Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

2

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

3

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

4

35461,"AECTRA REFG & MKTG",1,152,"MOTOR GAS, OTHER FINISHED"...  

U.S. Energy Information Administration (EIA) Indexed Site

& MKTG",3,152,"MOTOR GAS, OTHER FINISHED",1803,"JACKSONVILLE, FL","FLORIDA",1,428,"GERMANY",190,0,0,,,,, 35461,"AECTRA REFG & MKTG",4,152,"MOTOR GAS, OTHER...

5

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

6

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

7

Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System  

SciTech Connect

This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N-Particle (MCNP) and In Situ Object Counting Software (ISOCS).

WESTSIK, G.A.

2001-06-06T23:59:59.000Z

8

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

9

A computer-based total productive maintenance model for electric motors  

Science Journals Connector (OSTI)

The paper describes the development of a computer-based total productive maintenance (TPM) model to improve electrical motors readiness and uptime while reducing capital overhead. The TPM model includes the consideration of reactive, periodic, and predictive practices. The input data is processed and the generated report details a set of periodic recommendations providing guidelines on recommended actions and their frequency. The details about test results indicating the current condition of the motor as well estimated reactive, periodic, and predictive maintenance cost details are presented. Based on the historic data stored in its database, the model can predict potential problems prior to failure as well as prescribe periodic maintenance actions to maximise motor life. The TPM model will be a useful tool to predict the degradation in motor life due to deterioration in insulation, bearing, rotor bar and stator windings of the motor.

Aruna Muniswamy; Bhaskaran Gopalakrishnan; Subodh Chaudhari; Majid Jaridi; Ed Crowe; Deepak Gupta

2014-01-01T23:59:59.000Z

10

,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Motor Gasoline Sales Volumes" Users, Total Refiner Motor Gasoline Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Products for Refiner Gasoline Volumes",1,"Monthly","9/2013","1/15/1983" ,"Data 2","by Grade",3,"Monthly","9/2013","1/15/1983" ,"Data 3","by Formulation",3,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_d_nus_vtr_mgalpd_m.xls"

11

Cryogenic Finishing  

Science Journals Connector (OSTI)

n...Process by which a material is cryogenically tempered (deep freezing below ?300įF). Cryogenic finishing relieves stress in the substrate, thus...

Jan W. Gooch

2011-01-01T23:59:59.000Z

12

,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Sales Volumes" Users, Total Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_a_epm0_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_a_epm0_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

13

U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Motor Gasoline 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 by Grade Regular 23,757.8 20,526.5 20,356.1 19,806.6 20,240.9 19,586.1 1983-2013 Midgrade 1,876.1 1,545.0 1,534.8 1,527.0 1,561.5 1,484.7 1988-2013 Premium 2,545.7 2,312.4 2,252.9 2,233.5 2,318.1 2,212.1 1983-2013 by Formulation Conventional 16,716.2 14,277.3 13,878.1 13,588.6 14,053.9 13,516.9 1994-2013 Oxygenated - - - - - - 1994-2013

14

An evaluation of motor function in transverse colon transplants after total gastrectomy  

Science Journals Connector (OSTI)

The motor activity of the isolated colon is under- ... of the present study was to evaluate the motor activity of the interposed transverse colon following ... response to dry swallows, and swallowing distilled water

Erito Mochiki; Norihiro Haga; Takashi Hara; Yasuo HosouchiÖ

1998-01-01T23:59:59.000Z

15

U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes...

16

,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...  

U.S. Energy Information Administration (EIA) Indexed Site

for Refiner Gasoline Volumes" "Sourcekey","A103700001" "Date","U.S. Total Gasoline WholesaleResale Volume by Refiners (Thousand Gallons per Day)" 30331,217871.4 30362,217946.8...

17

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

18

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

19

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

20

The Chemistry of Wool Finishing  

Science Journals Connector (OSTI)

Although wool finishing is as old as clothmaking itself, ... gray material, setting (crabbing or blowing), scouring, milling, hydroextracting, drying, raising, brushing ... adopted in finishing several of the mor...

C. S. Whewell

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

25

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

26

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

27

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

28

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

29

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

30

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

31

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

32

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

33

Experimental Study on Finishing Forces in Double Disk Magnetic Abrasive Finishing Process While Finishing Paramagnetic Workpiece  

Science Journals Connector (OSTI)

Abstract Knowledge of finishing forces is important in any manufacturing process as the surface integrity of the finished surface is being affected. In the present work finishing force and torque were measured for a recently developed double disk magnetic abrasive finishing process. Investigations have been made to understand the effect of process factors namely upper and lower working gap rotational speed, abrasive weight percentage on the normal finishing force and finishing torque. Experiments were planned and performed based on Taguchi L9 orthogonal array. Analysis of variance has been used to analyze the experimental data. The analysis of the experimental data showed that normal finishing forces is affected most significantly by lower and upper working gap and finishing torque is effected mostly by the lower working gap and rotational speed of the magnetic disk. The surfaces finished by DDMAF process are characterized by SEM and the surface morphology has been correlated to finishing force and torque values.

Prateek Kala; Pulak M. Pandey

2014-01-01T23:59:59.000Z

34

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

35

EcoCAR Reaches the Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Reaches the Finish Line EcoCAR Reaches the Finish Line EcoCAR Reaches the Finish Line June 21, 2011 - 2:09pm Addthis The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Shannon Brescher Shea Communications Manager, Clean Cities Program Last Thursday, the Library of Congress's vaunted halls were filled with undergraduate and graduate students on the edge of their seats, waiting to hear the first place winner of the EcoCAR: The NeXt Challenge competition. As Patrick Davis, Vehicle Technologies Program Manager for the Department

36

EcoCAR Challenge: Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Challenge: Finish Line EcoCAR Challenge: Finish Line EcoCAR Challenge: Finish Line Addthis Description The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Speakers Secretary Steven Chu; MIchael Bly, Lynn Gnatt, Carlos Cubero-Ponce, Ryan Melsert, Eric Schacht, Andrew Eldridge, Duration 4:23 Topic Alternative Fuel Vehicles Fuel Economy Batteries Hydrogen & Fuel Cells Credit Energy Department Video (Music.) LYNN GANTT (Virginia Tech): There are 16 universities that compete in the

37

EcoCAR Reaches the Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches the Finish Line Reaches the Finish Line EcoCAR Reaches the Finish Line June 21, 2011 - 2:09pm Addthis The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Shannon Brescher Shea Communications Manager, Clean Cities Program Last Thursday, the Library of Congress's vaunted halls were filled with undergraduate and graduate students on the edge of their seats, waiting to hear the first place winner of the EcoCAR: The NeXt Challenge competition. As Patrick Davis, Vehicle Technologies Program Manager for the Department

38

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

39

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

40

Semi-finished modular cells  

E-Print Network (OSTI)

This thesis subject is a pre-fabricated element (cell): a system that employs natural, light, and economic materials to produce a near-finished portion of a building. The intent is to introduce sustainable design into ...

Bachelder, Laura Govoni, 1971-

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

42

Motors Motor controllers  

E-Print Network (OSTI)

Aluminium frame Motors Motor controllers Ultrasonic multi-channel acquisition PC Tank Tank 400 600 800 1000 0 50 2 4 6 8 x 10 -3 r/r 0 Range (mm) Depth(mm) 25 /t Tand / or #12;Shallow water

43

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 71,470 61,525 55,254 40,534 39,717 37,768 1993-2012 PAD District 1 19,732 16,074 10,858 3,913 3,741 3,513 1993-2012 Connecticut 1993-2004 Delaware 292 105 498 1993-2009 Florida 4,484 1,877 914 586 734 747 1993-2012 Georgia 2,141 1,724 800 374 251 220 1993-2012 Maine 889 374 130 152 1993-2012 Maryland 67 31 1993-2008 Massachusetts 2 4 3 1993-2012 New Hampshire 1993-2005 New Jersey 1,982 2,956 2,026 667 275 795 1993-2012 New York 1,768 1,469 273 194 628 483 1993-2012 North Carolina 1,977 1,724 1,470 591 389 317 1993-2012 Pennsylvania 3,731 3,595 3,421 697 782 188 1993-2012 Rhode Island 1993-2005 South Carolina 839 720 787 444 276 288 1993-2012

44

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 31,576 31,334 35,019 34,533 32,174 27,872 1993-2013 PAD District 1 2,286 2,947 3,296 3,722 3,755 2,837 1993-2013 Connecticut 1993-2005 Delaware 1993-2010 Florida 635 638 666 711 724 563 1993-2013 Georgia 179 213 239 277 244 191 1993-2013 Maine 126 263 324 270 310 112 1993-2013 Maryland 1993-2009 Massachusetts 7 6 7 5 8 7 1993-2013 New Hampshire 1993-2006 New Jersey 206 344 270 604 785 463 1993-2013 New York 325 455 535 508 465 521 1993-2013 North Carolina 251 387 522 535 457 320 1993-2013 Pennsylvania 116 165 232 202 234 178 1993-2013 Rhode Island 1993-2007 South Carolina 250 237 271 306 293 275 1993-2013 Vermont 20 30 19 15 24 19 1993-2013

45

Refinery & Blender Net Production of Finished Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 3,128,673 3,206,726 3,306,400 3,306,028 3,267,022 3,370,460 1945-2013 PADD 1 723,212 872,233 993,681 1,055,660 1,044,853 1,062,487...

46

Thermocouple Electric Motors  

Science Journals Connector (OSTI)

... voltage drop of normal brush gear being too high, mercury commutation was tried. This motor ran well, but considerable splashing of mercury occurred which was unsafe from the health ... from the health angle. A totally enclosed design was adopted (Fig. 1). The motor was powered by a single massive thermocouple of iron-constantan.

J. E. CRAWFORD STRINGER

1962-09-08T23:59:59.000Z

47

Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The...

48

Plutonium finishing plant dangerous waste training plan  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

49

Electric Motors  

Energy.gov (U.S. Department of Energy (DOE))

Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

50

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

51

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

52

Electric motors: Markets, trends, and applications  

SciTech Connect

Electric motors play an important role in nearly all sectors of the US economy. Typical motor applications range from air conditioning and appliances in the residential sector, to cooling and space heating in the commercial sector, to materials handling and processing in the industrial sectors. Motors in the residential sector consumed nearly 352 billion kilowatthours (BkWh) in 1985, in the commercial sector 279 BkWh, and the industrial sector 552 BkWh. Approximately 87% of electric motor electricity use in the industrial sector was consumed in manufacturing processes, while the process industries consumed more than half of the manufacturing sector's electric motor electricity use. The total motor population in all sectors in 1987 stood just shy of 1.02 billion, 90% of which are less than one horsepower (HP) in size. An increasing percentage of the motor population is comprised of high efficiency motors, as classified by the National Electrical Manufacturers Association (NEMA). High efficiency motors offer end-users greater energy and cost savings than do their standard efficiency counterparts. This report provides an overview of the history of the electric motor, a brief description of the electromechanical theory behind motor operations, and offers a statistical review of the size and distribution of the electric motor market. The report also presents data on sector motor electricity use, describes current and potential motor application opportunities, and details areas in which further research and development may be needed.

Not Available

1992-06-01T23:59:59.000Z

53

Motor fuel prices in Turkey  

Science Journals Connector (OSTI)

Abstract The world?s most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study.

Erkan Erdogdu

2014-01-01T23:59:59.000Z

54

Y-12 Finishes Initial HEUMF Loading Ahead of Schedule | National...  

National Nuclear Security Administration (NNSA)

Production Office NPO News Releases Y-12 Finishes Initial HEUMF Loading Ahead of Schedule Y-12 Finishes Initial HEUMF Loading Ahead of Schedule applicationmsword icon NR-01-10...

55

Independent Oversight Review, Plutonium Finishing Plant- July 2014  

Energy.gov (U.S. Department of Energy (DOE))

Targeted Review of the Safety Significant Confinement Ventilation System and Review of Federal Assurance Capability at the Plutonium Finishing Plant

56

Independent Activity Report, Hanford Plutonium Finishing Plant- May 2012  

Energy.gov (U.S. Department of Energy (DOE))

Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14

57

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

58

Green Racing - Where Clean Cars Finish First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology R&D Center INVENTING THE FUTURE. efficient. clean. safe. Green Racing Where Clean Cars Finish First In green racing, speed is a factor, but the overall winner is determined by a formula that also takes the car's environmental footprint into consideration. Race organizers calculated a principal component of each car's score by using Argonne's Greenhouse gas, Regulated Emissions, and Energy use in Transportation (GREET) model. Research funding provided by the U.S. Department of Energy's Vehicle Technologies Program. Did you know... Opportunity The racetrack is a proving ground that often leads to innovations in consumer vehicles. Green

59

Stain Repellent-Antimicrobial Textiles via Atmospheric Plasma Finishes.  

E-Print Network (OSTI)

??This research was aimed to impart antimicrobial and stain repellent finishes to polyester fabrics using atmospheric pressure plasma-aided graft copolymerization of active monomers. The processÖ (more)

McLean, Robert II

2008-01-01T23:59:59.000Z

60

Plutonium finishing plant safety systems and equipment list  

SciTech Connect

The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

Bergquist, G.G.

1995-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Plutonium Finishing Plant - Hanford Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14] The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-Destructive Assay (NDA) in support of criticality safety evaluations.

62

Sequencing, Finishing and Analysis in the Future Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequencing, Finishing and Analysis in the Future Meeting Sequencing, Finishing and Analysis in the Future Meeting Wednesday - Friday, May 29 - 31, 2013 La Fonda Hotel in Santa Fe, NM Overview "Sequencing, Finishing and Analysis in the Future" (SFAF) is an annual meeting dedicated to bringing together experts in the field of genomic sequencing, finishing and analysis-including representatives from the industries that serve this specialized scientific community. The meeting focuses on laboratory methods and computational tools used to help sequence, assemble, and finish genomes, including new sequencing technologies, which promise high-throughput results by sequencing more base-pairs per run at longer read-lengths. In the past, companies have presented different techniques they have developed to achieve maximum balance for researchers.

63

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

64

Plutonium Finishing Plant safety evaluation report  

SciTech Connect

The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

Not Available

1995-01-01T23:59:59.000Z

65

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

66

Final Environmental Impact Statement - Plutonium Finishing Plant Stabilization, May 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Plutonium Finishing Plant Stabilization, May 1996 - Plutonium Finishing Plant Stabilization, May 1996 file:///I|/Data%20Migration%20Task/EIS-0244-FEIS-1996/eis0244f_1.html[6/27/2011 2:33:34 PM] 1.0 INTRODUCTION This Introduction contains the following information: Background of the Plutonium Finishing Plant Facility Scope of this Environmental Impact Statement Contents of this Environmental Impact Statement The presence of significant quantities of plutonium-bearing materials in the Plutonium Finishing Plant (PFP) Facility, Hanford Site, Washington, poses unacceptable risks to workers, the public, and the environment. On October 24, 1994, the United States Department of Energy (DOE) announced, in an initial mailing to 1,500 interested parties, its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National

67

Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the siteís most complex decommissioning projects.

68

Surface Finish Modeling in Micromilling of Biocompatible Materials  

E-Print Network (OSTI)

, and electronic devices tend to decrease in size. Along with the strong demand for miniaturization, new cutting-edge micromanufacturing techniques are developing in order to produce microcomponents with a smooth surface finish and high dimensional accuracy...

Berestovskyi, Dmytro V

2013-06-05T23:59:59.000Z

69

Oak Ridge Finishes Site's Largest Demolition Project to Date | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finishes Site's Largest Demolition Project to Date Finishes Site's Largest Demolition Project to Date Oak Ridge Finishes Site's Largest Demolition Project to Date July 1, 2012 - 12:00pm Addthis BEFORE: An aerial photo shows Building K-33 before demolition. BEFORE: An aerial photo shows Building K-33 before demolition. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. BEFORE: An aerial photo shows Building K-33 before demolition. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. OAK RIDGE, Tenn. - This month, the Oak Ridge Environmental Management (EM) program finished the final phase of the Building K-33 demolition

70

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

71

Cost-benefits of a mobile, trailer-contained, vibratory finishing decontamination facility  

SciTech Connect

The objective of this study was to determine the cost-benefits of a vibratory finishing process, developed at Pacific Northwest Laboratory (PNL), which has been used successfully to remove a variety of transuranic (TRU) contaminants from surfaces of metallic and nonmetallic wastes. Once TRU contaminants are removed, the metallic and nonmetallic materials can be disposed of as low-level waste (LLW). Otherwise, these materials would be disposed of in geologic repositories. This study provides an economic evaluation of the vibratory finishing process as a possible method for use in decontaminating and decommissioning retired facilities at Hanford and oher sites. Specifically, the economic evaluation focuses on a scoping design for a mobile, trailer-contained facility, which could be used in the field in conjunction with decontamination and decommissioning operations. The capital cost of the mobile facility is estimated to be about $1.09 million including contingency and working capital. Annual operating costs, including disposal costs, are estimated to be $440,000 for processing about 6340 ft/sup 3//yr of pre-sectioned, TRU-contaminated material. Combining the operating cost and the capital cost, annualized at a discount rate of 10%, the total annual cost estimate is $602,000. The unit cost for vibratory finishing is estimated to be about $11/ft/sup 3/ of original reference glove box volume (Abrams et at. 1980). All costs are in first quarter 1981 dollars. Although not directly comparable, the unit cost for the vibratory finishing process is very favorable when considered beside typical, substantially higher, unit costs for processing and geologically disposing of TUR-contaminated materials. The probable accuracy of this study cost estimate is about +- 30%. It is therefore recommended that a detailed cost estimate be prepared if a mobile facility is designed.

Hazelton, R.F.; McCoy, M.W.

1982-07-01T23:59:59.000Z

72

31808,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

INC",2,510,"RESIDUAL FUEL, > 1.00% SULFUR",2017,"LAKE CHARLES, LA","LOUISIANA",3,500,"JORDAN",302,3.39,0,,,,, 32111,"CONOCO INC",3,020,"CRUDE OIL",2017,"LAKE CHARLES,...

73

36191,"AECTRA REFG & MKTG",1,152,"MOTOR GAS, OTHER FINISHED"...  

U.S. Energy Information Administration (EIA) Indexed Site

WAX AMERICAS INC",6,70,"WAX",1601,"CHARLESTON, SC","SOUTH CAROLINA",1,428,"GERMANY",1,0,0 36191,"SASOL WAX AMERICAS INC",7,70,"WAX",1001,"NEW YORK, NY","NEW...

74

33634,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

33634,"MOORE & MUNGER INC",1,070,"WAX",2002,"NEW ORLEANS, LA","LOUISIANA",3,,"GERMANY, FD (W)",3,0,0,,,,, 33634,"MOORE & MUNGER INC",2,070,"WAX",1001,"NEW YORK, NY","NEW...

75

32539,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

32539,"MOORE & MUNGER INC",4,070,"WAX",1401,"NORFOLK, VA","VIRGINIA",1,,"GERMANY, FD (W)",2,0,0,,,,, 32539,"MURPHY OIL USA INC",1,020,"CRUDE OIL",2002,"NEW ORLEANS,...

76

32904,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

32904,"MOORE & MUNGER INC",1,070,"WAX",3901,"CHICAGO, IL","ILLINOIS",2,,"GERMANY, FD (W)",2,0,0,,,,, 32904,"MOORE & MUNGER INC",2,070,"WAX",1001,"NEW YORK, NY","NEW...

77

33269,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

33269,"MOORE & MUNGER INC",1,070,"WAX",3901,"CHICAGO, IL","ILLINOIS",2,,"GERMANY, FD (W)",2,0,0,,,,, 33269,"MOORE & MUNGER INC",2,070,"WAX",1001,"NEW YORK, NY","NEW...

78

36556,"AECTRA REFG & MKTG",1,152,"MOTOR GAS, OTHER FINISHED"...  

U.S. Energy Information Administration (EIA) Indexed Site

PETRO CORP",3,509,"RESIDUAL FUEL, 0.31-1.00% SULFUR",5301,"HOUSTON, TX","TEXAS",3,428,"GERMANY",372,0.53,0,"CROWN CENTRAL PETRO CORP","PASADENA","TX","TEXAS",3 36556,"CROWN CENTRAL...

79

32173,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...  

U.S. Energy Information Administration (EIA) Indexed Site

NGL",3318,"ROOSVILLE, MT","MONTANA",4,260,"CANADA",18,0,0,,,,, 32173,"SMITH H G",1,231,"PROPANENGL",3802,"PORT HURON, MI","MICHIGAN",2,260,"CANADA",5,0,0,,,,,...

80

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael GrŲninger; Dipl.-Ing. Felix HorchÖ

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EcoCAR Challenge: Finish Line  

ScienceCinema (OSTI)

The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. In the final year, the vehicles ran through a series of safety and technical tests at GM's Proving Ground in Milford, Michigan very similar to those GM's own production vehicles undergo. As EcoCAR wraps up, it is only the beginning for the next chapter in the DOE's 23-year history of advanced vehicle technology competitions. In April, Assistant Secretary for Policy and International Affairs David Sandalow announced the launch of EcoCAR 2: Plugging into the Future http://www.ecocar2.org/index.html . We look forward to seeing the new and innovative designs that students bring to this challenge and know they will find a way to exceed even our highest expectations.

None

2013-05-29T23:59:59.000Z

82

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Fateev, Evgeny G

2013-01-01T23:59:59.000Z

83

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Evgeny G. Fateev

2013-01-20T23:59:59.000Z

84

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

85

Nutrient digestibility of 44% soybean meal, extruded whole soybeans, and an extruded soybean mixture for growing-finishing swine  

E-Print Network (OSTI)

To determine significant differences in nutrient digestibilities and nitrogen balance among soybean products, the data were treated as a repli- cated 3 X 3 Latin Square. A split-plot analysis of variance was used to compare ileal and total tract...NUiRIENT DIGESTIBILITY OF 44. ". - SOYBEAN NEAL, EX. RUDED NHOLE SOYBF~NS, AND . 4U EXTRUDED SOYBFAN MIXTURe FOR GROIYIUG- FINISHING SIYINE A Thesis by LYNNT: S. BOGGS Submitted to the Graduate College of Texas APM University 'n parti. ". 1...

Boggs, Lynne S.

1980-01-01T23:59:59.000Z

86

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

87

Digestible threonine requirement of starter and finisher swine  

E-Print Network (OSTI)

, and the basal diet plus four incr cmental additions of L-Thr (. 04, . 08, . 12 or . 16? for star ter and . 05, , 10, , 15, or . 20'7. for finisher diets). The basal diet used in the growth trial with starter pigs contained . 60%%u Thr, 17. 6A CP, and 1. 258... lysine and was based on sorghum, peanut meal, soybean meal and dried whey; the basal diet used in the growth trial with finisher pigs contained . 308 Thr, 9. 7/ CP, and . 75/ lysine and consisted of sorghum supplemented with lysine, methionine...

Saldana, Carlos Ivan

2012-06-07T23:59:59.000Z

88

TABLE31.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

unfinished oils. b Based on total finished motor gasoline output minus net input of motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons...

89

Cycle Time Prediction: When Will This Case Finally Be Finished?  

E-Print Network (OSTI)

number. Instead, this is usually the average cycle time of a case, combined with a certain marginCycle Time Prediction: When Will This Case Finally Be Finished? B.F. van Dongen, R.A. Crooy, and W into the remaining cycle time of a case, the current case can be compared to all past ones. The most trivial way

van der Aalst, Wil

90

Lead-Free Surface Finishes for Electronic Components  

E-Print Network (OSTI)

Lead-Free Surface Finishes for Electronic Components: Tin Whisker Growth METALS This project degraded by the switch to lead- free technology. In particular, the state of compressive stress and the localized creep response (whisker growth) of tin-based lead-free electrodeposits are being measured

91

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

92

Traffic of Molecular Motors  

E-Print Network (OSTI)

Molecular motors perform active movements along cytoskeletal filaments and drive the traffic of organelles and other cargo particles in cells. In contrast to the macroscopic traffic of cars, however, the traffic of molecular motors is characterized by a finite walking distance (or run length) after which a motor unbinds from the filament along which it moves. Unbound motors perform Brownian motion in the surrounding aqueous solution until they rebind to a filament. We use variants of driven lattice gas models to describe the interplay of their active movements, the unbound diffusion, and the binding/unbinding dynamics. If the motor concentration is large, motor-motor interactions become important and lead to a variety of cooperative traffic phenomena such as traffic jams on the filaments, boundary-induced phase transitions, and spontaneous symmetry breaking in systems with two species of motors. If the filament is surrounded by a large reservoir of motors, the jam length, i.e., the extension of the traffic jams is of the order of the walking distance. Much longer jams can be found in confined geometries such as tube-like compartments.

Stefan Klumpp; Melanie J. I. MŁller; Reinhard Lipowsky

2005-12-06T23:59:59.000Z

93

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

94

Ontario Hydro Motor Efficiency Study  

E-Print Network (OSTI)

Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

Dautovich, D. R.

1980-01-01T23:59:59.000Z

95

Overheating of Electric Motors  

Science Journals Connector (OSTI)

... due to dirt or other foreign matter obstructing the ventilating pipes, ducts and passages of motors. Mention is made of the lagging effect which waste materials may have on the ... . Mention is made of the lagging effect which waste materials may have on the motor casing, and useful suggestions are given for the improvement and maintenance of ventilation. Since ...

1942-09-05T23:59:59.000Z

96

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network (OSTI)

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

Breedlove, C. W.

97

Treatment of reactive dyes and textile finishing wastewater using Fenton's oxidation for reuse  

Science Journals Connector (OSTI)

Fenton's oxidation (FO) was used to decolourise and degrade some reactive dyes (Remazol Black 5, Remazol Red, Remazol Blue, Remazol Yellow) and raw textile finishing industry effluents (S1, S2, S3) containing mainly reactive dyes. The operational conditions for pH varied between 2.5 and 4.0 while temperature ranged from 30¬įC to 50¬įC. The concentrations of FeSO4 and H2O2 varied to a wide range (200‚??600 mg/l of FeSO4, 300‚??1000 mg/l of H2O2) depending on the type of the dyes and their mixture and textile additives used in the process. FO is highly effective for colour removal (>99%) for reactive dyes and (87‚??94%) for textile finishing wastewater. It can be applied as a pretreatment and the remaining total dissolved solids (TDS) can be removed by an additional advanced process, e.g. membrane process.

Sureyya Meric; Giusy Lofrano; Vincenzo Belgiorno

2005-01-01T23:59:59.000Z

98

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

99

Electric Motors and Critical Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV, materials, and motor designers is missing * Achieving high volume July 24, 2012 Electric Motors and Critical Materials Breakout Session 2 - Discussion of Breakthroughs and...

100

General Motors | Open Energy Information  

Open Energy Info (EERE)

General Motors Place: Detroit, MI Website: http:www.generalmotors.com References: General Motors1 Information About Partnership with NREL Partnership with NREL Yes Partnership...

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimization of Electric Energy in Three-Phase Induction Motor by Balancing of Torque and Flux Dependent Losses  

Science Journals Connector (OSTI)

This paper presents the solution of the energy optimal control of three-phase induction motor (IM) by balancing of torque and flux dependent losses. First, we build formula of total losses of motor (iron losse...

Nguyen Thanh Hung; Nguyen Chi ThienÖ

2014-01-01T23:59:59.000Z

102

System and method for motor parameter estimation  

DOE Patents (OSTI)

A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

Luhrs, Bin; Yan, Ting

2014-03-18T23:59:59.000Z

103

Implementing Motor Decision Plans  

E-Print Network (OSTI)

Implementing Motor Decision Plans R. Neal Elliott, Ph.D., P.E., Senior Associate American Council for an Energy-Efficient Economy (ACEEE), Washington, DC Abstract The first step to reducing energy costs and increasing reliability in motors... is chosen with limited regard to the short or long-tenn cost. This paper discusses how to develop a plan appropriate to the needs of a particular facility. Introduction In most cases, the opportunity to install a more efficient motor isO available...

Elliott, R. N.

104

Report on Toyota Prius Motor Thermal Management  

SciTech Connect

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

105

Motor Gasoline Sales to End Users, Total Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 East Coast (PADD 1) 7,388.3 7,633.2 7,424.0 7,266.3 7,278.4 6,996.8 1993-2013 New England (PADD 1A) W W W W W W 1993-2013 Connecticut W W W W W W 1993-2013 Maine - - - - - - 1993-2013 Massachusetts W W W W W W 1993-2013 New Hampshire W W W W W W 1993-2013 Rhode Island W W W W W W 1993-2013 Vermont - - - - - - 1993-2013 Central Atlantic (PADD 1B) 4,037.6 4,235.4 4,284.8 4,251.9 4,152.3 3,982.5 1993-2013 Delaware W W W W W W 1993-2013 District of Columbia W W W - W W 1993-2013 Maryland W W W W W W 1993-2013 New Jersey W W W W W W 1993-2013 New York 2,402.7 2,514.6 2,563.6 2,537.4 2,464.5 2,368.9 1993-2013 Pennsylvania W W 762.9 773.0 767.2 732.1 1993-2013

106

Justification for Energy Efficient Motors  

E-Print Network (OSTI)

This paper presents the results of a study of Energy Efficient (or EE) motors in NEMA frame sizes, (1-200 HP). It examines the economics of using EE motors for new motor requirements, as replacements for motors - instead of rewinding...

Buschart, R. J.

1981-01-01T23:59:59.000Z

107

Electric Motor Management Scheme  

Science Journals Connector (OSTI)

The paper explores traditional repair situations and draws a comparison with a structured scheme, which commences with an audit of all stock and plant motors held by a typical user. A nominated repairer is sel...

Richard Blandford

2000-01-01T23:59:59.000Z

108

MotorWeek  

ScienceCinema (OSTI)

In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

None

2013-04-19T23:59:59.000Z

109

Energy Efficient Motors  

E-Print Network (OSTI)

.. " ENERGY EFFICIENT MOTORS W. R. Hoffmeyer General Electric Company Fort Wayne, Indiana ABSTRACT Efficiency is only one aspect of motor per formance. This paper discusses how efficiency is influenced by such factors as horsepower rating... and in cost~ saVings, especially if the power company imposes a penalty for low power factor. Increasing efficiency has a direct effect on operating cost. Increasing power factor has only an indirect and less profound effect. This was recognized by ASHRAE...

Hoffmeyer, W.

1982-01-01T23:59:59.000Z

110

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-√Ö-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

111

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-√Ö-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

112

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-√Ö-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

113

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-√Ö-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

114

EFFICIENCY OF ELECTRIC MOTORS  

E-Print Network (OSTI)

Effective on the issue date of this bulletin, the references section (1.4) of NIST Handbook 150-10, Efficiency of Electric Motors, 2007 Edition, is revised as specified in 1) and 2) below. 1) Reference 1.4 d): IEEE Standard 112-1996, Test Procedure for Polyphase Induction Motors and Generators, Test Method B, and the correction to the calculation at item (28) in section 10.2 Form B-Test Method B issued by IEEE on January 20, 1998, is replaced with: IEEE 112-2004, IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, Test Method B, and the correction to the calculation at item (28) in section 10.2 Form B-Test Method B issued by IEEE on November 4, 2004. 2) Reference 1.4 f): NEMA Standards Publication MG 1-1993, Motors and Generators, with Revisions 1, 2, 3, and 4, is replaced with: NEMA MG 1-2006, Motors and Generators, plus Revision 1. There are no significant technical differences in these references. The changes were made to be consistent with current industry practices and in support of the Department of Energy proposed rule on small electric motors as designated in 10 CFR Part 431, [Docket No. EEREĖ2008ĖBTĖTPĖ0008], RIN 1904ĖAB71, Energy Conservation Program: Test Procedures for Electric Motors. This bulletin should be inserted into NIST Handbook 150-10 (EEM Program-Specific Handbook) until the next edition of the handbook is released, at which time the reference changes will be incorporated into the handbook. This bulletin has also been posted to the NVLAP web site at

Carroll S. Brickenkamp; Lawrence I. Knab; Carlos M. Gutierrez

2009-01-01T23:59:59.000Z

115

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

116

MotorMaster+ International Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes how industrial plants can improve their motor system performance for a broader range of motors with AMO's MotorMaster+ International software tool.

117

Deburring and surface finishing: The past ten years and projections for the next ten years  

SciTech Connect

The 1970s were a decade of significant growth in deburring and surface finishing. In the 1980s progress was made in robotic finishing, burr formation models, surface finish measurement, new processes, equipment and tooling. The centers of burr and surface related research changed. The decade of the 1990s will bring greater competition, environmental restrictions, more processes, more automation, and better characterization and simulation of processes.

Gillespie, L.K.

1990-09-01T23:59:59.000Z

118

Effectiveness and Serviceability of Four Home-applied Cotton Fabric Finishes.  

E-Print Network (OSTI)

subjected to physical and chemical tests to determine the effect of each finish on strength, color, cellulose degradation and other properties. At intervals throughout the study, the men who wore the shirts recorded their opinions of each finish..., stiffness, vrinltle recovery and cellulose degradation. Since there is no laboratory test method that ?;ill simulate actual wear, the fabric was made into sport shirts and the serviceability of the home-applied finishes was determined by a realistic...

Werman, Carolyn A.; Grimes, Mary Anna

1957-01-01T23:59:59.000Z

119

U.S. Total Weekly Refiner & Blender Net Production  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly 4-Week Average Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 View History Finished Motor Gasoline 8,982 9,311 9,715 9,078 9,120 8,325 1982-2014 Finished Motor Gasoline (less Adjustment) 9,428 9,376 9,916 9,002 8,782 8,874 1982-2014 Reformulated 2,891 2,983 3,163 2,871 2,634 2,781 1993-2014 Blended with Fuel Ethanol 2,891 2,983 3,163 2,871 2,634 2,781 2004-2014 Other 0 0 0 0 0 0 2004-2014 Conventional 6,537 6,393 6,752 6,131 6,148 6,093 1994-2014

120

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project Management Plan to Maintain Safe and Compliant Conditions at the Plutonium Finishing Plant (PFP)  

SciTech Connect

This Project Management Plan presents the overall plan, description, mission, and workscope for the Plutonium Finishing Plant (PFP) maintain safe and compliant conditions project at PFP.

COX, G.J.

1999-10-25T23:59:59.000Z

122

Voluntary Protection Program Onsite Review, Plutonium Finishing Plant Closure Project- May 2007  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Plutonium Finishing Plant Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition.

123

DTRA Algorithm Prize (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Christian Whitchurch on the "DTRA Algorithm Prize" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Whitechurch, Christian [Defense Threat Reduction Agency

2013-02-12T23:59:59.000Z

124

Workers Create Demolition Zone at Hanford Siteís Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. Ė In recent weeks, the look of Hanford siteís Plutonium Finishing Plant has changed as crews removed or demolished eight buildings surrounding it.

125

Losses and Costs Associated with Coal vs. Natural Gas Firing at Hanes Dye and Finishing.  

E-Print Network (OSTI)

??Due to decreasing production and rising coal prices, the engineering and management staff at Hanes Dye and Finishing in Winston Salem, NC have been investigatingÖ (more)

Gibides, Justin Tyler

2009-01-01T23:59:59.000Z

126

Motor current signature analysis method for diagnosing motor operated devices  

DOE Patents (OSTI)

A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

Haynes, Howard D. (Kingston, TN); Eissenberg, David M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

127

Efficient, Inexpensive Motors: A New Trend in The Motors Market  

E-Print Network (OSTI)

EFFICIENT, INEXPENSIVE MOTORS: A NEW TREND IN THE MOTORS MARKET Ronald G. Wroblewski, P.E. Trainer and Consultant ABSTRACT The Consortiwn for Energy Efficiency (CEE) has established criteria for premium-efficiency motors above the EPACf... standard. CEE has set a wrifonn efficiency benchmark that all market players (manufacturers, utilities, and end-users) can use. Some end-users however, have been reluctant to specify these motors because they think they are too expensive...

Wroblewksi, R. G.

128

Microtubule length dependence of motor traffic in cells  

E-Print Network (OSTI)

In living cells, motor proteins, such as kinesin and dynein can move processively along microtubule (MT), and also detach from or attach to MT stochastically. Experiments have found that, the traffic of motor might be jammed, and various theoretical models have been designed to understand this traffic jam phenomenon. But previous studies mainly focus on motor attachment/detachment rate dependent properties. Recent experiment of Leduc {\\it et al.} found that the traffic jam formation of motor protein kinesin depends also on the length of MT [Proc. Natl. Acad. Sci. U.S.A. {\\bf 109}, 6100-6105 (2012)]. In this study, the MT length dependent properties of motor traffic will be analyzed. We found that MT length has one {\\it critical value} $N_c$, traffic jam occurs only when MT length $N>N_c$. The jammed length of MT increases with total MT length, while the non-jammed MT length might not change monotonically with the total MT length. The critical value $N_c$ increases with motor detachment rate from MT, but decreases with motor attachment rate to MT.

Yunxin Zhang

2012-05-18T23:59:59.000Z

129

Method for assessing motor insulation on operating motors  

DOE Patents (OSTI)

A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

130

Method for assessing motor insulation on operating motors  

DOE Patents (OSTI)

A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

Kueck, J.D.; Otaduy, P.J.

1997-03-18T23:59:59.000Z

131

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

132

Electric motor model repair specifications  

SciTech Connect

These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

NONE

1995-08-01T23:59:59.000Z

133

Motor Systems | Department of Energy  

Energy Savers (EERE)

Smooth the Way to Savings of 700,000 at Chevron Refinery Optimizing Electric Motor Systems at a Corporate Campus Facility Motors Tip Sheets When to Purchase Premium Efficiency...

134

Motor Energy Savings Potential Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies.

135

Alcohol and Motor Accidents  

Science Journals Connector (OSTI)

... averaged 18 a day and the injuries more than 600. Half the deaths were among pedestrians and a fifth among pedal cyclists, while drivers of motor vehicles and their passengers ... vehicles and their passengers had only a third to a fourth as many accidents as pedestrians. Although the data of the Ministry of Transport indicate that only 1 in 80 ...

1937-01-30T23:59:59.000Z

136

Plutonium Finishing Plant (PFP) HVAC System Component Index  

SciTech Connect

This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-18 19. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item. The Plutonium Finishing Plant (PFP) HVAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.''

DIAZ, E.N.

2000-03-30T23:59:59.000Z

137

Removal Rate Model for Magnetorheological Finishing of Glass  

SciTech Connect

Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magntorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.

DeGroote, J.E.; Marino, A.E.; WIlson, J.P.; Bishop, A.L.; Lambropoulos, J.C.; Jacobs, S.D.

2007-11-14T23:59:59.000Z

138

Motor technology for mining applications advances  

SciTech Connect

AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

Fiscor, S.

2009-08-15T23:59:59.000Z

139

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

140

Motor gasolines, summer 1979  

SciTech Connect

Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Implementing Motor Management  

E-Print Network (OSTI)

motors to be used in industry a non-profit organization called the Consortium for Energy Efficiency (CEE) was founded in 1991. This organization is made up of R&D organizations, state energy offices and regional energy programs, as well as electric... utilities such as Pacific Gas & Electric, Southern California Edison, New York Power Authority and Wisconsin Public Service. The U.S. Environmental Protection Agency and the Department of Energy also participate in CEE activities. The CEE 1996 Premium...

Colip, R. L.

142

Energy Efficient Electric Motors BY OSCAR BRANDSER Improvements in  

E-Print Network (OSTI)

three-phase induction motors present a strong opportunity to reduce plant operating costs. Iff iciency Gap: Motors account for as much as 90 percent of the total electrical usage in commercial and industrial applications. Even small improvements in motor efficiency result in substantial energy savings. NOVEMBER/DECEMBER 1992 E lectric motors are among the most energy efficient devices man has ever created. Today, more efficient electric motors are available than ever before. Simple economics will justify investing in energy efficient motors for most commercial and industrial applications. Energy costs are on the rise and conservation practices- such as the use of energy efficient motors-will help control future energy costs. Conservation practices can help slow down electric load growth and offset the need to add generation capacity. Conservation can help improve productivity by using resources more efficiently and will also help to keep electric costs low. This is an age of increasing costs of electricity due mainly to higher demands for a limited resource and increasingly higher capital costs of new power plants. These and other factors have encouraged many utilities to develop conservation programs and increase energy efficiency awareness among their customers. Required generation capacity will be greater than available capacity in the U.S. by the Year 2000, according to some projections, without conservation and elec-

unknown authors

143

Motor gasolines, summer 1980  

SciTech Connect

Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

Shelton, E.M.

1981-02-01T23:59:59.000Z

144

Motor gasolines, Summer 1982  

SciTech Connect

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

145

Stabilizer for motor vehicle  

SciTech Connect

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

146

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

147

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

148

Pollution prevention and water conservation in metals finishing operations  

SciTech Connect

Attleboro, Massachusetts is the headquarters of the Materials and Controls Group of Texas Instruments Incorporated (Texas Instruments). In support of their activities, Texas Instruments operates a number of metal finishing and electroplating processes. The water supply and the wastewater treatment requirements are supplied throughout the facility from a central location. Water supply quality requirements varies with each manufacturing operation. As a result, manufacturing operations are classified as either high level or a lower water quality. The facility has two methods of wastewater treatment and disposal. The first method involves hydroxide and sulfide metals precipitation prior to discharge to a surface water. The second method involves metals precipitation, filtration, and discharge via sewer to the Attleboro WTF. The facility is limited to a maximum wastewater discharge of 460,000 gallons per day to surface water under the existing National Pollution Discharge Elimination System (NPDES) permit. There is also a hydraulic flow restriction on pretreated wastewater that is discharged to the Attleboro WTF. Both of these restrictions combined with increased production could cause the facility to reach the treatment capacity. The net effect is that wastewater discharge problems are becoming restrictive to the company`s growth. This paper reviews Texas Instruments efforts to overcome these restrictions through pollution prevention and reuse practices rather than expansion of end of pipe treatment methods.

O`Shaughnessy, J.; Clark, W. [Worcester Polytechnic Inst., MA (United States); Lizotte, R.P. Jr.; Mikutel, D. [Texas Instruments Inc., Attleboro, MA (United States)

1996-11-01T23:59:59.000Z

149

Finishing The Euchromatic Sequence Of The Human Genome  

SciTech Connect

The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

2004-09-07T23:59:59.000Z

150

Fire hazard analysis for Plutonium Finishing Plant complex  

SciTech Connect

A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

MCKINNIS, D.L.

1999-02-23T23:59:59.000Z

151

Establishing an authorization basis for the Plutonium Finishing Plant  

SciTech Connect

In the summer of 1998, Hanford's Plutonium Finishing Plant (PFP) project prepared to restart its thermal stabilization process after 1(1/2)-yr suspension in operations. The facility had overcome a number of operational and safety problems, yet it had been unable to achieve appropriate update, approval, and implementation of an appropriate, current authorization basis. This problem threatened to prevent a timely restart, which, in turn, could have caused a loss in momentum and dampened enthusiasm within the facility. The authors describe the approach taken by B and W Hanford Company (BWHC) in conjunction with its partners, the US Department of Energy (DOE) Richland Operations Office and Fluor Daniel Hanford Company (FDH), to establish a defensible authorization basis, which allowed the facility to resume its mission of stabilizing reactive plutonium materials. The approach incorporates methods used within the DOE complex for short-term activities and those undergoing deactivation and implements principles of integrated safety management (ISM), as described in ``Defense Nuclear Facility Safety Board [(DNFSB)] Recommendation 95-2'' and related documents.

Roege, P.E.; Ramble, A.L.

1999-07-01T23:59:59.000Z

152

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

153

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles  

E-Print Network (OSTI)

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

Boyer, Edmond

154

Active Diffusion of Motor Particles  

Science Journals Connector (OSTI)

The movement of motor particles consisting of one or several molecular motors bound to a cargo particle is studied theoretically. The particles move on patterns of immobilized filaments. Several patterns are described for which the motor particles undergo nondirected but enhanced diffusion. Depending on the walking distance of the particles and the mesh size of the patterns, the active diffusion coefficient exhibits three different regimes. For micrometer-sized motor particles in water, e.g., this diffusion coefficient can be enhanced by 2†orders of magnitude.

Stefan Klumpp and Reinhard Lipowsky

2005-12-23T23:59:59.000Z

155

Motor gasolines, summer 1981  

SciTech Connect

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 715 samples of motor gasoline were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 33 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing included in this report shows marketing districts into which the country is divided. A map included in this report shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.3 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1982-04-01T23:59:59.000Z

156

Water/Wastewater Engineering Report (High Efficiency Pump/Motor Replacement - M2 Model)  

E-Print Network (OSTI)

. In eGRID the NOx production for each power plant is provided for ten electric utility suppliers (i.e., AEP, Austin Energy, Brownsville Public Utility, LCRA, Reliant, San Antonio Public Service, South Texas Coop, TMPP, TNMP, and TXU). In the case... about the old pump and motor including motor HP, motor nominal efficiency, rated pump capacity, and total dynamic head. Then the user can choose from one of the three screens (screen 2A, 2B or 2C) to input the flow rate, motor power/head, old pump...

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

157

Pilon: Automated Assembly Improvement Software (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Bruce Walker on "Pilon: Automated Assembly Improvement Software" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Walker, Bruce (Broad Institute)

2013-02-11T23:59:59.000Z

158

Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

McMahon, Ben [LANL

2013-01-25T23:59:59.000Z

159

Atmospheric plasma treatment to improve durability of a water and oil repellent finishing for acrylic fabrics  

Science Journals Connector (OSTI)

In this study, the influence of an atmospheric plasma treatment on the durability of a commercial water and oil repellent finish was tested. Acrylic fabrics were processed with a RF atmospheric pressure plasma generator and afterwards a fluorocarbon finish was applied through a traditional pad-dry-cure method. Two gas mixtures were tested (helium and helium/oxygen) with different plasma treatment times. The ageing of the finishing was simulated through repeated accelerated laundry cycles. The water and oil repellencies were measured through standard test methods. While the initial water and oil repellency did not change, the plasma treatment improved the durability of the finish after artificial ageing. Scanning electron microscopy analyses were carried out to highlight morphological changes.

Alberto Ceria; Peter J. Hauser

2010-01-01T23:59:59.000Z

160

Workers Remove Glove Boxes from Ventilation at Hanfordís Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

An employee at Hanfordís Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facilityís former processing area.

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tool Path Planning Generation For Finish Machining of Freeform Surfaces in the Cybercut Process Planning Pipeline  

E-Print Network (OSTI)

CYBERCUT PROCESS PLANNING PIPELINE Paul K. Wright, David A.describes part of a "Pipeline of De- sign and Manufacturingversus surface finish. 2.5D PIPELINE AND 3D SURFACES Figure

Wright, Paul K; Dornfeld, David; Sundararajan, V.; Misra, Debananda

2007-01-01T23:59:59.000Z

162

Metagenomics for Etiologic Agent Discovery (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Matthew Ross on "Metagenomics for etiological agent discovery" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Ross, Matthew [Baylor College of Medicine

2013-02-11T23:59:59.000Z

163

Hanford Site Workers Meet Challenging Performance Goal at Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. Ė Safely and methodically, piece by piece, workers at the Hanford siteís Plutonium Finishing Plant are surpassing goals for removing hazardous tanks once used in the plutonium production process.

164

A Comparison of Ten Different Methods for the Analysis of Saturates, Olefins, Benzene, Total Aromatics, and Oxygenates in Finished Gasolines  

Science Journals Connector (OSTI)

......overview of the changing European gasoline specifications with time...combined. These reformulated gasolines may now contain straight run naphtha, fluid catalytically...analysis of hydrocarbon types in gasoline is the fluorescent indi- cator......

Jan Beens; Hans Thomas Feuerhelm; JŲrg-Christian FrŲhling; Jerry Watt; Gertjan Schaatsbergen

165

An inexpensive motor-driven buret  

Science Journals Connector (OSTI)

An inexpensive motor-driven buret ... Presents a design for as inexpensive motor-driven buret that relies on a micrometer syringe and a constant-speed electric motor. ...

Lee D. Hansen; William M. Litchman; Edwin A. Lewis; Ronald E. Allred

1969-01-01T23:59:59.000Z

166

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

167

Effect of motor vibration problem on the power quality of water pumping stations  

Science Journals Connector (OSTI)

Abstract In this paper the effect of motor vibration problems on the dynamic performance and electrical power quality of water pumping stations is studied. A pump unit was tested for a full load and no load operating conditions. The dynamic results indicated that there is a problem of looseness in the motor base plate. The measurements were repeated again after achieving good support to the motor on its base plate. The results indicated that the vibration level decreased about 48% due to good support. The electrical power quality analysis showed that; the total harmonic distortion (THD) increases by about 1Ė2% due to the effect of bad motor vibration, and the 5th and 7th harmonic contents also increased by about 0.5Ė1.0%. Also the bad motor vibration caused large values of instantaneous flicker. These results indicated that the bad motor support causes many dynamics troubles and causes some power quality problems for the electrical feeder.

Khaled Fetyan; Dalia El_Gazzar

2014-01-01T23:59:59.000Z

168

Electric motor with controllable speed and torque  

Science Journals Connector (OSTI)

The proposed electric motor is characterized by controllable speed and torque ... shaft, at constant rotor speed. In this motor, the torque at the output shaft increases...

R. G. Khadeev

2011-01-01T23:59:59.000Z

169

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

170

Training: Motor Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

staff, plant managers, and plant engineers gain an understanding of electric motor systems management and skills to help them manage motor systems for reduced energy cost and...

171

MotorMaster+ | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Assessment Tool MotorMaster+ MotorMaster+ International Plant Energy Profiler Pumping System Assessment Tool Process Heating Assessment and Survey Tool Steam System Modeler...

172

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

173

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

174

Submersible canned motor mixer pump  

DOE Patents (OSTI)

A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

Guardiani, Richard F. (Ohio Township, PA); Pollick, Richard D. (Sarver, PA)

1997-01-01T23:59:59.000Z

175

Submersible canned motor mixer pump  

DOE Patents (OSTI)

A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

Guardiani, R.F.; Pollick, R.D.

1997-10-07T23:59:59.000Z

176

Research Laboratories General Motors Corporation General Motors Technical Center  

Office of Legacy Management (LM)

MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare the plant for manufacturing operations (Appendix A). A news release, made by Mr. Irving Loop of ERDA and carried by radio station WABJ of Adrian, Michigan on May 11, 1976, stated that natural uranium was handled in the plant after World War II and that

177

Topic 7 Organization of Motor System -Cortical Motor Areas  

E-Print Network (OSTI)

Cartoon, 1986 Electrical stimulation produces movement of contralateral body parts. #12;4 Motor Homunculus previous stimulation technique · Insert electrode into cortical layer V and use electrical stimulation" somatotopic map vs "more complex" map #12;

Sergio, Lauren E.

178

AQWON Motors | Open Energy Information  

Open Energy Info (EERE)

AQWON Motors AQWON Motors Jump to: navigation, search Name AQWON-Motors Place Speinshart, Germany Zip 92676 Sector Hydro, Hydrogen Product AQWON-Motors has developed the first hydrogen powered 2 stroke-engine scooter. It has been approved by the German T√ÉŇďV√ā (the official technical inspection agency). Coordinates 49.78699¬į, 11.820385¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.78699,"lon":11.820385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Myers Motors | Open Energy Information  

Open Energy Info (EERE)

Myers Motors Myers Motors Jump to: navigation, search Name Myers Motors Place Tallmadge, Ohio Zip 44278 Sector Vehicles Product Myers Motors produces three wheeled electric vehicles. Coordinates 41.10294¬į, -81.440864¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.10294,"lon":-81.440864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Recover Power with Hydraulic Motors  

E-Print Network (OSTI)

Anywhere liquid pressure is reduced across a throttling device, there is a potential application for a hydraulic power recovery motor (HPRM). Cost of power makes HPRM's attractive with recoveries as small as 25 hp on a continuous basis. When...

Brennan, J. R.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tesla Motors | Open Energy Information  

Open Energy Info (EERE)

Tesla Motors Tesla Motors Jump to: navigation, search Logo: Tesla Motors Name Tesla Motors Address 1050 Bing Street Place San Carlos, California Zip 94070 Sector Vehicles Product Produces electric vehicles Website http://www.teslamotors.com/ Coordinates 37.496737¬į, -122.245323¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.496737,"lon":-122.245323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Rotary Electrodynamics of a DC Motor: Motor as Mechanical Capacitor Lab 2: Modeling and System Identification  

E-Print Network (OSTI)

). · im is the current through the motor. Because the motor is in series with all other electrical). Because power is conserved, m = Kmim (motor efficiency is actually closer to 69%). Here, Km 0.00767 VRotary Electrodynamics of a DC Motor: Motor as Mechanical Capacitor Lab 2: Modeling and System

183

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

184

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

185

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingĖdominating sets in graphs was pioneered by Slater†[186, 187...], and this concept was later extended to total domination in graphs. A locatingĖtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

186

Plasma technology for textile finishing applications gets a boost from LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma technology for textile finishing applications gets a boost Plasma technology for textile finishing applications gets a boost from LANL Plasma technology for textile finishing applications gets a boost from LANL APJeT received a $100,000 Venture Acceleration Fund award from LANS helping to complete design and engineering of a commercial-scale production unit. April 3, 2012 image description Gary Selwyn conducts product quality assurance on dual-functional, plasma-treated fabric at APJeT's Santa Fe lab: LANL technology may transform performance apparel. Contact CEO John Emrich (505) 471-6399 Future applications of APJet may include depositing thin films for architectural glass, semiconductors, flooring, and solar panels. "A big part of our current challenge has been selecting this one use for the technology and putting all of our energy and resources into that," Selwyn

187

As Auto X Reaches the Finish Line, a New Race Begins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As Auto X Reaches the Finish Line, a New Race Begins As Auto X Reaches the Finish Line, a New Race Begins As Auto X Reaches the Finish Line, a New Race Begins September 17, 2010 - 4:20pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs When the Automotive X Prize competition began back in March of 2008, the organizers laid out an ambitious goal: inspire a new generation of viable, safe and super fuel-efficient vehicles capable of achieving 100 miles per gallon or the energy equivalent (MPGe). The response they received was staggering -- 136 vehicle design proposals from teams across the globe, all eager to innovate and set a new standard for energy efficiency. In the two years since the competition was announced, the field thinned through various stages of competition, evaluation and testing. Not content

188

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

189

EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

0-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE 0-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. This memorandum memorializes a communication between DOE staff and members of the NEMA Motor and Generator Section in connection with this proceeding. NEMA thanks the DOE for the opportunity to conduct training for DOE staff and its consultants on July 15th, 2013 which illustrated the different types of motors, motor construction theory and motor applications by type. It is our hope that better understanding of motor types and construction will assist the Department and its consultants with the discharge of their duties. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors

190

Ultrasonic Motorís H-Bridge Control Circuit Using Phase-Shift PWM Method  

Science Journals Connector (OSTI)

Ultrasonic motor is a special kind of actuator for motion control system. Because of the peculiar mechanism of ultrasonic motor, control circuit is needed for the operation of ultrasonic motor. The performance of...

Shi Jingzhuo; Zhang Yanan

2014-06-01T23:59:59.000Z

191

Use of cottonseed hulls, rice hulls, and ammoniated rice hulls for finishing calves commercially  

E-Print Network (OSTI)

USE OF COTTONSEED HULLS, RICE HULLS, AND AMMONIATED RICE HULLS FOR FINISHING CALVES COMMERCIALLY A Theste NORMAN FINLEY VESTAL Subxnttted to the Graduate CoIlege of the Teaac W hhf Uxdvers@y;M -: partfal AdBHaioct:if the reqsh;~ Air. the.... degree-. -cf MASTER OF SCIENCE August 1967 MaJor Subject: ' Anginal Science . USE OF COTTONSEED HULLS, RICE HULLS, AND AMMONIATED RICE HULLS FOR FINISHING CALVES COMMERCIALLY A Tbesls NORMAN FINLEY VESTAL Approved as to style and content by. ) I...

Vestal, Norman Finley

1967-01-01T23:59:59.000Z

192

REPLACING AN OVERSIZED AND UNDERLOADED ELECTRIC MOTOR  

E-Print Network (OSTI)

This fact sheet will assist in decisions regarding replacement of oversized and underloaded motors. It includes a discussion of how the MotorMaster software can be used to conduct motor replacement analyses. Motors rarely operate at their full-load point. Field tests of 60 motors at four industrial plants indicate that, on average, they operate at 60 % of their rated load. 1 Motors that drive supply or return air fans in heating, ventilation and air-conditioning (HVAC) systems generally operate at 70 % to 75 % of rated load. 2 A persistent myth is that oversized motors, especially motors operating below 50 % of rated load, are not efficient and should be immediately replaced with appropriately sized energy-efficient units. In actuality, several pieces of information are required to complete an accurate assessment of energy savings. They are the load on the motor, the operating efficiency of the motor at that load point, the full-load speed (in revolutions per minute [rpm]) of the motor to be replaced, and the full-load speed of the downsized replacement motor. 3 Motor Load Estimation Techniques Operating efficiency and motor load values must be assumed or based on field measurements and

unknown authors

193

Three phase AC motor controller  

DOE Patents (OSTI)

A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

Vuckovich, Michael (Elizabeth, PA); Wright, Maynard K. (Bethel Park, PA); Burkett, John P. (South Huntington Township, Westmoreland County, PA)

1984-03-20T23:59:59.000Z

194

Selected Bibliography on Electric Motor Repair | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by...

195

Replacement, Variable-Speed Motors for Furnaces, Syracuse, New...  

Energy Savers (EERE)

replace- ment for PSC motors in many homes. To date, CARB has upgraded six systems with Concept 3 motors. Upgrading a fan motor is usually very straightforward. Once...

196

Continuous Energy Improvement in Motor Driven Systems - A Guidebook...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Energy Management for Motor-Driven Systems Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry MotorMaster+ User Manual...

197

Impact of Motor Failures on Payback Periods  

E-Print Network (OSTI)

developed by the Washington State Energy Office and funded by the U.S. Department of Energy and the Bonneville Power Administration to aid in the selection of EE motors. MotorMaster's database contains information on over 10, 000 available motors... developed by the Washington State Energy Office and funded by the U.S. Department of Energy and the Bonneville Power Administration to aid in the selection of EE motors. MotorMaster's database contains information on over 10, 000 available motors...

Cheek, K. F.; Pillay, P.; Dudley, K. J.

198

Journal of Materials Processing Technology 189 (2007) 192198 Modelling of surface finish and tool flank wear in turning  

E-Print Network (OSTI)

flank wear in turning of AISI D2 steel with ceramic wiper inserts Tugrul ¨Ozela,, Yigit Karpata, Lu, Piscataway, NJ 08854, USA b Department of Mechanical Engineering, University of Aveiro, Campus Santiago, 3810 processes. Surface finishing and tool flank wear have been investigated in finish turning of AISI D2 steels

Ozel, Tugrul

199

Mission Motors | Open Energy Information  

Open Energy Info (EERE)

Motors Motors Jump to: navigation, search Name Mission Motors Place San Francisco, California Sector Vehicles Product Electric Motorcycles Year founded 2007 Number of employees 11-50 Website http://www.ridemission.com/ Coordinates 37.7749295¬į, -122.4194155¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Aptera Motors | Open Energy Information  

Open Energy Info (EERE)

Aptera Motors Aptera Motors Jump to: navigation, search Name Aptera Motors Address 2778 Loker Avenue West Place Carlsbad, California Zip 92008 Sector Vehicles Product Aims to to make an aerodynamic two-seater hybrid electric vehicle Website http://www.aptera.com/ Coordinates 33.1412124¬į, -117.3205123¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

202

Improved Yield and Diverse Finished Bacterial Genomes using Pacific Biosciences RS II SMRT Sequencing  

E-Print Network (OSTI)

Improved Yield and Diverse Finished Bacterial Genomes using Pacific Biosciences RS II SMRT-Cruz, Alvaro Godinez, Luke J. Tallon Institute for Genome Sciences, University of Maryland School of Medicine, effective, and highly accurate platform for generation of complete microbial genome sequences. As early

Weber, David J.

203

Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing  

E-Print Network (OSTI)

and Management, United States (2008)" #12;2 1 Introduction Industrial aqueous pollution (heavy metals) accounts sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small for 30 to 40% of industrial pollution. Metal finishing is one of the sectors which contributes mostly

Paris-Sud XI, Université de

204

Homopolar motor with dual rotors  

DOE Patents (OSTI)

A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

Hsu, J.S.

1998-12-01T23:59:59.000Z

205

Thermoelectric generator for motor vehicle  

SciTech Connect

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

206

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

207

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

208

Brushless Separately Excited Direct Current Motor Electric Motors: A Survey  

E-Print Network (OSTI)

Abstract: In this paper the importance of brushless SEDC electric motors in the automotive industry continues to grow, writes Matthew Beecham. The driving force behind market growth is motorists í insatiable demand for safety, comfort, economy, a clean environment and overall quality of driving.

R. C. Chourasia; Dr. A. K. Bhardwaj

209

Electric Motor Emulator Versus Rotating Test Rig  

Science Journals Connector (OSTI)

A controversial issue among experts is whether real-time model-based electric motor emulation can replace a conventional rotating test ... a complete inverter test system with an integrated electric motor emulato...

Dipl.-Ing. (FH) Horst Hammerer; Dipl.-Ing. (FH) Dieter Strauss

2012-06-01T23:59:59.000Z

210

Ultra High Efficiency Electric Motor Generator  

Science Journals Connector (OSTI)

The Ultra High Efficiency Electric Motor Generator is an exciting opportunity to leverage ... in green technology. Marand currently produces this motor/generator at our Moorabbin facility for application ... sola...

Jeff Brown

2012-01-01T23:59:59.000Z

211

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies: MotorWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleMotorWaveGroup&oldid769272...

212

Single molecule measurements and molecular motors  

Science Journals Connector (OSTI)

...Hideyuki Okano and Atsushi Iriki Single molecule measurements and molecular motors...Suita, Osaka 565-0871, Japan Single molecule imaging and manipulation are...machines like molecular motors. The single molecule measurements allow a dynamic...

2008-01-01T23:59:59.000Z

213

Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)  

ScienceCinema (OSTI)

Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Campbell, Catherine [Noblis

2013-03-22T23:59:59.000Z

214

Motor Energy Saving Opportunities in an Industrial Plant  

E-Print Network (OSTI)

Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

Kumar, B.; Elwell, A.

215

A Novel Approach to Determining Motor Load  

E-Print Network (OSTI)

A NOVEL APPROACH TO DETERMINING MOTOR LOAD by Michael Brown Georgia Tech Research Institute Atlanta, Georgia ABSTRACf Properly sized electric motors are essential if industrial plant efficiency is to be optimized and energy costs... minimized. Because of the difficully in making power measurements on three phase motors, loading is rarely, if ever, checked. A simple indication of motor load can be achieved by measuring operating speed because speed and load are almost linearly...

Brown, M.

216

Energy Management for Motor-Driven Systems  

Energy.gov (U.S. Department of Energy (DOE))

This document assists in establishing an energy management plan, identifying energy savings opportunities, and designing a motor improvement plan.

217

Frequency modulation drive for a piezoelectric motor  

DOE Patents (OSTI)

A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

Mittas, Anthony (Albuquerque, NM)

2001-01-01T23:59:59.000Z

218

Motorized control for mirror mount apparatus  

DOE Patents (OSTI)

A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

Cutburth, Ronald W. (Tracy, CA)

1989-01-01T23:59:59.000Z

219

Determining Electric Motor Load and Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

To compare the operating costs of an existing standard motor with an appropriately-sized energy-efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to describe the actual load served by the motor as compared to the rated full-load capability of the motor. Motor part-loads may be estimated through using input power, amperage, or speed measurements. This fact sheet briefly discusses several load estimation techniques.

220

Conducting a Motor Survey: Key Step for Establishing a Motor Management Policy  

E-Print Network (OSTI)

Roughly 70% of the energy consumed by manufacturing processes is used by electric motors. According to the U.S. Department of Energy, greater attention to motor systems management can reduce motor-related energy costs by 18%. Establishing a motor...

Miller, R. B.

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Motor What happens if we put  

E-Print Network (OSTI)

Electric Motor What happens if we put a loop of wire carrying a current in a B field ? FB on opposite sides of the loop produce a torque on the loop causing it to rotate. Electric motor ÔŅĹ a commutator. #12;Electric Motor Define normal n to plane using right-hand rule Torque tends to rotate loop to align

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

222

Estimating Motor Efficiency in the Field  

Energy.gov (U.S. Department of Energy (DOE))

Some utility companies and public agencies offer rebates to encourage customers to upgrade their existing standard efficiency motors to premium efficiency motors. It is important to know the efficiency of the existing motor and how it is being used to accurately estimate potential annual energy and dollar savings. This tip sheet provides suggested actions and estimates of savings from improved efficiency.

223

Magnetically Coupled Adjustable Speed Motor Drives  

Energy.gov (U.S. Department of Energy (DOE))

Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested actions.

224

Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating  

DOE Patents (OSTI)

A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

Casada, D.A.

1996-01-16T23:59:59.000Z

225

Chemistry in Motion: Tiny Synthetic Motors  

E-Print Network (OSTI)

In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

Peter H. Colberg; Shang Yik Reigh; Bryan Robertson; Raymond Kapral

2014-11-03T23:59:59.000Z

226

Multi-axis tool path generation for surface finish machining of a rapid manufacturing process  

Science Journals Connector (OSTI)

This paper proposes a completely automated, integrated tool path planning for the finish machining of freeform surfaces as a part of the hybrid metal additive manufacturing and CNC machining. This planning capability spans from a generation of b-spline freeform surfaces, to surface finish optimisation, to collision detection, to tool path generation. Two scallop height methods have been used to compare the optimal tool path strategy. Both collision detection of a tool with neighbouring surfaces and collision correction for a tool are solved using a novel extension of the bounding box, which uses body diagonal points for computation. This paper proposes a multiple screening technique to improve the computational efficiency of tool path generation calculations.

Jomy Francis; Todd E. Sparks; Jianzhong Ruan; Frank Liou

2014-01-01T23:59:59.000Z

227

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

228

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

229

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

1997-01-01T23:59:59.000Z

230

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

231

System and method for motor speed estimation of an electric motor  

SciTech Connect

A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

Lu, Bin (Kenosha, WI); Yan, Ting (Brookfield, WI); Luebke, Charles John (Sussex, WI); Sharma, Santosh Kumar (Viman Nagar, IN)

2012-06-19T23:59:59.000Z

232

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

DeVault, Robert C. (Knoxville, TN); McConnell, Benjamin W. (Knoxville, TN); Phillips, Benjamin A. (Benton Harbor, MI)

1996-01-01T23:59:59.000Z

233

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

1996-07-02T23:59:59.000Z

234

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

235

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

236

Total Precipitable Water  

SciTech Connect

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

237

Total Sustainability Humber College  

E-Print Network (OSTI)

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

238

Mercury: Next-gen Data Analysis and Annotation Pipeline (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

Sexton, David [Baylor

2013-01-25T23:59:59.000Z

239

High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

Athavale, Ajay [Monsanto

2013-01-25T23:59:59.000Z

240

Effect of the finishing oil of acrylic fibers in the optical rotation of the Raman scattered light  

Science Journals Connector (OSTI)

Polarized Raman spectra have been obtained from polyacrylonitrile copolymers fibers with vinyl acetate Poly(AN-co-VA), and methyl acrylate Poly(AN-co-MA) with finishing and without...

Rosales-Candelas, I; Soto-Bernal, J J; Gonzalez-Mota, R; Frausto-Reyes, C

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The PerkinElmer Omics Laboratory (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

ScienceCinema (OSTI)

Todd Smith of the PerkinElmer Omics Laboratory gives a talk about his lab and its work at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

Smith, Todd [PerkinElmer Omics Laboratory

2013-01-25T23:59:59.000Z

242

Method for assessing in-service motor efficiency and in-service motor/load efficiency  

DOE Patents (OSTI)

A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

243

Construction of AC Motor Controllers for NOvA Experiment Upgrades  

SciTech Connect

I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {nu}{sub e} Appearance (NOvA) Experiment further down the beam pipe. In total, I built and tested ten ac motor controllers for new beam operations in the NOvA experiment. These units will prove to be durable and provide extremely accurate beam placement for NOvA Experiment far into the future.

Cooley, Patrick; /Fermilab; ,

2011-08-04T23:59:59.000Z

244

Investigation of Flux Linkage Profile Measurement Methods for Switched Reluctance Motors and Permanent Magnet  

E-Print Network (OSTI)

- 1 - Investigation of Flux Linkage Profile Measurement Methods for Switched Reluctance Motors for switched reluctance motors (SRM's) and permanent magnet motors (PMM's). Various measurement methods have reluctance motors, permanent magnet motors. I. INTRODUCTION Switched Reluctance Motors (SRM's) have very

Lu, Kaiyuan

245

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

246

Total isomerization gains flexibility  

SciTech Connect

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

247

Sequence Finishing  

Science Journals Connector (OSTI)

Universal primer: All stock primers are at 100 ?M.... Typical examples that are in common use at the Stanford Human Genome Center (SHGC) are SP6, T7, T3, and...M with ddH2O.

Jeremy Schmutz; Jane Grimwood; Richard M. Myers

2004-01-01T23:59:59.000Z

248

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????  

E-Print Network (OSTI)

49: Motorized Two-wheeler / Motorcycle Use vs. Motorized98 Table 50: Motorized Two-wheeler / Motorcycle Use vs.Motorcycle Ownership 98 Table 51: Motorized Two-

Ni, Jason

2008-01-01T23:59:59.000Z

249

Extend the Operating Life of Your Motor  

Energy.gov (U.S. Department of Energy (DOE))

Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced at regular intervals. When any components are degraded beyond the point of economical repair or replacement, the motorís economic life ends.

250

Energy-Efficient Electric Motor Selection Handbook  

SciTech Connect

Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

1990-10-01T23:59:59.000Z

251

Motor Systems Assessment Training, Including Use of the Motor Systems Tool Suite  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor Systems Assessment Training Motor Systems Assessment Training Presented by: Gilbert McCoy, PE Washington State University Extension Energy Program (360) 956-2086 mccoyg@energy.wsu.edu 2 Motor Systems Assessment Training 3 Motor Systems Assessment Training Department of Energy Information Resources U.S. DOE Industrial Technologies Program (ITP) BestPractices Website www.eere.energy.gov/industry/bestpractices EERE Information Center (877) 337-3463 Or www.eere.energy.gov/informationcenter 4 Motor Systems Assessment Training Big Picture Perspectives: Industrial Motor Systems Industrial motor systems: ÔŅĹ Are the single largest electrical end use category in the American economy ÔŅĹ Account for 23% of U.S. electrical sales. 5 Motor Systems Assessment Training Ultimate

252

Improving Motor and Drive System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drives. Energy-Efficient Electric Motors and Their Applications, 2nd Edition Author: Jordan, H.E. Publisher: Springer Description: Evaluates the energy savings potential of...

253

Renault Samsung Motors | Open Energy Information  

Open Energy Info (EERE)

Renault Samsung Motors Place: Korea (Republic) Sector: Solar Product: Korea-based automobile manufacturer. The firm is also involved in solar project development. References:...

254

MagLab - Faraday Motor Tutorial  

NLE Websites -- All DOE Office Websites (Extended Search)

not long after Faraday's simple apparatus, was the next in a long evolutionary line of electric motors. Related Electricity & Magnetism Pages Interactive Java Tutorial: Barlow's...

255

Switched reluctance motor : design, simulation and control.  

E-Print Network (OSTI)

??This thesis presents a design method for a switched reluctance (SR) motor to optimise torque production for two types of 3 phase 6/4 poles SRMÖ (more)

Aljaism, Wadah A.

2007-01-01T23:59:59.000Z

256

MotorMaster+ Software Tool Brochure  

Energy.gov (U.S. Department of Energy (DOE))

This brochure provides information on AMO's MotorMaster+ software tool, including how it works, next steps, and how to access it.

257

Magnet Motor Corp | Open Energy Information  

Open Energy Info (EERE)

and producing PEMFC stacks and PEMFC systems since 1998. Together with Proton Motor Fuel Cell GMBH it develops and realize complete fuel cell drive systems for buses and...

258

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

259

Mission Motors Company | Open Energy Information  

Open Energy Info (EERE)

Place: San Francisco, California Zip: 94103 Product: San Francisco-based electric Motorcycle manufacturer. References: Mission Motors Company1 This article is a stub. You can...

260

3.1. MOTOR SYSTEM 35 3.1 Motor System  

E-Print Network (OSTI)

3.1. MOTOR SYSTEM 35 3.1 Motor System The motor system comprises the dynamic model of the fish fish's brain. Since our goal is to animate an animal realistically and at reasonable computational cost controllers by gleaning information from the fish biomechanics literature (Blake, 1983; Alexander, 1992

Toronto, University of

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

262

Development of Ulta-Efficient Electric Motors  

SciTech Connect

Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performa

Shoykhet, B. (Baldor Comp.); Schiferl, R. (Baldor Comp.); Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

2008-05-01T23:59:59.000Z

263

Abstract--There are two types of drivers in production machine systems: constant velocity (CV) motor and servo-motor.  

E-Print Network (OSTI)

the dynamic model of the five-bar hybrid mechanism including its electric motors. Section 3 presents) motor and servo-motor. If a system contains two drivers or more, among which some are of the CV motor while the other are the servo-motor, the system has the so-called hybrid driver architecture

Zhang, WJ "Chris"

264

Determination of Total Solids in Biomass and Total Dissolved...  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

265

Roughage and roughage substitutes in high concentrate finishing mixtures for beef cattle  

E-Print Network (OSTI)

different levels of roughage, showed that maximum levels of 20 to 30% cottonseed hulls, 20 to 30% coastal bermuda hay, 10 to 20/o rice hulls (ammoniated or non-ammoniated) or 10/o flax shives should be used in finishing mixtures if high gain and feed... into four uniform groups on the basis of weight and grade. These groups received four different feed mixtures as follows: all concentrate, 2 and 4%%uo oyster shell flakes and 10% ammoniated rice hulls. The second and third experiments were part of Texas...

Leigh, Jorge Eduardo

1968-01-01T23:59:59.000Z

266

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

267

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

268

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

269

Buying an Energy-Efficient Electric Motor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buying an Energy-Efficient Electric Motor Buying an Energy-Efficient Electric Motor Efficiency is an important factor to consider when buying or rewinding an electric motor. This...

270

Alternative Fuels Data Center: MotorWeek Video Transcript  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorWeek Video Transcript to someone by E-mail Share Alternative Fuels Data Center: MotorWeek Video Transcript on Facebook Tweet about Alternative Fuels Data Center: MotorWeek...

271

Motor Exhaust-related Occupations and Bladder Cancer  

Science Journals Connector (OSTI)

...Epidemiological Investigations Motor Exhaust-related Occupations...occupations with potential exposure to motor exhaust and bladder cancer risk...residentialhistory, sourceofdrinking water, fluid intake, use of hair...association between employment in a motor exhaust-related occupation...

Debra T. Silverman; Robert N. Hoover; Thomas J. Mason; and G. Marie Swanson

1986-04-01T23:59:59.000Z

272

Midwest Motor Systems Consortium- A Unique Business Partnership  

E-Print Network (OSTI)

The Midwest Motor Systems Consortium is a creative, new business partnership of motor systems users, suppliers, and other interested parties. It is unique in that it brings together all of the stakeholders in the motor systems market-with buyers...

Hackner, R.; Cockrill, C.

273

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

SciTech Connect

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todayís large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldorís motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

274

Performance analysis of PV pumping systems using switched reluctance motor drives  

SciTech Connect

A PV pumping system using switched reluctance motor (SRM) is thoroughly investigated in this work. This motor is supplied by a d.c. voltage through a simple switching circuit. This drive circuit is much simpler than the normal d.c./a.c. inverter required to supply the induction motor. The efficiency of this motor is considerably higher than that of the equivalent d.c. or induction motors. In addition, because of the simple construction, SRM is cheaper than these conventional drives. Because of the above advantages of the SRM, the proposed system has higher efficiency and lower cost as compared with other systems. A design example is studied in detail to explore the advantages of PV pumping systems based on this new drive. The study of the performance of the proposed system showed that the operating efficiency of the motor is about 85% during most of its working time. The matching efficiency between the PV array and the proposed system approaches 95%. The major part of the losses takes place in the pump and the riser pipes. This loss represents one-third of the total available energy. 21 refs., 10 figs.

Metwally, H.M.B. [Zagazig Univ. (Egypt)] [Zagazig Univ. (Egypt); Anis, W.R. [Ain Shams Univ., Cairo (Egypt)] [Ain Shams Univ., Cairo (Egypt)

1996-12-31T23:59:59.000Z

275

Nanoconfined catalytic ŇngstrŲm-size motors  

E-Print Network (OSTI)

Chemically-powered synthetic micron and nano-scale motors that propel themselves in solution are being intensively studied because of the wide range of potential applications that exploit their directed motion. Recent experiments have shown that, even on the molecular scale, small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to self-propulsion. Simulations of very small {\\AA}ngstr\\"om-size synthetic motors in bulk solution have shown similar effects. Applications of such small motors in the cell or in microfluidic devices require knowledge of how these motors interact with boundaries. Molecular dynamics is used to investigate the properties of {\\AA}ngstr\\"om-size synthetic chemically-powered motors confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent exclusion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation and mean square displacement, are anisotropic and depend on the distance from the walls. This research presents information needed for potential applications that use these motors in the complex confined geometries encountered in biology and the laboratory.

Peter H. Colberg; Raymond Kapral

2015-01-13T23:59:59.000Z

276

DNA-Based Optomechanical Molecular Motor  

Science Journals Connector (OSTI)

A particularly rich and promising use of this force spectroscopy setup is for constructing molecular motors. ... The resulting structure?function insights are important for future DNA motor design. ... The quantum yield of the trans to cis isomerization using 365 nm (5.5 ◊ 10?19 J) photons is ?0.1, and hence, 10 of these photons are required per cycle. ...

Martin McCullagh; Ignacio Franco; Mark A. Ratner; George C. Schatz

2011-02-22T23:59:59.000Z

277

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

278

Learning Motor Skills: From Algorithms to Robot  

E-Print Network (OSTI)

Learning Motor Skills: From Algorithms to Robot Experiments Erlernen Motorischer Fähigkeiten: Von Algorithmen zu Roboter-Experimenten Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr Motor Skills: From Algorithms to Robot Experiments Erlernen Motorischer Fähigkeiten: Von Algorithmen zu

279

A permit is required for ALL motorized vehicles parking on the Vanderbilt University Campus. Motorcycles, motorized bicycles, motor scooters and mopeds are  

E-Print Network (OSTI)

. Motorcycles, motorized bicycles, motor scooters and mopeds are required to display "U" permits. The cost. Motorcycle, motorized bicycle, motor scooter and moped parking areas can be found on the parking map (http://www.vanderbilt.edu/parking and click on "Maps") as designated by the motorcycle symbols. Parking is authorized only in spaces marked

Simaan, Nabil

280

A Five-Leg Inverter for Driving a Traction Motor and a Compressor Motor  

SciTech Connect

This paper presents an integrated inverter for speed control of a traction motor and a compressor motor to reduce the compressor drive cost in EV/HEV applications. The inverter comprises five phase-legs; three of which are for control of a three-phase traction motor and the remaining two for a two-phase compressor motor with three terminals. The common terminal of the two-phase motor is tied to the neutral point of the three-phase traction motor to eliminate the requirement of a third phase leg. Further cost savings are made possible by sharing the switching devices, dc bus filter capacitors, gate drive power supplies, and control circuit. Simulation and experimental results are included to verify that speed control of the two motors is independent from each other.

Su, Gui-Jia [ORNL; Hsu, John S [ORNL

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

282

Sandia National Laboratories: Sandia and General Motors: Advancing...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECAbout ECFacilitiesCRFSandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools Sandia and General Motors: Advancing Clean Combustion...

283

When Should Inverter-Duty Motors Be Specified?  

SciTech Connect

This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

Not Available

2008-07-01T23:59:59.000Z

284

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based electric vehicle manufacturer. References: Vision Industries (dba Vision Motor Corp)1...

285

A COMPRESSED AIR MOTOR SHAKER FOR USE IN SMALL ...  

Science Journals Connector (OSTI)

motors are readily available, the heat build-up precludes their use inside small incubators. One way of overcoming this is to place the electric motor outside the.

2000-02-10T23:59:59.000Z

286

Replacing an Oversized and Underloaded Electric Motor | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing an Oversized and Underloaded Electric Motor Replacing an Oversized and Underloaded Electric Motor This fact sheet will assist in decisions regarding replacement of...

287

Improve Motor Operation at Off-Design Voltages | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selection and Application Guide - A Handbook for Industry Improving Motor and Drive System Performance - A Sourcebook for Industry Determining Electric Motor Load and Efficiency...

288

Electric Motors and Critical Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motors and Critical Materials Electric Motors and Critical Materials Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric...

289

EV Everywhere Workshop: Electric Motors and Critical Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Motors and Critical Materials Breakout Group Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV...

290

Improving Motor and Drive System Performance: A Sourcebook for Industry  

SciTech Connect

This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems

Not Available

2008-09-01T23:59:59.000Z

291

Desenvolvimento experimental de um motor stirling tipo gama.  

E-Print Network (OSTI)

??O presente trabalho consiste no desenvolvimento experimental de um motor Stirling tipo gama. S„o apresentadas inicialmente as diferentes configuraÁűes deste tipo de motor (alfa, gamaÖ (more)

Vinicius Guimar„es da Cruz

2012-01-01T23:59:59.000Z

292

Intelligent design of sensorless Switched reluctance motor drives; -.  

E-Print Network (OSTI)

??The Switched Reluctance Motor SRM drive technology has gone newlinethrough steady and significant development over the last two decades The newlinesimplicity in both motor constructionÖ (more)

Marsaline Beno, M

2014-01-01T23:59:59.000Z

293

United States Industrial Motor-Driven Systems Market Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to...

294

Water contamination and colloidal stability of motor oils  

Science Journals Connector (OSTI)

Water contamination of motor oils during storage and use in low- ... of additives worsens the performance properties of the motor oils.

S. V. Korneev; V. M. Dudkin; A. V. Kolunin

2006-07-01T23:59:59.000Z

295

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

296

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

297

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

298

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

299

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

300

Gas Mileage of 1984 Vehicles by American Motors Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors  

Science Journals Connector (OSTI)

In this research, an electric vehicle actuated by two in-wheel DC motors is developed. By properly coordinating the motor torques, both drive-by-wire and electrical steering can be achieved. Two critical issues respectively related to the design of motor controllers and the coordination of the two motor torques under control saturation are investigated in this study. Firstly, as for the in-wheel motors that are used for driving and steering simultaneously, their operation covers a wider dynamic range that forward acceleration (deceleration), and reverse acceleration (deceleration) may occur alternately. To perform driving and steering smoothly and efficiently, each motor should be switched to an appropriate mode to generate the torque demanded. Secondly, during the high-speed maneuvering, the high back-emf voltage in the motor coil substantially reduces the motorís torque generating capability. Since the electrical steering depends on the differential torque of two wheels, when electrical steering is demanded in this case, torque/current saturation may occur in either one of the motors and the electrical steering performance could be seriously degraded. To address these issues, controllers of two levels are proposed. For the low-level controller (the motor controller), it operates the motor automatically in an appropriate mode for performance and efficiency consideration. An input transformation is introduced to cancel the nonlinearity in current dynamics so as to control the motor torque easily and precisely regardless of mode switching. For the high-level controller (the torque coordination controller), besides generating reference commands to the low-level controllers, during control saturation it can also properly re-distributes control signals to maintain consistent steering performance and provides compensation for integrator windup. The control system is implemented and the performance is experimentally and numerically validated.

Feng-Kuang Wu; T.-J. Yeh; Chun-Feng Huang

2013-01-01T23:59:59.000Z

302

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

303

List of Motors Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 371 Motors Incentives. CSV (rows 1 - 371) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers

304

Optimization of induction motor efficiency. Volume 3. Experimental comparison of three-phase standard motors with Wanlass motors. Final report  

SciTech Connect

Researchers conducted comprehensive laboratory tests to evaluate the effectiveness of the Wanlass connection in improving motor efficiency. On the basis of these tests, they found no reason to conclude that such a connection is more efficient than the standard connection.

Fuchs, E.F.

1985-12-01T23:59:59.000Z

305

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

306

Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque  

DOE Patents (OSTI)

A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

2014-10-28T23:59:59.000Z

307

Evaluating sealed storage of high moisture sorghum grain for a beef finishing program  

E-Print Network (OSTI)

Bedaced coNan and rice, . cro. ge has resulted in a search for crops of hip& ecoiiomic return. har;w corsages h. =ve bean pi". uted to grain sor, -hum and, h ve proluced nigh yields. T%s, problem of, attkising this sorghum grain has sparked 4 grominp...~:fora ~ainee rn aver -j. ?s. of 2. l6 pounIls ~sr Dog, rhile thnie fel, ~nle ~in ~ in& 2. . 'I6 . ". our8O-~er 8:g. . i hi~her i -i . , Qsgres'o'f finish pgihishnr aellin, , price ve"s ohtcinel an 'ths steers fe4 tho' prounIi gs, g, ', Ponos statee. that enr...

Cross, Julian Frederick

2012-06-07T23:59:59.000Z

308

Characterization of past and present solid waste streams from the plutonium finishing plant  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)] [Los Alamos Technical Associates, Kennewick, WA (United States)

1993-02-01T23:59:59.000Z

309

Convective Cooling and Passive Stack Improvements in Motors (Presentation)  

SciTech Connect

This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

Bennion, K.

2014-06-01T23:59:59.000Z

310

A University of Alabama Axial-Gap Electric Motor Developmenty  

E-Print Network (OSTI)

CAVT A University of Alabama Axial-Gap Electric Motor Developmenty Research Center OBJECTIVE ­ Develop axial gap permanent-magnet electric Axial motor ­ Develop axial gap permanent-magnet electric motor topologies with high torque and power densities MOTIVATION ­ Axial-gap ("pancake") motors have

Carver, Jeffrey C.

311

Semiconductor Alternating-Current Motor Drives and Energy Conservation  

Science Journals Connector (OSTI)

...60 hertz, and thus the standard two-pole motor runs at...1979 773 Commercial ex. HVAC motor drives 27% In ex. HVAC 5% Ind. and comm. HVAC motors 7 Residents, Elec...efficiently modu-late a standard induction motor. Al-though...

D. J. BenDaniel; E. E. David Jr.

1979-11-16T23:59:59.000Z

312

The LatestThe LatestThe LatestThe Latest,,,, Quick Motor EvaluationQuick Motor EvaluationQuick Motor EvaluationQuick Motor Evaluation Myway Plus Development of Specialized Equipment  

E-Print Network (OSTI)

is different from the mainstream PM motor, the rotor does not use neodymium but electrically magnetized body. The simple structure and half price of PM motor equipment is highly anticipated in hybrid electric vehicleThe LatestThe LatestThe LatestThe Latest,,,, Quick Motor EvaluationQuick Motor Evaluation

Kambhampati, Patanjali

313

Using voluntary motor commands to inhibit involuntary arm movements  

Science Journals Connector (OSTI)

...output of the endogenous motor generator) the excitatory motor outputs...associated with a persistent motor generator is not entirely new. For...voluntary contraction in the induction phase creates a new sensory...persistent Kohnstamm motor generator for postural control [30...

2014-01-01T23:59:59.000Z

314

The Paris Motor Show | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paris Motor Show Paris Motor Show The Paris Motor Show October 4, 2010 - 9:39am Addthis David Sandalow at the Paris Auto Show | DOE photo David Sandalow at the Paris Auto Show | DOE photo David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs At the Paris Motor Show today, electric cars are everywhere. Chevrolet is showing off the Volt, its plug-in hybrid due in U.S. showrooms this December. (Motown music blared as a Chevy rep told me all about the car's performance.) Nissan is displaying the Leaf, its all-electric sedan scheduled to roll off assembly lines in Tennessee starting in 2012. Volvo has new plug-in models. So do Saab, Peugot and other European manufacturers. And as I walked through the gates in a huge crowd, the first

315

The Paris Motor Show | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Paris Motor Show The Paris Motor Show The Paris Motor Show October 4, 2010 - 9:39am Addthis David Sandalow at the Paris Auto Show | DOE photo David Sandalow at the Paris Auto Show | DOE photo David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs At the Paris Motor Show today, electric cars are everywhere. Chevrolet is showing off the Volt, its plug-in hybrid due in U.S. showrooms this December. (Motown music blared as a Chevy rep told me all about the car's performance.) Nissan is displaying the Leaf, its all-electric sedan scheduled to roll off assembly lines in Tennessee starting in 2012. Volvo has new plug-in models. So do Saab, Peugot and other European manufacturers. And as I walked through the gates in a huge crowd, the first

316

Products of motor burnout. Final report  

SciTech Connect

The Montreal Protocol of 1987 effectively banned a long list of chlorofluorocarbons (CFCs) traditionally used in air conditioning and refrigeration applications. The refrigeration and air conditioning industries have responded by developing and testing new, alternative refrigerants that are less damaging to the atmosphere upon release. Despite a reputation for quality and reliability, air conditioning systems do occasionally fail. One of the more common failure modes in a hermetic system is a motor burnout. Motor burnouts can occur by various mechanisms. One of the most common scenarios is a locked motor rotor, which may result from a damaged bearing. The resulting electrical motor burnout is caused by overheating of the locked rotor and subsequent failure of the insulation. This is primarily a thermal breakdown process.

Hawley-Fedder, R.; Goerz, D.; Koester, C.; Wilson, M.

1996-03-30T23:59:59.000Z

317

Hybrid Turbocharger with Innovative Electric Motor  

Science Journals Connector (OSTI)

For more than ten years, the idea is pursued to support the charging process temporarily by the help of electric motors. The basic idea was to decouple the ... increase the number of revolutions primarily by the

Dr.-Ing. Holger GŲdeke; Ing. Kurt Prevedel

2014-03-01T23:59:59.000Z

318

Mechanical characteristic of submersible asynchronous electric motor  

Science Journals Connector (OSTI)

More accurate torque-sleep formulas have been developed based on the equivalent circuit of a multicontour induction motor (IM). Methods of taking into account the saturation and skin effects on machine paramet...

Yu. Z. Kovalev; A. Yu. Kovalev; E. V. Poshvin

2010-10-01T23:59:59.000Z

319

Case Histories of Energy Efficient Motors  

E-Print Network (OSTI)

A number of new energy efficient (EE) motors have been installed at the Port Neches SBR plant in the past few years. Some of these installations presented many problems. The measurement of dollars saved has been difficult. Easy installations...

Riley, J. C.; Comiskey, W. T

320

Method and apparatus for large motor control  

DOE Patents (OSTI)

Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

Rose, Chris R. (Santa Fe, NM); Nelson, Ronald O. (White Rock, NM)

2003-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Allium carbohydrates. XV. Polysaccharides from Allium motor  

Science Journals Connector (OSTI)

The content of carbohydrates in Allium motor...was studied as a function of vegetation period. The qualitative and quantitative compositions and physical chemical properties of sugars soluble in alcohol, water-so...

M. A. Khodzhaeva; A. A. Razhabova; G. R. Muzaffarova

2006-09-01T23:59:59.000Z

322

Submersible motor pumps for mine drainage applications  

Science Journals Connector (OSTI)

After briefly describing the basic design of the submersible motor pump and listing advantages it offers for mining applications, the latest developments for meeting the, in many cases, extreme demands relatin...

Dieter-Heinz Hellmann Dr. Ing.Ö

1986-03-01T23:59:59.000Z

323

Hybrid phase shifted carrier modulation fed five-phase multilevel inverter for multiphase induction motor drive  

Science Journals Connector (OSTI)

This paper proposes an energy efficient modulation scheme suitable for multilevel inverter fed five-phase induction motor. Five-phase multilevel inverter provides good quality five-phase variable voltage and variable frequency supply to five-phase induction motor, which ensure reduced torque ripple and improved drive efficiency. This modulation inherits the features of fundamental frequency modulation and phase shifted carrier modulation in power conversion and resolves the contradiction between high frequency and accuracy in a digital control scheme. Base modulator and hybrid formulation control algorithms are realised with TMS320F2407 DSP processor and Xilinx XC95108 CPLD controllers. The performance studies with induction motor are evaluated in terms of power loss, weighted total harmonic distortion and torque ripple. Selected simulation and experiment results are reported to verify and validate the effectiveness of the proposed technique.

C. Govindaraju

2013-01-01T23:59:59.000Z

324

Improving the efficiency of electric motor systems: Moving beyond efficient motors  

SciTech Connect

Electric motors operating in the US consume more than half of the nation's electricity. Electric utilities were among the first groups to begin offering programs to promote efficiency in electric motors. A 1994 Electric Power Research Institute (EPRI) survey of utility demand-side management (DSM) programs found 151 efficient-motors and drives programs being offered by 95 utilities in the US. The most common programs have been prescriptive rebates for the purchase of high-efficiency motors. While many of these programs have been popular and successful, their cost is an issue of contention with some industrial consumer groups and within utilities attempting to reduce program costs. With the minimum motor efficiency regulations in the Energy Policy Act of 1992 (EPAct) set to go into effect for most products in October 1997, utilities will need to move beyond these simple high-efficiency motor rebate programs if they are to continue to offer motor programs to their customers. The focus will also have to shift from simply motors to motor-system issues. As a 1993 US Department of Energy (DOE)-sponsored motor-system roundtable identified, motor-system expertise is not widely available, and many electric utilities will need assistance to develop and implement new programs. It is thus important that information be made available to these utilities on how to analyze customers' motor-systems needs, what program designs will most likely meet these needs, what resources they will need to implement their programs, and where to find those resources. DOE's Motor Challenge has already been identifying or developing many of these resources, and these are already being used by some utilities. If utilities are provided a program context, more of them can make better use of these resources and achieve success from their own standpoint (e.g., increased customer satisfaction and improved customer retention), from the customers' standpoint (e.g., lower motor-system costs and improved performance), and from the national standpoint (e.g., reduced motorsystem energy consumption and lower carbon emissions). The American Council for an Energy-Efficient Economy (ACEEE) has begun to establish this context by analyzing utility motor-systems programs. This work builds upon past ACEEE analyses of other utility DSM programs and ACEEE's extensive involvement in the technical aspects and design of programs involving electric motor systems.

Elliott, R.N.; Pye, M.; Nadel, S.

1997-07-01T23:59:59.000Z

325

Equivalent Circuit Modeling of Hysteresis Motors  

SciTech Connect

We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

Nitao, J J; Scharlemann, E T; Kirkendall, B A

2009-08-31T23:59:59.000Z

326

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

327

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

328

Aggregation method for motor drive systems  

Science Journals Connector (OSTI)

Abstract When many variable frequency drives are connected to a common switchboard, their aggregated effect on system dynamics can be significant. In this paper, the aggregation method for variable frequency drives and their motors in industrial facilities is proposed, which is suitable for power systems dynamic studies. The proposed method can be applied to various types of motor drive systems. There are two steps involved for the proposed aggregation method: (1) aggregate motor drive systems connected to the same bus, and (2) further combine the aggregated model of motor drive systems from Step 1 with upstream series impedance and/or transformers. Due to involvement of high-order transfer functions in dynamic models of individual motor drive systems, Pade approximation is used as a useful tool in the aggregation process. Using the proposed aggregation method, an equivalent aggregated dynamic model of motor drive systems can be obtained at the substation bus. A case study is conducted in the paper, and the proposed aggregation method is verified to be effective by the case study.

Xiaodong Liang; Wilsun Xu

2014-01-01T23:59:59.000Z

329

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant  

E-Print Network (OSTI)

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America from in both moisture control and insulating value. EIFS's are inherently superior on thermal performance

Oak Ridge National Laboratory

330

Thermal Stability Studies of Candidate Decontamination Agents for Hanfordís Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes  

SciTech Connect

This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

2005-09-29T23:59:59.000Z

331

Energy-Saving Landscaping for Your Passive Solar Home Landscaping is often regarded as a finishing touch to enhance  

E-Print Network (OSTI)

Energy-Saving Landscaping for Your Passive Solar Home Landscaping is often regarded as a finishing-facing windows throughout the day, the east and west faces of a house receive little solar benefit. This is due. The east and west sides of the house face long periods of sun at low angles and have the potential

332

A comparative assessment of Brazilian electric motors performance with minimum efficiency standards  

Science Journals Connector (OSTI)

Abstract The industrial electric motor is the most important load, considering its large number and associated energy consumption, being responsible for approximately 68% of the industrial energy consumption and 35% of the total electrical energy consumption in Brazil. This country, like others, is seeking to establish a regulation on the minimum efficiency index for electric motor equipment. This paper aims to present an overview of the installed park of industrial motors in Brazil and to evaluate the possible effects of such regulation. For this purpose, the measurement results obtained in the 2000Ė2012 period were used, which were extracted from the approximately 276 three-phase induction motors that had been sold and were being used in the Brazilian market, with a rated power in a large range from under 1†hp to over 150†hp. The analysis of the measurement results provided an overview of the average behavior of the induction motors in industry while considering energy efficiency and allowing estimates and proposals aiming at the improvement of the use of electrical energy.

Ildo L. Sauer; Hťdio Tatizawa; Francisco A.M. Salotti; Sonia S. Mercedes

2015-01-01T23:59:59.000Z

333

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network (OSTI)

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

334

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

335

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

336

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

337

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

338

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

339

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

340

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

342

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

343

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

344

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

345

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

346

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

347

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

348

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

349

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

350

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

351

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

352

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

353

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

354

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

355

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

356

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

357

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

358

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

359

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

360

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

362

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

363

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

364

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

365

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

366

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

367

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

368

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

369

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

370

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

371

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

372

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

373

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

374

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

375

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

376

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

377

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

378

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

379

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

380

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

382

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

383

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

384

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

385

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

386

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

387

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

388

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

389

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

390

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

391

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

392

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

393

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

394

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

395

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

396

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

397

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

398

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

399

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

400

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

402

Tecnolog√≠as del Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

del Motor del Motor El Tiempo de apertura y Levantamiento de V√°lvulas Variable (VVT&L) Motor con V√°lvulas de Tiempo y Elevaci√≥n Variable Tambi√©n llamado activaci√≥n variable de v√°lvulas (AVV), elevaci√≥n variable y tiempo variable y control electr√≥nico de elevaci√≥n (VTEC¬ģ). Las v√°lvulas controlan el flujo de aire y combustible de los cilindros y los expulsa fuera de ellos. El momento y el tiempo que las v√°lvulas permanecen abiertas y c√≥mo se mueven o se elevan, ambos afectan la eficiencia del motor. Los ajustes en el tiempo y elevaci√≥n son diferentes para motores de baja y alta velocidad. De cualquier manera en los dise√Īos tradicionales se usan tiempos y elevaciones "arregladas" lo cual compromete los valores √≥ptimos entre las velocidades altas y bajas. Los sistemas VVT&L alteran el tiempo y

403

Directional Transport by Nonprocessive Motor Proteins on Fascin-Cross-Linked Actin Arrays  

Science Journals Connector (OSTI)

motors, in particular motor proteins, are ideally suited to introduce chem. ... The movement of actin-myosin biomolecular linear motor under AC electric fields: An experimental study ...

Yongkuk Lee; Parviz Famouri

2013-07-02T23:59:59.000Z

404

E-Print Network 3.0 - ameliorate motor performance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

sensory feedback and motor prediction to estimate the current... Magazine R729 Primer Motor prediction Daniel M. Wolpert* and J. Randall Flanagan The concept... of motor...

405

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

406

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchNon-point Source Water Pollution from Motor Vehicles Motorof controlling water pollution from motor vehicles. For

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

407

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

408

When Should Inverter-Duty Motors Be Specified?  

Energy.gov (U.S. Department of Energy (DOE))

Electronic adjustable speed drives, known as variable frequency drives (VFD), used to be marketed as ďusable with any standard motor.Ē However, premature failures of motor insulation systems began to occur as fast-switching, pulse-width-modulated (PWM) VFDs were introduced. The switching rates of modern power semiconductors can lead to voltage overshoots. These voltage spikes can rapidly damage a motorís insulation system, resulting in premature motor failure. This tip sheet discusses the effects of VFDs on induction motors and offers suggested actions.

409

Non-Motorized Travel Study.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Motorized Travel Study: Motorized Travel Study: Identifying Factors that Influence Communities to Walk and Bike and to Examine Why, or Why Not, Travelers Walk and Bike in Their Communities Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine

410

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

411

Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels  

SciTech Connect

A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

2013-01-01T23:59:59.000Z

412

History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site  

SciTech Connect

The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

Gerber, M.S., Fluor Daniel Hanford

1997-02-18T23:59:59.000Z

413

A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces  

SciTech Connect

Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

Blau, P.J.; Martin, R.L.; Riester, L.

1996-01-01T23:59:59.000Z

414

Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance: Preprint  

SciTech Connect

Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect band images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.

Johnston, S.; Yan, F.; Dorn, D.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Ounadjela, K.

2012-06-01T23:59:59.000Z

415

Motor current signature analysis for determining operational readiness of motor-operated valves (MOVs)  

SciTech Connect

Motor current signature analysis (MCSA) is a novel diagnostic process for condition monitoring of electric-motor-driven mechanical equipment (e.g., pumps, motor-operated valves, compressors, and processing machinery). The MCSA process identifies, characterizes, and trends over time the instantaneous load variations of mechanical equipment in order to diagnose changes in the condition of the equipment (e.g., due to degradation or service wear), which, if allowed to continue, may lead to failure. It monitors the instantaneous variations (noise content) in the electric current flowing through the power leads to the electric motor that drives the equipment. The motor itself thereby acts as a transducer, sensing both large and small, long-term and rapid, mechanical load variations and converting them to variations in the induced current generated in the motor windings. This motor current noise signature is detected, amplified, and further processed as needed to examine its time domain and frequency domain (spectral) characteristics. The operational principles of MCSA and the nonintrusive data collection apparatus and procedure used with MOVs will be described. Data collected from MOVs in both laboratory and in-plant environments will also be shown to illustrate the ability of MCSA to ''see'' the detailed inner workings of the valve and operator and thus to detect degraded performance at an incipient stage. (Set of 18 vugraphs)

Kryter, R.C.; Haynes, H.D.

1987-01-01T23:59:59.000Z

416

Soft-commutated direct current motor  

DOE Patents (OSTI)

A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.

Hsu, J.S.

1999-07-27T23:59:59.000Z

417

Advanced motor driven clamped borehole seismic receiver  

DOE Patents (OSTI)

A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, B.P.; Sleefe, G.E.; Striker, R.P.

1993-02-23T23:59:59.000Z

418

Modeling of Electronically Commutated Motor Controlled Fan-powered Terminal Units  

E-Print Network (OSTI)

Feet Per Minute ECM Electronically Commutated Motor FPTU Fan Powered Terminal Unit Pdown Downstream Static Pressure PF Power Factor Pup Upstream Static Pressure SCR Silicon Controlled Rectifier THD Total Harmonic Distortion VAV Variable Air... parallel unit pressurizes the FPTU causing some of the primary air to leak out of the unit. Another difference between them is that series terminal units allow the primary air system to operate at a lower static pressure because the terminal unit fan...

Edmondson, Jacob Lee

2011-02-22T23:59:59.000Z

419

Minimum Efficiency Standards for Electric Motors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Efficiency Standards for Electric Motors Minimum Efficiency Standards for Electric Motors Minimum Efficiency Standards for Electric Motors October 7, 2013 - 11:28am Addthis Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors. As a result of this increase in mandatory minimum standards and combined with the lack of significant availability of motors exceeding these standards, FEMP is suspending the purchasing specification for electric motors. Federal buyers may select for purchase any motor that meets design requirements.

420

MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by  

E-Print Network (OSTI)

THESIS MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by Jared Tucker Heath 2011 All Rights Reserved #12;ii ABSTRACT MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Winter recreation, consisting of snowshoeing, skiing, snowboarding, and snowmobiling, has been increasing

MacDonald, Lee

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

9.373 Somatosensory and Motor Systems, Spring 2002  

E-Print Network (OSTI)

General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor ...

Bizzi, Emilio

422

Actions to promote energy-efficient electric motor repair  

Science Journals Connector (OSTI)

Electric motors are repaired 2-3 times over their lifetime. Poor repair practices, particularly widespread in developing countries, can lead to a significant increase in motor losses. It is estimated that worldwide poor repair leads to annual electricity losses of approximately 40 TWh, representing 20 Mtons of CO2 emissions. The main objective of this paper is to provide a technical basis for designing demand side management actions, which address the motor repair market. This paper brings into focus motor repair process trends, energy-efficient motors, typical repair process, actions to promote energy-efficient motor repair, energy-efficient motor rebate schemes to replace old, badly damaged motors and the factors influencing payback. This paper will be useful to energy policy makers, and Demand Side Management (DSM) staff in energy agencies and electric utilities.

Aníbal T. de Almeida; Fernando J.T.E. Ferreira

2003-01-01T23:59:59.000Z

423

An All-Electric Single-Molecule Motor  

Science Journals Connector (OSTI)

An All-Electric Single-Molecule Motor ... Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. ...

Johannes S. Seldenthuis; Ferry Prins; Joseph M. Thijssen; Herre S. J. van der Zant

2010-10-11T23:59:59.000Z

424

When to Purchase Premium Efficiency Motors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide - A Handbook for Industry Optimizing Your Motor-Driven System The Impacts of the Energy Policy Act of 1992 on Industrial End Users of Electric Motor-Driven Systems...

425

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low...

Akin, Bilal

2009-05-15T23:59:59.000Z

426

Case Studies of High Efficiency Electric Motor Applicability  

E-Print Network (OSTI)

Much has been written about the advantages and disadvantages of high efficiency electric motors. For a given motor application it is possible to find literature that enables a plant engineer to make an informed choice between a standard efficiency...

Wagner, J. R.

427

Ultra-Efficient and Power-Dense Electric Motors | Department...  

Energy Savers (EERE)

Ultra-Efficient and Power-Dense Electric Motors Ultra-Efficient and Power-Dense Electric Motors electricmotors.pdf More Documents & Publications Advance Patent Waiver W(A)2009-030...

428

Motor Using High Temperature Superconductor as a Rotor  

Science Journals Connector (OSTI)

It is found that a high temperature superconductor rotates in the rotating magnetic field at ... authors and a small motor is made using high temperature superconductor as a rotor. This motor rotates at...

Makoto Takenaka; Masaharu Minami; Kazuo Morimoto

1994-01-01T23:59:59.000Z

429

The basic mechanism of ATP powered motor proteins  

Science Journals Connector (OSTI)

The ability of ATP powered motor proteins to convert chemical free energy into ... for a myosin head to act as a motor protein, it is necessary for it to ... these impacts can be generated when a single water mol...

D. H. Weinstein

430

EIA-878 Motor Gasoline Price Survey ? Reference Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Motor Gasoline Price Survey - Reference Guide For the purposes of the Motor Gasoline Price Survey (EIA-878), we collect prices for the following gasoline grades as defined by...

431

Learning About Wind Turbine Technology, Motors and Generators...  

NLE Websites -- All DOE Office Websites (Extended Search)

of different variations of motors and generators. Motors are used to convert electric energy from the grid into mechanical energy and can be found in dozens of products in every...

432

EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. This...

433

Continuous Energy Improvement in Motor Driven Systems Ė A Guidebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. It complements DOE's MotorMaster+ motor selection and motor management software tool.

434

Total Sky Imager (TSI) Handbook  

SciTech Connect

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

435

Extended cage adjustable speed electric motors and drive packages  

DOE Patents (OSTI)

The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

Hsu, J.S.

1999-03-23T23:59:59.000Z

436

Entwicklung eines Regel- und Abgasnachbehandlungssystems fŁr einen GDI-Motor  

Science Journals Connector (OSTI)

Im Rahmen eines Entwicklungsprojekts zur Minimierung der Emissionswerte eines Pkw mit GDI-Motor hat Ricardo Consulting Engineers auf dem...

Tim H. Lake; Rob G. Bending; Graham P. WilliamsÖ

1999-12-01T23:59:59.000Z

437

Pollution prevention assessment for a manufacturer of gear cases for outboard motors  

SciTech Connect

The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufacturers gear cases for outboard motors. Aluminum castings are machined and polished, and undergo chemical immersion, chromate conversion, and, in some cases, painting. Steel castings are machined, heat treated, shot-peened offsite, deburred, and ground. The finished component parts are assembled together. The team`s report, detailing findings and recommendations, indicated that absorbent socks and leaked oil and coolant are generated in large quantities, and that significant cost savings could be achieved by eliminating the use of the absorbent socks by constructing containment areas around the machines. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

Jendrucko, R.J.; Myers, J.A. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Engineering Science and Mechanics; Looby, G.P. [University City Science Center, Philadelphia, PA (United States)

1995-09-01T23:59:59.000Z

438

The Head-Neck Sensory Motor System  

E-Print Network (OSTI)

The Head-Neck Sensory Motor System Edited by Alain Berthoz Laboratoire de Physiologie, sideslip, and thrust) determine its loca- tion in space, and rotations (yaw, pitch, and roll) change its, no functional significance can be attributed to this multiple sampling. Oculomotor System of Calliphora

439

Theories of rotary motors Richard M. Berry  

E-Print Network (OSTI)

and the `proton turbine' model of La¬ę uger or Berry. Models such as these are typically represented by a small connected to an extracellular helical propeller. The motor is powered by the ¬£ow of ions down to the helical propeller, or `¬Ęlament'. The stator is a ring of particles in the cytoplasmic membrane, containing

Berry, Richard

440

January 08 1 Ford -Chrysler -General Motors  

E-Print Network (OSTI)

January 08 1 Ford - Chrysler - General Motors DOE Fuel Cell Pre-Solicitation Workshop worthy - and not worthy - of study in the DOE Fuel Cell Subprogram · Categories described within DOE Fuel for Study · PGM cathode catalysts, mass activity > 0.44 A/mgPGM ­ Core/shell ­ Structure-controlled PGM

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance improvement of permanent magnet ac motors  

E-Print Network (OSTI)

in selecting the switching states and finer adjustment of flux and torque. A sensorless direct torque control of five-phase permanent magnet motor is implemented. Speed information is obtained based on the position of stator flux linkages and load angle...

Parsa, Leila

2005-08-29T23:59:59.000Z

442

An analysis of induction motor testing techniques  

SciTech Connect

There are two main failure mechanisms in induction motors: bearing related and stator related. The Electric Power Research Institute (EPRI) conducted a study which was completed in 1985, and found that near 37% of all failures were attributed to stator problems. Another data source for motor failures is the Nuclear Plant Reliability Data System (NPRDS). This database reveals that approximately 55% of all motors were identified as being degraded before failure occurred. Of these, approximately 35% were due to electrical faults. These are the faults which this paper will attempt to identify through testing techniques. This paper is a discussion of the current techniques used to predict incipient failure of induction motors. In the past, the main tests were those to assess the integrity of the ground insulation. However, most insulation failures are believed to involve turn or strand insulation, which makes traditional tests alone inadequate for condition assessment. Furthermore, these tests have several limitations which need consideration when interpreting the results. This paper will concentrate on predictive maintenance techniques which detect electrical problems. It will present appropriate methods and tests, and discuss the strengths and weaknesses of each.

Soergel, S. [Entergy Operations Inc., Killona, LA (United States)

1996-12-31T23:59:59.000Z

443

Chemistry and the Motor Car Industry  

Science Journals Connector (OSTI)

Chemistry and the Motor Car Industry ... It so happens that this chemical reaction, the production of water and carbon dioxide (which in proper combination gives you seltzer water), is accompanied by the generation of heat which is used to produce power, and after all, power is what primarily concerns the automotive industry. ...

CHARLES F. KETTERING

1943-06-10T23:59:59.000Z

444

Lithographically Patterned Channels Spatially Segregate Kinesin Motor  

E-Print Network (OSTI)

* Departments of Bioengineering and Electrical Engineering and Materials Research Institute, The Pennsyl and transporting material at nanoscale dimensions, there is considerable interest in harnessing motor proteins), cumulative forces on the order of nN per ¬Ķm2 are theoretically possible. The size, efficiency, and potential

Hancock, William O.

445

Physical context management for a motor vehicle  

DOE Patents (OSTI)

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

446

Microtubule Motors in Microfluidics Maruti Uppalapati,  

E-Print Network (OSTI)

CHAPTER 1 3 Microtubule Motors in Microfluidics Maruti Uppalapati, 1 Ying-Ming Huang, 2 Shankar division. Because emerging microfluidic devices uti- lize channel geometries similar to cellular scales in incorporating biomotor-driven transport into microfluidic devices. Kinesin-driven transport has the advantage

Hancock, William O.

447

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network (OSTI)

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

448

Calculation note for Consequences of a fire in the sorting and repackaging glovebox in room 636 of bldg 2736-ZB Plutonium Finishing Plant  

SciTech Connect

This Calculation Note provides a conservative estimate of the grams of plutonium released from Building 2736-ZB of the Plutonium Finishing Plant as a result of a fire within Glovebox 636, without consideration of mitigation.

JOHNSON, L.E.

1999-08-31T23:59:59.000Z

449

Gas Mileage of 1993 Vehicles by J.K. Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

450

Bifurcation and control of chaos in Induction motor drives  

E-Print Network (OSTI)

The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor parameters and load torque are essential for proper control of the motor. This paper provides a numerical approach to understand better the dynamical behavior of an indirect field oriented control of a current-fed induction motor. The focus is on bifurcation analysis of the IFOC motor, with a particular emphasis on the change that affects the dynamics and stability under small variations of Proportional Integral controller (PI) parameters, load torque and k, the ratio of the rotor time constant and its estimate etc. Bifurcation diagrams are computed. This paper also attempts to discuss various types of the transition to chaos in the induction motor. The results of the obtained bifurcation simulations give useful guidelines for adjusting both motor model and PI controller parameters. It is also important to ensure desired operation of the motor when the motor shows chaotic behavior. Infinite numbers of unstable periodic orbits are embedded in a chaotic attractor. Any unstable periodic orbit can be stabilized by proper control algorithm. The delayed feedback control method to control chaos has been implemented in this system.

Krishnendu Chakrabarty; Urmila Kar

2014-10-24T23:59:59.000Z

451

Computational Design of a Light-Driven Molecular Motor  

Science Journals Connector (OSTI)

Light-driven molecular motors may be useful for nanotechnology applications. ... The candidate motor molecule was designed using semiempirical quantum chemical methods. ... Full geometry optimization would help to better evaluate the ability of this molecule to serve as a motor and is left to future work. ...

Nicolae M. Albu; Edward Bergin; David J. Yaron

2009-06-02T23:59:59.000Z

452

Ion selectivity of the Vibrio alginolyticus flagellar motor.  

Science Journals Connector (OSTI)

...Vibrio alginolyticus flagellar motor. J Z Liu M Dapice S Khan Department...ion transfers limit unloaded motor speed in this bacterium and...to flagellar rotation. The motor is composed of several independent...obtained after the profile of the electric field has been crossed by the...

J Z Liu; M Dapice; S Khan

1990-09-01T23:59:59.000Z

453

An Improved Sensorless DTC Scheme for EV Induction Motors  

E-Print Network (OSTI)

to increase the efficiency of a Direct Torque Control (DTC) of an induction motor propelling an Electric is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive; however, they have not yet used the most remarkable advantages of electric motors. Indeed, an electric

Paris-Sud XI, Université de

454

Lagrangean Decomposition Algorithm for Supply Chain Redesign of Electric Motors  

E-Print Network (OSTI)

Lagrangean Decomposition Algorithm for Supply Chain Redesign of Electric Motors Industry Yongheng Redesign of Electric Motors Industry Introduction of the Supply Chain Model 3/22/13 2 Analia Rodriguez #12 Decomposition Algorithm for Supply Chain Redesign of Electric Motors Industry #12;Lagrangean Decomposition

Grossmann, Ignacio E.

455

Early Imaging Correlates of Subsequent Motor Recovery after Stroke  

E-Print Network (OSTI)

Early Imaging Correlates of Subsequent Motor Recovery after Stroke Randolph S. Marshall, MS, MD days after stroke correlates with subsequent motor recovery. Methods: Twenty-three patients with hemiparesis after first-time stroke were scanned at 2.0 0.9 days while performing a simple motor task. We

456

Stator Vibration Analysis of Bearingless Switched Reluctance Motors  

Science Journals Connector (OSTI)

Radial magnetic force acts on the motor stator cause large vibration and acoustic noise, that have limit the application of switched reluctance motors (SRMs). They can be aggravated when there is unbalanced force due to rotor eccentricity. This paper ... Keywords: switched reluctance motors, bearingless technique, vibration, magnetic fore, mathematic model

Yang Yan; Deng Zhiquan; Zhang Qianying; Wang Xiaolin

2010-06-01T23:59:59.000Z

457

Four Phase Switched Reluctance Motor Direct Torque Control  

Science Journals Connector (OSTI)

The three-phase switched reluctance motor direct torque control method mostly is a simple transplantation of the three-phase AC asynchronous motor direct torque control method, not suitable for arbitrary-phase switched reluctance motor. In this paper, ... Keywords: SRM, Direct torque control, Flux vector, Voltage vector, Switched rule

Wang Mianhua

2011-01-01T23:59:59.000Z

458

Reducing current reversal time in electric motor control  

DOE Patents (OSTI)

The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

Bredemann, Michael V

2014-11-04T23:59:59.000Z

459

Research on Induction Motor for Mini Electric Vehicles  

Science Journals Connector (OSTI)

The motor of a mini electric vehicle uses dozens of storage batteries as power supply, which has low voltage and large current. Therefore, the loss and temperature raise of the motor is high. In this paper, the loss of different induction motors for mini electric vehicles is calculated and the effects of rotor materials and air gap length on the performance of these motors are studied. The analyses show that the efficiency of the motor with a copper mouse cage rotor is considerably higher than that of the motor with a aluminum rotor. The temperature raise of both an air-cooling and a water-cooling induction motor is analyzed, which demonstrates that the temperature raise of the motor windings is higher than that of the other parts, and the temperature raise of the water-cooling motor is lower than that of the air-cooling motor. To verify the results of the theoretical analyses, four prototype induction motors (aluminum rotor, copper mouse cage rotor, air-cooling and spiral groove machine) have been designed and processed. The experiments to measure the efficiency and temperature raise were carried out on these motors. The experimental results prove that the theoretical analyses are correct.

Shukang Cheng; Cuiping Li; feng Chai; Hailong Gong

2012-01-01T23:59:59.000Z

460

VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT  

E-Print Network (OSTI)

of such a "virtual motor" is crucial for the success of such an implementation. DEVELOPMENT InvErTEr 42 #12;NEW-motor emulator from SET Power Sys- tems. The emulator permits tests to be run with the drive inverter at full the inverter. The high dynamic response of electric motors can be put to use for the compensation of powertrain

Paderborn, Universität

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program  

E-Print Network (OSTI)

) with joint Bonneville Power Administration (BPA) and Department of Energy (DOE) funding support. Copies are distributed, along with the "Energy-Efficient Electric Motor Selection Handbook" and Electric Ideas Clearinghouse Technology Updates as part...) with joint Bonneville Power Administration (BPA) and Department of Energy (DOE) funding support. Copies are distributed, along with the "Energy-Efficient Electric Motor Selection Handbook" and Electric Ideas Clearinghouse Technology Updates as part...

Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

462

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

463

776 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 4, JULY/AUGUST 1998 Switched Reluctance Motor Modeling with  

E-Print Network (OSTI)

-line parameter estimation using recursive identification for switched reluctance motors (SRM's) is presented. Index Terms-- Parameter identification, switched reluctance motor modeling, switched reluctance motors. I. INTRODUCTION THE switched reluctance motor (SRM) is a simple, low- cost, and robust motor

Husain, Iqbal

464

List of Motor VFDs Incentives | Open Energy Information  

Open Energy Info (EERE)

Motor VFDs Incentives Motor VFDs Incentives Jump to: navigation, search The following contains the list of 352 Motor VFDs Incentives. CSV (rows 1 - 352) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government

465

United States Industrial Electric Motor Systems Market Opportunities Assessment  

Energy.gov (U.S. Department of Energy (DOE))

The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance practices; Develop and implement a procedure to update the detailed motor profile on a regular basis using readily available market information; and, Develop methods to estimate the energy savings and market effects attributable to the Motor Challenge Program.

466

Traffic of cytoskeletal motors with disordered attachment rates  

E-Print Network (OSTI)

Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend lattice-based models of intracellular transport to include a second species of particle which locally influences the motor-filament attachment rate. We consider various exactly solvable limits of a stochastic multi-particle model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random walk behaviour of single motors gives good quantitative agreement with simulation results for the tau-dependence of the motor current. Finally, we discuss the possible physiological implications of our results.

H. Grzeschik; R. J. Harris; L. Santen

2008-06-24T23:59:59.000Z

467

U.S. DOE Motor System Market Assessment  

Energy.gov (U.S. Department of Energy (DOE))

AMO is leading a new Motor System Market Assessment (MSMA) to better understand opportunities for energy efficiency improvement in motors and motor-driven systems, which are essential to a wide array of industrial applications. Machine driven processes such as pumps, fans, compressed air, and materials handling and processing accounted for 68% of electricity use (2,840 TBtu direct use) by U.S. manufacturing in 2010. The new assessment will document the efficiency opportunities for motors and motor driven systems and propel market uptake of best practices and technologies designed to address these opportunities.

468

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

469

Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: December 14, 1: December 14, 2009 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on AddThis.com... Fact #601: December 14, 2009

470

New disc type switched reluctance motor for high torque density  

Science Journals Connector (OSTI)

A new disc type switched reluctance motor (DSRM) structure for high torque density is presented. The new motor has a double sided stator structure that provides higher torque and less acoustic noise than classical switched reluctance motors (SRMs) of small sizes. The motor is based on linear switched reluctance motors. The results of the analytical and numerical analysis are given to evaluate the effectiveness of the motor structure, and experimental noise measurement data are presented. In the numerical analysis, due to the highly nonlinear nature of the motor, finite element analysis is employed. A prototype 6/4 DSRM and a classical SRM are built and tested for experimental studies. The obtained test and simulation results show that the DSRM has a higher torque and less acoustic noise performance.

Ferhat Daldaban; Nurettin Ustkoyuncu

2007-01-01T23:59:59.000Z

471

Development of a Switched Reluctance Motor made of Permendur  

Science Journals Connector (OSTI)

A switched reluctance (SR) motor consists of stator and rotor cores, and windings. Both the stator and rotor have salient poles. The stator has concentrated windings on each salient pole. On the other hand, the rotor has no windings and no permanent magnets. Therefore, the SR motor is a low cost, extremely robust, and wide-range variable-speed motor. The performance of the SR motor greatly depends on magnetic properties of core material since it consists of only iron cores and windings. This paper presents the development of a novel SR motor made of permendur which has extremely high saturation flux density and very low core loss. Two types of SR motors, one is made of conventional non-oriented Si steel, the other is made of permendur, are compared by simulation and experiment. It is demonstrated that the torque of the SR motor made of permendur is greater than that of the conventional Si steel by 20%.

Y Hasegawa; K Nakamura; O Ichinokura

2011-01-01T23:59:59.000Z

472

The effect of surface finish on piston ring-pack performance in advanced reciprocating engine systems  

E-Print Network (OSTI)

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Methods of surface texture optimization were investigated to reduce piston ring-pack ...

Jocsak, Jeffrey (Jeffrey Alan)

2005-01-01T23:59:59.000Z

473

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan  

SciTech Connect

This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure integrity. In the unlikely event that a waste spill does occur outside the glovebox, operating methods and administrative controls will require that waste spills be cleaned up promptly and completely, and a notation will be made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

474

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

475

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

476

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todayís EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powerís motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

477

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

478

Honda Motor Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Honda Motor Co Ltd Honda Motor Co Ltd Jump to: navigation, search Name Honda Motor Co Ltd Place Tokyo, Tokyo, Japan Zip 107-8556 Sector Vehicles Product Leading global car manufacturer which began research into fuel cell technologies in the 1980s, and has tested several generations of technolgy in its FCX vehicles. Coordinates 35.670479¬į, 139.740921¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Counterrotating brushless dc permanent magnet motor  

SciTech Connect

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

480

Counterrotating brushless dc permanent magnet motor  

SciTech Connect

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total finished motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Motor gasolines, winter 1979-1980  

SciTech Connect

Analytical data for 1857 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report shows marketing areas districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas, 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R+M)/2) averages of gasoline sold in this country were 87.9, 92.1, 89.0, and 93.3 unleaded below 90.0, unleaded 90.0 and above, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-07-01T23:59:59.000Z

482

Motor gasolines, Winter 1980-81  

SciTech Connect

Analytical data for 546 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 23 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.6 unleaded below 90.0, 91.4 unleaded 90.0 and above, 89.1 leaded below 93.0, and 93.3 leaded 93.0 and above grades of gasoline.

Shelton, E.M.

1981-07-01T23:59:59.000Z

483

Electric propulsion motor for marine vehicles  

SciTech Connect

An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

1993-07-20T23:59:59.000Z

484

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

485

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

486

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

487

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

488

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

489

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

490

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

491

Transport of organelles by elastically coupled motor proteins  

E-Print Network (OSTI)

Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins attached to a cargo are simultaneously engaged in pulling activity, often leading to tug-of-war and bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few papers have studied more realistic models of cargo transport by including elastic motor-cargo coupling, but either restricts the number of motors and/or uses purely phenomenological forms for energy-dependent hopping rates. Here, we study a generic Model In which N motors are elastically coupled to a cargo, which itself is subject to thermal noise in the cytoplasm and an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of stretching. The master equation is converted to a linear Fokker-Planck equation (LFPE), which yields the average positions of the cargo and motors, as well as their fluctuations and correlation functions. We apply this formalism to two specific forms of the hopping rates. Analytical results are obtained for mean cargo velocity, diffusion coefficient and the average force experienced by each motor for arbitrary N, and compared with numerical simulations. The expansion procedure also allows us to quantify load-sharing features among the cargo-bound motors. In general, we observe significant deviations between analytical predictions based on LFPE and the corresponding numerical results, which suggests a prominent role for higher order corrections.

Deepak Bhat; Manoj Gopalakrishnan

2014-12-17T23:59:59.000Z

492

Variable current speed controller for eddy current motors  

DOE Patents (OSTI)

A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

1982-03-12T23:59:59.000Z

493

Method and apparatus for generating motor current spectra to enhance motor system fault detection  

DOE Patents (OSTI)

A method and circuitry are disclosed for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed. 29 figs.

Linehan, D.J.; Bunch, S.L.; Lyster, C.T.

1995-10-24T23:59:59.000Z

494

Method and apparatus for generating motor current spectra to enhance motor system fault detection  

DOE Patents (OSTI)

A method and circuitry for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed.

Linehan, Daniel J. (Knoxville, TN); Bunch, Stanley L. (Oak Ridge, TN); Lyster, Carl T. (Knoxville, TN)

1995-01-01T23:59:59.000Z

495

Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature  

DOE Patents (OSTI)

The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

Kelledes, William L. (Brighton, MI); St. John, Don K. (Livonia, MI)

1992-01-01T23:59:59.000Z

496

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

497

In situ Measurement of Robot Motor Electrical Constants  

E-Print Network (OSTI)

Motor torque constant is an important parameter in modeling and controlling a robot axis. In practice this parameter can vary considerably from the manufacturer's specification, if available, and this makes it desirable to characterise individual motors. Traditional techniques require that the motor be removed from the robot for testing, or that an elaborate technique involving weights and pulleys be employed. This paper describes a novel method for measuring the torque constant of robot servo motors in situ and is based on the equivalence of motor torque and back EMF constants. It requires a very simple experimental procedure, utilizes existing axis position sensors, and eliminates effects due to static friction and joint cross coupling. A straightforward extension to this approach can provide a measurement of motor armature impedance. Experimental results obtained for a Puma 560 are discussed and compared with other published results. 1 Introduction A large number of existing robot m...

Peter I. Corke

1996-01-01T23:59:59.000Z

498

Renewal processes and fluctuation analysis of molecular motor stepping  

E-Print Network (OSTI)

We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase.

Jaime E. Santos; Thomas Franosch; Andrea Parmeggiani; Erwin Frey

2005-11-13T23:59:59.000Z

499

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

500

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z