Feet) Sumas, WA Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 5 2015 4 4 2 1 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sumas, WA Natural Gas Imports by Pipeline from Canada

  20. Cameron, LA Liquefied Natural Gas Imports from Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Peru (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cameron, LA LNG Imports from Peru

  1. Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,845 2012 2,825 2,891 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  2. Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,362 2013 2,590 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point, MD LNG Imports from

  3. Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Norway (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,909 5,810 2,900 2014 2,621 2,995 2015 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry

  4. Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2,790 2013 2,776 2014 2,984 2,986 2015 2,844 3,045 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied

  5. Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Egypt (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,780 5,800 5,885 2,889 2,915 2,956 2012 2,811 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Elba

  6. Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Peru

  7. Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Norway (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,709 2,918 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Norway

  8. Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108 2012 2,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Yemen

  9. Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 2,994 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from All Countries

  10. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Egypt

  11. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Other Countries (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from

  12. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,706 2012 2,872 2014 2,994 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of

  13. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  14. Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 88 139 139 79 109 2014 41 23 2015 46 39 34 41 41 39 40 41 43 37 2016 41 38 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  15. Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  16. Port Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Canada (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI Natural Gas Exports

  17. Price of Liquefied U.S. Natural Gas Exports to Barbados (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) to Barbados (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit U.S. Liquefied Natural Gas Exports To Barbados

  18. Price of Liquefied U.S. Natural Gas Re-Exports to Portugal (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Liquefied U.S. Natural Gas Re-Exports to Portugal (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Re-Exports to Portugal (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 11.27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  19. Price of Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Price of Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Dollars per Thousand Cubic Feet) Price of Sabine Pass, LA Liquefied Natural Gas Exports to Barbados (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  20. Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.12 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price

  1. Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad

    U.S. Energy Information Administration (EIA) Indexed Site

    and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,282 2012 2,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  2. Liquefied U.S. Natural Gas Exports to Chile (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Chile (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Chile (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0 0 0 0 0 0 0 0 0 0 2,910 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Natural Gas Exports to Chile

  3. Liquefied U.S. Natural Gas Exports to Portugal (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Portugal (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Portugal (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2,618 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit U.S. Natural Gas Exports to Portugal

  4. Liquefied U.S. Natural Gas Re-Exports to Portugal (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied U.S. Natural Gas Re-Exports to Portugal (Million Cubic Feet) Liquefied U.S. Natural Gas Re-Exports to Portugal (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 2,618 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Natural Gas Exports by Country

  5. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

  6. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  7. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  8. Liquefied U.S. Natural Gas Exports to Mexico (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 ...

  9. Price of Liquefied U.S. Natural Gas Exports by Vessel to Barbados (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Barbados (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Vessel to Barbados (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016 -- 10.00

  10. Price of Liquefied U.S. Natural Gas Exports by Vessel to Brazil (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Brazil (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Vessel to Brazil (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016 -- 4.03

  11. Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 NA NA 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- --

  12. Liquefied U.S. Natural Gas Exports by Vessel to Barbados (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Barbados (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Vessel to Barbados (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 2

  13. Liquefied U.S. Natural Gas Exports by Vessel to Brazil (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Brazil (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Vessel to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 1,993

  14. Liquefied U.S. Natural Gas Exports by Vessel to China (Million...

    Gasoline and Diesel Fuel Update (EIA)

    China (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Vessel to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0 0 0 0 1,127 0 0 0 ...

  15. Liquefied U.S. Natural Gas Exports to Brazil (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Brazil (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 3,279 0...

  16. Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced.

  17. Liquefied U.S. Natural Gas Exports to India (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    India (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to India (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 2,873 ...

  18. Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search

  19. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  20. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Refinery Capacity and Utilization, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels Percent 1949 336 6,231 NA 2,027,928 89.2 1950 320 6,223 NA 2,182,828 92.5 1951 325 6,702 NA 2,467,445 97.5 1952 327 7,161 NA 2,536,142 93.8 1953 315 7,620 NA 2,651,068 93.1 1954 308 7,984 NA 2,651,992 88.8 1955 296 8,386 NA 2,854,137 92.2 1956 317 8,583 NA

  1. Correcting systematic bias and instrument measurement drift with mzRefinery

    SciTech Connect (OSTI)

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; Tabb, David L.; Payne, Samuel H.

    2015-12-01

    MOTIVATION: Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. RESULTS: We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. AVAILABILITY: The mzRefinery tool is part of msConvert, available with the ProteoWizard open source package at http://proteowizard.sourceforge.net/

  2. Mazheikiai refinery modernization study. Final report. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 2 of the study.

  3. Mazheikiai refinery modernization study. Final report. Volume 3. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 3 of the study.

  4. Mazheikiai refinery modernization study. Final report. Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 1 of the study.

  5. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016"

  6. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel

  7. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  9. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United...

  10. Improving energy usage at the Borger Refinery and NGL Process Center

    SciTech Connect (OSTI)

    Haage, P.R.

    1982-05-01

    The Phillips Petroleum Company's Borger Refinery and NGL Process Center energy conservation program began prior to the 1973 oil embargo and was greatly intensified after that event. This paper describes recent progress made in the reduction of energy use at the facility, with emphasis on the furnace and boiler efficiency control program, computer control of fractionation columns, and the steam-trap survey program.

  11. Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,718 4,565 3,543 3,546 3,530 3,214 3,536 2012 3,521 3,522 3,515 5,601 3,012 3,017 3,017 5,603 3,015 2013 3,657 3,663 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  12. Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10,240 11,488 7,086 8,271 8,126 8,150 7,731 7,870 5,199 5,520 9,264 4,691 2012 9,482 8,458 7,661 1,447 4,940 5,465 6,646 10,377 5,634 4,748 2,553 2,581 2013 5,126 5,003 4,629 5,171 5,626 5,173 8,023 5,961 2,995 2,674 2,583 2014 3,141

  13. Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy

  14. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  15. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  16. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  17. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  18. EIAs Proposed Definitions for Natural Gas Liquids

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Liquefied refinery gases (LRG): Hydrocarbon gas liquids produced in refineries from processing of crude oil and unfinished oils. They are retained in the liquid state through ...

  19. FAQs for Survey Forms 800, 810, and 820

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquefied Refinery Gases (LRG) are products of refinery processing (distillation, cracking, etc.) of crude oil and unfinished oils and include the following product Codes: - 641 ...

  20. Environmental Regulations and Changes in Petroleum Refining Operations

    Gasoline and Diesel Fuel Update (EIA)

    Output Liquefied Petroleum Gas o Table A3. Refinery Output Motor Gasoline o Table A4. Refinery Inputs Crude Oil Spreadsheets Referenced in this Article * Supporting Data for ...

  1. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, July 2004 Liquefied Refinery Gases ... 2,082 70...

  2. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,243 11,231 12,001 12,021 8,782 13,405 12,734 14,373 14,999 14,661 1990's 14,973 18,055 16,732 16,724 8,935 7,568 9,354 9,746 10,900 6,781 2000's 8,684 13,085 3,817 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  8. Evaluating electric-resistance-welded tubing for refinery and chemical plant applications

    SciTech Connect (OSTI)

    Polk, C.J.; Hotaling, A.C. )

    1993-02-01

    A laboratory technique was developed to assess the potential for preferential attack along the longitudinal seam of electric-resistance-welded (ERW) carbon steel tubing exposed to refinery and chemical plant process streams. Used in conjunction with an evaluation of mill fabrication practices, the test procedure can identify high-quality ERW products that can be used in many applications in place of seamless components at significant cost savings.

  9. Renewable Fuels from Algae Boosted by NREL Refinery Process - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  10. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect (OSTI)

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  11. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    SciTech Connect (OSTI)

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. )

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7.PDF Table 17. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 772 -22 750 1,555 -217 39 1,377 Ethane/Ethylene

  13. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    9.PDF Table 19. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 772 -22 750 1,555 -217 39 1,377 Ethane/Ethylene

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 January 2016 Table 29. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, February 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 284 -26 258 1,458 57 194 1,709 Ethane/Ethylene

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    40 January 2016 Table 31. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, February 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 284 -26 258 1,458 57 194 1,709 Ethane/Ethylene

  16. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 14,289 267 14,556 36,475 1,651 5,076 43,202 Ethane/Ethylene

  17. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, 2014 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 14,289 267 14,556 36,475 1,651 5,076 43,202 Ethane/Ethylene ................................................... 154 -

  18. Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 12.72 10.00 8.69 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Natural Gas Imports by Country U.S. Price of Liquefied Natural Gas Imports by Point of Entry U.S. Natural Gas Exports to

  19. Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Indonesia (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- -- -- 2000's 3.99 -- -- -- -- -- -- -- -- -- 2010's -- -- -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  20. U.S. Liquefied Natural Gas Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 555 132 437 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Natural Gas Imports by Country U.S. Liquefied Natural Gas Imports by Point of Entry U.S. Natural Gas Exports to

  1. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  2. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601 2,644 2,897 2014 2,664 2015 2,805 2,728 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  3. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,902 4,896 4,100 18,487 4,900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  4. Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring

  5. Liquefied U.S. Natural Gas Exports to Russia (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Russia (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Russia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 1,895 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0

  6. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald

    2006-02-01

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  7. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect (OSTI)

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  8. ,"U.S. Liquefied Natural Gas Imports From Algeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Algeria (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Algeria (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103ag2m.xls"

  9. ,"U.S. Liquefied Natural Gas Imports From Australia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Australia (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Australia (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103au2m.xls"

  10. ,"U.S. Liquefied Natural Gas Imports From Brunei (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Brunei (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Brunei (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103bx2m.xls"

  11. ,"U.S. Liquefied Natural Gas Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Canada (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. ,"U.S. Liquefied Natural Gas Imports From Egypt (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Egypt (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103eg2m.xls"

  13. ,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Malaysia (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103my2m.xls"

  14. ,"U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nigeria (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103ng2m.xls"

  15. ,"U.S. Liquefied Natural Gas Imports From Norway (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Norway (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Norway (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"U.S. Liquefied Natural Gas Imports From Other Countries (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Countries (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Other Countries (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"U.S. Liquefied Natural Gas Imports From Qatar (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Qatar (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Qatar (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n9103qr2m.xls"

  18. ,"U.S. Liquefied Natural Gas Imports From The United Arab Emirates (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    The United Arab Emirates (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From The United Arab Emirates (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"U.S. Liquefied Natural Gas Imports From Trinidad and Tobago (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Trinidad and Tobago (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Trinidad and Tobago (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"U.S. Liquefied Natural Gas Imports From Yemen (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Yemen (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Yemen (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford

  2. Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996

    SciTech Connect (OSTI)

    Atallah, S.; Janardhan, A.

    1996-02-01

    This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

  3. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  4. Net Imports of Total Crude Oil and Products into the U.S. by Country

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500

  5. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  6. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  7. Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report

    SciTech Connect (OSTI)

    Huang, Y.; Matthews, R. D.; Popova, E. T.

    1999-05-24

    Alternative fuels may be an effective means for decreasing America's dependence on imported oil; creating new jobs; and reducing emissions of greenhouse gases, exhaust toxics, and ozone-forming hydrocarbons. However, data regarding in-use fuel economy and maintenance characteristics of alternative fuel vehicles (AFVs) have been limited in availability. This study was undertaken to compare the operating and maintenance characteristics of bi-fuel vehicles (which use liquefied petroleum gas, or propane, as the primary fuel) to those of nominally identical gasoline vehicles. In Texas, liquefied petroleum gas is one of the most widely used alternative fuels. The largest fleet in Texas, operated by the Texas Department of Transportation (TxDOT), has hundred of bi-fuel (LPG and gasoline) vehicles operating in normal daily service. The project was conducted over a 2-year period, including 18 months (April 1997-September 1998) of data collection on operations, maintenance, and fuel consumption of the vehicles under study. This report summarizes the project and its results.

  8. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  9. U.S. Total Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    Pentanes Plus 12,510 17,596 12,739 14,471 20,608 20,543 1981-2015 Liquefied Petroleum ... Normal ButaneButylene 27,652 26,779 28,574 30,288 33,230 37,509 1981-2015 Isobutane...

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 January 2016 Table 32. Blender Net Inputs of Petroleum Products by PAD District, February 2016 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 675 5 680 63 54 257 374 Pentanes Plus

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 14,825 298 15,123 33,928 1,840 2,446 38,214...

  12. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Refining Districts, 2005 East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 2.5 0.9 2.4 4.2 1.2 0.9 3.1 Finished Motor...

  13. untitled

    Gasoline and Diesel Fuel Update (EIA)

    December 2005 East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 0.7 -0.6 0.6 3.5 -1.1 -1.0 1.9 Finished Motor Gasoline a 50.3...

  14. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    September 2005 East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 0.7 0.3 0.7 2.9 1.3 0.5 2.2 Finished Motor Gasoline a 47.9...

  15. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products",13,"Monthly","2/2016","1/15/1993" ,"Release

  16. Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,460 2,814 5,061 2,907 2,790 2,730 2012 2,854 2,881 2,790 2,862 2,834 2,849 5,562 2013 2,868 2,719 2,669 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Everett, MA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Yemen (Million Cubic Feet) Everett, MA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,688 5,591 5,465 2,843 5,608 2,865 5,622 5,537 5,424 2012 2,805 2,765 2,721 2,589 2,899 2,837 2013 2,728 2,763 2,806 2,728 2014 2,329 2,806 2,871 2015 2,234 2,373 2,834 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  18. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    SciTech Connect (OSTI)

    Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

    2009-12-09

    An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

  19. Liquefied U.S. Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 2 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 2 2013 3 5 4 6 9 8 5 8 7 5 2014 8 12 11 9 9 7 7 7 6 7 7 8 2015 6 4 6 6 6 6 5 2 1 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.

    SciTech Connect (OSTI)

    Dempsey, J. Franklin; Wellman, Gerald William; Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J.

    2010-03-01

    The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

  1. Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process

    SciTech Connect (OSTI)

    Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

    1989-04-28

    The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

  2. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  3. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W.

    2012-05-15

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  4. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  5. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Define and use models (HCK PNNL primary focus; FCC NREL primary focus) to collect sustainability metrics (e.g. GHG emissions, net fossil energy consumption) that are relevant to ...

  6. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  7. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1980-11-04

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method. Output of the calculations is presented in both tabular and graphical form.

  8. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1981-01-01

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method.Output of the calculations is presented in both tabular and graphical form.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  10. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  11. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  12. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Input 2,166,784 2,331,109 2,399,318 2,539,812 2,824,480 2,987,634 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases ...

  13. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 382 8 390 2,072 157 116 2,345 EthaneEthylene 10 0 10 0 0 0 0 Ethane 0 0 0 0 0 0 0 Ethylene 10 0 10 0 0 0 0 Propane...

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  15. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  16. Report on issues regarding the existing New York liquefied natural gas moratorium

    SciTech Connect (OSTI)

    1998-11-01

    The New York Energy Planning Board has prepared this study to provide the Governor and the Legislature with information necessary to determine the need for further extension or modification of the existing State moratorium on the siting of new liquefied natural gas (LNG) facilities and intrastate transportation routes as required by Chapter 385 of the laws of 1997. The report examines existing laws and regulations that would affect new LNG facilities in New York and government initiatives in other states. It reviews existing use of LNG in New York, including safety issues and potential public concerns that may arise with lifting the moratorium. It also discusses the economic and environmental effects of increased LNG usage for New York State. The study concludes that there are economic and environmental advantages for allowing the construction of new LNG facilities as well as the intrastate transportation of LNG over new routes. Additionally, it concludes that safety concerns associated with these facilities are adequately addressed by existing Federal, State and local statutes and regulations.

  17. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  18. An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel

    SciTech Connect (OSTI)

    Green, T.; Williams, T.

    1994-12-31

    Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

  19. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect (OSTI)

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  20. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  1. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  2. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  3. Ventilation of liquefied petroleum gas components from the Valley of Mexico

    SciTech Connect (OSTI)

    Elliott, S.; Blake, D.R.; Sherwood Rowland, F.; Lu, R.; Brown, M.J.; Williams, M.D.; Russell, A.G.; Bossert, J.E.; Streit, G.E.; Santoyo, M.R.; Guzman, F.; Porch, W.M.; McNair, L.A.; Keyantash, J.; Kao, C.J.; Turco, R.P.; Eichinger, W.E.

    1997-09-01

    The saturated hydrocarbons propane and the butane isomers are both indirect greenhouse gases and key species in liquefied petroleum gas (LPG). Leakage of LPG and its component alkanes/alkenes is now thought to explain a significant fraction of the volatile organic burden and oxidative potential in the basin which confines Mexico City. Propane and the butanes, however, are stable enough to escape from the basin. The gas chromatographic measurements which have drawn attention to their sources within the urban area are used here to estimate rates of ventilation into the free troposphere. The calculations are centered on several well studied February/March pollution episodes. Carbon monoxide observations and emissions data are first exploited to provide a rough time constant for the removal of typical inert pollutant species from the valley. The timescale obtained is validated through an examination of meteorological simulations of three-dimensional flow. Heuristic arguments and transport modeling establish that propane and the butanes are distributed through the basin in a manner analogous to CO despite differing emissions functions. Ventilation rates and mass loadings yield outbound fluxes in a box model type computation. Estimated in this fashion, escape from the Valley of Mexico constitutes of the order of half of 1{percent} of the northern hemispheric inputs for both propane and n-butane. Uncertainties in the calculations are detailed and include factors such as flow into the basin via surface winds and the size of the polluted regime. General quantification of the global propane and butane emissions from large cities will entail studies of this type in a variety of locales.{copyright} 1997 American Geophysical Union

  4. Summary of the proceedings of the workshop on the refinery of the future

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

  5. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  6. ,"Price of U.S. Liquefied Natural Gas Imports From Algeria (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Algeria (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Algeria (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  7. ,"Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Brunei (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  8. ,"Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  9. ,"Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Malaysia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  10. ,"Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nigeria (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  11. ,"Price of U.S. Liquefied Natural Gas Imports From Norway (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Norway (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Norway (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  12. ,"Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oman (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  13. ,"Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Qatar (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  14. ,"Price of U.S. Liquefied Natural Gas Imports From Yemen (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Yemen (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Yemen (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  15. ,"Liquefied U.S. Natural Gas Re-Exports to Brazil (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Brazil (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Brazil (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  16. ,"Liquefied U.S. Natural Gas Re-Exports to Chile (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Chile (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Chile (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  17. ,"Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    China (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  18. ,"Liquefied U.S. Natural Gas Re-Exports to Egypt (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Egypt (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  19. ,"Liquefied U.S. Natural Gas Re-Exports to India (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    India (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to India (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  20. ,"Liquefied U.S. Natural Gas Re-Exports to Japan (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Japan (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  1. ,"Liquefied U.S. Natural Gas Re-Exports to Mexico (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Mexico (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  2. ,"Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Russia (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  3. ,"Liquefied U.S. Natural Gas Re-Exports to South Korea (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    South Korea (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to South Korea (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  4. ,"Liquefied U.S. Natural Gas Re-Exports to Spain (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Spain (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Spain (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  5. ,"Liquefied U.S. Natural Gas Re-Exports to Turkey (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Turkey (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  6. ,"Liquefied U.S. Natural Gas Re-Exports to United Kingdom (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    United Kingdom (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to United Kingdom (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  7. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect (OSTI)

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  8. Thermodynamic properties of liquefied petroleum gases (LPG). Interim report 15 Aug 75-31 Jan 77 (final)

    SciTech Connect (OSTI)

    Sallet, D.W.; Wu, K.F.

    1980-04-01

    The thermodynamic properties of several liquefied petroleum gases (with particular emphasis on propane) are discussed in detail. It is concluded that the widely used propane data by Stearns and George are too inconsistent and too inaccurate to be used for mass flow calculations of propane and propane mixtures through safety valves of rail tank cars. Accordingly, the thermodynamic properties of propane, propylene, n-butane, and a mixture of 65% (by mole) propane, 25% propylene, and 10% n-butane are recalculated using equations of states proposed by Benedict-Webb-Rubin (BWR) and by Starling. It is shown that Starling's equation results in thermodynamic properties which are more consistent and compare better with measured values than the BWR equation. Thermodynamic data for the four liquefied petroleum gases discussed above are calculated and presented in tabular form. In addition, predictions of pure propane mass flow rates (based upon isentropic), homogeneous equilibrium flow) are given. The influence of the thermodynamic data upon the predicted mass flow rates is demonstrated.

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  10. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  13. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  14. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  17. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  18. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  19. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  20. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'