Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

2

India Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

3

Japan Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

4

North Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

5

Poland Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

6

Global Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

7

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

8

People's Republic of China Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

9

Russia Federation Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

10

South Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

11

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

12

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

13

Reducing CO2 Emissions from Fossil Fuel Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

14

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

15

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

16

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

17

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

18

A Multi-Pollutant Framework for Evaluating CO2 Control Options for Fossil Fuel Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Pollutant Framework for Evaluating CO Multi-Pollutant Framework for Evaluating CO 2 Control Options for Fossil Fuel Power Plants Edward S. Rubin (rubin@cmu.edu; 412-268-5897) Anand B. Rao (abr@andrew.cmu.edu; 412-268-5605) Michael B. Berkenpas (mikeb@cmu.edu; 412-268-1088) Carnegie Mellon University EPP Department, Baker Hall 128A Pittsburgh, PA 15213 Abstract As part of DOE/NETL's Carbon Sequestration Program, we are developing an integrated, multi-pollutant modeling framework to evaluate the costs and performance of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The model calculates emissions, costs, and efficiency on a systematic basis at the level of an individual plant or facility. Both new and existing facilities can be modeled, including coal-based or natural gas-based combustion or gasification systems using air or oxygen.

19

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

20

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities  

Science Journals Connector (OSTI)

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Carolina Garca-Martos; Julio Rodrguez; Mara Jess Snchez

2013-01-01T23:59:59.000Z

22

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect (OSTI)

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the Hestia Project, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

23

Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City  

Science Journals Connector (OSTI)

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. ... Ammonia (NH3) is a key precursor species to atmospheric fine particulate matter with strong implications for regional air quality and global climate change. ...

Kevin R. Gurney; Igor Razlivanov; Yang Song; Yuyu Zhou; Bedrich Benes; Michel Abdul-Massih

2012-08-15T23:59:59.000Z

24

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect (OSTI)

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

25

Novel Electrochemical CO2 Removal Technology For Combustion of Fossil-Fuels  

SciTech Connect (OSTI)

Electrochemical gas separation concepts are often neglected when discussing options to manage CO2 emissions. Electrochemical approaches are selective and do not require periodic regeneration. This paper will review prior work on electrochemical CO2 separation and compare the parasitic energy penalties of this approach to more conventional approaches of capturing CO2 from flue gas streams. A new concept to reduce the electrochemical parasitic energy penalties will be introduced and a preliminary analysis of the concept will be discussed. Relative to a conventional monoethanolamine (MEA) solvent approach, electrochemical CO2 capture does require less energy on a per-mole-of-CO2 basis. However, there are trade-offs since an electrochemical pumping approach requires electrical energy, instead of lower grade thermal energy. Although there are several issues with electrochemical CO2 capture, efforts to reduce parasitic losses of CO2 separation may need to consider such novel alternatives.

Douglas L. Straub; Maria Salazar-Villalpando

2008-07-14T23:59:59.000Z

26

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

27

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

28

Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration  

Science Journals Connector (OSTI)

The first set of results presented were the inventory of air emissions (CO, CO2, CH4, SOx, NOx, NH3, Pb, Hg, etc.), wastewater-containing acids and sulfides, and solid wastes released because of both fossil fuel production and energy usage from the power plant. ... Gases of SO2 and NOx are reported to pollute the air because of conventional oil production activities,16 but these contributions, as displayed by cases I and II, are less compared to the accumulated impacts coming from the CO2 sequestration chain. ... (1)?McKee, B. Solutions for the 21st Century:? Zero Emissions Technology for Fossil Fuels; Technology Status Report, International Energy Agency, Committee for Energy Research Technology, OECD/IEA:? France, 2002. ...

Hsien H. Khoo; Reginald B. H. Tan

2006-07-26T23:59:59.000Z

29

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

30

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, presents a major challenge to the world at large. Fossil fuels provide two-thirds of the worlds electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

31

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

32

Crop production without fossil fuel.  

E-Print Network [OSTI]

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

33

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN CALIFORNIA health,fossil fuel combustion, with consequent impacts to human health [health. [ 45 ] Model predictions indicated that some areas within California had higher near-surface fossil fuel

2008-01-01T23:59:59.000Z

34

FOSSIL-FUEL COSTS  

Science Journals Connector (OSTI)

FOSSIL-FUEL-BASED energy production, mostly from coal and oil, causes $120 billion worth of health and other non-climate-related damages in the U.S. each year that are not figured into the price of energy, says a National Research Council report ...

JEFF JOHNSON

2009-10-26T23:59:59.000Z

35

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

36

Biofuel contribution to mitigate fossil fuel CO 2 emissions: Comparing sugar cane ethanol in Brazil with corn ethanol and discussing land use for food production and deforestation  

Science Journals Connector (OSTI)

This paper compares the use of sugar cane and corn for the production of ethanol with a focus on global warming and the current international debate about land use competition for food and biofuel production. The indicators used to compare the products are CO 2 emissions energy consumption sugar cane coproducts and deforestation. The life cycle emission inventory as a methodological tool is taken into account. The sustainability of socioeconomic development and the developing countries need to overcome barriers form the background against which the Brazilian government energy plans are analyzed.

Luiz Pinguelli Rosa

2009-01-01T23:59:59.000Z

37

Microsoft Word - CO2 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

Understanding the Decline in Carbon Dioxide Understanding the Decline in Carbon Dioxide Emissions in 2009 1 EIA projects carbon dioxide (CO2) emissions from fossil fuels in 2009 to be 5.9 percent below the 2008 level in the Short-Term Energy Outlook, October 2009 (STEO) (Table 1). Projected coal CO2 emissions fall by 10.1 percent in 2009, primarily because of lower consumption for electricity generation. Coal accounts for 63 percent of the total decline in CO2 emissions from fossil fuels this year. Forecast lower natural gas and petroleum emissions this year make up 7 percent and 30 percent of the projected total decline in CO2 emissions from fossil fuels, respectively. Table 1. Short-Term Energy Outlook CO

38

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...oxygen, or by steam reforming of the fuel to yield...coal beds contain methane adsorbed on...oxygen, or by steam reforming of the...coal beds contain methane adsorbed on...to coal-bed methane production, these...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

39

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...develop a zero-emission electric plant that exploits...moderate marginal cost. In electric plants, even present...decentralized sources as vehicles, home furnaces, or...participate. Unlike the electric sector, the required...sequestrationa tax rebate or creation...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

40

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...from the atmosphere (1). Recent work in carbon...capacity ?200 to 500 GtC), deep coal beds...molar ratio of ?2:1, allowing...sequestrationa tax rebate or creation...global capacity ~200 to 500 GtC), deep coal...molar ratio of ~2:1, allowing...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

42

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

43

Carbon Capture and Storage From Fossil Fuels and Biomass Costs and Potential Role in Stabilizing the Atmosphere  

Science Journals Connector (OSTI)

The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2...emissions from biomass conversion processes can also be captured. If that is done...

Christian Azar; Kristian Lindgren; Eric Larson; Kenneth Mllersten

2006-01-01T23:59:59.000Z

44

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

45

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

HS_FossilFuels_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

47

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

48

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

SciTech Connect (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

49

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

50

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low=48.4 ZJ, Best Guess (BG)=75.7 ZJ, High=121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

51

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy Savers [EERE]

Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted...

52

Co-optimising CO2 storage and enhanced recovery in gas and gas condensate reservoirs.  

E-Print Network [OSTI]

??Burning fossil fuels supply energy and releases carbon dioxide (CO2). Carbon capture and storage (CCS) can reduce CO2 emissions. However, CCS is an expensive process. (more)

Tan, Jo Ann

2012-01-01T23:59:59.000Z

53

Oceanic Uptake of Fossil Fuel CO2: Carbon-13 Evidence  

Science Journals Connector (OSTI)

...CtC) = (Sff + Sbr-Sbu)AtAC J (DICtDICC) dz (2) where AoC is the global ocean surface area (361 x 1012 M2), DIC is the...integrated 13C/12C ratio of the DIC by substituting for Sbr and Aoc f [DICtDICJ1 dz in Eq. 5 as follows: SO, [{(13C/12C...

P. D. Quay; B. Tilbrook; C. S. Wong

1992-04-03T23:59:59.000Z

54

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers [EERE]

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

55

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

56

Synergistic energy conversion processes using nuclear energy and fossil fuels  

Science Journals Connector (OSTI)

This paper reviews the methods of producing energy carriers, such as electricity, hydrocarbons and hydrogen, by utilising both nuclear energy and fossil fuels synergistically. There are many possibilities for new, innovative, synergistic processes, which combine chemical and nuclear systems for efficient, clean and economical production of energy carriers. Besides the individual processes by each form of energy to produce the energy carriers, the synergistic processes which use two primary energies to produce the energy carriers will become important with the features of resource saving, CO2 emission reduction and economic production, due to the higher conversion efficiency and low cost of nuclear heat. The synergistic processes will be indispensable to the 21st century, when efficient best-mixed supplies of available primary energies are crucial.

Masao Hori

2009-01-01T23:59:59.000Z

57

Commitment accounting of CO2 emissions  

Science Journals Connector (OSTI)

The world not only continues to build new coal-fired power plants, but built more new coal plants in the past decade than in any previous decade. Worldwide, an average of 89 gigawatts per year (GW yr1) of new coal generating capacity was added between 2010 and 2012, 23 GW yr1 more than in the 20002009 time period and 56 GW yr1 more than in the 19901999 time period. Natural gas plants show a similar pattern. Assuming these plants operate for 40 years, the fossil-fuel burning plants built in 2012 will emit approximately 19 billion tons of CO2 (Gt CO2) over their lifetimes, versus 14 Gt CO2 actually emitted by all operating fossil fuel power plants in 2012. We find that total committed emissions related to the power sector are growing at a rate of about 4% per year, and reached 307 (with an estimated uncertainty of 192439) Gt CO2 in 2012. These facts are not well known in the energy policy community, where annual emissions receive far more attention than future emissions related to new capital investments. This paper demonstrates the potential for 'commitment accounting' to inform public policy by quantifying future emissions implied by current investments.

Steven J Davis; Robert H Socolow

2014-01-01T23:59:59.000Z

58

The European carbon balance. Part 1: fossil fuel emissions  

SciTech Connect (OSTI)

We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU-25 member states have experienced an increase in emissions, reversing after a decade-long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between-models uncertainty is as large as 19% of the mean for EU-25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between-models uncertainty can be reduced down to 7% at EU-25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than 200 km. At 100km resolution, for example, the uncertainty of regional emissions is estimated to be 60 gCm2 yr1, up to 50% of the mean. The uncertainty on regional fossil-fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.

Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Paris, J. D. [Laboratoire des Sciences du Climat et de l'Environement, France; Peylin, Philippe [National Center for Scientific Research, Gif-sur-Yvette, France; Piao, S. L. [National Center for Scientific Research, Gif-sur-Yvette, France; River, L. [National Center for Scientific Research, Gif-sur-Yvette, France; Marland, Gregg [ORNL; Levin, I. [University of Heidelberg; Pregger, T. [Universitat Stuttgart; Scholz, Y. [Universitat Stuttgart; Friedrich, R. [Universitat Stuttgart; Schulze, E.-D. [Max Planck Institute for Biogeochemistry

2009-05-01T23:59:59.000Z

59

Failing Drop CO2 Deposition (Desublimation) Heat Exchanger for the Cryogenic Carbon Capture Process.  

E-Print Network [OSTI]

??Cryogenic carbon capture removes CO2 and other pollutants from flue and waste stream gases produced from the combustion of fossil fuels such as coal, natural (more)

James, David William

2011-01-01T23:59:59.000Z

60

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2013  

Reports and Publications (EIA)

The U.S. Energy Information Administration (EIA) estimates that total sales of fossil fuels from production1 on federal and Indian lands decreased by 7% during fiscal year 2013. The decrease in production on federal lands alone was also 7%. Sales from production on Indian lands, which account for less than 7% of total federal and Indian lands production, increased by 9%.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Gasoline and Diesel Fuel Update (EIA)

fossil fuel sales continually flow into the DOI program offices, and those programs also conduct audit activities that may result, over time, in changes in the previously reported...

62

A fast method for updating global fossil fuel carbon dioxide emissions  

Science Journals Connector (OSTI)

We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we find that atmospheric carbon dioxide emissions have increased by over 40% from 1990 to 2008 with an annual average increase of 3.7% over the five-year period 2003?2007. In 2008 the growth rate in the fossil fuel carbon dioxide emissions was smaller than in the preceding five years, but it was still over 2%. Global mean carbon dioxide emissions in 2008 were 8.8?GtC? yr?1. For the latter part of the last century emissions of carbon dioxide have been greater from oil than from coal. However during the last few years this situation has changed. The recent strong increase in fossil fuel CO2 emissions is mainly driven by an increase in emissions from coal, whereas emissions from oil and gas to a large degree follow the trend from the 1990s.

G Myhre; K Alterskj?r; D Lowe

2009-01-01T23:59:59.000Z

63

E-Print Network 3.0 - assess fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology ; Geosciences 6 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

64

E-Print Network 3.0 - atmospheric fossil fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 10 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: ,PgCyr Fossil Fuel Emissions Fossil Fuel - Marland...

65

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

66

Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning  

Science Journals Connector (OSTI)

Abstract Fossil fuels endow wide applications in industrial, transportation, and power generation sectors. However, smoke released by burning fossil fuels contains toxic gases, which pollutes the environment and severely affects human health. Carbon nanotubes (CNTs) are potential material for gas sensors due to their high structural porosity and high specific surface area. Defects present on the CNT sidewalls and end caps facilitate adsorption of gas molecules. The chemical procedures adopted to purify and disperse carbon nanotubes create various chemical groups on their surface, which further enhance the adsorption of gas molecules and thus improve the sensitivity of CNTs. Present review focuses on CNT chemiresistive gas sensing mechanisms, which make them suitable for the development of next generation sensor technology. The resistance of carbon nanotubes decreases when oxidizing gas molecules adsorb on their surface, whereas, adsorption of reducing gas molecules results in increasing the resistance of CNTs. Sensing ability of carbon nanotubes for the gases namely, NO, NO2, CO, CO2 and SO2, released on burning of fossil fuels is reviewed. This review provides basic understanding of sensing mechanisms, creation of adsorption sites by chemical processes and charge transfer between adsorbed gas molecules and surface of CNTs. In addition, useful current update on research and development of CNT gas sensors is provided.

M. Mittal; A. Kumar

2014-01-01T23:59:59.000Z

67

Interactions of Supercritical CO2 with Coal  

Science Journals Connector (OSTI)

Carbon dioxide (CO2) mainly emitted from fossil fuel combustion causes global warming. ... (23) CO2 and methane might penetrate the coal matrix and cause coals to expand to some extent. ... Four coals ranging in carbon content from 77 to 84% C were warmed in the weak swelling solvent chlorobenzene at 132C for 2 wk, and samples were withdrawn at intervals. ...

Dengfeng Zhang; Lili Gu; Songgeng Li; Peichao Lian; Jun Tao

2012-12-15T23:59:59.000Z

68

NREL: Technology Deployment - Fossil Fuel Dependency Falls from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel Dependency Falls from 100% to 56% on Alcatraz Island News Solar Cells Light Up Prison Cells on 'The Rock' Sponsors U.S. National Park Service American Recovery and...

69

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network [OSTI]

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

70

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

71

Research on CO2 Emission Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Clean Energy Utilization of Clean Energy Utilization Zhejing University 29 th May, 2008 Status of CCS in China 2 nd U.S.-China Symposium on CO 2 Emission Control Science & Technology, Hangzhou China 28 th -30 th , May, 2008 Prof. Zhongyang Luo Global CO 2 Emissions Country CO 2 Emissions (Million Tons Carbon) 1990 1997 2001 2010 USA 1345 1480 1559 1800 China 620 822 832 1109 Former USSR 1034 646 654 825 Japan 274 297 316 334 World 5836 6175 6522 8512 Source: Energy Information Administration/International Energy Outlook 2001 Global CO 2 Emissions from Fossil Fuel Use in 2006 11.72 3,330 EU-15 5.75 1,620 Russia 4.3 1,210 Japan 20.17 5,680 China 20.42 5,750 USA 100 28,160 Total Percentage (%) CO 2 Emissions (1 million metric tons CO 2 ) Country BP Statistical Review of World Energy, June 2007 (http://www.bp.com/sectiongenericarticle.do?categoryId=6914&contentI

72

Combating global warming via non-fossil fuel energy options  

Science Journals Connector (OSTI)

Non-fossil fuel energy options can help reduce or eliminate the emissions of greenhouse gases and are needed to combat climate change. Three distinct ways in which non-fossil fuel options can be used in society are examined here: the capture/production of non-fossil fuel energy sources, their conversion into appropriate energy carriers and increased efficiency throughout the life cycle. Non-fossil fuel energy sources are insufficient to avoid global warming in that they are not necessarily readily utilisable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by converting them to two main classes of energy carriers: hydrogen (and hydrogen-derived fuels) and electricity. High efficiency is needed to allow the greatest benefits to be attained from energy options in terms of climate change and other factors. A case study is considered involving the production of hydrogen from non-fossil energy sources via thermochemical water decomposition. Thermochemical water decomposition provides a realistic future non-fossil fuel energy option, which can be driven by non-fossil energy sources (particularly nuclear or solar energy) and help combat global warming.

Marc A. Rosen

2009-01-01T23:59:59.000Z

73

Observations of O2:CO2 exchange ratios during ecosystem gas W. A. Brand, M. Heimann, and J. Lloyd2  

E-Print Network [OSTI]

and respiration, thermal ingassing and outgassing of O2 in ocean water, and combustion of fossil fuels and biomass than would be expected from fossil fuel combustion. This implies that the terrestrial biosphere has combustion consumes O2 and produces CO2 with exchange ratios (defined here as ?D[O2]/D[CO2]) varying from

74

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

75

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

76

Fireside corrosion probes for fossil fuel combustion  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450 to 700C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.; Eden, D.A. (Intercorr International, Houston, TX)

2006-03-01T23:59:59.000Z

77

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

78

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

79

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

do fossil fuel carbon dioxide emissions from California go?do fossil fuel carbon dioxide emissions from California go?1 distribution of carbon dioxide emissions from fossil fuel

2008-01-01T23:59:59.000Z

80

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

J. Hnat; L.M. Bartone; M. Pineda

2001-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Amine Scrubbing for CO2 Capture  

Science Journals Connector (OSTI)

...distillation columns in the air separation unit...excess and leakage air along with the CO...will not provide solutions as energy-efficient...tf9363201291 2 National Air Pollution Control Administration...CO 2 Removal from Fossil-FuelFired Power Plants (IE-7365...

Gary T. Rochelle

2009-09-25T23:59:59.000Z

82

The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion  

Science Journals Connector (OSTI)

20 May 1975 research-article The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion] E...have been made of their fate in mammals. The fate of fossil fuel hydrocarbons in marine animals. | Journal Article...

1975-01-01T23:59:59.000Z

83

The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion  

Science Journals Connector (OSTI)

...research-article The Fate of Fossil Fuel Hydrocarbons in Marine Animals [and Discussion...mammals. The fate of fossil fuel hydrocarbons in marine animals. | Journal Article...Carcinogens 0 Epoxy Compounds 0 Fuel Oils 0 Hydrocarbons 0 Naphthalenes...

1975-01-01T23:59:59.000Z

84

A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.  

SciTech Connect (OSTI)

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

2013-04-01T23:59:59.000Z

85

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network [OSTI]

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels analyzed the impacts of soot from fossil fuels -- diesel, coal, gasoline, jet fuel -- and from solid

86

RESPONSES OF PRIMARY PRODUCTION AND TOTAL CARBON STORAGE TO CHANGES IN CLIMATE AND ATMOSPHERIC CO2 CONCENTRATION  

E-Print Network [OSTI]

Model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total. For contemporary climate with 315 ppmv CO2, TEM estimated that global NPP is 47.9 PgC/yr and global total carbon-q climate and +20.6% (9.9 PgC/yr) for the GISS climate. The responses of global total carbon storage are +17

87

CO2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STORAGE & ENHANCED OIL RECOVERY STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld demonstra- tions. RMOTC completed a scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) CO 2 enhanced oil recovery potential. More recent character- ization studies indicate geologic carbon storage would also be an excellent use of NPR-3 resources beyond their economic life in conventional production. Geologic Storage Fossil fuels will remain the mainstay of energy production well into the 21st century. Availability of these fuels to provide clean, affordable energy is es- sential for the prosperity and security of the United States. However, increased atmospheric concentrations

88

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents [OSTI]

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

89

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

90

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

91

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues  

Science Journals Connector (OSTI)

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues ... Furthermore, because fossil fuels are projected to be a dominant energy resource in the 21st century,1 technologies for sequestering emissions from fossil fuel combustion in a safe and definitive manner are being developed and implemented. ... According to these authors, the solution containing free calcium could then be used in a carbonation process for capturing CO2 directly from air. ...

Renato Baciocchi; Alessandra Polettini; Raffaella Pomi; Valentina Prigiobbe; Viktoria Nikulshina Von Zedwitz; Aldo Steinfeld

2006-07-07T23:59:59.000Z

92

Causal relationship between fossil fuel consumption and economic growth in the world  

Science Journals Connector (OSTI)

Fossil fuels are major sources of energy, and have several advantages over other primary energy sources. Without extensive dependence on fossil fuels, it is questionable whether our economic prosperity can continue. This paper analyses cointegration and causality between fossil fuel consumption and economic growth in the world over the period 1971 to 2008. The estimation results indicate that fossil fuel consumption and GDP are cointegrated and there exists long-run unidirectional causality from fossil fuel consumption to GDP. This paper also investigates the nexus between non-fossil energy consumption and GDP, and shows that there is no causality between the variables. The conclusions are that reducing fossil fuel consumption may hamper economic growth, and that it is unlikely that non-fossil energy will substantially replace fossil fuels. This paper also examines causal linkages between the variables using a trivariate model, and obtains the same results as those from the bivariate model.

Hazuki Ishida

2012-01-01T23:59:59.000Z

93

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

94

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments [OSTI]

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

95

Partial replacement of fossil fuel in a cement plant: Risk assessment for the population living in the neighborhood  

Science Journals Connector (OSTI)

In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO2, but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM10 levels remained constant, with a value of 16?gm?3. In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO2 emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks.

Joaquim Rovira; Montse Mari; Mart Nadal; Marta Schuhmacher; Jos L. Domingo

2010-01-01T23:59:59.000Z

96

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network [OSTI]

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

97

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect (OSTI)

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

98

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

99

July 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Science Subject Feed EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 82 >...

100

An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel  

SciTech Connect (OSTI)

The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

Zhicheng Wang

2007-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements  

E-Print Network [OSTI]

, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National every 3 hours ­ main data source ­ Meant for biospheric fluxes (far from cities); about 100 today ­ We · Databases: Vulcan (2002, US-only); EDGAR, CDIAC (ORNL) etc ­ Can provide independent verification in case

Ray, Jaideep

102

Supplement to: The CO2 release and Oxygen uptake from Fossil Fuel Emission  

E-Print Network [OSTI]

, C. Minejima2,4 , H. Mukai2 1 Max Planck Institute for Biogeochemistry, Jena, Germany 2 Center to observations at the station Ochsenkopf in Germany. #12;EDGAR 3.2 usage type Corresponding UN usage type(s) code, refineries, etc.) 0911 0914 0924 121 084 Consumption by mining industry Consumption by biogas plants

Meskhidze, Nicholas

103

Fate of fossil fuel CO2 in geologic time David Archer  

E-Print Network [OSTI]

climate perturbation may have time to interact with ice sheets, methane clathrate deposits, and glacial in the size of the terrestrial biosphere including soil organic carbon, and changes in the amount of methane, dominated by coal. Ultimately extractable oil resources are thought to be about 250 Gton C, potentially

Archer, David

104

Update on CO2 emissions  

SciTech Connect (OSTI)

Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Friedingstein, P. [University of Exeter, Devon, England; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Marland, Gregg [ORNL; Hackler, J. [Woods Hole Research Center, Woods Hole, MA; Boden, Thomas A [ORNL; Conway, T.J. [NOAA, Boulder, CO; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Raupach, Mike [GCP, Canberra, Australia; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom

2010-12-01T23:59:59.000Z

105

Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI  

SciTech Connect (OSTI)

The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

Ming-Chuan Zhang

1993-12-31T23:59:59.000Z

106

Tracking the Origins of Fossil Fuels | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures X-ray Holograms Expose Secret Magnetism How Dissolved Metal Ions Interact in Solution One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Tracking the Origins of Fossil Fuels MAY 29, 2007 Bookmark and Share S-XANES absorbance and third derivative absorbance edge spectra of Duvernay (A) Type II kerogen and the results of curve fits using spectra from model compounds. Notice that sharp features appear in the thrid derivative spectrum that are easily associated with FeS2, aliphatic sulfur and

107

Formulating Energy Policies Related to Fossil Fuel Use:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONF-9 O O 255 --I CONF-9 O O 255 --I DE90 008741 Formulating Energy Policies Related to Fossil Fuel Use: i Critical Uncertainties in the Global Carbon Cycle. W. M. Post, V. H. Dale, D. L. DeAngelis, L. K. Mann, P. J. Mulholland, R. V. O'Neill, T. -H. Peng, M. P. Farrell Environmental Sciences Division Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, Tennessee 37831 The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Understanding the global carbon cycle requires knowledge of the carbon exchanges between major carbon reservoirs by various chemical, physical, geological, and biological processes (Bolin et al., 1979; Rosenberg, 1981; and Solomon et al., 1985). Four reservoirs can be identified, including the atmosphere, terrestrial biosphere (usually

108

Progress performance report of clean uses of fossil fuels  

SciTech Connect (OSTI)

A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

Not Available

1992-01-01T23:59:59.000Z

109

Progress performance report of clean uses of fossil fuels  

SciTech Connect (OSTI)

A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

Not Available

1992-09-01T23:59:59.000Z

110

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

111

Classification of fossil fuels according to structural-chemical characteristics  

SciTech Connect (OSTI)

On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

A.M. Gyul'maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

112

Krakow Clean Fossil Fuels and Energy Efficiency Program  

SciTech Connect (OSTI)

The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

Butcher, T.; Pierce, B.; Krishna, C.R.

1992-09-01T23:59:59.000Z

113

Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials  

Science Journals Connector (OSTI)

...compete with fossil fuel-based materials...competitive with fossil fuel-based materials...scaffold for tissue engineering is conceivable...still-growing biodiesel production (61...issue: I. Tissue engineering. Int. J. Biol...glycerol resulting from biodiesel production. Environ...

Bjrn Andreeen; Nicolas Taylor; Alexander Steinbchel

2014-08-22T23:59:59.000Z

114

The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification  

SciTech Connect (OSTI)

Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

Svendsen, R.L.

1996-12-31T23:59:59.000Z

115

Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

2001-11-06T23:59:59.000Z

116

Effects of Forest Management on Total Biomass Production and CO2 Emissions from use of Energy Biomass of Norway Spruce and Scots Pine  

Science Journals Connector (OSTI)

The aim of this study was to analyze the effects of forest management on the total biomass production (t ha-1a-1) and CO2 emissions (kg CO2 MWh-1) from use of energy biomass of Norway spruce and Scots pine grown ...

Johanna Routa; Seppo Kellomki; Harri Strandman

2012-09-01T23:59:59.000Z

117

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003  

Broader source: Energy.gov (indexed) [DOE]

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and Indian lands in the United States. It provides EIA's current best estimates of fossil fuels sales from production on federal and Indian lands for fiscal year 2003 through 2011. eia-federallandsales.pdf More Documents & Publications Testimony Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Committee Before the Energy and Power Subcommittee - House Energy and Commerce

118

The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach  

Science Journals Connector (OSTI)

Given the global energy trend to substitute fossil fuel, the nuclear power has known an important ... degrees of uncertainties related to nuclear and fossil fuel. The higher uncertainty of fossil fuel prices make...

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton

2010-04-01T23:59:59.000Z

119

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

fossil fuel combustion, with consequent impacts to human health [health. Model predictions indicated that some areas within California had higher near-surface fossil fuel

Riley, W.J.

2008-01-01T23:59:59.000Z

120

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

122

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect (OSTI)

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

123

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

124

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Project No.: DE-NT0005287 In this project, the Georgia Tech Research Corporation is using totally novel chemistryto engender the dramatic changes needed for widespread implementation of CO2 capture in a both environmentally benign and economical process. Current methods of CO2 post-combustion recovery from coal-fired power plants focus on such techniques as absorption in aqueous ethanolamine scrubbers - and this is now a mature technology unlikely to achieve a quantum change in either capacity or cost. The objective of this project is to develop a novel class of solvents for post-combustion recovery of CO2 from fossil fuel-fired power plants which will achieve a substantial increase in CO2 carrying capacity with a concomitant plummet in cost. The project team is a combination of chemical engineers and chemists with extensive experience in working with industrial partners to formulate novel solvents and to develop processes that are both environmentally benign and economically viable. Further, the team has already developed solvents called "reversible ionic liquids," essentially "smart" molecules which change properties abruptly in response to some stimulus, and these have quickly found a plethora of applications.

125

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

126

Large historical changes of fossil-fuel black carbon aerosols T. Novakov,1  

E-Print Network [OSTI]

. Hansen,3 T. W. Kirchstetter,1 M. Sato,3 J. E. Sinton,1 and J. A. Sathaye1 Received 26 September 2002, M. Sato, J. E. Sinton, and J. A. Sathaye, Large historical changes of fossil-fuel black carbon

127

Liquid Fossil Fuel Technology. Quarterly technical progress report, July-September 1980  

SciTech Connect (OSTI)

Research activities at BETC are summarized under the headings liquid fossil fuel cycle, extraction (resource assessment, production, enhanced recovery), processing (of liquids such as coal liquids, and crudes, thermodynamics), utilization (energy conversion, combustion), and project integration and technology transfer. (DLC)

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

128

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

SciTech Connect (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

129

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

SciTech Connect (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

130

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

SciTech Connect (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

131

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network [OSTI]

of Alternative Fossil Fuel Price and Carbon RegulationScenario, (2) a High Fuel Price Scenario, which includescap- and-trade and high fuel prices are compared to other

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

132

ith fossil-fuel combustion and land-use activities threatening to double  

E-Print Network [OSTI]

W ith fossil-fuel combustion and land- use activities threatening to double atmospheric carbon and now use this model to explore the response of the central Amazonian forest to an increase in biomass

Chambers, Jeff

133

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification  

Energy Innovation Portal (Marketing Summaries) [EERE]

Berkeley Lab researchers Greg Newman and Michael Commer have developed advanced software for discovering and mapping offshore fossil fuel deposits. When combined with established seismic methods, this software makes possible direct imaging of reservoir fluids....

2011-01-21T23:59:59.000Z

134

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

135

Drastic Reductions in Utilizable Fossil Fuel Reserves: An Environmental Imperative  

Science Journals Connector (OSTI)

We are living in a period of exponential growth of world population and energy consumption. Forecasts suggest that the atmospheric CO2 ...concentration could reach 750 p.p.m. by 2100. At this level, the coral ree...

Geoffrey P. Glasby

2006-02-01T23:59:59.000Z

136

Modeling Energy Flow in an Integrated Pollutant Removal (IPR) System with CO2 Capture Integrated with Oxy-fuel Combustion  

Science Journals Connector (OSTI)

Oxy-coal combustion is one of the technical solutions for mitigating CO2 in thermal power plants. ... Currently, more than 85% of the energy that drives modern economies comes from fossil fuels, and this has stimulated research and development into more sustainable alternative energy sources. ... Other species, such as SO2, various nitrogen compounds, HCl, and Hg, are also present in quantities dependent upon the fossil fuel composition and the amount of air that leaks into the boiler. ...

Sivaram Harendra; Danylo Oryshcyhn; Stephen Gerdemann; Thomas Ochs; John Clark

2012-10-13T23:59:59.000Z

137

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

138

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

139

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

140

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

142

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Title Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Publication Type Journal Article Year of Publication 2012 Authors Newman, Sally, Seongeun Jeong, Marc L. Fischer, Xiaomei Xu, Christine L. Haman, Barry Lefer, Sergio Alvarez, Bernhard Rappenglueck, Eric A. Kort, Arlyn E. Andrews, Jeffrey Peischl, Kevin R. Gurney, Charles E. Miller, and Yuk L. Yung Journal Atmospheric Chemistry and Physics Volume 13 Pagination 4359-4372 Abstract Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

143

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

144

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document  

Broader source: Energy.gov [DOE]

Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document.

145

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings  

Broader source: Energy.gov [DOE]

Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

146

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

Broader source: Energy.gov (indexed) [DOE]

Sales of Fossil Fuels Produced Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

147

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Broader source: Energy.gov (indexed) [DOE]

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

148

An Integrated Approach for Oxy-fuel Combustion with CO2 Capture and Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vent Stream Vent Stream (out) CO 2 Product Stream (out) Flue Gas Stream (in) CO 2 CCU Skid Government of Canada Gouvernement du Canada An Integrated Approach for Oxy An Integrated Approach for Oxy- -fuel Combustion with CO fuel Combustion with CO 2 2 Capture and Capture and Compression Compression Kourosh Zanganeh, Ahmed Shafeen, and Carlos Salvador Zero-Emission Technologies Group, Clean Electric Power Generation CANMET CO 2 R&D Consortium CANMET Energy Technology Centre - Ottawa The capture and storage or reuse of carbon dioxide (CO 2 ) from the combustion of fossil fuels as well as industrial off gases represents an opportunity to achieve a significant reduction in anthropogenic greenhouse gas (GHG) emissions. Fossil fuel combustion is expected to dominate the energy structure in at least the next few decades.

149

Fossil fuel producing economies have greater potential for industrial interfuel substitution  

Science Journals Connector (OSTI)

Abstract This study analyzes industrial interfuel substitution in an international context using a large unbalanced panel dataset of 63 countries. We find that compared to other countries fossil fuel producing economies have higher short-term interfuel substitution elasticities. This difference increases further in the long run as fossil fuel producing countries have a considerably longer adjustment of their fuel-using capital stock. These results imply lower economic cost for policies aimed at climate abatement and more efficient utilization of energy resources in energy-intensive economies.

Jevgenijs Steinbuks; Badri G. Narayanan

2015-01-01T23:59:59.000Z

150

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

151

ORIGINAL ARTICLE Growth, CO2 consumption and H2 production of Anabaena  

E-Print Network [OSTI]

and renewable energy sources. Hydrogen, for use in fuel cells, is considered to be an attractive alternative of easily accessible fossil fuel resources are calling for effective CO2 mitigation technologies and clean by cultivation of cyanobacteria in photobioreactors offers a clean and renewable alternative to thermochemical

Pilon, Laurent

152

Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and  

E-Print Network [OSTI]

combustion, biomass burning and soil emissions Lyatt Jaegle´ ,a Linda Steinberger,a Randall V. Martinbc anthropogenic emissions, mostly resulting from fossil fuel combustion and biomass burning, are superimposed-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel

Lyatt Jaeglé

153

CO2 Sequestration Potential of Texas Low-Rank Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

154

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture  

SciTech Connect (OSTI)

The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project teams approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

Vahdat, Nader

2013-09-30T23:59:59.000Z

155

Summary of research on hydrogen production from fossil fuels conducted at NETL  

SciTech Connect (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100C (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

156

Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz  

E-Print Network [OSTI]

potential than emissions in the United States to perturb the global oxidizing power of the atmosphere. #12% of NOx concentrations in the lower and middle troposphere throughout the extratropical northern of the ocean. Sources in the United States are found to contribute about half of the fossil fuel NOx over

Jacob, Daniel J.

157

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect (OSTI)

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

158

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

SciTech Connect (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

159

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

SciTech Connect (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

160

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect (OSTI)

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

162

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

SciTech Connect (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

163

Fossil fuel prices, exchange rate, and stock market: A dynamic causality analysis on the European market  

Science Journals Connector (OSTI)

The article investigates causality between fossil fuel prices, exchange rates and the German Stock Index (DAX). The analysis is conducted dynamically with the use of rolling VAR methodology on the basis of weekly data from the period October 2001June 2012. The results obtained show that the relationship between the variables changed over time depending on the level of volatility in financial markets.

S?awomir ?miech; Monika Papie?

2013-01-01T23:59:59.000Z

164

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

165

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

166

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

167

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO2 Control Post-Combustion CO2 Control Post-combustion CO2 control systems separate CO2 from the flue gas produced by conventional coal combustion in air. The flue gas is at atmospheric pressure and has a CO2 concentration of 10-15 volume percent. Read More! Capturing CO2 under these conditions is challenging because: (1) the low pressure and dilute concentration dictate a high total volume of gas to be treated; (2) trace impurities in the flue gas tend to reduce the effectiveness of the CO2 separation processes; and (3) compressing captured CO2 from atmospheric pressure to pipeline pressure (1,200 - 2,200 pounds per square inch) represents a large parasitic energy load. Plant Picture DOE/NETL's post-combustion CO2 control technology R&D program includes

168

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. May 2013 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 1

169

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. March 2012 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 1

170

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

171

September 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 42 Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. (1996) 36 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 35 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 35 Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 35 Autothermal Reforming of Natural Gas to Synthesis Gas Steven F. Rice; David P. Mann (2007) 34 Evaluation of Wax Deposition and Its Control During Production of

172

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

173

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect (OSTI)

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

174

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

SciTech Connect (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

175

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

SciTech Connect (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

176

Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine  

SciTech Connect (OSTI)

The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

Reader, G.T.; Potter, I.J. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

177

A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)  

Science Journals Connector (OSTI)

Abstract Climate change and global warming as the main human societies threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

Payam Nejat; Fatemeh Jomehzadeh; Mohammad Mahdi Taheri; Mohammad Gohari; Muhd Zaimi Abd. Majid

2015-01-01T23:59:59.000Z

178

State-By-State Carbon Dioxide Emissions from Fossil Fuel Use in the United States 19602000  

Science Journals Connector (OSTI)

Time series of fossil fuel carbon emissions from 19602000 for each of the U.S. states and the District of Columbia are presented and discussed. Comparison of the nationally summarized results with other natio...

T. J. Blasing; Christine Broniak

2005-10-01T23:59:59.000Z

179

Comprehensive monitoring program for fossil fuel utility boilers  

SciTech Connect (OSTI)

Kentucky Utilities Company (KUCo) is an investor-owned electric utility serving customers in 78 Kentucky counties and through a subsidiary, Old Dominion Power Company, serves customers in five counties in southwestern Virginia. Over 99 percent of all electricity generated is from coal. KUCo has five coal-fired generating stations with a total generating capacity of 2,530,000 kilowatts. According to regulations adopted by the Kentucky Division of Air Pollution (DAP), each existing, indirect heat exchanger having a capacity factor greater than thirty percent is required to install, operate and maintain continuous opacity and sulfur dioxide monitoring equipment. Newer units already had continuous emission monitors (CEM's) and they were also required to monitor for nitrogen oxides. When the CEM retro-fit project was started in the spring of 1980, the operating status, as well as the manufacturer and model numbers of existing equipment, were identified. Approximately 80 percent of the existing equipment was manufactured by Lear Siegler, Inc. (LSI). Most of the LSI equipment was operable and it was determined that LSI equipment would be used for the retro-fit project. Existing equipment was renovated to include recent design changes and improvements and some equipment supplied by others was replaced.

Moffett, J.W.; Garcia, A.M.

1983-06-01T23:59:59.000Z

180

Quantitative Analysis of CO2 Mitigation in Thai Low Carbon Power Sector towards 2050  

Science Journals Connector (OSTI)

Abstract Recently, Low Carbon Society (LCS) principle has emerged as a practicable campaign for both developing and developed countries to deal with the dramatic increment of greenhouse gas concentration in the atmosphere. Various key features of LCS entail reducing energy demand and consumption while avoiding the fossil fuel utilization which is a major contributor to substantial CO2 emissions. In this study, Thailand's power sector is modeled using Asia-Pacific Integrated Model (AIM/Enduse). The objective of this study is to model the Thai power sector such that the viability of clean generating technologies for Thailand is considered and their mitigating effects are analyzed. The results demonstrate that the fossil fuel based technology would be replaced by clean technologies including, coal-fired power plant with CCS technology and renewable energies in the LCS scenario. The LCS scenario can mitigate CO2 emissions by 58,098 ktCO2 in 2050 when compared to BAU scenario.

P. Chunark; K. Promjiraprawat; P. Winyuchakrit; B. Limmeechokchai; T. Masui; T. Hanaoka; Y. Matsuoka

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings and 10 CFR Part 435, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings.

182

Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay  

Science Journals Connector (OSTI)

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, \\{PAHs\\} and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

Jingxian Wang; Wenzhong Wu; Bernhard Henkelmann; Li You; Antonius Kettrup; Karl-Werner Schramm

2003-01-01T23:59:59.000Z

183

Capture and Sequestration of CO2 at the Boise White Paper Mill  

SciTech Connect (OSTI)

This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporations Econamine Plus carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOEs Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

2010-06-16T23:59:59.000Z

184

An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 19731974 to 19961997  

Science Journals Connector (OSTI)

Many air pollution studies examine impacts on global climate warming in the future, but impacts on health of population are more actual and concrete. The aim of this paper is to evaluate air pollution (CO2, SO2, and NOx) from fossil fuel combustion in India. InputOutput Structural Decomposition Analysis approach is used to find out their sources of changes. We also estimate the emissions of CO2, SO2 and \\{NOx\\} for the year 20012002 and 20062007. A link between emission of pollutants and their impact on human health is finally analysed. The study categorizes the changes in the amount of CO2, SO2 and \\{NOx\\} emissions into four factors: the pollution intensity or eco-efficiency, technology or input-mix, composition of final demand, and the level of final demand. The main factors for these changes were the pollution intensity, technology, and the volume of final demand. Changes in the pollution intensity and technology were in most periods increasing air pollution. These results are quite different to those observed in some other studies. Pollution and health impacts have a close linear relationship and the main factors for the changes are the same as for the pollution.

Kakali Mukhopadhyay; Osmo Forssell

2005-01-01T23:59:59.000Z

185

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network [OSTI]

cooled by liquid nitrogen. The water and CO2 are separated from one another by sublimation and the CO2 for oceanic CO2 analysis: A method for the certification of total alkalinity. Marine Chemistry 80, 185

186

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

SciTech Connect (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

187

Bioenergy Plants in Indonesia: Sorghum for Producing Bioethanol as an Alternative Energy Substitute of Fossil Fuels  

Science Journals Connector (OSTI)

Abstract Indonesia's energy demand is increasing every year. Bioenergy plants are expected to be one of the solutions to fill energy demand in Indonesia. Sorghum is a bioenergy plant that can be used in Indonesia for producing bioethanol. Sorghum bioethanol is produced from sorghum biomass waste processing results with fermentation process. Ethanol is derived from fermented sorghum which is about 40-55%. Sorghum bioethanol can be used as an alternative fuel that is renewable and can be used as a substitute for fossil fuels.

Rahayu Suryaningsih; Irhas

2014-01-01T23:59:59.000Z

188

Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs  

Science Journals Connector (OSTI)

Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40,588,309USDyr?1 (min./max.: 10,194,833/169,013,252), representing 1.06USDCentkWh?1. Costs derived from sulfur species (SO2 and sulfate aerosol) stand for 93% of the total costs.

L. Turts Carbonell; E. Meneses Ruiz; M. Snchez Gcita; J. Rivero Oliva; N. Daz Rivero

2007-01-01T23:59:59.000Z

189

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

190

Optimization Model for Energy Planning with CO2 Emission Considerations  

Science Journals Connector (OSTI)

This paper considers the problem of reducing CO2 emissions from a power grid consisting of a variety of power-generating plants:? coal, natural gas, nuclear, hydroelectric, and alternative energy. ... Approximately 28.5% of OPG electricity is produced through the combustion of fossil fuels, 27% through hydroelectricity, and 44% through nuclear energy, and the remaining 0.5% comes from renewable or other energy sources, such as wind turbines. ... A sensitivity analysis was also performed to evaluate the impact of natural gas prices, coal prices, and retrofit costs on the optimal configuration of the OPG fleet of electricity-generating stations. ...

Haslenda Hashim; Peter Douglas; Ali Elkamel; Eric Croiset

2005-01-12T23:59:59.000Z

191

8, 73737389, 2008 Scientists' CO2  

E-Print Network [OSTI]

ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5

Paris-Sud XI, Université de

192

Distributed Optical Sensor for CO2 Leak Detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

193

Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants  

Science Journals Connector (OSTI)

Abstract Parasitically providing the energy required for CO2 capture from retrofitted coal power plants can lead to a significant loss in output of electricity. In this study, different configurations of auxiliary units are investigated to partially or totally meet the energy requirements for MEA post-combustion capture in a 500MW sub-critical coal-fired plant. The auxiliary unit is either a boiler, providing only the heat required for solvent regeneration in the capture process or a combined heat and power (CHP) unit, providing both heat and electricity. Using biomass in auxiliary units, the grid loss is reduced without increasing fossil fuel consumption. The results show that using a biomass CHP unit is more favourable than using a biomass boiler both in terms of CO2 emission reductions and power plant economic viability. By using an auxiliary biomass CHP unit, both the emission intensity and the cost of electricity would be marginally lower than for a coal plant with capture. Further emission reductions occur if CO2 is captured both from the coal plant and the auxiliary biomass CHP, resulting in negative emissions. However, high incentive schemes (a carbon price higher than 55 $/t CO2 or a combination of lower carbon price and renewable energy certificates) or a low biomass price (lower than 1 $/GJ) are required to make CO2 capture from both the coal plant and the auxiliary biomass CHP unit economically attractive. All cost comparisons are for CO2 capture only and CO2 transport and storage are not included in this study.

Zakieh Khorshidi; Minh T. Ho; Dianne E. Wiley

2015-01-01T23:59:59.000Z

194

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use  

SciTech Connect (OSTI)

To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO2) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO2 management program to develop technologies capable of reducing the CO2 emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO2 mitigation program focusing on beneficial CO2 reuse and supporting the development of technologies that mitigate emissions by converting CO2 to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO2 reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

195

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1980  

SciTech Connect (OSTI)

Highlights of the BETC January-March 1980 quarter were: Gasohol was tested in a cooperative effort with Southwestern Bell Telephone Co. Two fleets of 55 cars were tested using gasohol in one and gasoline in the other. No problems were encountered. The gasohol-fueled cars had less emissions, and the fuel efficiencies for both fleets were approximately the same. An in situ combustion has been successfully started in a heavy oil deposit in Kansas. After some difficulties in starting the burn, it is now operating satisfactorily and producing oil. Cooperation between DOE and the Venezuelan oil industry was explored in a meeting at BETC that emphasized efforts to produce heavy oil. Cooperation through the International Energy Agency is expected to result in sharing of technology on enhanced oil recovery. Petroleum product surveys are produced cooperatively by DOE and the American Petroleum Institute. They give the properties of the products currently being marketed in the US. During the quarter, surveys on Motor Gasolines, Summer 1979 and Diesel Fuel Oils, 1979 were published. They are used to trace changes in characteristics and also to set specifications. The size of colloids, micelles, and emulsions in petroleum and associated liquids can be a factor in the design of improved recovery processes. The use of small angle x-ray scattering has been facilitated by a new method of calculation. The development of the Liquid Fossil Fuel Cycle has been facilitated by a workshop and further discussions resulting in a new statement Planning Framework for Liquid Fossil Fuel Cycle, March 1, 1980. This has now been used to prepare a computer-processible form to use in a critical path study of the BETC program.

Linville, B. (ed.)

1980-08-01T23:59:59.000Z

196

Development of high temperature air combustion technology in pulverized fossil fuel fired boilers  

SciTech Connect (OSTI)

High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga [Tsinghua University, Beijing (China). Department of Thermal Engineering

2007-07-01T23:59:59.000Z

197

Technologies for Reducing Carbon Dioxide Emissions from Fossil Fuel Fired Installations  

Science Journals Connector (OSTI)

All mitigation scenarios proposed to date either tend so slow down the rate of atmospheric CO2 emissions or level out the CO2 concentration in the atmosphere. A unique system has been devised which offers a metho...

M. Steinberg

1995-01-01T23:59:59.000Z

198

Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type of Report: Technical Report  

E-Print Network [OSTI]

Fuels 33 Summary Impacts 40 Works Cited 45 #12;3 List of Tables Table Title Page 1 Tax and Income Data0 Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type AWARD Number: DE-NT0004397 Name and Address of Submitting Organization: Arrowhead Center New Mexico

Johnson, Eric E.

199

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

200

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Effects of CO2 Disposal on Marine Nitrification Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of CO Effects of CO 2 Disposal on Marine Nitrification Processes Michael H. Huesemann (michael.huesemann@pnl.gov, 360-681-3618) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Ann D. Skillman (ann.skillman@pnl.gov, 360-681-3649) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Eric A. Crecelius (eric.crecelius@pnl.gov, 360-681-3604) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Abstract In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of

202

CO2 sequestration | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

203

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

204

Byrne, et al., 2008. In Peter Droege eds. Urban Energy Transition: From Fossil Fuels to Renewable Power.  

E-Print Network [OSTI]

to significantly increase the share of such emissions attributed to Southern countries. Nevertheless, on a per (expressed in total CO2 emissions and per capita emissions) is presented in Figs. 2.2 and 2.3, respectively emission cuts to halt warming risk at 5 For example, if we average carbon concentration levels and mean

Delaware, University of

205

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

206

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

207

A technical and environmental comparison between hydrogen and some fossil fuels  

Science Journals Connector (OSTI)

Abstract The exploitation of some fossil fuels such as oil, intended as gasoline or diesel fuel, natural gas and coal, currently satisfy the majority of the growing world energy demand, but they are destined to run out relatively quickly. Beyond this point, their combustion products are the main cause of some global problems such as the greenhouse effect, the hole in the ozone layer, acid rains and generalized environment pollution, so their impact is extremely harmful. Therefore, it is clear that a solution to the energy problem can be obtained only through the use of renewable sources and by means of the exploitation of new low-polluting fuels. In this scenario an important role might be played by hydrogen, which is able to define a new energy system that is more sustainable and cleaner than current systems. For the comparison of the different fuels investigated in this paper, a methodology, which defines appropriate technical and environmental quality indexes, has been developed. These indexes are connected to the pollution produced by combustion reactions and to their intrinsic characteristics of flammability and expansiveness linked to the use of the considered fuels. An appropriate combination of these indexes, in the specific sector of utilization, allows to evaluate a global environmental index for the investigated fuels, highlighting that hydrogen reaches the highest score. In the final part of the paper, a new hydrogen energy economy that would lead to solving the serious environmental problems that damages all the ecosystems of the planet earth, is presented.

Giovanni Nicoletti; Natale Arcuri; Gerardo Nicoletti; Roberto Bruno

2015-01-01T23:59:59.000Z

208

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

SciTech Connect (OSTI)

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

209

Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1  

SciTech Connect (OSTI)

Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

Not Available

1994-01-01T23:59:59.000Z

210

Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy  

Science Journals Connector (OSTI)

The study provides a model of CO2 content in the atmosphere based on the global carbon cycle and the Kaya identity. The influences of: 1) energy intensity of GDP; 2) carbon intensity of energy on CO2 trajectories are given under four scenarios. The results from the most optimistic and technologically challenging scenario show that the atmospheric CO2 concentration can stabilise at 610 ppmv. It is also shown that the annual growth rates of atmospheric CO2 peak for all the scenarios before 2100 due to the expected world population peak in 2075 and the large share of fossil fuel energy.

Wojciech M. Budzianowski

2013-01-01T23:59:59.000Z

211

Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons  

Science Journals Connector (OSTI)

We conducted a cross-sectional study among biomass- (n=42) and fossil-fuel (n...=66) users having children Health-related information of one child from each...2),...

Md. Khalequzzaman; Michihiro Kamijima

2010-07-01T23:59:59.000Z

212

General Assembly Meeting: October 6th, 2013 Keywords: Labor/USLAC and Sun Services, divestment from fossil fuels, grading mode changes,  

E-Print Network [OSTI]

fossil fuels, grading mode changes, winter session ("JTerm"). Agenda: Opening of the Meeting: Meeting. Claire Marshall: there are health codes that prevent students from cleaning up toilets and other areas

Royer, Dana

213

Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants  

SciTech Connect (OSTI)

CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

2009-04-30T23:59:59.000Z

214

Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/  

SciTech Connect (OSTI)

This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructed using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.

Edmonds, J.A.; Reilly, J.; Trabalka, J.R.; Reichle, D.E.

1984-09-01T23:59:59.000Z

215

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect (OSTI)

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

216

Geologic CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

217

NETL: CO2 Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

218

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

219

EMSL - CO2 sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

220

GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13, PAGES 2637-2640, JULY 1, 2001 Ocean release of fossil fuel CO2: A case study  

E-Print Network [OSTI]

slope along the north Eu- ropean continent. Some of these fields are located in vicinity feasible. Oil and gas fields are known, or are likely to be found, on the shelf and along the continental

Drange, Helge

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701  

SciTech Connect (OSTI)

It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D. [Hadley Center for Climate Predictions & Research, Exeter (United Kingdom)

2005-07-16T23:59:59.000Z

222

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria  

Science Journals Connector (OSTI)

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Erwin Schmid

2011-01-01T23:59:59.000Z

223

BNL | CO2 Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Laser CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on fast optical switching from the output of a conventional CO2 laser oscillator, and a chain of high-pressure laser amplifiers. It starts with a wavelength converter wherein a near-IR picosecond solid-state laser with l»1 μm produces a mid-IR 10-μm pulse. This process employs two methods; semiconductor optical switching, and the Kerr effect. First, we combine the outputs from a multi-nanosecond CO2 laser oscillator with a picosecond Nd:YAG laser on a germanium Brewster-plate to produce an ~200 ps, 10μm pulse by semiconductor optical switching. Co-propagating this pulse with a Nd:YAG's 2nd harmonic in a

224

Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis  

Science Journals Connector (OSTI)

Abstract This study investigates the influence of nuclear energy consumption on GDP growth and CO2 emission in 30 major nuclear energy consuming countries. The panel mode was used taking the period 19902010. The results of the study indicated that nuclear energy consumption has a positive long run effect on GDP growth while it has no long run effect on CO2 emission. The Granger causality test results also revealed that nuclear energy consumption has a positive short run causal relationship with GDP growth while it has a negative short run causal relationship with CO2 emission. Based on the results of this study, nuclear energy consumption has an important role in increasing GDP growth in the investigated countries with no effect on CO2 emission. Consequently, unlike fossil fuels which also increase GDP growth, nuclear energy consumption causes less damage to the environment. From the results of the study, a number of recommendations were provided for the investigated countries.

Usama Al-mulali

2014-01-01T23:59:59.000Z

225

Plasma Nanocrystalline Doped Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Advanced Research contacts Robert R. Romanosky Technology Manager Advanced Research National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov susan M. Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1321 susan.maley@netl.doe.gov Hai Xiao University of Missouri-Rolla Electrical and Computer Engineering Department Rolla, MO 65409 573-341-6887 xiaoha@umr.edu Novel seNsors for high temperature iN-situ moNitoriNg of fossil fuel gases Description Novel types of sensors are needed to withstand the harsh environments characteristic of advanced power generation systems, particularly gasification-based systems.

226

A simulator for training fossil-fuel power plants operators with an HMI based on a multi-window system  

Science Journals Connector (OSTI)

The hardware-software architecture for a power plant simulator is presented. The simulator is hosted in a local area network of personal computers and has Windows XP as its operating system. The Human-Machine Interfaces (HMIs) for the operator and the instructor are based on a multi-window system; therefore, they have access to a lot of information inside their respective action field at any moment during the simulation session. In particular, the operator HMI has been designed for being suitable for training power plants operators with modern HMIs, where the operation is based on computer screens. The simulator has been installed in an operators training centre where a group of acceptance tests has been successfully carried out. Currently, the simulator is being used as part of the training courses for fossil-fuel power plant operators.

Jose Tavira Mondragon; Luis Jimenez Fraustro; Guillermo Romero Jimenez

2010-01-01T23:59:59.000Z

227

On the environmental, economic and budgetary impacts of fossil fuel prices: A dynamic general equilibrium analysis of the Portuguese case  

Science Journals Connector (OSTI)

Abstract This paper examines the influence of fossil fuel prices on carbon dioxide emissions, economic activity, and the public sector account in Portugal. It uses a dynamic general equilibrium model which highlights the mechanisms of endogenous growth and includes a detailed modeling of the public sector. Fuel price scenarios are based on forecasts by the US Department of Energy (DOE-US), the International Energy Agency (IEA-OECD) and IHS Global Insight Inc. The differences in relative fuel prices among the three scenarios lead to substantially different environmental impacts. Higher fuel prices in the DOE-US scenario lead to a 10.2% reduction in the policy effort required to meet the EU 2020 emission targets, while relative price changes in the IEA-OECD scenario result in a 19.2% increase in the required policy effort and decreasing fuel prices increase the emissions deficit by 95.9% under the IHS scenario. In terms of the long term economic impacts, our results suggest a 2.2% reduction in GDP in the DOE-US scenario and 1.9% in the IEA-OECD scenario and an increase of 1.4% in the IHS scenario. As to the budgetary impact, higher fuel prices lead to lower tax revenues, which, coupled with a reduction in public spending translates to lower public deficits. From a methodological perspective, our results highlight the importance of the mechanisms of endogenous growth. A scenario of higher fuel prices would, under exogenous economic growth assumptions, result in larger baseline emissions growth, substantially smaller economic effects, and rather different budgetary effects. From a policy perspective, our results highlight the importance of fossil fuel prices in defining the level of policy intervention required for compliance with international and domestic climate change legislation.

Alfredo M. Pereira; Rui M. Pereira

2014-01-01T23:59:59.000Z

228

CO2 maritime transportation  

Science Journals Connector (OSTI)

The objective of this study is to describe the complete transport chain of CO2 between capture and storage including a ship transport. This last one is composed by the following steps: Shore terminal including the liquefaction, temporary storage and CO2 loading. Ship with a capacity of 30,000m3. On or off shore terminal including an unloading system, temporary storage and export towards the final storage. Between all the possible thermodynamic states, the liquid one is most relevant two options are compared in the study (?50C, 7bar) and (?30C, 15bar). The ship has an autonomy of 6 days, is able to cover 1000km with a cargo of 2.5Mt/year. Several scenarios are studied varying the geographical position of the CO2 source, the number of harbours and the way the CO2 is finally stored. Depending on the option, the transport cost varies from 24 to 32/tCO2. This study confirms the conclusion of a previous study supported by ADEME, the cost transport is not negligible regarding the capture one when ships are considered. Transport by ship becomes a more economical option compared with an off shore pipeline when the distance exceeds 350km and with an onshore pipeline when it exceeds 1100km.

Sandrine Decarre; Julien Berthiaud; Nicolas Butin; Jean-Louis Guillaume-Combecave

2010-01-01T23:59:59.000Z

229

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

230

Fossil fuel depletion and socio-economic scenarios: An integrated approach  

Science Journals Connector (OSTI)

Abstract The progressive reduction of high-quality-easy-to-extract energy is a widely recognized and already ongoing process. Although depletion studies for individual fuels are relatively abundant, few of them offer a global perspective of all energy sources and their potential future developments, and even fewer include the demand of the socio-economic system. This paper presents an Economy-Energy-Environment model based on System Dynamics which integrates all those aspects: the physical restrictions (with peak estimations for oil, gas, coal and uranium), the techno-sustainable potential of renewable energy estimated by a novel top-down methodology, the socio-economic energy demands, the development of alternative technologies and the net CO2 emissions. We confront our model with the basic assumptions of previous Global Environmental Assessment (GEA) studies. The results show that demand-driven evolution, as performed in the past, might be unfeasible: strong energy-supply scarcity is found in the next two decades, especially in the transportation sector before 2020. Electricity generation is unable to fulfill its demand in 20252040, and a large expansion of electric renewable energies move us close to their limits. In order to find achievable scenarios, we are obliged to set hypotheses which are hardly used in GEA scenarios, such as zero or negative economic growth.

Iigo Capelln-Prez; Margarita Mediavilla; Carlos de Castro; scar Carpintero; Luis Javier Miguel

2014-01-01T23:59:59.000Z

231

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Innovations for Existing Plants CO2 Emissions Control RD&D Roadmap Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program Accomplishments DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap 2013 NETL CO2 Capture Technology Meeting Presentations DOE/NETL's Monthly Carbon Sequestration Newsletter Program Goals and Targets Pre-Combustion CO2 Control Post-Combustion CO2 Control Advanced Combustion CO2 Compression Other Systems Analysis Regulatory Drivers Reference Shelf Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. There are commercially available 1st-Generation CO2

232

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network [OSTI]

by sublimation and the CO2 is transferred into an electronic constant-volume manometer [ECM]. There its pressure of total alkalinity. Marine Chemistry 80, 185­197). Nutrients Nutrient levels were determined using

233

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...emissions from fossil-fuel combustion and industrial...flux from fossil fuel combustion and industrial processes...sources: national-level combustion of solid, liquid...oxidation of nonfuel hydrocarbons; and fuel from...renewables, mainly as heat from biomass...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

234

Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels  

Science Journals Connector (OSTI)

Depletion of fossil fuels resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residentidal space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900 to 1000C.

E.K. Nazarov; A.T. Nikitin; N.N. Ponomarev-Stepnoy; A.N. Protsenko; A.Ya. Stolyarevskii; N.A. Doroshenko

1990-01-01T23:59:59.000Z

235

Increasing CO2 Storage in Oil Recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

236

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

way of reducing total energy consumption and CO2 emissions.deducted from the total energy consumption to avoid double-However, total energy consumption and CO2 emissions will

Ke, Jing

2013-01-01T23:59:59.000Z

237

Ocean Acidification: The Other CO2 Problem  

E-Print Network [OSTI]

fuel combustion, reduces ocean pH and causes wholesale shifts in seawater car- bonate chemistry is found in some marine taxa such as echinoderms and coralline algae INTRODUCTION Over the past 250 years of increase, driven by human fossil fuel combustion and deforestation, is at least an order of magnitude

Childress, Michael J.

238

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

239

Novel CO2 - Philic Absorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Co Novel Co 2 - PhiliC AbsorbeNts Summary The ability to separate a high pressure mixture of CO 2 and H 2 such that a high pressure stream of CO 2 for sequestration and a high pressure stream of H 2 for energy are produced remains an elusive goal. This research has identified a class of compounds that melt in the presence of high pressure CO 2 , forming a liquid phase composed of roughly 50wt% CO 2 and 50wt% of the compound. Unlike conventional solvents that require substantial depressurization during regeneration to release a low pressure CO 2 stream, these novel compounds completely release the CO 2 at many hundreds of psia as the compound solidifies. This work will reveal whether one of more of these compounds can selectively remove CO 2 from a mixture

240

The low cost of geological assessment for underground CO2 storage: Policy and economic implication  

SciTech Connect (OSTI)

The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $675/t CO2. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $2560/t CO2 for power plant applications, followed byCO2 transport and storage, estimated at $015/tCO2.Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint privatepublic funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.

Friedmann, S. J.; Dooley, James J.; Held, Herman; Ottmar, Edenhofer

2006-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Current status and development of membranes for CO2/CH4 separation: A review  

Science Journals Connector (OSTI)

Carbon dioxide (CO2) is a greenhouse gas found primarily as a main combustion product of fossil fuel as well as a component in natural gas, biogas and landfill gas. The interest to remove CO2 from those gas streams to obtain fuel with enhanced energy content and prevent corrosion problems in the gas transportation system, in addition to CO2 implications to the climate change, has driven the development of CO2 separation process technology. One type of technology which has experienced substantial growth, breakthroughs and advances during past decades is membrane-based technology. The attractive features offered by this technology include high energy efficiency, simplicity in design and construction of membrane modules and environmental compatibility. The objective of this review is to overview the different types of membranes available for use including their working principles, current status and development which form the primary determinants of separation performance and efficiency. The emphasis is toward CO2/CH4 separation, considering its substantial and direct relevance to the gas industry. To this end, discussion is made to cover polymeric gas permeation membranes; CO2-selective facilitated transport membranes, hollow fiber gasliquid membrane contactors, inorganic membranes and mixed matrix membranes. The market for CO2 separation is currently dominated by polymeric membranes due to their relatively low manufacturing cost and processing ability into flat sheet and hollow fiber configurations as well as well-documented research studies. While there have been immensely successful membrane preparation and development techniques with consequential remarkable performance for each type of membrane. Each type of membrane brings associated advantages and drawbacks related to the characteristic transport mechanism for specific application conditions. Inorganic membranes, for example, are very suitable for high temperature CO2 separation in excess of 400C while all other membranes can be applied at lower temperatures. The recent emergence of mixed matrix membranes has allowed the innovative approach to combine the advantages offered by inorganic and polymeric materials.

Yuan Zhang; Jaka Sunarso; Shaomin Liu; Rong Wang

2013-01-01T23:59:59.000Z

242

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

243

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

244

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

245

Implications of ``peak oil'' for atmospheric CO2 and climate Pushker A. Kharecha1  

E-Print Network [OSTI]

or unconventional fossil fuels while clean technologies are being developed for the era ``beyond fossil fuels''. We exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before

246

ARM - Instrument - co2flx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsco2flx govInstrumentsco2flx Documentation CO2FLX : Handbook CO2FLX : Instrument Mentor Monthly Summary (IMMS) reports CO2FLX : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Dioxide Flux Measurement Systems (CO2FLX) Instrument Categories Atmospheric Carbon General Overview The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind

247

Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monthly Isotopic (13C/12C) Estimates Monthly Isotopic (13C/12C) Estimates Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A. DOI: 10.3334/CDIAC/ffe.001 Web page graphic Graphics Web page graphic Data (ASCII Fixed Format) Web page graphic Data (ASCII Comma Delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6290, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 Period of Record 1981-2003 Methods The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in

248

Controlling Power Plant CO2 Emissions: A Long-Range View  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTROLLING POWER PLANT CO CONTROLLING POWER PLANT CO 2 EMISSIONS: A LONG RANGE VIEW John Marion (john.l.marion@power.alstom.com; 860-285-4539) Nsakala ya Nsakala (nsakala.y.nsakala@power.alstom.com; 860-285-2018) ALSTOM Power Plant Laboratories 2000 Day Hill Road Windsor, CT 06095, USA Timothy Griffin (timothy.griffin@power.alstom.com; +41 56/486 82 43) Alain Bill (alain.bill@power.alstom.com; +41 56/486 81 07) ALSTOM Power Technology Center 5405 Baden-Daettwil, Switzerland ABSTRACT ALSTOM Power (ALSTOM) is an international supplier of power generation with concern for the environment. We are aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuel use for power generation. Although the scientific and policy dialogue on global climate change is far from conclusive, ALSTOM continues to

249

Estimates of Global, Regional, and National Annual CO2 Emissions from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 (1995) 0 (1995) (click above to download the data!) Estimates of Global, Regional, and Naitonal Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950-1992 NDP-030/R6 Cover T. A. Boden G. Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee R. J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska Environmental Sciences Division Publication No. 4473 Date Published: December 1995 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research Budget Activity Number KP 05 02 00 0 Prepared by the Carbon Dioxide Information Analysis Center World Data Center-A for Atmospheric Trace Gases OAK RIDGE NATIONAL LABORATORY

250

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

251

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

252

Taxes on fossil fuels.  

E-Print Network [OSTI]

?? Efterfrgan p biobrnslen har kat de 30 senaste ren och under samma tidsperiod har oljepriset stigit. I den hr uppsatsen har vi underskt i (more)

stman, Beata

2006-01-01T23:59:59.000Z

253

Liquid fossil fuel technology  

SciTech Connect (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

254

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

255

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect (OSTI)

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

256

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

257

CO2 interaction with geomaterials.  

SciTech Connect (OSTI)

This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

2010-09-01T23:59:59.000Z

258

CO2 + CH4 Chemistry over Pd: Results of Kinetic Simulations Relevant to  

E-Print Network [OSTI]

-component feed gas consisted of CO2 and CH4 with total pressure of 1 bar. The CO2 ­ CH4 partial pressures reactions in certain situations. Even in the gas-phase for example the reaction between CO2 and CH4 yielding reactor employing CO2 and CH4 as the two-component feed gas. We discuss the pred

Spiteri, Raymond J.

259

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

260

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Offsetting China's CO2 Emissions by Soil Carbon Sequestration  

Science Journals Connector (OSTI)

Fossil fuel emissions of carbon (C) in China in 2000 was ... % or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted ... . A crude estimated potential of soil C sequestration in China is 1...

R. Lal

2004-08-01T23:59:59.000Z

262

Commodity Price Interaction: CO2 Allowances, Fuel Sources and Electricity  

Science Journals Connector (OSTI)

This work anlyses the relationship between the returns for carbon, electricity and fossil fuel price (coal, oil and natural gas), ... in carbon are not strongly reflected in electricity prices. Also, market power...

Mara Madaleno; Carlos Pinho; Cludia Ribeiro

2014-01-01T23:59:59.000Z

263

A NOVEL CO2 SEPARATION SYSTEM  

SciTech Connect (OSTI)

Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current CO{sub 2} separation systems is the need to separate dilute CO{sub 2} and pressurize it for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity.

Robert J. Copeland; Gokhan Alptekin; Mike Cesario; Steven Gebhard; Yevgenia Gershanovich

1999-01-01T23:59:59.000Z

264

CO2-H2O mixtures in the geological sequestration of CO2. I ...  

E-Print Network [OSTI]

For this purpose, published experimental P-T-X data in this temperature and pressure range are ... of carbon dioxide from burning fossil fuels is generating an increasing interest in the ..... However, one alternative to adding extra terms in Eqn. 3 is to consider another ..... search Center's GEODISC project. Associate editor:...

265

CO2 Sequestration short course  

SciTech Connect (OSTI)

Given the publics interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

266

Optimal synthesis of a pressure swing adsorption process for CO2 capture  

SciTech Connect (OSTI)

The emission of carbon dioxide from cement industry and power plants that burn fossil fuels is the major cause for the accumulation of CO2 in the atmosphere, which causes long-range environmental problems. One option to mitigate the emission of CO2 is to capture it from the emission sources and store it to the ocean or depleted oil field or use it for enhanced oil recovery. CO2 recovery has been achieved by gas absorption employing solutions of carbonates and alkanolamines. However, this process is energy-intensive for the regeneration of solvent and also faces problems due to corrosion. Recently, the pressure swing adsorption (PSA) process has been considered as an alternative to the absorption process. PSA processes have been widely applied for the removal of CO2 from various feed mixtures, such as CO2 in the steam reformer off gas, landfill gas and natural gas. In all these commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product and enriching the strongly adsorbed CO2 is not a concern. On the other hand, for the capture of CO2 for sequestration, it is necessary to concentrate the CO2 to a high purity to reduce the compression and transportation cost. Thus, it is necessary to develop a PSA cycle by which a high-purity product for the strongly adsorbed component with a high recovery is obtained. A multitude of PSA cycles and adsorbents have been developed for producing highly pure heavy component (CO2) from feedstock with low CO2 concentration. Kikkinides et al. suggested a 4-bed 4-step process with activated carbon as the sorbent and could recover 68% of CO2 at 99.997% purity. Chue et al. compared activated carbon and zeolite 13X on a 3-bed 7-step process and concluded that the latter is better than the former for CO2 recovery. However, the CO2 recovery was low in their process due to the lack of a countercurrent step in the chosen cycle. Choi et al. reported more than 70% CO2 recovery at more than 90% purity for a modified 3-bed 7-step cycle. However, they solved a very small two variable optimization problem, thus being a specialized case. Zhang et al. have given justifications for using a specific cyclic component step in the adsorption cycle in the context of CO2 capture by using a simplistic mathematical model for the PSA process. Reynolds et al. have suggested a variety of stripping PSA cycles for CO2 recovery at high temperature using a hydrotalcite-like adsorbent. In this study, a two-bed superstructure of the PSA process has been developed to optimally synthesize an appropriate cycle for CO2 capture. The superstructure considers all the possible operating steps in a PSA cycle with two beds. An optimal control problem with a PDE-based model for PSA system has been formulated in which different steps within a cycle are realized with the help of control variables changing with time. The optimization problem has been solved for three different cases of maximizing CO2 recovery (for a given purity), maximizing feed throughput and minimizing specific power (for a given level of CO2 purity and recovery). Current results indicate the superstructure-based approach as a promising technique for deriving optimal PSA cycles. Different cases with different number of control variables indicate convergence to a particular kind of PSA cycle with over 99% purity and recovery of CO2. The results obtained from optimization problem will also be compared with the optimal PSA cycle simulated more accurately in a dynamic simulation environment.

Agarwal, A.; Biegler, L.; Zitney, S.

2008-01-01T23:59:59.000Z

267

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

268

Multi-Channel Auto-Dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes  

SciTech Connect (OSTI)

Geological sequestration has the potential capacity and longevity to significantly decrease the amount of anthropogenic CO2 introduced into the atmosphere by combustion of fossil fuels such as coal. Effective sequestration, however, requires the ability to verify the integrity of the reservoir and ensure that potential leakage rates are kept to a minimum. Moreover, understanding the pathways by which CO2 migrates to the surface is critical to assessing the risks and developing remediation approaches. Field experiments, such as those conducted at the Zero Emissions Research and Technology (ZERT) project test site in Bozeman, Montana, require a flexible CO2 monitoring system that can accurately and continuously measure soil-surface CO2 fluxes for multiple sampling points at concentrations ranging from background levels to several tens of percent. To meet this need, PNNL is developing a multi-port battery-operated system capable of both spatial and temporal monitoring of CO2 at concentrations from ambient to at least 150,000 ppmv. This report describes the system components (sampling chambers, measurement and control system, and power supply) and the results of a field test at the ZERT site during the late summer and fall of 2008. While the system performed well overall during the field test, several improvements to the system are suggested for implementation in FY2009.

Amonette, James E.; Barr, Jonathan L.

2009-04-23T23:59:59.000Z

269

High Co2 Emissions Through Porous Media- Transport Mechanisms And  

Open Energy Info (EERE)

Co2 Emissions Through Porous Media- Transport Mechanisms And Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Details Activities (1) Areas (1) Regions (0) Abstract: Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was

270

Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993  

SciTech Connect (OSTI)

Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

Not Available

1993-08-01T23:59:59.000Z

271

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

272

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

273

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

274

Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States  

E-Print Network [OSTI]

unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology

275

AZ CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

276

CO2 Utilization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CO2 CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. CO2 as Feedstock - Use CO2 as a feedstock to produce chemicals (including fuels and polymers) and find applications for the end products. Non-Geologic Storage of CO2 - Use CO2 from an effluent stream to immobilize the CO2 permanently by producing stable solid material that are either useful products with economic value or a low cost produced material.

277

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network [OSTI]

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

278

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

279

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

280

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

282

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

283

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

284

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

285

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

286

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

287

NETL: IEP - Post-Combustion CO2 Emissions Control - Post-Combustion CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Project No.: DE-FE0004274 3H Company will evaluate the feasibility of its "Self-Concentrating Absorbent CO2 Capture Process." The process is based on amines in a non-aqueous solvent which, upon reaction with CO2, separate into two distinct phases: a CO2-rich liquid phase and a dilute lean phase. The proposed process offers several potential advantages. Preliminary experimental data show that the process has the potential of reducing the total regeneration energy by as much as 70 percent. The solvent has high working capacity, thus required solvent volume would be lower than that required in a currently available amine system. This results in lower pumping requirements, lower auxiliary power demands, and reduced equipment size. In addition, since the solvent is non-aqueous, corrosion issues would be reduced. During the three-year project, an engineering design supported by laboratory data and economic justification will be developed to construct and operate a slipstream demonstration facility at an E-ON power plant in the United States as a next stage of commercialization development.

288

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

289

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

290

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

291

CO2 | OpenEI  

Open Energy Info (EERE)

CO2 CO2 Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

292

A techno-economic plant- and grid-level assessment of flexible CO2 capture.  

E-Print Network [OSTI]

??Carbon dioxide (CO?) capture and sequestration (CCS) at fossil-fueled power plants is a critical technology for CO? emissions mitigation during the transition to a sustainable (more)

Cohen, Stuart Michael, 1984-

2012-01-01T23:59:59.000Z

293

Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States  

Science Journals Connector (OSTI)

We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO2 in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. ... However, these shortcomings could be significantly overcome by deploying a large fleet of plug-in hybrid electric vehicles (PHEVs) or all-electric vehicles (EVs) (Figure S3). ... The highest use in the U.S. is in the residential sector (i.e., rooftop installations), because for states having a PV rebate, PV can provide a net monthly savings to the homeowner when the cost is folded into a 30-year mortgage. ...

Pushker A. Kharecha; Charles F. Kutscher; James E. Hansen; Edward Mazria

2010-04-30T23:59:59.000Z

294

CO2 Mineral Sequestration Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Studies Sequestration Studies Introduction, Issues and Plans Philip Goldberg National Energy Technology Laboratory Workshop on CO 2 Sequestration with Minerals August 8, 2001 Mineral Sequestration Program Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Goals: * Understand the fundamental mechanisms involved in mineral carbonation * Generate data to support process development * Operate continuous, integrated small-scale process unit to support design Current Partnerships In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include: * Albany Research Center * Arizona State University * Los Alamos National Laboratory

295

Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of  

E-Print Network [OSTI]

#12;Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of this report, the other people in the Peak Oil Netherlands Foundation for their work, peakoil.com & the oildrum

Keeling, Stephen L.

296

Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environment  

SciTech Connect (OSTI)

In aqueous phase saturated with CO2, X-65 sample underwent general corrosion with formation of FeCO3. In supercritical CO2 containing water phase, two major regions are present on the sample surface after the EIS experiment. One region covered with corrosion products identified as FeCO3 and the other containing Fe, oxygen, and carbon-rich islands embedded in metal matrix identified as {alpha}-Fe. Precipitation of FeCO3 from Fe2+ and CO3 2- is responsible for formation of passive layer in oxygen-deficient, CO2 rich aqueous environment. Mechanisms of corrosion degradation occurring in supercritical CO2 as a function. Transport of supercritical CO{sub 2} is a critical element for carbon capture from fossil fuel power plants and underground sequestration. Although acceptable levels of water in supercritical CO{sub 2} (up to {approx} 5 x 10{sup -4}g/dm{sup 3}) have been established, their effects on the corrosion resistance of pipeline steels are not fully known. Moreover, the presence of SO{sub 2}, O{sub 2} impurities in addition to the water can make the fluid more corrosive and, therefore, more detrimental to service materials. Also, in this case, limited data are available on materials performance of carbon steels. to advance this knowledge, other service alloys are being investigated in the high pressure high temperature cell containing impure CO{sub 2} fluids using reliable non-destructive in-situ electrochemical methods. The electrochemical results are being augmented by a number of surface analyses of the corroded surfaces.

Ziomek-Moroz, M. Holcomb, G. Tylczak, J Beck, J Fedkin, M. Lvov, S.

2011-10-01T23:59:59.000Z

297

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect (OSTI)

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

298

Outsourcing CO2 within China  

E-Print Network [OSTI]

cement production. Total energy consumption by productionconstruct the total energy consumption data for production

2013-01-01T23:59:59.000Z

299

Argonne Coal Structure Rearrangement Caused by Sorption of CO2  

Science Journals Connector (OSTI)

Argonne Coal Structure Rearrangement Caused by Sorption of CO2 ... The sorption of CO2 on seven Argonne premium coals was measured by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy as a function of time at constant CO2 pressure (0.62 MPa) and temperature (55 C). ... The following seven Argonne premium coals were investigated:? Upper Freeport (medium volatile bituminous), Pittsburgh No. 8 (high volatile bituminous), Lewiston?Stockton (high volatile bituminous), Blind Canyon (high volatile bituminous), Illinois No. 6 (high volatile bituminous), Wyodak (sub-bituminous), and Beulah Zap (lignite). ...

A. L. Goodman; R. N. Favors; John W. Larsen

2006-10-05T23:59:59.000Z

300

Adsorption and Desorption of CO2 on Solid Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS 2 Ranjani Siriwardane (rsiiw@netl.doe.gov; 304-285-4513) Ming Shen (mshen@netl.doe.gov; 304-285-4112) Edward Fisher (efishe@netl.doe.gov; 304-285-4011) James Poston (jposto@netl.doe.gov; 304-285-4635) Abolghasem Shamsi (ashams@netl.doe.gov; 304-285-4360) U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O.Box 880, Morgantown, WV 26507-0880 INTRODUCTION Fossil fuels supply more than 98% of the world's energy needs. However, the combustion of fossil fuels is one of the major sources of the green house gas CO . It is necessary to develop 2 technologies that will allow us to utilize the fossil fuels while reducing the emissions of green house gases. Commercial CO capture technology that exists today is very expensive and energy

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

3D CFD Model of High Temperature H2O/CO2 Co-electrolysis  

SciTech Connect (OSTI)

3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James OBrien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

2007-06-01T23:59:59.000Z

302

Low-Carbon Energy Robert Socolow  

E-Print Network [OSTI]

MetricTonsofCarbonDioxide Natural Gas Petroleum Coal U.S. total emissions: 6.0 billion tons CO2 Source: J. Sweeney, 2009 #12;Energy on Climate Change March 30, 2009 #12;Source: IEA WEO 2007 Per-capita fossil-fuel CO2 emissions, 2005 1- World emissions: 27 billion tons CO2 #12;Source: IEA WEO 2007 Per-capita fossil-fuel CO2 emissions, 2005 1- World

303

Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes  

E-Print Network [OSTI]

Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

304

Strategic backdrop analysis for fossil fuel planning. Task 2 report (New Task Series), The Base Case. Report 473-117-08/01  

SciTech Connect (OSTI)

This report describes a base case analysis performed using the strategic backdrop analytical framework developed by The Futures Group to facilitate fossil fuel planning within the Department of Energy. It builds upon the data base compiled in the default case previously submitted but uses a different set of energy technology assumptions. Objectives of the strategic backdrop analysis project are: (1) to delineate alternative socioeconomic futures or target worlds for the United States and to derive, for each world, the amount of energy needed to sustain its level of economic activity and lifestyle, assuming no technological changes; (2) to construct an analytical framework that accounts for the flow of energy from the disaggregated end-use target demand sectors back through the distribution and conversion processes to primary resource requirements; (3) to use this framework 1) to analyze how alternative government policies and associated new technologies can change the primary resource needs and fuel mix while still providing the same level of end-use energy service for the target world, and 2) to highlight resource constraints, program inconsistencies, and economic, environmental, and social implications; (4) to transfer to DOE personnel the methodology for generating energy targets and accounting for important characteristics of alternative energy policies and technologies.

Not Available

1980-08-01T23:59:59.000Z

305

Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing  

Science Journals Connector (OSTI)

Abstract The rapid depletion of fossil fuel reserves and environmental concerns with their combustion necessitate looking for alternative sources for long term sustainability of the world. These concerns also appear serious in developing countries who are striving for rapid economic growth. The net biomass growing potential on the global land surface is 10 times more than the global food, feed, fiber, and energy demands. This study investigates whether the developing countries have sufficient land resource to meet the projected energy demand towards 2035 by planting energy crops on surplus agricultural land after food and feed production. The annual yields of four commonly grown energy crops specifically jatropha, switchgrass, miscanthus, and willow have been used to make scenarios and estimate land requirements against each scenario. This paper first performs literature reviews on the availability of land resource, past and future trends in land use changes, demand of lands for food production, and potential expansion of croplands. The energy demands towards 2035 are compiled from energy scenarios derived by the International Energy Agency (IEA) and the British Petroleum (BP). This paper also reviewed bio-physiological characteristics of these energy crops to determine whether they are cultivable under tropical climatic conditions in developing regions. This paper found that projected energy demand through 2035 in developing regions could be provided by energy crops grown on a portion of surplus croplands or upgraded grasslands (27% and 22% respectively for miscanthus scenario). Sustainable land management practices, improved agricultural productivity, and adopting suitable energy crops cultivation can potentially supply increasing energy demands.

Md. Mizanur Rahman; Suraiya B. Mostafiz; Jukka V. Paatero; Risto Lahdelma

2014-01-01T23:59:59.000Z

306

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...annual time-series data on national...from fossil fuel combustion and industrial processes...national-level combustion of solid, liquid...oxidation of nonfuel hydrocarbons; and fuel from...renewables, mainly as heat from biomass...is evident in two data sets (Materials...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

307

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase  

E-Print Network [OSTI]

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

308

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Innovations for Existing Plants Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. This work includes technology, benefits, and current situation and trends analyses related to CO2 emissions control. Systems analyses and economic modeling of potential new processes are crucial to providing sound guidance to R&D efforts. Since the majority of new CO2 capture technologies are still at a bench scale level of development, a conceptual design is first generated with emphasis on mass and energy balances. Based on available data and/or engineering estimates, these systems are optimized, and "what-if" scenarios are evaluated to identify barriers to deployment and help the process developers establish system performance targets. Reports that have been generated describing systems analyses in support of carbon capture efforts are shown in the table below.

309

CO2-Emissionszertifikate - Preismodellierung und Derivatebewertung.  

E-Print Network [OSTI]

??EU-Unternehmen mssen seit 2005 entsprechend ihrem CO2-Aussto gengend Emissionszertifikate einreichen. Da die Zertifikate frei handelbar sind, stellt sich ihnen CO2 als ein zustzlicher Produktionsfaktor mit (more)

Wagner, Michael W.

2007-01-01T23:59:59.000Z

310

Engineered yeast for enhanced CO2 mineralization  

E-Print Network [OSTI]

In this work, a biologically catalysed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was ...

Barbero, Roberto Juan

2013-01-01T23:59:59.000Z

311

QGESS: CO2 Impurity Design Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10. Shah, Minish. Capturing CO2 from Oxy-Fuel Combustion Flue Gas. Cottbus, Germany : Praxair Inc., 2005. 11. Spitznogle, Gary O. CO2 Impurity Specification at AEP Mountaineer....

312

Legal Implications of CO2 Ocean Storage  

E-Print Network [OSTI]

, ocean currents may prevent stagnation or accumulatioLegal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy #12;Introduction Ocean sequestration of CO2, a potentially significant technique to be used

313

CO2 please | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 please CO2 please ORNL researchers look to carbon dioxide as a more environmentally friendly refrigerant gas In an indoor research area, Brian Fricke preps display cases for...

314

CO2 laser frequency multiplication  

SciTech Connect (OSTI)

The duration of the mode-locked CO(2) laser pulses was measured to be 0.9 + or - nsec by the technique of (second harmonic) autocorrelation. Knowing the pulse duration, the spot size, and the harmonic conversion efficiency, a detailed fit of experiment to theory gave an estimate of the nonlinear coefficient of AgGaSe(2). d36 = 31 + or - V(1), in agreement with the most accurate literature values. A number of experiments were made with longer pulse trains in which the highest harmonic energy conversion reached 78%. The damage threshold was measured and it turned out to be related much more strongly to fluence than intensity. The shorter pulse trains had peak intensities of close to 300 MW 1/cm squared whereas the longer trains (3 usec) had intensities up to 40 MW 1/cm squared.

Not Available

1992-03-01T23:59:59.000Z

315

Short-term improvements in public health from global-climate policies on fossil-fuel combustion: an interim report  

Science Journals Connector (OSTI)

SummaryBackground Most public-health assessments of climate-control policies have focused on long-term impacts of global change. Our interdisciplinary working group assesses likely short-term impacts on public health. Methods We combined models of energy consumption, carbon emissions, and associated atmospheric particulate-matter (PM) concentration under two different forecasts: business-as-usual (BAU); and a hypothetical climate-policy scenario, where developed and developing countries undertake significant reductions in carbon emissions. Findings We predict that by 2020, 700?000 avoidable deaths (90% CI 3850001034000) will occur annually as a result of additional PM exposure under the BAU forecasts when compared with the climate-policy scenario. From 2000 to 2020, the cumulative impact on public health related to the difference in PM exposure could total 8 million deaths globally (90% CI 4.411.9 million). In the USA alone, the avoidable number of annual deaths from PM exposure in 2020 (without climate-change-control policy) would equal in magnitude deaths associated with human immunodeficiency diseases or all liver diseases in 1995. Interpretation The mortality estimates are indicative of the magnitude of the likely health benefits of the climate-policy scenario examined and are not precise predictions of avoidable death. While characterised by considerable uncertainty, the short-term public-health impacts of reduced PM exposures associated with greenhouse-gas reductions are likely to be substantial even under the most conservative set of assumptions.

Devra Lee Davis

1997-01-01T23:59:59.000Z

316

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect (OSTI)

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

317

Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels  

Science Journals Connector (OSTI)

Fresh pinewood blocks were submerged in sulfate and iron(II) containing media, inoculated with bacterial consortia isolated from seawater, aiming to simulate the seabed conditions of the Vasa shipwreck (1628). The consortia contained erosion (EB) and sulfate-reducing bacteria (SRB). Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy and scanning X-ray spectromicroscopy images showed that organic sulfur, mainly thiols (R-SH), had accumulated in the lignin-rich middle lamella in EB-degraded parts of the wood. The sulfur content in the wood increased more than 10 times in 2 years. In another series with active inoculums from marine archaeological wood, the sulfur XANES spectra showed, after 4 years of anaerobic treatment, considerable amounts also of inorganic iron sulfides, Fe1?xS, which oxidized at atmospheric exposure. A sediment sample from the Vasa's seabed was also rich in iron sulfides, including pyrite, FeS2. X-ray fluorescence mappings of sulfur and phosphorous distributions indicate that scavenging SRB penetration, producing hydrogen sulfide in situ, is restricted to EB-degraded parts of the wood structure. The sulfur isotope depletion of 34S from ?34S=21 in marine sulfate to ?34S=6 and 1.8 for fractions of reduced sulfur and sulfate separated from a Vasa wood sample, respectively, suggests bacterial transformation. A fuller understanding of the routes of sulfur accumulation, as reactive iron sulfides and as organic sulfur, has important implications for improving conservation methods of marine archaeological wood. Moreover, the biogenic accumulation of organically bound sulfur, specifically in lignin-rich parts of waterlogged wood, has wider geochemical significance for fossil fuels of marine origin, as lignin-rich humic matter is important for the diagenetic formation of kerogens from anoxic marine sediments.

Yvonne Fors; Thomas Nilsson; Emiliana Damian Risberg; Magnus Sandstrm; Peter Torssander

2008-01-01T23:59:59.000Z

318

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network [OSTI]

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

319

Steam Reactivation and Separation of Limestone Sorbents for High Temperature Post-combustion CO2 Capture from Flue Gas.  

E-Print Network [OSTI]

?? Increasing global population and demand for energy has raised concerns of excessive anthropogenic greenhouse gas emissions from consumption of fossil fuels. Coal, in particular, (more)

Wang, Alan Yao

2012-01-01T23:59:59.000Z

320

Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO2 transport & storage cost curves  

SciTech Connect (OSTI)

The United States and China are the two largest emitters of greenhouse gases in the world and their projected continued growth and reliance on fossil fuels, especially coal, make them strong candidates for CCS. Previous work has revealed that both nations have over 1600 large electric utility and other industrial point CO2 sources as well as very large CO2 storage resources on the order of 2,000 billion metric tons (Gt) of onshore storage capacity. In each case, the vast majority of this capacity is found in deep saline formations. In both the USA and China, candidate storage reservoirs are likely to be accessible by most sources with over 80% of these large industrial CO2 sources having a CO2 storage option within just 80 km. This suggests a strong potential for CCS deployment as a meaningful option to efforts to reduce CO2 emissions from these large, vibrant economies. However, while the USA and China possess many similarities with regards to the potential value that CCS might provide, including the range of costs at which CCS may be available to most large CO2 sources in each nation, there are a number of more subtle differences that may help us to understand the ways in which CCS deployment may differ between these two countries in order for the USA and China to work together - and in step with the rest of the world - to most efficiently reduce greenhouse gas emissions. This paper details the first ever analysis of CCS deployment costs in these two countries based on methodologically comparable CO2 source and sink inventories, economic analysis, geospatial source-sink matching and cost curve modeling. This type of analysis provides a valuable insight into the degree to which early and sustained opportunities for climate change mitigation via commercial-scale CCS are available to the two countries, and could facilitate greater collaboration in areas where those opportunities overlap.

Dahowski, Robert T.; Davidson, Casie L.; Dooley, James J.

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives  

Science Journals Connector (OSTI)

This study examines the primary energy consumption and energy-related CO2 emissions in Argentina, Brazil, Colombia, Mexico and Venezuela during the period 19902006. It also reviews important reforms in the energy sector of these countries as well as the promotion of energy efficiency (EE) and renewable energy sources (RES). Using a decomposition analysis, results indicate that even though significant reductions in energy intensity have been achieved in Colombia, Mexico and in a lesser extent in Brazil and Argentina, the reduction of CO2 emissions in these countries has not been significant due to an increased dependence on fossil fuels in their energy mix. Although the Latin American region has an important experience in the promotion of EE programs and renewable sources, the energy agenda of the examined countries focused mostly on the energy reforms during the analyzed period. The policy review suggests that further governmental support and strong public policies towards a more sustainable energy path are required to encourage a low carbon future in the region.

Claudia Sheinbaum; Belizza J. Ruz; Leticia Ozawa

2011-01-01T23:59:59.000Z

322

Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage  

Science Journals Connector (OSTI)

Colorado and Wyoming ... At the end of a CO2 flood, essentially all of the CO2 that is originally purchased is stored in the reservoir when the operator closes the field at pressure. ... Under special conditions, such as gravity-stable CO2 flooding, the CO2-EOR process can store considerably more CO2 than the carbon content of the oil (Figure 7). ...

Michael L. Godec; Vello A. Kuuskraa; Phil Dipietro

2013-02-07T23:59:59.000Z

323

Couplings between changes in the climate system and biogeochemistry  

E-Print Network [OSTI]

of fossil fuel CO 2 by marine calcium carbonate. In: Theof fossil fuel CO 2 neutralization by marine CaCO 3 . Globalby marine plants (e.g. , Berner, 1998). Burning fossil fuels

Canada, Kenneth L. Denman

2008-01-01T23:59:59.000Z

324

A Novel CO2 Separation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel CO Novel CO 2 Separation System Robert J. Copeland (copeland@tda.com 303-940-2323) Gokhan Alptekin (galtpekin@tda.com 303 940-2349) Mike Cesario (czar@tda.com 303-940-2336) Yevgenia Gershanovich (ygershan@tda.com 303-940-2346) TDA Research, Inc. 12345 West 52 nd Avenue Wheat Ridge, Colorado 80033-1917 Project Summary NEED Concern over global climate change has led to a need to reduce CO 2 emissions from power plants. Unfortunately, current CO 2 capture processes reduce the efficiency with which fuel can be converted to electricity by 9-37%, and CO 2 capture costs can exceed $70 per tonne 1 of CO 2 (Herzog, Drake, and Adams 1997). OBJECTIVE To generate electricity with little reduction in conversion efficiency while emitting little or no CO 2 to the atmosphere, TDA Research, Inc. (TDA) is developing a Novel CO

325

CO2 Sequestration in Basalt Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

326

Surface Condensation of CO2 onto Kaolinite. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Condensation of CO2 onto Kaolinite. Surface Condensation of CO2 onto Kaolinite. Abstract: The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto...

327

Global tectonics and fossil fuel  

Science Journals Connector (OSTI)

... sediments, geosyn-clines and orogeny (Curray), geo-chemical formation of oil (Erdman), geothermal gradients, heat flow, and hydrocarbon recovery (Klemme), and the distribution and geological ... Petroleum Geologists.

R. C. Selley

1975-07-17T23:59:59.000Z

328

Fossil Fuel Reserves Versus Consumption  

Science Journals Connector (OSTI)

In Table 2.1 of Chapter 2, data are presented which reveal that the U.S.s known and recoverable reserves of petroleum are about 22.5 billion ... 2.2 percent of the known and recoverable reserves of the world. In...

Wendell H. Wiser

2000-01-01T23:59:59.000Z

329

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

330

Modeling of CO2 storage in aquifers  

E-Print Network [OSTI]

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an...

santos,,,

331

ENVIRONMENTAL ASSESSMENT OF GEOLOGIC STORAGE OF CO2 Jason J. Heinrich, Howard J. Herzog, David M. Reiner  

E-Print Network [OSTI]

into petroleum reservoirs for Enhanced Oil Recovery (EOR) since the 1970's. By 2000, there were a total of 84 of reducing CO2 emissions. The storage of CO2 in underground geologic reservoirs is one such idea that employs techniques developed for oil and gas production and transmission. For example, CO2 has been injected

332

Microsoft Word - Improving_CO2_ARBReport- FINAL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Carbon Dioxide Emission Estimates from the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Prepared for the California Air Resources Board and the California Environmental Protection Agency Prepared by: Stephane de la Rue du Can Tom Wenzel Lynn Price Environmental Energy Technologies Division Lawrence Berkeley National Laboratory October, 2008 Contract #05-310 "Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California" and augmentation to contract number 05-310 "Spatial disaggregated estimate of energy-related carbon dioxide for California" Acknowledgments This work was supported by the California Air Resources Board through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to

333

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

334

CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning  

Science Journals Connector (OSTI)

...produced by burning of fossil fuels is readily absorbed by...maintain appropriate air saturation and to promote...were placed in the drug solution for 30 min, and then...effect compared with pollution caused by oxazepam...

2014-01-01T23:59:59.000Z

335

Social cost of CO2 abatement from energy efficiency and solar power in the United States  

Science Journals Connector (OSTI)

Frequently cited empirical analyses ask whether we should make the transition from reliance on fossil fuels to reduce greenhouse gas emissions, and conclude that the transition is too costly so we should, inst...

Darwin C. Hall

1992-01-01T23:59:59.000Z

336

Outsourcing CO2 within China  

Science Journals Connector (OSTI)

...international import and export matrices for China were also...proportion as China's total exports. We make...international import ma-trices...gigatonne gap in China's carbon...Shanxi Domes c export Domes c import Fig. S4...mining 3 Petroleum and gas 4...

Kuishuang Feng; Steven J. Davis; Laixiang Sun; Xin Li; Dabo Guan; Weidong Liu; Zhu Liu; Klaus Hubacek

2013-01-01T23:59:59.000Z

337

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...secondary fuels (e.g., diesel, gasoline, electricity, etc.), which...Warming and Energy Policy , Free-market approaches to controlling...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

338

Sequestration of CO2 by Concrete Carbonation  

Science Journals Connector (OSTI)

Sequestration of CO2 by Concrete Carbonation ... Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. ... This work attempts to advance the knowledge of the carbon footprint of cement. ...

Isabel Galan; Carmen Andrade; Pedro Mora; Miguel A. Sanjuan

2010-03-12T23:59:59.000Z

339

Pressure Swing Absorption Device and Process for Separating CO2 from Shifted Syngas and its Capture for Subsequent Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Swing Absorption Device and Pressure Swing Absorption Device and Process for Separating CO 2 from Shifted Syngas and its Capture for Subsequent Storage Background Pulverized coal-fired power plants provide more than 50 percent of electricity needs while accounting for a third of the total carbon dioxide (CO 2 ) emissions in the United States. However, capturing CO 2 from the flue gas stream in coal-fired power plants using current commercial CO 2 capture technology could consume up

340

Absorption of 9.6-?m CO2 laser radiation by CO2 at elevated temperatures  

Science Journals Connector (OSTI)

Absorption of 9.6-?m CO2 laser radiation by CO2 at temperatures between 296 and 625 K has been measured at a pressure of 200 Torr. Experimental results for the...

Robinson, A M

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Study of CO 2 Mobility Control in Heterogeneous Media Using CO 2 Thickening Agents  

E-Print Network [OSTI]

CO 2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO 2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

Al Yousef, Zuhair

2012-10-19T23:59:59.000Z

342

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...World Energy Council. 41 World Energy Council.2009 Survey of energy resources interim update 2009. London, UK: World Energy Council. 42 Haszeldine, R. S...CO2 emissions, CO2 removal and solar radiation management. | We use...

2012-01-01T23:59:59.000Z

343

If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?  

Science Journals Connector (OSTI)

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall ...

Andrew H. MacDougall; Michael Eby; Andrew J. Weaver

2013-12-01T23:59:59.000Z

344

NETL: IEP – Oxy-Combustion CO2 Emissions Control - CANMET CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control CANMET CO2 Consortium-O2/CO2 Recycle Combustion Project No.: IEA-CANMET-CO2 (International Agreement) Photograph of CANMET's Vertical Combustor Research Facility. Photograph of CANMET’s Vertical Combustor Research Facility. The CANMET carbon dioxide (CO2) consortium will conduct research to further the development of oxy-combustion for retrofit to coal-fired power plants. Research activities include: (1) modeling of an advanced, supercritical pressure oxy-coal plant, including an analysis of the impact of oxygen (O2) purity and O2 partial enrichment, overall process performance, and cost; (2) testing of pilot-scale CO2 capture and compression; (3) investigating CO2 phase change at liquid and supercritical states in gas mixtures

345

NETL: NATCARB - CO2 Storage Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

346

Vegetation Response to CO2 and Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vegetation Response to CO2 and Climate Vegetation Response to CO2 and Climate Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) TDE Model Intercomparison Project Data Archive Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) FACE (Free-Air CO2 Enrichment) Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001), NDP-078A | PDF Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000), CDIAC-129 Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994), CDIAC-70 A Database of Herbaceous Vegetation Responses to Elevated

347

Optimization of Mineral Activation for CO2 sequestration Hui X. Ou, McNair Scholar, Pennsylvania State University  

E-Print Network [OSTI]

. Introduction Fossil fuels are formed in the earth from the plant or animal remains; include natural gas of expanding use of fossil fuels for energy, has risen from pre-industrial levels of 280 parts per million (ppm the efficiency of primary energy conversion; (2) to substitute lower-carbon or carbon-free energy sources; and (3

Omiecinski, Curtis

348

Kinetic Analysis of CO2 Gasification of Petroleum Coke at High Pressures  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of ... ...

Maryam Malekshahian; Josephine M. Hill

2011-08-10T23:59:59.000Z

349

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network [OSTI]

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

Akinnikawe, Oyewande

2012-10-19T23:59:59.000Z

350

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both  

E-Print Network [OSTI]

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model

Bushman, Frederic

351

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions November 16, 2011 - 12:00pm Addthis Washington, DC - Geologic capacity exists to permanently store hundreds of years of regional carbon dioxide (CO2) emissions in nine states stretching from Indiana to New Jersey, according to injection field tests conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP). MRCSP's just-released Phase II final report indicates the region has likely total storage of 245.5 billion metric tons of CO2, mostly in deep saline rock formations, a large capacity compared to present day emissions. While distributed sources such as agriculture, transportation, and home heating account for a significant amount of CO2 emissions in the MRCSP

352

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Title Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6196E Year of Publication 2012 Authors Satish, Usha, Mark J. Mendell, Krishnamurthy Shekhar, Toshifumi Hotchi, Douglas P. Sullivan, Siegfried Streufert, and William J. Fisk Journal Environmental Health Perspectives Volume 120 Issue 12 Pagination 1671-1677 Date Published 09/20/2012 Keywords carbon dioxide, cognition, Decision Making, human performance, indoor environmental quality, ventilation Abstract Background - Associations of higher indoor carbon dioxide (CO2) concentrations with impaired

353

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

354

Microsoft Word - TURBO EXPO CO2 draft  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAN TURBO MAN TURBO CO2 Compression Challenges presented on May 15, 2007 at the ASME Turbo Expo, Montreal, CO2 Compression Panel By Pierre L. Bovon, MAN TURBO Calgary (pierre.bovon@ca.manturbo.com, tel. +403 233 7151) And Dr. Rolf Habel, MAN TURBO Berlin (rolf.habel@de.manturbo.com, tel. +49 304 301 2224) CO2 has been used for a very long time, for instance in the food industry, and most applications have required it to be compressed. For Sequestration or Enhanced Oil Recovery, the traditional approach to CO2 compression has been to use high-speed reciprocating compressors. The main reasons are: - Flexibility with regards to pressure ratio, and capacity (if equipped with variable speed drive or valve unloaders). - Short delivery times, since many recip. packagers dispose of a selection of frames

355

081001 CA CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

356

CO2 Europipe | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » CO2 Europipe Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CO2 Europipe Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: www.co2europipe.eu/ Equivalent URI: cleanenergysolutions.org/content/co2-europipe Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Emissions Mitigation Scheme,Emissions Standards,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

357

NETL: NATCARB - CO2 Stationary Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary Sources Stationary Sources NATCARB CO2 Stationary Sources CO2 Stationary Source Emission Estimation Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) employed carbon dioxide (CO2) emissions estimate methodologies that are based on the most readily available representative data for that particular industry type within the respective partnership area. Carbon dioxide emissions data provided by databases (for example, eGRID, IEA GHG, or NATCARB) were the first choice for all of the RCSPs, both for identifying major CO2 stationary sources and for providing reliable emission estimations. Databases are considered to contain reliable and accurate data obtained

358

co2-transport | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools and Data Baseline Studies Quality Guidelines (QGESS) About Energy Analysis FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of...

359

Enhanced CO2 Gas Storage in Coal  

Science Journals Connector (OSTI)

Greenhouse gas (GHG) such as carbon dioxide (CO2) is largely believed to be a primary contributor to global warming. ... Four coals of various rank exploited from four main coal seams in China were tested. ...

Shu-Qing Hao; Sungho Kim; Yong Qin; Xue-Hai Fu

2013-12-05T23:59:59.000Z

360

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

362

Ethylene mass flow measurements with an automatic CO2 laser long-path absorption system  

Science Journals Connector (OSTI)

A computer controlled CO2 laser long-path absorption system has been used in a field experiment to measure the total emission of ethylene from a petrochemical factory. The...

Persson, U; Johansson, J; Marthinsson, B; Eng, S T

1982-01-01T23:59:59.000Z

363

Airsteam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction  

Science Journals Connector (OSTI)

Abstract Significance of decarbonized energy production in the context of a foreseeable hydrogen economy has called for the need of extensive research in biomass gasification-carbon dioxide capture technique. The feasibility of calcium oxide as a sorbent for CO2 in syngas is studied for airsteam fluidized bed (FB) gasification through a reaction kinetic modeling approach. Arrhenius rate equations are employed for primary and secondary pyrolysis, gasification and carbonation reactions. Devolatilization product yields are predicted using available correlations for FB gasification and cracking of tar is incorporated. Parametric performance analysis is carried out highlighting the significance of equivalence ratio (ER), gasification temperature, steam to biomass ratio (SBR) and sorbent to biomass ratio (SOBR). The effects of various gasifying media on H2 concentration and performance indicators such as heating value and efficiencies are analyzed. The simulation results are validated with the reported experimental results. The kinetic study reveals that airsteam gasification significantly reduces the unreacted steam but at a lower H2 concentration than steam gasification. A maximum of 53% hydrogen rich gas mixture is predicted at ER = 0.25, SBR = 1.5, SOBR = 2.7 and 1000 K. Against fossil fuel expended steam gasification, pure oxygen gasification is suggested by the study.

C.C. Sreejith; C. Muraleedharan; P. Arun

2015-01-01T23:59:59.000Z

364

Development of Novel CO2 Adsorbents for Capture of CO2 from Flue...  

Office of Scientific and Technical Information (OSTI)

Bloomfield Avenue, University of Hartford, West Hartford, Connecticut 06117-1599 ABSTRACT Carbon Sequestration, the capturing and storing of carbon dioxide (CO 2 ) emissions...

365

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

366

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process) and KS-1 absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000MW Power Station and confirmed successful, long term demonstration following ?5000hours of operation in 200607 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

367

Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes  

Science Journals Connector (OSTI)

Concentrating solar thermal (CST) technology has been commercially proven in utility-scale power plants that have been in operation since the 1980s. CST uses reflecting surfaces to focus solar energy onto collectors, generating extreme heat than can be used for a variety of purposes. The current focus of CST is large-scale electrical power generation. However, new applications, such as solar fuels, are quickly gaining momentum. One key shortcoming of CST technology is its sensitivity to disruptions in sunlight availability over time. CST systems require either thermal energy storage or backup systems to operate during heavy cloud periods or at night. On the other hand, fossil-based energy systems have high availability and reliability, but they generate substantial CO2 emissions compared to equivalent CST processes. A novel solution would combine the benefits of CST technology and of fossil-fueled energy systems. Such a solar-fossil hybrid system would guarantee energy availability in the absence of sunlight or stored solar energy. The addition of carbon capture to these systems could reduce their carbon intensity to almost zero. This paper introduces three important solar-fossil hybrid energy systems: (1) Integrated Solar Combined Cycle (ISCC), (2) Solar-assisted post-combustion capture (SAPCAP), and (3) Solar gasification with CO2 capture. These novel concepts have great potential to overcome the inherent limitations of their component technologies and to achieve superior greenhouse gas mitigation techno-economic performance in large-scale applications. The paper describes the features of the three solar-fossil hybrid systems described earlier, discusses its advantages and disadvantages, and provides examples of applications. The goal of this manuscript is to introduce experts in the CCS and CST fields to the opportunities of integration between these technologies and their potential benefits.

Guillermo Ordorica-Garcia; and Alfonso Vidal Delgado; Aranzazu Fernandez Garcia

2011-01-01T23:59:59.000Z

368

10 MW Supercritical CO2 Turbine Test  

SciTech Connect (OSTI)

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650C in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

369

NETL: Carbon Storage - CO2 Utilization Focus Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Utilization CO2 Utilization Carbon Storage CO2 Utilization Focus Area Carbon dioxide (CO2) utilization efforts focus on pathways and novel approaches for reducing CO2 emissions by developing beneficial uses for the CO2 that will mitigate CO2 emissions in areas where geologic storage may not be an optimal solution. CO2 can be used in applications that could generate significant benefits. It is possible to develop alternatives that can use captured CO2 or convert it to useful products such chemicals, cements, or plastics. Revenue generated from the utilized CO2 could also offset a portion of the CO2 capture cost. Processes or concepts must take into account the life cycle of the process to ensure that additional CO2 is not produced beyond what is already being removed from or going into the atmosphere. Furthermore, while the utilization of CO2 has some potential to reduce greenhouse gas emissions to the atmosphere, CO2 has certain disadvantages as a chemical reactant. Carbon dioxide is rather inert and non-reactive. This inertness is the reason why CO2 has broad industrial and technical applications. Each potential use of CO2 has an energy requirement that needs to be determined; and the CO2 produced to create the energy for the specific utilization process must not exceed the CO2 utilized.

370

Geologic CO2 sequestration inhibits microbial growth | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

371

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

372

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

373

Reaction of Water-Saturated Supercritical CO2 with Forsterite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

374

numerical methodology to model and monitor co2 sequestration  

E-Print Network [OSTI]

CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths...

santos,,,

375

Numerical Simulation of CO2 Sequestration in Natural CO2 Reservoirs on the Colorado Plateau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of CO Simulation of CO 2 Sequestration in Natural CO 2 Reservoirs on the Colorado Plateau Stephen P. White (S.White@irl.cri.nz, (64) 4 5690000) Graham J. Weir (G.Weir@irl.cri.nz, (64) 4 5690000) Warwick M. Kissling (W.Kissling@irl.cri.nz, (64) 4 5690000) Industrial Research Ltd. P.O. Box 31310 Lower Hutt, New Zealand Abstract This paper outlines the proposed research and summarizes pre-project work that forms a basis for a new research program on CO 2 sequestration in saline aquifers. The pre-project work considers storage and disposal of CO 2 several kilometers beneath the surface in generic aquifers and demonstrates the use of reactive chemical transport modeling to simulate mineral sequestration of CO 2. The current research project applies these techniques to particular saline

376

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test  

Science Journals Connector (OSTI)

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test ... This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. ...

Changbing Yang; Susan D. Hovorka; Jesus Delgado-Alonso; Patrick J. Mickler; Ramn H. Trevio; Straun Phillips

2014-11-10T23:59:59.000Z

377

Aquifer Management for CO2 Sequestration  

E-Print Network [OSTI]

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

378

Northern California CO2 Reduction Project  

SciTech Connect (OSTI)

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

379

Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology  

Science Journals Connector (OSTI)

This study aimed to identify the optimal techno-economic configuration of CO2 capture at steam methane reforming facilities using currently available technologies by means of process simulations. Results indicate that the optimal system is CO2 capture with ADIP-X located between the watergas shift and pressure swing adsorption units. Process simulations of this system configuration showed a CO2 emission reduction of 60% at 41/t CO2 avoidance. This is at the lower end of the range reported in open literature for CO2 capture at refineries (2682/t CO2) and below the avoidance costs for CO2 capture at natural gas-fired power plants (4493/t CO2). CO2 avoidance costs are dominated by the natural gas consumption, responsible for up to 66% of total costs. Using imported steam and electricity can reduce CO2 avoidance costs by 45%. Addition of small amounts of piperazine to aqueous MDEA solutions results in up to 70% smaller absorbers or 10% lower reboiler heat duty. Optimising the whole capture process instead of individual units resulted in lower piperazine concentrations than the common industrial practice (3mass% vs. 5mass%). Finally, keeping the solvent rate constant when operating the capture unit below its design load resulted in a lower specific energy for CO2 capture than when the solvent rate was downscaled with the syngas flow.

J.C. Meerman; E.S. Hamborg; T. van Keulen; A. Ramrez; W.C. Turkenburg; A.P.C. Faaij

2012-01-01T23:59:59.000Z

380

COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Brinkman, K.; Gray, J.

2012-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Synthesis, characterization and performance of single-component CO2-binding organic liquids (CO2BOL) for post combustion CO2 capture  

SciTech Connect (OSTI)

Carbon dioxide (CO2) emission to the atmosphere will increase significantly with the shift to coal powered plants for energy generation. This increase in CO2 emission will contribute to climate change. There is need to capture and sequester large amounts of CO2 emitted from these coal power plants in order to mitigate the environmental effects. Here we report the synthesis, characterization and system performance of multiple third generation CO2 binding organic liquids (CO2BOLs) as a solvent system for post combustion gas capture. Alkanolguanidines and alkanolamidines are single component CO2BOLs that reversibly bind CO2 chemically as liquid zwitterionic amidinium / guanidinium alkylcarbonates. Three different alkanolguanidines and alkanolamidines were synthesized and studied for CO2 capacity and binding energetics. Solvent performance of these three CO2BOLs was evaluated by batch-wise CO2 uptake and release over multiple cycles. Synthesis of CO2BOLs, characterization, CO2 uptake, selectivity towards CO2 as well as solvent tolerance to water will be discussed.

Koech, Phillip K.; Heldebrant, David J.; Rainbolt, James E.; Zheng, Feng; Smurthwaite, Tricia D.

2010-03-31T23:59:59.000Z

382

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network [OSTI]

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

383

A 40-million-year history of atmospheric CO2  

Science Journals Connector (OSTI)

...40-million-year history of atmospheric CO2 Yi Ge Zhang 1 Mark Pagani 1 Zhonghui Liu...Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple...growth conditions that potentially bias CO2 results. In this study, we present a pCO2...

2013-01-01T23:59:59.000Z

384

A Vehicular Wireless Sensor Network for CO2 Monitoring  

E-Print Network [OSTI]

the concentration of carbon dioxide (CO2) gas in areas of interest. The reported data are sent to a server, which the concentration of carbon dioxide (CO2) gas in areas of interest. CO2 gas is a critical index of air qualityA Vehicular Wireless Sensor Network for CO2 Monitoring Shu-Chiung Hu1, You-Chiun Wang1, Chiuan

Tseng, Yu-Chee

385

Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions  

Science Journals Connector (OSTI)

...refrigerants such as hydrocarbons (GWP combustion of fossil fuels and biomass...solar radiation, which heats the surrounding air...2005 Supplement Report Data ( UNEP , Geneva, Switzerland...NOAA's Natl Climatic Data Center , Washington...

Mario Molina; Durwood Zaelke; K. Madhava Sarma; Stephen O. Andersen; Veerabhadran Ramanathan; Donald Kaniaru

2009-01-01T23:59:59.000Z

386

Feasibility of a Perfluorocarbon tracer based network to support Monitoring, Verification, and Accounting of Sequestered CO2  

Science Journals Connector (OSTI)

Carbon capture and sequestration (CCS) will act as a bridging technology necessary to facilitate a transition from fossil fuels to a sustainable energy based economy. The Department of Energy (DOE) target leak rate for sequestration reservoirs is 1% of ...

Thomas B. Watson; Terrence Sullivan

2012-01-03T23:59:59.000Z

387

Rapid growth in CO2 emissions after the 2008-2009 global financial crisis  

SciTech Connect (OSTI)

Global carbon dioxide emissions from fossil-fuel combustion and cement production grew 5.9% in 2010, surpassed 9 Pg of carbon (Pg C) for the first time, and more than offset the 1.4% decrease in 2009. The impact of the 2008 2009 global financial crisis (GFC) on emissions has been short-lived owing to strong emissions growth in emerging economies, a return to emissions growth in developed economies, and an increase in the fossil-fuel intensity of the world economy.

Peters, Glen P. [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Marland, Gregg [Appalachian State University; Le Quere, Corinne [University of East Anglia, Norwich, United Kingdom; Boden, Thomas A [ORNL; Canadell, Josep [CSIRO Marine and Atmospheric Research; Raupach, Michael [CSIRO Marine and Atmospheric Research

2011-01-01T23:59:59.000Z

388

Novel Solvent System for CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

389

CO2 Laser CVD of Disilane  

Science Journals Connector (OSTI)

Amorphous silicon films were deposited by a CO2 laser CVD (chemical vapor deposition) method using disilane gas. With this gas, the films were deposited reasonably fast at relatively low substrate temperatures of 350C or above. Unlike monosilane, photo-induced effects in the gas phase following light absorption were negligible in deposition processes, and only the pyrolytic process taking place at the laser-heated substrate was important. Some of the physical properties of deposited films were described.

Takehiko Iwanaga; Mitsugu Hanabusa

1984-01-01T23:59:59.000Z

390

Continuous CO2 extractor and methods  

SciTech Connect (OSTI)

The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

None listed

2010-06-15T23:59:59.000Z

391

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network [OSTI]

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

392

The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity  

E-Print Network [OSTI]

three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N atmospheric carbon dioxide (CO2) concentra- tions, increasing rates of nitrogen (N) deposition, and decliningThe response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O

Minnesota, University of

393

Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media  

E-Print Network [OSTI]

result, early gas breakthrough has been a very common problem in CO2-related projects, reducing the overall sweep efficiency of CO2 flooding. This research aims at improving the CO2 flood efficiency using cross-linked gel conformance control and CO2...

Cai, Shuzong

2011-10-21T23:59:59.000Z

394

Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers  

SciTech Connect (OSTI)

In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

2014-08-01T23:59:59.000Z

395

Inventory of non-CO2 GHG and first estimates of emissions of New Gases in Russia  

Science Journals Connector (OSTI)

In the First (1995) and the Second (1998) Russian National Communications to the UNFCCC, estimates of CO2 and non-CO2 emissions for the 1990 and 1994 were presented. Total emissions of CH4 decreased from 557 Mt C...

A. O. Kokorin; A. I. Nakhutin

2000-01-01T23:59:59.000Z

396

On Leakage from Geologic Storage Reservoirs of CO2  

SciTech Connect (OSTI)

Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

Pruess, Karsten

2006-02-14T23:59:59.000Z

397

Research Projects to Convert Captured CO2 Emissions to Useful Products |  

Broader source: Energy.gov (indexed) [DOE]

Projects to Convert Captured CO2 Emissions to Useful Projects to Convert Captured CO2 Emissions to Useful Products Research Projects to Convert Captured CO2 Emissions to Useful Products July 6, 2010 - 1:00pm Addthis Washington, DC - Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy (DOE). The projects are located in North Carolina, New Jersey, Massachusetts, Rhode Island, Georgia, and Quebec, Canada (through collaboration with a company based in Lexington, Ky.) and have a total value of approximately $5.9 million over two-to-three years, with $4.4 million of DOE funding and $1.5 million of non-Federal cost sharing. The work will be managed by the

398

DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Monitor and Evaluate Geologic CO2 Storage Monitor and Evaluate Geologic CO2 Storage DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage August 24, 2009 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today announced the selection of 19 projects to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. The projects' total value is approximately $35.8 million over four years, with $27.6 million of DOE funding and $8.2 million of non-Federal cost sharing. The work will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Coal is the Nation's most abundant energy resource, supplying nearly 50 percent of domestic electricity. In order for low-cost electricity from

399

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect (OSTI)

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

400

The impact of soil microorganisms on the global budget of ?18O in atmospheric CO2  

Science Journals Connector (OSTI)

...Environmental Sciences and Energy Research, Weizmann...for predicting the rate of change in atmospheric...than the uncatalyzed rate, consistent with...associated with fossil fuel burning (7.1 GtC y...forest Tallahassee Florida, USA Closed 0...temperature, C Flow rate, l min 1 Cin, ppm...

Lisa Wingate; Jrme Oge; Matthias Cuntz; Bernard Genty; Ilja Reiter; Ulli Seibt; Dan Yakir; Kadmiel Maseyk; Elise G. Pendall; Margaret M. Barbour; Behzad Mortazavi; Rgis Burlett; Philippe Peylin; John Miller; Maurizio Mencuccini; Jee H. Shim; John Hunt; John Grace

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessing the health risks of natural CO2 seeps in Italy  

Science Journals Connector (OSTI)

...continue to use fossil fuel energy sources are considering...usually be the least-cost domestic option for many countries...volcanic edifices or geothermal fields which are sparsely populated...pp 4665 4672 , Energy Procedia . 6 Desbarats...storage of carbon dioxide . Energy 32 : 1194 1201 . 13 Beaubien...

Jennifer J. Roberts; Rachel A. Wood; R. Stuart Haszeldine

2011-01-01T23:59:59.000Z

402

Natural CO2 Reservoirs on the Colorado Plateau … Candidates for CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Reservoirs on the Colorado Plateau and Southern Rocky Mountains: Candidates for CO 2 Sequestration. R. Allis (nrugs.rallis@state.ut.us; 801-537-3301) T. Chidsey (nrugs.tchidsey@state.ut.us; 801-537-3364) W. Gwynn (nrugs.wgwynn@state.ut.us; 801-537-3366) C. Morgan (nrugs.cmorgan@state.ut.us; 801-537-3370) Utah Geological Survey P.O. Box 146100 Salt Lake City, UT 84114 S. White (s.white@irl.cri.nz; 64-4-569-0000) Industrial Research Ltd. P.O. Box 31-310 Lower Hutt, New Zealand M. Adams (madams@egi.utah.edu; 801-585-7784) J. Moore (jmoore@egi.utah.edu; 801-585-6931) Energy and Geoscience Institute, 427 Wakara Way, Suite 300 Salt Lake City, UT84107 Abstract Numerous natural accumulations of CO 2 -dominant gases have been discovered as a result of

403

NETL: IEP – Post-Combustion CO2 Emissions Control - CO2 Capture from Flue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Flue Gas by Phase Transitional Absorption from Flue Gas by Phase Transitional Absorption Project No.: FG26-05NT42488 Basic Illustration of the Phase Transitional Absorption Process. Basic Illustration of the Phase Transitional Absorption Process. Hampton University researched a novel carbon dioxide (CO2) absorption concept, phase transitional absorption, that utilizes a two-part proprietary absorbent consisting of an activated agent dissolved in a solvent. Phase separation of the activated agent from the chemical solvent occurs during CO2 absorption and physical separation of the two phases exiting the absorber reduces the volume of process liquid requiring thermal regeneration. This unique aspect of phase transitional absorption also decreases the amount of energy (i.e., steam) required to liberate the CO2. If the proper liquid

404

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

405

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

406

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine

Rochelle, Gary T.

407

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine

Rochelle, Gary T.

408

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous

Rochelle, Gary T.

409

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network [OSTI]

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

410

CO2-laser gas discharges in narrow gaps  

Science Journals Connector (OSTI)

We have studied RF discharges as excitation mechanisms for distributed feedback (DFB) CO2 lasers. For CO2 laser plasmas the reduced electric fieldE/N has to be in a well-defined range. The reduced electric fields

W. Leuthard; F. K. Kneubhl; H. J. Schtzau

1989-01-01T23:59:59.000Z

411

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

2 exposure in both CO 2 -EOR and natural CO 2 reservoirs (as enhanced oil recovery (EOR) and enhanced gas recovery (2 field injections for CCS-EOR, where the water quality of

Varadharajan, C.

2013-01-01T23:59:59.000Z

412

Integrated Assessment of Energy-Options for CO2 Reduction  

Science Journals Connector (OSTI)

Energy technology options for CO2 reduction are evaluated in a process-oriented dynamic national costs minimizing LP-model of the Dutch energy system. To identify cost-effective CO2 reduction strategies two scena...

T. Kram; P. A. Okken

1989-01-01T23:59:59.000Z

413

Chemical Impact of Elevated CO2on Geothermal Energy Production...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Impact of Elevated CO2on Geothermal Energy Production Chemical Impact of Elevated CO2on Geothermal Energy Production This is a two phase project to assess the geochemical...

414

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

study heat extraction from hot porous systems by injection of cold CO 2 . * Reactive chemistry experiments for CO 2 -brine-rock are being assembled (INL). 6 | US DOE Geothermal...

415

An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels  

Science Journals Connector (OSTI)

Abstract The renewable and non-renewable exergy and CO2 costs of petroleum derived fuels produced in Brazil are evaluated using exergoeconomy to rationally distribute the exergy costs and the CO2 emitted in processes with more than one product. An iterative procedure is used to take into account the cyclic interactions of the processed fuels. The renewable and non-renewable exergy costs together with the CO2 cost provide a reasonable way to compare different fuels and can be used to assess an enormous quantity of processes that make use of petroleum derived products. The system considers Brazilian typical processes and distances: offshore oil and gas production, transportation by shuttle tankers and pipelines, and refining. It was observed that the renewable exergy cost contribution in the total exergy cost of petroleum derived fuels is negligible. On average, the refining process is responsible, for 85% of the total unit exergy cost. Total unit exergy costs of gasoline, liquefied petroleum gas, natural gas and fuel oil were found to be: 1.081MJ/MJ, 1.074MJ/MJ, 1.064MJ/MJ, 1.05MJ/MJ, respectively. The hydrotreatment process increases diesel cost from 1.038MJ/MJ to 1.11MJ/MJ in order to decrease its sulphur content. The CO2 cost reflects the extent of processing as well as the C/H ratio of the used fuel. Hence, coke followed by hydrotreated diesel have the largest CO2 cost among the fuels, 91gCO2/MJ and 79gCO2/MJ, respectively.

J.A.M. Silva; D. Flrez-Orrego; S. Oliveira Jr.

2014-01-01T23:59:59.000Z

416

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

417

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network [OSTI]

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

418

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing for simultaneous removal of CO2 and SO2. Corrosion of carbon steel in uninhibited MEA solution is increased

Rochelle, Gary T.

419

Central serotonin neurons are required for arousal to CO2  

E-Print Network [OSTI]

Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

420

Monitoring and interpreting the ocean uptake of atmospheric CO2  

Science Journals Connector (OSTI)

...interpreting the ocean uptake of atmospheric CO2 Andrew J. Watson 1 * Nicolas Metzl 2 Ute...important sink for anthropogenically produced CO2, and on time scales longer than a century they will be the main repository for the CO2 that humans are emitting. Our knowledge...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

On the scatteringgreenhouse effect of CO 2 ice clouds  

E-Print Network [OSTI]

that young Mars was warm enough to support flowing water present a continuing enigma (Squyres and Kasting 1994). Kasting (1991) showed that, owing to the effects of CO 2 condensation on temperature lapse rate the optical effects of CO 2 ­ice clouds, but remarked that because CO 2 ­ice (unlike water­ice) has very low

Pierrehumbert, Raymond

422

In situ carbonation of peridotite for CO2 storage  

Science Journals Connector (OSTI)

...reaction in 1 region can be pumped into an adjacent area to...dissolved CO 2 in convecting seawateronly ?10 4 tons of CO 2 per km 3...convection, near-surface seawater would descend one hole...dissolved CO 2 from evolving seawater along the flow path...

Peter B. Kelemen; Jrg Matter

2008-01-01T23:59:59.000Z

423

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration  

Science Journals Connector (OSTI)

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration ... Products and reaction kinetics of natural brucite carbonation are studied at room temperature and moderate pCO2. ... Carbonation of natural brucite in H2O and diluted HCl is investigated at room temperature and moderate pCO2 to explore the products mineralogy and reaction kinetics. ...

Liang Zhao; Liqin Sang; Jun Chen; Junfeng Ji; H. Henry Teng

2009-11-30T23:59:59.000Z

424

Vehicular Sensing System for CO2 Monitoring Applications  

E-Print Network [OSTI]

--We are interested in monitoring the concentration of carbon dioxide (CO2) gas in a large field such as an urban area sensor, vehicular sensing system, wireless sensor network. I. INTRODUCTION Carbon dioxide (CO2) gas has1 Vehicular Sensing System for CO2 Monitoring Applications Shu-Chiung Hu, You-Chiun Wang, Chiuan

Tseng, Yu-Chee

425

CO2 Hydrate Composite for Ocean Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 Hydrate Composite for Ocean Carbon Sequestration ... Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration. ...

Sangyong Lee; Liyuan Liang; David Riestenberg; Olivia R. West; Costas Tsouris; Eric Adams

2003-07-18T23:59:59.000Z

426

B.2 Subproject Brokate Simulating CO2 Sequestration  

E-Print Network [OSTI]

79 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 Sequestration and implement models describing the hysteresis in the context of the CO2 sequestration process. The hysteresis's law but in contrast to most Darcy's law based models it assumes the phases to be weakly compressible

Turova, Varvara

427

Mesoporous Organosilica with Amidoxime Groups for CO2 Sorption  

Science Journals Connector (OSTI)

Mesoporous Organosilica with Amidoxime Groups for CO2 Sorption ... This work reports a successful use of the aforementioned strategy for the development of ordered mesoporous organosilica (OMO) with amidoxime groups for CO2 sorption. ... The resulting series of amidoxime-containing OMO was prepared and used for CO2 sorption at low (25 C) and elevated (60, 120 C) temperatures. ...

Chamila Gunathilake; Mietek Jaroniec

2014-07-03T23:59:59.000Z

428

CO2 separation from flue gas using hollow fiber membrane contactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research on CO Research on CO 2 Separation from Flue Gas Prof. Mengxiang Fang State Key Laboratory of Clean Energy Utilization, Zhejiang University, China Global CO 2 Emissions Country CO 2 Emission (MtCO2) 1990 2003 2004 2010 USA 4,989 5,800 5,923 6,156 China 2,241 3,898 4,707 6,432 Russia 2,334 1,602 1,685 1,840 Japan 1,015 1,244 1,262 1,260 World 21,246 25,508 26,922 30,670 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case CO 2 Emission in China Year Total Coal Petroleum Natural Gas Mt CO2 Mtc % Mtc % Mtc % 1990 2,241 1,886 84.2 325 14.5 30 1.34 2003 3,898 3,117 80.0 711 18.2 70 1.80 2004 4,707 3,809 80.9 816 17.3 83 1.76 2010 6,432 5,103 79.3 1,151 17.9 178 2.76 2015 7,376 5,946 80.6 1,184 16.1 246 3.33 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case.

429

Integration of the steam cycle and CO2 capture process in a decarbonization power plant  

Science Journals Connector (OSTI)

Abstract A new integrated system with power generation and CO2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO2 removal with low energy penalty and economic cost.

Gang Xu; Yue Hu; Baoqiang Tang; Yongping Yang; Kai Zhang; Wenyi Liu

2014-01-01T23:59:59.000Z

430

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

431

CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure (Revised October 2009) CO2 Flux Estimated from Air-Sea Difference in CO2 Partial Pressure (Revised October 2009) The files in this site contain a revised (October 2009) version of the climatological mean values in 4° Latitude X 5° Longitude box areas and the distribution maps. These were originally published in: Takahashi, et al. (2009), DSR II, 56, 554-577. The data file containing annual flux data for each 4° X 5° box is located here. The data file from which this map was created, including all 12 months of data is here. This data file, in ASCII form, also contains the flux data and the intermediate values used to calculate that flux for each month. In December 2010 our colleague, R. Wanninkhof pointed out a problem with the flux data for the month of December. The file of ice coverage for December was corrupted and showed zero ice for the entire month, worldwide. This has been corrected with the estimated percent of ice and the flux recalculated. Version "c" of the data files contain this correction.

432

Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration  

SciTech Connect (OSTI)

This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

Dooley, James J.

2011-06-08T23:59:59.000Z

433

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...the geological storage capacity for CO2. For the SRM...reduction in incoming solar radiation that fully...3. Results (a) Solar radiation management...scale set by the heat capacity in the model. For s2030srm2015...reduction in incoming solar radiation in the first...

2012-01-01T23:59:59.000Z

434

CO2 Mineral Sequestration Studies in US  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral Sequestration Studies in US Mineral Sequestration Studies in US Philip Goldberg 1 , Zhong-Ying Chen 2 , William O'Connor 3 , Richard Walters 3 , and Hans Ziock 4 1 National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, goldberg@netl.doe.gov, (412)386-5806 2 Science Applications International Corporation, 1710 Goodridge Dr. McLean, VA, zhong- ying.chen@saic.com, (703)676-7328 3 Albany Research Center, Albany, OR oconner@arc.doe.gov, walters@alrc.doe, (541)967-5834 4 Los Alamos National Laboratory, Los Alamos, NM, ksl@lanl.gov, ziock@lanl.gov, (505)667- 7265 Abstract Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO

435

CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON  

E-Print Network [OSTI]

CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON KINETIC PROCESSES OF CO2 SORPTION FOR CO2 STORAGE IN COAL SEAMS Delphine CHARRIERE1, 2 , Zbigniew POKRYSZKA1 récupération assistée du méthane requiert des informations sur les mécanismes de sorption de gaz. Dans ce

Boyer, Edmond

436

Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses  

Science Journals Connector (OSTI)

Soil CO2 levels reflect CO2 production and transport in soil and provide valuable information about soil CO2 dynamics. However, extracting information from soil CO2 profiles is often difficult because of the comp...

Shoji Hashimoto; Hikaru Komatsu

2006-02-01T23:59:59.000Z

437

Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 ''molecular basket'' adsorbents  

Science Journals Connector (OSTI)

Adsorption separation of CO2 from simulated flue gas mixtures containing CO2, O2, and N2 by using a novel CO2 ''molecular basket'' adsorbent was investigated in a flow adsorption separation system. The novel CO2 ''molecular basket'' adsorbents were developed by synthesising mesoporous molecular sieve MCM-41 and modifying it with polyethylenimine (PEI). The influence of operation conditions, including feed flow rate, temperature, feed CO2 concentration, and sweep gas flow rate, on the CO2 adsorption/desorption separation performance and CO2 breakthrough were examined. The CO2 adsorption capacity was 91.0 ml (STP)/g-PEI, which was 27 times higher than that of the MCM-41 alone. Further, the adsorbent showed separation selectivity of greater than 1000 for CO2/N2 ratio and approximately 180 for CO2/O2, which are significantly higher than those of the MCM-41, zeolites, and activated carbons. Cyclic adsorption/desorption measurements showed that the CO2 ''molecular basket'' adsorbent was stable at 75°C. However, the CO2 ''molecular basket'' adsorbent was not stable when the operation temperature was higher than 100C.

Xiaochun Xu; Chunshan Song; John M. Andresen; Bruce G. Miller; Alan W. Scaroni

2004-01-01T23:59:59.000Z

438

Photosynthetic Traits in Wheat Grown under Decreased and Increased CO2 Concentration, and after Transfer to Natural CO2 concentration  

Science Journals Connector (OSTI)

Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) ?mol mol-1. Afterwards, plants of the three variants were grown at ...

P. Ulman; J. ?atsk; J. Pospilov

2000-08-01T23:59:59.000Z

439

Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms  

E-Print Network [OSTI]

of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane; Coals; Methane and carbon dioxide adsorption; Modelling isotherms 1. Introduction CO2 is a greenhouse

Paris-Sud XI, Université de

440

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "total fossil-fuel co2" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nanoclay-Based Solid Sorbents for CO2 Capture  

Science Journals Connector (OSTI)

Nanoclay-Based Solid Sorbents for CO2 Capture ... As seen from the figure, the untreated nanoclay shows very little CO2 capture, while amine-treated nanoclays show considerably higher CO2 capture capacities, demonstrating the effectiveness of the amine treatment. ... The CO2 sorption capacity increases as the temperature is increased from 50 to 85 C, and it reaches as high as 7.5% at 85 C for the nanoclay treated with both APTMS and PEI, although the nanoclays treated with either APTMS or PEI show about 6% CO2 capture capacity. ...

Elliot A. Roth; Sushant Agarwal; Rakesh K. Gupta

2013-03-19T23:59:59.000Z

442

Potential Energy Savings and CO2 Emissions Reduction of China's Cement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Title Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Publication Type Report Year of Publication 2012 Authors Ke, Jing, Nina Zheng, David Fridley, Lynn K. Price, and Nan Zhou Date Published 06/2012 Publisher Lawrence Berkeley National Laboratory Keywords cement industry, china energy, china energy group, emission reduction, energy analysis and environmental impacts department, energy efficiency, industrial energy efficiency, Low Emission & Efficient Industry, policy studies Abstract This study analyzes current energy and carbon dioxide (CO2) emission trends in China's cement industryas the basis for modeling different levels of cement production and rates of efficiency improvement andcarbon reduction in 2011-2030. Three cement output projections are developed based on analyses ofhistorical production and physical and macroeconomic drivers. For each of these three productionprojections, energy savings and CO2 emission reduction potentials are estimated in a best practicescenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal thepotential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related directemission reductions of 3.2 to 4.4 gigatonnes in 2011-2030 under the best practice scenarios. Thecontinuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules andreduce CO2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiencyis the most important policy measure for reducing the cement industry's energy and emissions intensity,given the current state of the industry and the unlikelihood of significant carbon capture and storagebefore 2030. In addition, policies to reduce total cement production offer the most direct way ofreducing total energy consumption and CO2 emissions.

443

Spatial Disaggregation of CO2 Emissions for the State of California  

SciTech Connect (OSTI)

This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

2008-06-11T23:59:59.000Z

444

Dual-phase membrane for High temperature CO2 separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jerry Y.S. Lin Jerry Y.S. Lin Chemical Engineering Arizona State University Tempe, AZ 85287 Jerry.lin@asu.edu Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor 2 Background 3 CO 2 Capture Methods and Efficiency Improvement Coal, Natural gas, Biomass CO 2 separation Power plant CO 2 compression, conditioning for sequestration Gasification Reforming Shift CO 2 Separation Power plant Power plant Air separation N 2 /O 2 CO 2 Post- combustion H 2 /CO H 2 /CO H 2 CO 2 H 2 O/N 2 /O 2 CO 2 H 2 Pre- combustion Air N 2 O 2 or O 2 /CO 2 CO 2 Oxyfuel Combustion Air separation Air Air separation Air Air separation Air Air Air Air Air separation Air Air separation Air N 2 Air separation Air O 2 or O 2 /CO 2 N 2 Air separation Air N 2 Air O 2 or O 2 /CO 2 N 2 Air Air separation N 2 Air 4 Water-Gas-Shift Reaction and Membrane Reactor Reforming

445

ARM - Datastreams - 30co2flx60m  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flx60m flx60m Documentation Data Quality Plots Citation DOI: 10.5439/1025038 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : 30CO2FLX60M Eddy Correlation CO2 Flux Data: 60 m samples, 30-min avg Active Dates 2001.01.01 - 2013.01.27 Measurement Categories Atmospheric Carbon, Atmospheric State, Surface Properties Originating Instrument Carbon Dioxide Flux Measurement Systems (CO2FLX) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Atmospheric turbulence Lmoni CO2 flux fc_corr CO2 flux fc_wpl_h CO2 flux fc_wpl_le Sensible heat flux h Latent heat flux le CO2 concentration mean_c Atmospheric moisture

446

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

447

Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers  

SciTech Connect (OSTI)

For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against modest changes in problem parameters, and are essentially constant as long as no dissolved CO2 reaches the lower boundary of the system.

Pruess, Karsten; Zhang, Keni

2008-11-17T23:59:59.000Z

448

CO2 sorption and reaction kinetic performance of K2CO3/AC in low temperature and CO2 concentration  

Science Journals Connector (OSTI)

Abstract Reducing or removing CO2 is critical to the confined spaces such as submarines, space-crafts or aircrafts while using solid sorbents has been regarded as a promising method. In this work, K2CO3 loaded on activated carbon (K2CO3/AC) was developed as a new and regenerable sorbent for CO2 removing in confined spaces. CO2 sorption performances of K2CO3/AC were investigated under different conditions by varying the K2CO3 loadings, CO2 concentrations, H2O concentrations, CO2 sorption temperatures and water pretreatment durations as well as the purge gas flow rates. The CO2 sorption capacity and carbonation conversion of K2CO3/AC decrease with increasing temperature and increase with increasing mole ratio of H2O concentration over CO2 concentration. Sufficient water vapor pretreatment is found to be beneficial to the sorption-enhanced performance. Increasing flow rate will weaken the CO2 sorption performance. The carbonation kinetics was also investigated with the correlation between the shrinking core model and experimental data. Additionally, the sorbent is proved to be regenerable and stable during 20-cycle CO2 sorptiondesorption experiments. K2CO3/AC presents high carbonation conversion efficiency, high thermal stability, and low dependency on CO2 partial pressure. Therefore, it can be considered as a new option for CO2 removal in confined spaces.

Yafei Guo; Chuanwen Zhao; Changhai Li; Ye Wu

2015-01-01T23:59:59.000Z

449

NETL: IEP - Post-Combustion CO2 Emissions Control - CO2 Capture Membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Capture Membrane Process for Power Plant Flue Gas CO2 Capture Membrane Process for Power Plant Flue Gas Project No.: DE-NT0005313 CLICK ON IMAGE TO ENLARGE Research Triangle Institute (RTI) International is researching fluorinated polymer membranes for carbon dioxide capture. RTI's research effort includes membrane materials development, module design, and process design. RTI is pursuing the development of two hollow-fiber membrane materials. First, RTI is working with Generon to develop a membrane material constructed of polycarbonate-based polymers. Lab-scale membrane modules are being studied with simulated flue-gas mixtures with and without flue gas emission contaminants. Two larger-scale polycarbonate membrane module prototypes are being tested with a slipstream of actual flue gas from the U.S. Environmental Protection Agency's (EPA) Multipollutant

450

Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System  

SciTech Connect (OSTI)

IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATKs design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

None

2010-07-01T23:59:59.000Z

451