National Library of Energy BETA

Sample records for total energy non

  1. "Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.6.9. Primary

  2. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings forTitle XVIIof EnergyofTotal Energy

  3. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  4. Total Energy Management in General Motors 

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  5. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  6. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview More Documents & Publications U.S. Department of...

  7. Cogeneration Plant is Designed for Total Energy 

    E-Print Network [OSTI]

    Howell, H. D.; Vera, R. L.

    1987-01-01

    stream_source_info ESL-IE-87-09-45.pdf.txt stream_content_type text/plain stream_size 19371 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-45.pdf.txt Content-Type text/plain; charset=ISO-8859-1 COGENERATION PLANT... of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle...

  8. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  9. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  10. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  11. Total Economics of Energy Efficient Motors 

    E-Print Network [OSTI]

    Nester, A. T.

    1984-01-01

    Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part...

  12. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy|20082009Total Energy

  13. Achieving Total Employee Engagement in Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    Expensive - Estimated 120M in 2009 and rising Finite resource - Most energy from fossil fuels A CorporateSocial responsibility to conserve it - Eliminate...

  14. Award Number: Federal Non-Federal Federal Non-Federal Total

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES ATj. Indirect Charges k. Totals (sum

  15. Correlation Of Surface Heat Loss And Total Energy Production...

    Open Energy Info (EERE)

    Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

  16. Compare All CBECS Activities: Total Energy Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592Number ofByFuel OilByTotal

  17. Energy dependence of the total photoproduction cross section at HERA

    E-Print Network [OSTI]

    Aharon Levy

    2008-07-01

    The energy dependence of the total photon-proton cross-section is determined from data collected with the ZEUS detector at HERA with two different proton beam energies.

  18. SolarTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompanySolarLab JumpSolarStructure Ltd Jump

  19. Total Energy - U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSedimentsTechnologies |Total Energy Glossary

  20. Achieving Total Employee Engagement in Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance(EPACT 2005)the Waste IsolationJAN

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4)5,Product:

  4. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)

  5. Estimations of total mass and energy of the universe

    E-Print Network [OSTI]

    Dimitar Valev

    2010-04-07

    The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and kinetic energy of the universe by Newtonian gravity in a flat space. By dimensional analysis, we have found the mass of the universe close to the Hoyle-Carvalho formula M ~ c^3/(GH). This value is independent from the cosmological model and infers a size (radius) of the universe close to Hubble distance. It has been shown that almost the entire kinetic energy of the universe ensues from the cosmological expansion. Both, the total gravitational and kinetic energies of the universe have been determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic energy have been made and the dark energy has been excluded from calculations. The total mechanical energy of the universe has been found close to zero, which is a remarkable result. This result supports the conjecture that the gravitational energy of the universe is approximately balanced with its kinetic energy of the expansion.

  6. Potential Energy Total electric potential energy, U, of a system of

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

  7. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass Facility Jump to: navigation,

  8. Award Number: Federal Non-Federal Federal Non-Federal Total

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT

  9. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95Symerton,E C

  10. The role of the total entropy production in dynamics of open quantum systems in detection of non-Markovianity

    E-Print Network [OSTI]

    S. Salimi; S. Haseli; A. S. Khorashad

    2015-04-19

    In the theory of open quantum systems interaction is a fundamental concepts in the review of the dynamics of open quantum systems. Correlation, both classical and quantum one, is generated due to interaction between system and environment. Here, we recall the quantity which well known as total entropy production. Appearance of total entropy production is due to the entanglement production between system an environment. In this work, we discuss about the role of the total entropy production for detecting non-Markovianity. By utilizing the relation between total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity.

  11. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana. Coal Coalb.Total

  12. Property:Building/FloorAreaTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices Jump to:FloorAreaTotal Jump to:

  13. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly7,674a.Total Energy

  14. The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)

    E-Print Network [OSTI]

    R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

    2014-03-18

    The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

  15. Determination of total mechanical energy of the universe within the framework of Newtonian mechanics

    E-Print Network [OSTI]

    Dimitar Valev

    2010-02-23

    The recent astronomical observations indicate that the expanding universe having a finite particle horizon is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total kinetic and gravitational energies of the universe within the framework of the Newtonian mechanics. It has been shown that almost the entire kinetic energy of the universe ensues from the cosmological expansion. Both, the total kinetic and gravitational energies of the universe have been determined in relation to an observer at arbitrary location. It is amazing that the modulus of the total gravitational energy differs from the total kinetic energy with a multiplier close to a unit. Thus, the total mechanical energy of the universe has been found close to zero. Both, the total kinetic energy and the modulus of total gravitational energy of the universe are estimated to 3/10 of its total rest energy M*c^2.

  16. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    total energy use and carbon footprint of a Chinese officeestimated energy and carbon footprint of Chinese commercialbuilding’s carbon and other emissions footprints. The aim of

  17. Dark energy and non-linear power spectrum

    E-Print Network [OSTI]

    Sang Gyu Biern; Jinn-Ouk Gong

    2015-06-29

    We investigate the effects of homogeneous general dark energy on the non-linear matter perturbation in fully general relativistic context. The equation for the density contrast contains even at linear order new contributions which are non-zero for general dark energy. Taking into account the next-leading-order corrections, we derive the total power spectrum in real and redshift spaces. We find that the observable galaxy power spectrum deviates from the LambdaCDM spectrum, which is nearly identical to that in the Einstein-de Sitter universe, and the relative difference is about 10% on a scale of the baryon acoustic oscillations.

  18. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  19. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  20. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    E-Print Network [OSTI]

    Larsen, Peter

    2013-01-01

    non-energy-related annual dollar savings per square foot byenergy retrofits at K-12 schools typically cost more to install per square foot

  1. Energy backflow and non-Markovian dynamics

    E-Print Network [OSTI]

    Giacomo Guarnieri; Chikako Uchiyama; Bassano Vacchini

    2015-10-08

    We explore the behavior in time of the energy exchange between a system of interest and its environment, together with its relationship to the non-Markovianity of the system dynamics. In order to evaluate the energy exchange we rely on the full counting statistics formalism, which we use to evaluate the first moment of its probability distribution. We focus in particular on the energy backflow from environment to system, to which we associate a suitable condition and quantifier, which enables us to draw a connection with a recently introduced notion of non-Markovianity based on information backflow. This quantifier is then studied in detail in the case of the spin-boson model, described within a second order time-convolutionless approximation, observing that non-Markovianity allows for the observation of energy backflow. This analysis allows us to identify the parameters region in which energy backflow is higher.

  2. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly7,674a.TotalTotal

  3. Montana Total Maximum Daily Load Development Projects Wiki | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett,GroundwaterEnergy.10Open EnergyInformation

  4. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne calculations of the electronic energy of the ground state of the water molecule yield energies lower than those for the electronic energy of the ground state of the water molecule. The energy given by a fixed-node quantum Monte

  5. "Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1. Selected Energy

  6. Medical Area Total Egy Plt Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt Inc Jump to: navigation,

  7. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump to: navigation, search

  8. Although the transmitter energy is one of the major factors of total energy dissipation in a sensor node, neglecting the

    E-Print Network [OSTI]

    ABSTRACT Although the transmitter energy is one of the major factors of total energy dissipation in a sensor node, neglecting the overhead energy in energy aware routing decisions could result in suboptimal energy usage. Routing algorithms should be concerned about the overhead energy which is wasted at each

  9. Property:Building/TotalFloorArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOffices

  10. Case study of total energy system, Sher-Den Mall, Sherman, Texas

    SciTech Connect (OSTI)

    Myrtetus, G.B.; Levey, M.D.

    1980-12-01

    The Sher-Den Mall shopping center receives all of its electricity and heating and cooling energy from a total energy plant located within the shopping center proper. Four engine-generator units are fueled primarily by natural gas, with some fuel oil use. The following are presented: initial corporate planning, investigation, and feasibility studies; a description of the total energy system; capital costs; plant operations, and revenue structure. Tables, figures, exhibits, and equipment specification lists are presented. (MHR)

  11. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Office of Environmental Management (EM)

    Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 - 4:52pm...

  12. Energy Production Over the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about how much energy it produces Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear...

  13. Non-perturbative effects in the energy-energy correlation

    E-Print Network [OSTI]

    Yu. L. Dokshitzer; G. Marchesini; B. R. Webber

    1999-05-14

    The fully resummed next-to-leading-order perturbative calculation of the energy-energy correlation in $e^+e^-$ annihilation is extended to include the leading non-perturbative power-behaved contributions computed using the ``dispersive method'' applied earlier to event shape variables. The correlation between a leading (anti)quark and a gluon produces a non-perturbative 1/Q contribution, while non-perturbative effects in the quark-antiquark correlation give rise to a smaller contribution $\\ln Q^2/Q^2$. In the back-to-back region, the power-suppressed contributions actually decrease much more slowly, as small non-integer powers of 1/Q, as a result of the interplay with perturbative effects. The hypothesis of a universal low-energy form for the strong coupling relates the coefficients of these contributions to those measured for other observables.

  14. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles; Gilligan, Donald; Singer, Terry

    2012-06-01

    This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry?a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances-- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Nonenergy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100percent of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

  15. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  16. Benchmark quality total atomization energies of small polyatomic Jan M. L. Martin

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Benchmark quality total atomization energies of small polyatomic molecules Jan M. L. Martin Successive coupled-cluster CCSD T calculations in basis sets of spdf, spdfg, and spdfgh quality, combined with separate Schwartz-type extrapolations A B/(l 1/2) of the self-consistent field SCF and correlation energies

  17. U.S. Energy Production Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about how much energy it produces Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear...

  18. Energy Use per Worker-Hour: Evaluating the Contribution of Labor to Manufacturing Energy Use

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2007-01-01

    activity, total primary energy supply, and non-industrialcountry or region’s total primary energy supply and IPES isa s Country Total Primary Energy Supply Industrial Final

  19. Total cross section of neutron-proton scattering at low energies in quark-gluon model

    E-Print Network [OSTI]

    V. A. Abramovsky; N. V. Radchenko

    2011-07-30

    We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

  20. Energy Use per Worker-Hour: Evaluating the Contribution of Labor to Manufacturing Energy Use

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2007-01-01

    use. Non-Industrial Energy Supply A better estimate offrom non-industrial energy supply, which includes allactivity, total primary energy supply, and non-industrial

  1. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional costTotalRealTotal

  2. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore »the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  3. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    sequestered carbon in non-energy use petroleum products suchd) Mtce Liquid Petroleum Gas Total Primary Energy SupplyQuantity Liquid Petroleum Gas Total Primary Energy Supply

  4. The New Charge for NonFusionEnergy

    E-Print Network [OSTI]

    The New Charge for NonFusionEnergy FES Applications James W. Van Dam on behalf of Fusion Energy of fusion energy sciences to scientific discovery and the development and deployment of new technologies beyond possible applications in fusion energy. 3 #12;Charge to FESAC · Charge letter to FESAC from

  5. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total Expenditures

  6. "Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total Expenditures8.

  7. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total

  8. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1. SelectedShellA8.

  9. Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity

    E-Print Network [OSTI]

    Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity Constraints 12 renewable and renewable energy sources with adjustment costs over the production capacity of renewable and a more expensive renewable energy, we show the following. With sufficiently abundant non renewable energy

  10. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  11. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  12. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  13. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    SciTech Connect (OSTI)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  14. More electrification reduces total energy usage, aids economic growth, and fights inflation. [Conference paper

    SciTech Connect (OSTI)

    Felix, F.

    1980-01-01

    Many little-known benefits will accrue if more electricity is used and substituted for nonelectric energy. Assuming that electricity continues to increase its share by 75% of the total incremental need each year, its share will reach 51% by the year 2000. The growth in demand is due to the multiple primary sources which can generate power and the diverse end uses; its cost advantages; the degree of sophistication, innovation, and value it contributes to products and services; and energy savings. Since electricty has the capacity to reverse inflationary and declining productivity trends of recent years, a correlation can be found between increased use of electricity and manufacturing productivity. Attention should be drawn to these and other benefits during the continuing energy debate. 7 references, 4 tables. (DCK)

  15. "Table A46. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate

  16. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  17. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  18. Harvesting energy from non-ideal vibrations

    E-Print Network [OSTI]

    Chang, Samuel C

    2013-01-01

    Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

  19. Non-physical energy in seismic interferometry 

    E-Print Network [OSTI]

    King, Simon James

    2012-06-25

    Non-physical arrivals produced by seismic interferometry, the process whereby Green’s functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide ...

  20. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect (OSTI)

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter ? of Ricci dark energy equals to 1/2. In the case where ? = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  1. Mapping the Energy Landscape of Non-Convex Optimization Problems

    E-Print Network [OSTI]

    Zhu, Song Chun

    Mapping the Energy Landscape of Non-Convex Optimization Problems Maira Pavlovskaia1 , Kewei Tu2 , and Song-Chun Zhu1 1 Department of Statistics, University of California, Los Angeles, 8125 Math Science@shanghaitech.edu.cn Abstract. An energy landscape map (ELM) characterizes and visualizes an energy function with a tree

  2. Non resonant transmission modelling with Statistical modal Energy distribution Analysis

    E-Print Network [OSTI]

    Boyer, Edmond

    be used as an alternative to Statistical Energy Analysis for describing subsystems with low modal overlap1 Non resonant transmission modelling with Statistical modal Energy distribution Analysis L. Maxit Capelle, F-69621 Villeurbanne Cedex, France Statistical modal Energy distribution Analysis (SmEdA) can

  3. Efficient wireless non-radiative mid-range energy transfer

    E-Print Network [OSTI]

    Efficient wireless non-radiative mid-range energy transfer Aristeidis Karalis a,*, J.D. Joannopoulos b , Marin Soljacic´ b a Department of Electrical Engineering and Computer Science, Massachusetts-range wireless energy transfer. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Wireless energy; Wireless

  4. Competitive Non-migratory Scheduling for Flow Time and Energy

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    @liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re- search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non-migratory Scheduling for Flow Time and Energy Tak-Wah Lam Department of Computer

  5. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  6. "Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and

  7. "Table A45. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate FuelQuantity1"5.

  8. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional costTotal Delivered

  9. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional costTotal

  10. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional costTotalReal

  11. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to: navigation,

  12. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6.

  13. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6.5,1,213,"Alaska

  14. Energy Use and Carbon Emissions: Non-OECD Countries

    Reports and Publications (EIA)

    1994-01-01

    Presents world energy use and carbon emissions patterns, with particular emphasis on the non-OECD (Organization for Economic Cooperation and Development) countries (including the current and former centrally planned economies).

  15. Bidding strategies for renewable energy generation with non stationary statistics

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    function (cdf ) of the power generation at the same hour. Under the assumption of time-invariant statisticsBidding strategies for renewable energy generation with non stationary statistics A. Giannitrapani,paoletti,vicino,zarrilli}@dii.unisi.it Abstract: The intrinsic variability in non-dispatchable power generation raises important challenges

  16. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimedia andScienceNational

  17. Non-Metals Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon PollutionZealandNexusNo.NoNon-FacilityMetals

  18. Technique and application of a non-invasive three dimensional image matching method for the study of total shoulder arthroplasty

    E-Print Network [OSTI]

    Massimini, Daniel Frank

    2009-01-01

    Knowledge of in-vivo glenohumeral joint biomechanics after total shoulder arthroplasty are important for the improvement of patient function, implant longevity and surgical technique. No data has been published on the ...

  19. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    is cast into a non- cooperative energy consumption game,prove that the non-cooperative energy consumption game has aby introducing a non-cooperative energy consumption game in

  20. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01

    is cast into a non- cooperative energy consumption game,prove that the non-cooperative energy consumption game has aby introducing a non-cooperative energy consumption game in

  1. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    is cast into a non- cooperative energy consumption game,prove that the non-cooperative energy consumption game has aby introducing a non-cooperative energy consumption game in

  2. Non-Tectonic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir | Open EnergyNodawayNolaris

  3. New localized Superluminal solutions to the wave equations with finite total energies and arbitrary frequencies

    E-Print Network [OSTI]

    Michel Zamboni-Rached; Erasmo Recami; Hugo E. Harnandez-Figueroa

    2002-10-02

    By a generalized bidirectional decomposition method, we obtain many new Superluminal localized solutions to the wave equation (for the electromagnetic case, in particular) which are suitable for arbitrary frequency bands; various of them being endowed with finite total energy. We construct, among the others, an infinite family of generalizations of the so-called "X-shaped" waves. [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Bidirectional decomposition; Bessel beams; X-shaped waves; Microwaves; Optics; Special relativity; Acoustics; Seismology; Mechanical waves; Elastic waves; Gravitational waves; Elementary particle physics].

  4. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect (OSTI)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  5. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  6. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    SciTech Connect (OSTI)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM™) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM™ advances a radically different approach to commercial building design, operation, maintenance, and end-­?of-­?life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM™ courses and certificates to the professional community and continuously improve TE2AM™ course materials. The TE2AM™ project supports the DOE Strategic Theme 1 -­? Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM™ curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM™ curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and deliverables set forth in the original proposal. Though attempts were made to adhere to the original project timeline, the team requested, and was granted a 6-­?month project extension, during which time the project was completed.

  7. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    E-Print Network [OSTI]

    Larsen, Peter

    2013-01-01

    including operations and maintenance (O&M) savings, avoidedincluding: operations and maintenance (O&M) savings, capitalactual savings Operations and maintenance and other non-

  8. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect (OSTI)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  9. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    Table 12 Projected Primary Energy Savings between ReferenceEnergy (Primary Energy) .18 Figure 6 Primary Energy Consumption by End-Use in

  10. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    construction,” Energy and Buildings 20: 205–217. Chau 2007.management in China,” Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

  11. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    of fuel used on average to manufacture the non-metallic andfuel mixes for the different manufacturing processes of non-metallic and

  12. Non-Proliferation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News en INFOGRAPHIC: HowFranklin Orr UnderThis

  13. Non-Availability Waivers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey isDepartmentGas

  14. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  15. Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA

    E-Print Network [OSTI]

    Energetics, Rochester, New York 14623, USA 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87545Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA N 19, 093101 (2012) Target normal sheath acceleration sheath fields for arbitrary electron energy

  16. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    from the Long-Range Energy Alternatives Planning (LEAP) end-using the Long-Range Energy Alternatives Planning (LEAP)Energy Modeling. 10 Reference and Alternative

  17. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-28

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1A.

  19. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. WFO has the following objectives. Cancels DOE O 481.1.

  20. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect (OSTI)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M.; Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N.; Freeman, S.; Humphreys, K.; Placet, M.

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  3. Energy Distribution for Non-commutative Radiating Schwarzschild Black Holes

    E-Print Network [OSTI]

    I. Radinschi; F. Rahaman; U. F. Mondal

    2012-07-22

    The aim of this article is the calculation of the energy-momentum for a non-commutative radiating Schwarzschild black hole in order to obtain the expressions for energy. We make the calculations with the Einstein and M\\oller prescriptions. We show that the expressions for energy in both the prescriptions depend on the mass $M$, $\\theta$ parameter and radial coordinate. We make some comparisons between the results. Our results show that the Einstein prescription is a more powerful concept than the M\\oller prescription.

  4. Eau Claire Energy Cooperative - Non-Residential Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis theEVERETTA NNEWS DOE

  5. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  6. The driven overdamped mean field model Non-eq. free energies for the mean field model

    E-Print Network [OSTI]

    Dauxois, Thierry

    The driven overdamped mean field model Non-eq. free energies for the mean field model Large deviations for turbulent flows Non-Equilibrium Free Energies for Particle Systems and Turbulent Flows F Treilles. F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies #12;The driven overdamped mean field model Non

  7. The Low Energy Dynamics of Non-BPS Branes

    E-Print Network [OSTI]

    N. D. Lambert; I. Sachs

    2000-10-16

    In this talk we will discuss the low energy dynamics of non-BPS branes constructed as stable brane/anti-brane pairs at an orbifold. In particular we will determine the effective field theory and compare its predictions with those of the full open string theory. While the position and vector degrees of freedom have the familiar form found in supersymmetric gauge theories, the massless modes orginating in the tachyonic sector display novel non-commuting flat directions. We will show that these flat directions persist to al orders in alpha'. Finally we will briefly report on the open string loop corrections.

  8. The problem of non-renewable energy resources in the production of physical capital

    E-Print Network [OSTI]

    Nesterov, Yurii

    2007/8 The problem of non-renewable energy resources in the production of physical capital Agustin Pérez-Barahona #12;CORE DISCUSSION PAPER 2007/8 The problem of non-renewable energy resources-run growth, although energy is produced by means of non-renewable energy resources. The mechanism behind

  9. Duke Energy - Non-Residential Energy Efficiency Rebate Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 FederalEnergyDucts Sealing Usingof

  10. Finite-size energy of non-interacting Fermi gases

    E-Print Network [OSTI]

    Martin Gebert

    2014-06-14

    We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

  11. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11.

  12. Fitting and forecasting non-linear coupled dark energy

    E-Print Network [OSTI]

    Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2015-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...

  13. PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas of theConference on Fuel Cells |ActionSign

  14. Non Conventional Energy Development Agency NEDA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy ResourcesJiuyiNobleNobleNomura

  15. Duke Energy (Electric) - Non-Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits atis from a Building America webinarDepartment of

  16. Duke Energy (Electric) - Non-Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits atis from a Building America webinarDepartment

  17. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and6.. Total2.

  18. "Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and6.. Total2.4.

  19. "Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate FuelQuantity of6. Total

  20. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate FuelQuantity of6. Total7.

  1. PHYSICAL REVIEW B VOLUME 31, NUMBER 12 15 JUNE 1985 Total-energy differences: Sources of error in local-density approximations

    E-Print Network [OSTI]

    local-density approximations give a satisfactory descrip- tion of the exchange energy. For other elec- trons can be expressed as functionals of the density n(r). In the case of the total energy EPHYSICAL REVIEW B VOLUME 31, NUMBER 12 15 JUNE 1985 Total-energy differences: Sources of error

  2. Bounds on the Solar Antineutrino total Flux and Energy spectrum from the SK experiment

    E-Print Network [OSTI]

    E. Torrente-Lujan

    1999-11-23

    A search for inverse beta decay electron antineutrinos has been carried out using the 825 days sample of solar data obtained at SK. The absence of a significant signal, that is, contributions to the total SK background and their angular variations has set upper bounds on a) the absolute flux of solar antineutrinos originated from ${}^8 B$ neutrinos $\\Phi_{\\bar{\

  3. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    sequestered carbon in non-energy use petroleum products suchTotal Primary Energy Supply Liquid Petroleum Gas RefineryPrimary Energy Supply Refinery Gas Petroleum Other Products

  4. Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility. 

    E-Print Network [OSTI]

    Hoyle, A.

    2013-01-01

    INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May 2013 Andy Hoyle, Senior... ? Best Practices and Procedures ? Execute Opportunities ? Track Financial and Economic Benefits 6 weeks 12 weeks >12 weeks Implement Quick Wins OBJECTIVE: SUSTAINED IMPROVEMENT IN ENERGY EFFICIENCY May 2013 ESL-IE-13-05-14 Proceedings...

  5. Availability and Price of Non-Iranian Petroleum - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAboutTotal Energy Glossary

  6. Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting Tool (NEAT) for Long Term Energy and GHG Impacts Evaluation: Domestic Freight Component Documentation and User's...

  7. Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings 

    E-Print Network [OSTI]

    Bernstein, R.

    2010-01-01

    Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" is only a small piece...

  8. Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}

    SciTech Connect (OSTI)

    Rubio-Ponce, A.; Olguín, D.

    2014-05-15

    To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 Å, and the apical oxygen atoms move to the same plane by approximately 0.14 Å. These results are discussed in comparison with experimental data.

  9. Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy

    E-Print Network [OSTI]

    : combustion and thermal gasification. Thermal conversion Combustion and co-combustion biomass conversionRisø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables

  10. Capital accumulation and non-renewable energy resources: a special functions case

    E-Print Network [OSTI]

    Nesterov, Yurii

    2007/9 Capital accumulation and non-renewable energy resources: a special functions case Agustin Pérez-Barahona #12;CORE DISCUSSION PAPER 2007/9 Capital accumulation and non-renewable energy resources-run dynamics using Gauss Hypergeometric functions. Keywords: non-renewable resources, energy-saving technical

  11. High energy Gamma-Ray Bursts as a result of the collapse and total annihilation of neutralino clumps

    E-Print Network [OSTI]

    R. S. Pasechnik; V. A. Beylin; V. I. Kuksa; G. M. Vereshkov

    2006-02-20

    Rare astrophysical events - cosmological gamma-ray bursts with energies over GeV - are considered as an origin of information about some SUSY parameters. The model of generation of the powerful gamma-ray bursts is proposed. According to this model the gamma-ray burst represents as a result of the collapse and the total annihilation of the neutralino clump. About 80 % of the clump mass radiates during about 100 second at the final stage of annihilation. The annihilation spectrum and its characteristic energies are calculated in the framework of Split Higgsino model.

  12. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    E-Print Network [OSTI]

    D Bemmerer; A Caciolli; R Bonetti; C Broggini; F Confortola; P Corvisiero; H Costantini; Z Elekes; A Formicola; Zs Fulop; G Gervino; A Guglielmetti; C Gustavino; Gy Gyurky; M Junker; B Limata; M Marta; R Menegazzo; P Prati; V Roca; C Rolfs; C Rossi Alvarez; E Somorjai; O Straniero

    2009-02-04

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  13. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    E-Print Network [OSTI]

    Williams, Charles

    2014-01-01

    Consumption and Provide Energy and Cost Savings in Non-applications to save energy and costs. This potential couldof ESPCs to provide energy and cost savings in non-building

  14. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    electricity, oil and coal consumption, offset by increasedsaved in electricity, oil and gas consumption, offset by 2.4energy consumption by fuel type. Natural gas, oil and some

  15. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11, cancels DOE O 481.1C. Admin Chg 2, dated 3-9-15, cancels DOE O 481.1C Admin Chg 1

  16. Non-Vapor Compression HVAC Technologies Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r i t y - S e r v iNon-Vapor

  17. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total Inputs

  18. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total

  19. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total2"

  20. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2"A50. Total

  1. "Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and Residual1.

  2. "Table A28. Total Expenditures for Purchased Energy Sources by Census Region"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil,

  3. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel

  4. "Table A32. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate FuelQuantity of Purchased

  5. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD4. Total

  6. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD4.Total

  7. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"0. Total

  8. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"0.Total

  9. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of byTotal

  10. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of7.A9. Total

  11. Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump

  12. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotalInformationInformation

  13. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AGTotal DeliveredRealTotal

  14. Non-Uniform Entropy Compression for Uniform Energy Distribution in Wireless Sensor Networks

    E-Print Network [OSTI]

    California at Davis, University of

    -non-homogeneity in the network. Bottleneck nodes trade computation energy for transmission energy, which extends and normalizesNon-Uniform Entropy Compression for Uniform Energy Distribution in Wireless Sensor Networks to increase the network's lifetime and to normalize the energy use per unit time, but they each have

  15. Economic Growth and the Transition from Non-renewable to Renewable Energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Economic Growth and the Transition from Non-renewable to Renewable Energy Alfred Greiner Lars a canonical growth model with damages in the household's welfare function and two energy sources ­ non-renewable and renewable energy. To produce renewable energy a capital stock must be built up. We study when a transition

  16. A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency 

    E-Print Network [OSTI]

    Stewart, D. H.

    1994-01-01

    An Energy-Efficiency and Energy-Conservation Program relies on an active partnership between a company's employees and its management in order to succeed. Teamwork, from project designs to funding, is critical. The ...

  17. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    E-Print Network [OSTI]

    Ravindranath, N.H.; Meili, Anandi; Anita, R.

    1998-01-01

    and Land use in India; Some Energy Issues, Ambio, 24, 420-these problems. In the energy sector, India aims to initiateAIJ in the Non-Energy Sector in India: Opportunities and

  18. Nonconventional tight-binding method for the calculation of the total energy and spectroscopic energies of atomic clusters: Transferable parameters for silicon

    E-Print Network [OSTI]

    Swihart, Mark T.

    electronic structure calculation methods, being rather close in efficiency to the former due to strong simplifications in the electronic structure calculations. In the last two decades much attention has been paid of solids has become a popular and convenient tool for total energy calculations and molecular dynamics

  19. R E S E A R C H A R T I C L E Calculation of total free energy yield as an alternative

    E-Print Network [OSTI]

    Ahmad, Sajjad

    R E S E A R C H A R T I C L E Calculation of total free energy yield as an alternative approach Sobecky Keywords thermodynamics; chemolithotrophy; energy flux; free energy yield; ammonia oxidation in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting

  20. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional cost

  1. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of Energy for

  2. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of Energy

  3. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of Energy9.1

  4. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress More DocumentsDOE/CF-009Organization

  5. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump

  6. Total Body Irradiation Compared With BEAM: Long-Term Outcomes of Peripheral Blood Autologous Stem Cell Transplantation for Non-Hodgkin's Lymphoma

    SciTech Connect (OSTI)

    Liu, Hong-Wei [Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB (Canada); University of Manitoba, Winnipeg, MB (Canada); Seftel, Matthew D.; Rubinger, Morel; Szwajcer, David [University of Manitoba, Winnipeg, MB (Canada); Department of Hematology, Oncology, CancerCare Manitoba, Winnipeg, MB (Canada); Demers, Alain [University of Manitoba, Winnipeg, MB (Canada); Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB (Canada)

    2010-10-01

    Purpose: The optimal preparative regimen for non-Hodgkin's lymphoma patients undergoing autologous peripheral blood stem cell transplantation (PBSCT) is unknown. We compared a total body irradiation (TBI)-based regimen with a chemotherapy-alone regimen. Methods and Materials: A retrospective cohort study was performed at a Canadian cancer center. The TBI regimen consisted of cyclophosphamide, etoposide, and TBI 12 Gy in six fractions (CY/E/TBI). The chemotherapy-alone regimen consisted of carmustine, etoposide, cytarabine, and melphalan (BEAM). We compared the acute and long-term toxicities, disease relapse-free survival, and overall survival (OS). Results: Of 73 patients, 26 received CY/E/TBI and 47 received BEAM. The median follow-up for the CY/E/TBI group was 12.0 years and for the BEAM group was 7.3 years. After PBSCT, no differences in acute toxicity were seen between the two groups. The 5-year disease relapse-free survival rate was 50.0% and 50.7% in the CY/E/TBI and BEAM groups, respectively (p = .808). The 5-year OS rate was 53.9% and 63.8% for the CY/E/TBI and BEAM groups, respectivey (p = .492). The univariate analysis results indicated that patients with Stage IV, with chemotherapy-resistant disease, and who had received PBSCT before 2000 had inferior OS. A three-way categorical analysis revealed that transplantation before 2000, rather than the conditioning regimen, was a more important predictive factor of long-term outcome (p = .034). Conclusion: A 12-Gy TBI-based conditioning regimen for PBSCT for non-Hodgkin's lymphoma resulted in disease relapse-free survival and OS similar to that after BEAM. PBSCT before 2000, and not the conditioning regimen, was an important predictor of long-term outcomes. TBI was not associated with more acute toxicity or pneumonitis. We found no indication that the TBI regimen was inferior or superior to BEAM.

  7. Definition of Total Energy budget equation in terms of moist-air Enthalpy surface flux

    E-Print Network [OSTI]

    Marquet, Pascal

    2015-01-01

    Uncertainty exists concerning the proper formulation of surface heat fluxes, namely the sum of "sensible" and "latent" heat fluxes, and in fact concerning these two fluxes if they are considered as separate fluxes. In fact, eddy flux of moist-air energy must be defined as the eddy transfer of moist-air specific enthalpy ($\\overline{w' h'}$), where the specific enthalpy ($h$) is equal to the internal energy of moist air plus the pressure divided by the density (namely $h = e_{\\rm int} + p/\\rho$). The fundamental issue is to compute this local (specific) moist-air enthalpy ($h$), and in particular to determine absolute reference value of enthalpies for dry air and water vapour $(h_d)_{\\rm ref}$ and $(h_v)_{\\rm ref}$. New results shown in Marquet (QJRMS 2015, arXiv:1401.3125) are based on the Third-law of Thermodynamics and can allow these computations. In this note, this approach is taken to show that Third-law based values of moist-air enthalpy fluxes is the sum of two terms. These two terms are similar to wha...

  8. Non-Abelian condensates as alternative for dark energy

    E-Print Network [OSTI]

    Gal'tsov, Dmitri V

    2009-01-01

    We review basic features of cosmological models with large-scale classical non-Abelian Yang-Mills (YM) condensates. There exists a unique SU(2) YM configuration (generalizable to larger gauge groups) compatible with homogeneity and isotropy of the three-space which is parameterized by a single scalar field. In the past various aspects of Einstein-Yang-Mills (EYM) cosmology were discussed in the context of the Early Universe. Due to conformal invariance, solvable EYM FRW models exist both on the classical and quantum levels. To develop the YM model for dark energy one has to find mechanisms of the conformal symmetry breaking. We discuss the Born-Infeld generalization and some phenomenological models motivated by quantum corrections exploring possibility of transient DE and phantom regimes.

  9. Non-Abelian condensates as alternative for dark energy

    E-Print Network [OSTI]

    Dmitri V. Gal'tsov

    2008-12-31

    We review basic features of cosmological models with large-scale classical non-Abelian Yang-Mills (YM) condensates. There exists a unique SU(2) YM configuration (generalizable to larger gauge groups) compatible with homogeneity and isotropy of the three-space which is parameterized by a single scalar field. In the past various aspects of Einstein-Yang-Mills (EYM) cosmology were discussed in the context of the Early Universe. Due to conformal invariance, solvable EYM FRW models exist both on the classical and quantum levels. To develop the YM model for dark energy one has to find mechanisms of the conformal symmetry breaking. We discuss the Born-Infeld generalization and some phenomenological models motivated by quantum corrections exploring possibility of transient DE and phantom regimes.

  10. 2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW) AND NON-RECYCLED PLASTICS (NRP)

    E-Print Network [OSTI]

    Columbia University

    1 2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW) AND NON-RECYCLED PLASTICS) AND NON-RECYCLED PLASTICS (NRP) CURRENTLY LANDFILLED IN THE FIFTY STATES EXECUTIVE (EEC) Report to the Plastics Division of the American Chemistry Council

  11. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    E-Print Network [OSTI]

    Williams, Charles

    2014-01-01

    8   Overview of Non-Building Federal Energyof Extending the Use of Energy Savings Performance Contracts35 Amory B. Lovins, “All Energy Experts on Deck! ” available

  12. FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN

    E-Print Network [OSTI]

    Lee, Xuhui

    FOREST-AIR FLUXES OF CARBON, WATER AND ENERGY OVER NON-FLAT TERRAIN XUHUI LEE and XINZHANG HU-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to address this question, we conducted a field experiment on energy and carbon exchanges in a mixed forest

  13. EI @ Haas WP 256 Are the Non-Monetary Costs of Energy Efficiency

    E-Print Network [OSTI]

    Fowlie, Meredith

    EI @ Haas WP 256 Are the Non-Monetary Costs of Energy Efficiency Investments Large? Understanding Low Take-up of a Free Energy Efficiency Program Meredith Fowlie, Michael Greenstone, and Catherine to the source. http://ei.haas.berkeley.edu #12;Are the Non-Monetary Costs of Energy Efficiency Investments Large

  14. Abstract--The substitution of non-renewable energy by renewable energy as electricity supply is an emerging trend for

    E-Print Network [OSTI]

    He, Lei

    Abstract-- The substitution of non-renewable energy by renewable energy as electricity supply]. The transition from traditional energy to renewable energy has now become a real demand for sustainability pack. The electrical grid servers as back-up supplier in case energy stored in the battery is used up

  15. R E S E A R C H A R T I C L E Calculation of total free energy yield as an alternative

    E-Print Network [OSTI]

    Ahmad, Sajjad

    R E S E A R C H A R T I C L E Calculation of total free energy yield as an alternative approach flux; free energy yield; ammonia oxidation. Abstract To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields

  16. START Program for Renewable Energy Project Development Assistance Non-Disclosure Agreement

    Broader source: Energy.gov [DOE]

    Download the Non-Disclosure Agreement to submit along with your application for the DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) Program for Renewable Energy...

  17. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect (OSTI)

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  18. Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

    SciTech Connect (OSTI)

    Kuzyakin, R. A., E-mail: rkuzyakin@theor.jinr.ru; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research (Russian Federation)

    2013-06-15

    Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

  19. Non-analyticity of the groud state energy of the Hamiltonian for Hydrogen atom in non-relativistic QED

    E-Print Network [OSTI]

    Barbaroux, Jean-Marie

    2010-01-01

    We derive the ground state energy up to the fourth order in the fine structure constant $\\alpha$ for the translation invariant Pauli-Fierz Hamiltonian for a spinless electron coupled to the quantized radiation field. As a consequence, we obtain the non-analyticity of the ground state energy of the Pauli-Fierz operator for a single particle in the Coulomb field of a nucleus.

  20. Non-analyticity of the groud state energy of the Hamiltonian for Hydrogen atom in non-relativistic QED

    E-Print Network [OSTI]

    Jean-Marie Barbaroux; Semjon Vugalter

    2010-06-01

    We derive the ground state energy up to the fourth order in the fine structure constant $\\alpha$ for the translation invariant Pauli-Fierz Hamiltonian for a spinless electron coupled to the quantized radiation field. As a consequence, we obtain the non-analyticity of the ground state energy of the Pauli-Fierz operator for a single particle in the Coulomb field of a nucleus.

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  2. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities key ecosystem processes in the Great Basin, including hydrology and energy balance. To determine how) and energy fluxes using the Bowen ratio-energy balance method with measurements of normalized difference

  3. Sustainable Energy for Development The evolution of technologies provides remote, non-grid

    E-Print Network [OSTI]

    Strathclyde, University of

    the correlation of energy and social well being and associated energy costs. Research current methods/EME/CES: Individuals should have a background or strong interest in renewable generation, portable energy solutionsSustainable Energy for Development GOALS: The evolution of technologies provides remote, non

  4. Non-Hermitian CP-Symmetric Dirac Hamiltonians with Real Energy Eigenvalues

    E-Print Network [OSTI]

    A. D. Alhaidari

    2013-01-10

    We present a large class of non-Hermitian non-PT-symmetric two-component Dirac Hamiltoninas with real energy spectra. These Hamiltonians are invariant under the combined action of "charge" conjugation (two-component transpose) and space-parity. Examples are given from the two subclasses of these systems having localized and/or continuum states with real energies.

  5. Small Business Non-Profit Energy Audit Program

    Broader source: Energy.gov [DOE]

    This matching grant provides 75% for a level 2 energy audit up to a maximum of $2,500. A Level 2 Energy audit will include quantifications of energy users and losses through a detailed review and...

  6. National Grid (Electric) - Non-Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Website https:www1.nationalgridus.comMyEnergyEfficiencyServices State New York Program Type Rebate Program Rebate Amount Custom Large Business Energy Initiative...

  7. Apps for Energy Non-Governmental Resource Disclaimer

    Broader source: Energy.gov [DOE]

    The non-governmental resources are provided strictly for education purposes, and should not be considered a complete list of available resources.

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  9. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  10. Energy-momentum tensors for non-commutative Abelian Proca field

    E-Print Network [OSTI]

    F. Darabi; F. Naderi

    2014-03-30

    We study two different possibilities of constructing the energy-momentum tensors for non-commutative Abelian Proca field, by using (i) general Noether theorem and (ii) coupling to a weak external gravitational field. Both energy-momentum tensors are not traceless due to the violation of Lorentz invariance in non-commutative spaces. In particular, we show that the obtained energy density of the latter case coincides exactly with that of obtained by Dirac quantization method.

  11. Modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter in the nonflat universe

    E-Print Network [OSTI]

    En-Kun Li; Yu Zhang; Jin-Ling Geng

    2014-12-16

    The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total dark matter is small, this model is phantom-like. Through our studying, we find the interaction and the relativistic dark matter's proportion all have great influence on the evolution of the Universe.

  12. Interacting agegraphic dark energy models in non-flat universe

    E-Print Network [OSTI]

    Ahmad Sheykhi

    2009-09-12

    A so-called "agegraphic dark energy" was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate $w_D = -1 $ crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. $k = 0$, all previous results of agegraphic dark energy in flat universe are restored.

  13. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01

    solener.2011.02.014, Solar Energy. Lave, M. , Kleissl, J. ,smoothing. Submitted to Solar Energy. Linke, F. , 1922.24th European Photovoltaic Solar Energy Conference, Hamburg,

  14. TOTAL ANNUAL Rent / Mortgage $

    E-Print Network [OSTI]

    Snider, Barry B.

    etc.) $ Child Care Expenses $ Educational Loans taken out in parent's name $ Other (itemize below): $ $ RESOURCES TOTAL ANNUAL AMOUNT Parent 1 Wages $ Parent 2 Wages $ Interest and/or Dividend Income $ Net Income $ Contributions to tax deferred plans(401K) $ Non Educational Veterans' Benefits $ Unemployment Compensation

  15. Total Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total Crude

  16. Agency for Non conventional Energy and Rural Technology ANERT | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countries |Information for Non

  17. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01

    from meteorological satellite data. Solar Energy 37, 31–39.16 independent data banks. Solar Energy 80, 468– 478.

  18. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01

    solar irradiation in Brazil, Solar Energy, 68, 91- 107, ISSNmaps for Brazil under SWERA project, Solar Energy, 81, 517-

  19. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II

    E-Print Network [OSTI]

    Johnson, Robert E.

    Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II that it is the description of the radial transport and the absence of energy transport to the surface, rather than¯ects the nature of the energizing process rather than the energy transport. In this paper we describe the details

  20. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track

    E-Print Network [OSTI]

    Johnson, Robert E.

    Molecular dynamics study of non-equilibrium energy transport from a cylindrical track I. Test were carried out to describe the kinetic energy transport in a low temper- ature, condensed-gas solid, equilibration competes with radial transport of energy from the cylindrically excited region. The radial

  1. Gravitational and non-gravitational energy: the need for background structures

    E-Print Network [OSTI]

    Wüthrich, Christian

    Gravitational and non-gravitational energy: the need for background structures Vincent Lam- tional energy within the general theory of relativity. Some aspects of the difficulties to ascribe the usual features of localization and conservation to gravitational energy are reviewed and considered

  2. 1 | Fuel Cell Technologies Program eere.energy.gov US DOE Non-Metallic Materials

    E-Print Network [OSTI]

    1 | Fuel Cell Technologies Program eere.energy.gov US DOE Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/17/2012 #12;2 | Fuel Cell Technologies Program eere.energy.gov Overview

  3. QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED

    E-Print Network [OSTI]

    QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED J.-M. BARBAROUX for the hydrogen ground state energy in the Pauli-Fierz model up to the order O(5 log -1), where denotes). As a consequence, we prove that the ground state energy is not a real analytic function of , and verify

  4. Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

  5. Interacting polytropic gas model of phantom dark energy in non-flat universe

    E-Print Network [OSTI]

    K. Karami; S. Ghaffari; J. Fehri

    2009-11-25

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing $K>Ba^{\\frac{3}{n}}$, one can obtain $\\omega^{\\rm eff}_{\\Lambda}universe dominated by phantom dark energy.

  6. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect (OSTI)

    Dong, Xue; Niu, Tianye; Zhu, Lei

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

  7. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01

    and opportunities in accounting for non-energy use CO 2emissions (233 Mt CO 2 ), accounting for around one-third ofCO2 emissions? 3 Accounting challenges and opportunities

  8. NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the NASA Ames Research Center's effort to save energy and reduce project costs with non-invasive retrofit technologies.

  9. Non-extensivity Parameter of Thermodynamical Model of Hadronic Interactions at LHC energies

    E-Print Network [OSTI]

    Tadeusz Wibig

    2010-05-31

    The LHC measurements above SPS and Tevatron energies give the opportunity to test predictions of non-extensive thermodynamical picture of hadronic interaction to examine measured transverse momenta distributions for new interaction energy range. We determined Tsallis model non-extensivity parameter for the hadronization process before short-lived particles decayed and distort the initial p_t distribution. We have shown that it follows exactly smooth rise determined at lower energies below present LHC record. The shape of the q parameter energy dependence is consistent with expectations and the evidence of the asymptotic limit may be seen.

  10. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01

    smoothing. Submitted to Solar Energy. Linke, F. , 1922.24th European Photovoltaic Solar Energy Conference, Hamburg,solener.2011.02.014, Solar Energy. Lave, M. , Kleissl, J. ,

  11. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  12. Household energy use in non-OPEC developing countries

    SciTech Connect (OSTI)

    Fernandez, J.C.

    1980-05-01

    Energy use in the residential sector in India, Brazil, Mexico, the Republic of Korea, the Sudan, Pakistan, Malaysia, and Guatemala is presented. Whenever possible, information is included on the commercial fuels (oil, gas, coal, and electricity) and on what are termed noncommercial fuels (firewood, animal dung, and crop residues). Of special interest are the differences in the consumption patterns of urban and rural areas, and of households at different income levels. Where the data allow, the effect of household size on energy consumption is discussed. Section II is an overview of the data for all eight countries. Section III examines those areas (India, Brazil, Mexico City) for which data exist on the actual quantity of energy consumed by households. Korea, the Sudan, and Pakistan, which collect data on household expenditures on fuels, are discussed in Section IV. The patterns of ownership of energy-using durables in Malaysia and Guatemala are discussed in Section V. (MCW)

  13. Veeraiah Non Conventional Power Projects Ltd VNCPPL | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: Energy ResourcesVecarius Jump

  14. Personnel Accountability for Non-COOP Incidents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLICofPatriciaOrderDepartment of

  15. Non Platinum Bimetallic Cathode Electrocatalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon PollutionZealandNexusNo.No Slide TitlePhytologiaNon

  16. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2003 Total Fuel Oil Consumption (million gallons) Fuel Oil Energy Intensity (gallonssquare foot) Energy Information Administration 2003 Commercial Buildings Energy Consumption...

  17. Non-Profit Rebate Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir | Open EnergyNodawayNolaris SA

  18. Non conventional Energy Development Corp of Andhra Pradesh Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy ResourcesJiuyiNobleNobleNomuraPurchasingEnergy

  19. National Grid (Electric) - Non-Residential Energy Efficiency Program

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram |(Upstate New York) | Department of Energy

  20. LADWP - Non-Residential Energy Efficiency Incentive Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety Standards Implementation JulyTheKEY07-97# . L I .Energy

  1. Property:NumberOfNonCorporateOrganizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to:NumberOfNonCorporateOrganizations Jump to: navigation, search This

  2. Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad Hoc Networks

    E-Print Network [OSTI]

    Yu, Chansu

    relevant nodes but also to balance individual battery levels. Unbalanced energy usage will result1 Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad Hoc Networks Kyungtae Woo, Chansu Yu, and Dongman Lee Hee Yong Youn Ben Lee School of Engineering Information

  3. Energy Policy 29 (2001) 10851097 Public goods and private interests: understanding non-residential

    E-Print Network [OSTI]

    Fowlie, Meredith

    2001-01-01

    rights reserved. Keywords: Green power; Renewable energy; Customer choice 1. Introduction 1.1. GreenEnergy Policy 29 (2001) 1085­1097 Public goods and private interests: understanding non-residential demand for green power Ryan H. Wisera, *, Meredith Fowliea , Edward A. Holtb a Lawrence Berkeley National

  4. Non-Hermitian quantum mechanics: Wave packet propagation on autoionizing potential energy surfaces

    E-Print Network [OSTI]

    Moiseyev, Nimrod

    Non-Hermitian quantum mechanics: Wave packet propagation on autoionizing potential energy surfaces Technion, Israel Institute of Technology, Haifa 32000, Israel S. Scheit and L. S. Cederbaum Theoretische. An illustrative numerical example is presented involving three potential energy surfaces. © 2004 American

  5. Integrated Projects - Non-DOE Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy SEMIANNUALTechnology Validation » Integrated

  6. Project Specific Non-Availability Waivers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy NationalDepartmentProject Specific

  7. Non-Profit Grant Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy

  8. Non-Platinum Bimetallic Cathode Electrocatalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects onPlatinum Bimetallic Cathode

  9. Non-Rare Earth magnetic materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects onPlatinum Bimetallicmagnetic

  10. Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed

    E-Print Network [OSTI]

    Beigl, Michael

    consumption and for about 50% of the total electricity consumption [1]. Therefore it is important to explore one of them. The interviewees preferred receiving electricity consumption feedback from a bill, a web1 Abstract--Numerous studies have shown that households' consumption is an important part

  11. Phase Space Dynamics of Non-Gravitational Interactions between Dark Matter and Dark Energy: The Case of Ghost Dark Energy

    E-Print Network [OSTI]

    Ricardo Garcia-Salcedo; Tame Gonzalez; Israel Quiros

    2012-11-15

    We study the phase space asymptotics of the so called Veneziano ghost dark energy models. Models where the ghost field's energy density: i) $\\rho_{ghost}\\propto H$, and ii) $\\rho_{ghost}\\propto H+H^2$, are investigated. Both, cases with and without additional non-gravitational interaction between cold dark matter and ghost dark energy, are subject to scrutiny. We pay special attention to the choice of phase space variables leading to bounded and compact phase space so that no critical point of physical interest is missing. A rich asymptotic structure is revealed: depending on the kind of non-minimal coupling critical points associated with radiation dominance, matter dominance, cold dark matter/ghost dark energy scaling, and ghost dark energy dominance, are found. Past and future attractors, as well as saddle equilibrium points, are identified in the corresponding phase spaces.

  12. Non-Perturbative Yang-Mills Condensate as Dark Energy

    E-Print Network [OSTI]

    Donà, Pietro; Zhang, Yang; Antolini, Claudia

    2015-01-01

    Models based on Yang-Mills condensate (YMC) have been advocated in the literature and claimed to be successful candidates to explain dark energy. Several instantiations of this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, results previously attained heavily relied on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically-free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in $\\theta \\!=\\! - F_{\\, \\, \\mu \

  13. Non-Perturbative Yang-Mills Condensate as Dark Energy

    E-Print Network [OSTI]

    Pietro Donà; Antonino Marcianò; Yang Zhang; Claudia Antolini

    2015-09-19

    Models based on Yang-Mills condensate (YMC) have been advocated in the literature and claimed to be successful candidates to explain dark energy. Several instantiations of this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, results previously attained heavily relied on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically-free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in $\\theta \\!=\\! - F_{\\, \\, \\mu \

  14. SMECO - Non-Residential Energy Efficiency Rebate Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIANorthSEPSLED-Fact-Sheet.pdf

  15. Reducing Non-Hardware Costs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative FederalDepartmentofsupports

  16. Meghalaya Non Conventional and Rural Energy Development Agency | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, searchScotlandRecentchangestext JumpEnergy, LP Jump

  17. Non Fossil Purchasing Agency Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy ResourcesJiuyiNobleNobleNomuraPurchasing

  18. Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013 April 2013

  19. Dominion Virginia Power - Non-Residential Energy Efficiency Programs |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits at Eight-<Dominion Cove LNG TerminalDepartment

  20. Using Non-Government Domain Names | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed|DepartmentTheEconomyHeatersUsing

  1. Property:EnvReviewNonInvasiveExploration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation, search PropertyIsoOtherEnergyServicesTypeEnvReviewLeasing

  2. Non-Powered Dams Resource Assessment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r i t y - S e r v i

  3. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect (OSTI)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  4. The effective description of non-strange hadrons low-energy electro-weak transitions

    E-Print Network [OSTI]

    Bunatian, Gevorg G

    2015-01-01

    Starting with the general principles of global and local symmetries, the effective pion-nucleon lagrangian, essentially non-linear in pion field, to describe the non-strange hadrons low-energy electro-weak transitions is developed. We encounter no divergence summarizing properly all the infinite power series in pion field which occur in the course of treatment. Our consistent approach proves to be relevant in considering P-parity violation in pion-nucleon interactions.

  5. Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev

    E-Print Network [OSTI]

    J. Z. Bai

    1999-08-11

    Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\\sigma(e^+e^-\\to {hadrons})/\\sigma(e^+e^-\\to\\mu^+\\mu^-)$, are determined.

  6. 44.3 / S. Valyukh 44.3: A Liquid Crystal Lens with Non-uniform Anchoring Energy

    E-Print Network [OSTI]

    of the anchoring energy is a good alternative for other known methods applied for liquid crystal lenses. 144.3 / S. Valyukh 44.3: A Liquid Crystal Lens with Non-uniform Anchoring Energy Sergiy Valyukh and non-uniform anchoring energy was done. Optimal parameters of such a lens were found and discussed. We

  7. Thermally-activated non-local amplification in quantum energy transport

    E-Print Network [OSTI]

    Bruno Leggio; Riccardo Messina; Mauro Antezza

    2015-11-18

    We study energy-transport efficiency in light-harvesting planar and 3D complexes of two-level atomic quantum systems, embedded in a common thermal blackbody radiation. We show that the collective non-local dissipation induced by the thermal bath plays a fundamental role in energy transport. It gives rise to a dramatic enhancement of the energy-transport efficiency, which may largely overcome $100\\%$. This effect, which improves the understanding of transport phenomena in experimentally relevant complexes, suggests a particularly promising mechanism for quantum energy management.

  8. Simultaneously non-linear energy calibration of CMS calorimeters for single pions and electrons

    E-Print Network [OSTI]

    J. Damgov; V. Genchev; S. Cht. Mavrodiev

    2001-10-11

    CMS calorimeter energy calibration was done in the full CMS simulated geometry for the pseudorapidity region eta = 0. The samples of single pion events were generated with a set of incident energies from 5 GeV to 3 TeV and for single electrons from 5 to 500 GeV. The analysis of the simulated data shows that standard calibration using just sampling coefficients for calorimeter parts with different sampling ratio gives nonlinear calorimeter response. Non-linear calibration technique was applied simultaneously for pion and electron beams which is preparation for jets energy reconstruction. It improve calorimeter energy resolution for pions and restore the calorimeter linearity.

  9. Accurate non-covalent interaction energies via an efficient MP2 scaling procedure

    E-Print Network [OSTI]

    Fabiano, E; Grabowski, I

    2015-01-01

    Using the observed proportionality of CCSD(T) and MP2 correlation interaction energies [I. Grabowski, E. Fabiano, F. Della Sala, Phys. Chem. Chem. Phys. 15, 15485 (2013)] we propose a simple scaling procedure to compute accurate interaction energies of non-covalent complexes. Our method makes use of MP2 and CCSD(T) correlation energies, computed in relatively small basis sets, and fitted scaling coefficients to yield interaction energies of almost complete basis set limit CCSD(T) quality. Thanks to the good transferability of the scaling coefficients involved in the calculations, good results can be easily obtained for different intermolecular distances.

  10. Thermally-activated non-local amplification in quantum energy transport

    E-Print Network [OSTI]

    Bruno Leggio; Riccardo Messina; Mauro Antezza

    2015-05-13

    We study energy-transport efficiency in light-harvesting planar and 3D complexes of two-level atomic quantum systems, embedded in a common thermal blackbody radiation. We show that the collective non-local dissipation induced by the thermal bath plays a fundamental role in energy transport. It gives rise to a dramatic enhancement of the energy-transport efficiency, which may largely overcome $100\\%$. This effect, which improves the understanding of transport phenomena in experimentally relevant complexes, suggests a particularly promising mechanism for quantum energy management.

  11. Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments

    E-Print Network [OSTI]

    Jun Jing; Dvira Segal; Baowen Li; Lian-Ao Wu

    2015-07-03

    Relying on an exact time evolution scheme, we identify a novel transient energy transfer phe- nomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices.

  12. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel Purposes by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil,1"Nonfuel

  13. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate FuelQuantity of

  14. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  15. Complex Energy of Harmonic Oscillator under Non-Hermitian transformation of momentum with real wave function

    E-Print Network [OSTI]

    Biswanath Rath

    2015-05-19

    For the first time in the literature of Quantum Physics, we present complex energy eigenvalues of non-Hermitian Harmonic Oscillator $H=\\frac{(p+iLx)}^{2}}{2} + W^{2} \\frac{x^{2}}{2}$ with real wave function having positive frequency of vibration $(w)$ under some selective choice of $L$ and $W$ .Interestingly for the same values of $L$ and $W$, if the frequency of vibration $w$ in the real wave function is (some how) related as $w=L\\pmW$ or $w=W-L$ then the same oscillator can reflect either pure positive or negative energy eigenvalues.The real energy levels are in conformity with the perturbative calculation. PACS :03.65.Db;11.39.Er. Key words: Positive frequency, real wave function, complex energy, real positive energy,negative energy.

  16. Policies to Promote Non-Hydro Renewable Energy in the United States and Selected Countries

    Reports and Publications (EIA)

    2005-01-01

    This article examines policies designed to encourage the development of non-hydro renewable energy in four countries - Germany, Denmark, the Netherlands, and Japan - and compares the policies enacted in each of these countries to policies that were used in the United States between 1970 and 2003.

  17. Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing

    E-Print Network [OSTI]

    Anderson, Timothy J.

    2005-01-01

    Solar Energy Materials & Solar Cells 88 (2005) 65­73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,Ã, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

  18. Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power

    E-Print Network [OSTI]

    Xu, Jie

    2012-01-01

    Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in g...

  19. Creep Prediction Using The Non-Linear Strain Energy Equivalence Theory

    E-Print Network [OSTI]

    is sustained over a time interval, ti, to the creep strain obtained during a creep test, c . The average stress, , sustained during the stress-strain test is equal to the creep stress, c . ( ) == t t o c dt dtt 0 [1Creep Prediction Using The Non-Linear Strain Energy Equivalence Theory Jennifer K. Lynch, Ph

  20. Energy Conditions in $f(G)$ Modified Gravity with Non-minimal Coupling to Matter

    E-Print Network [OSTI]

    A. Banijamali; B. Fazlpour; M. R. Setare

    2011-11-15

    In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, $f(G)$, and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.

  1. Leadership in Energy and Environmental Design (LEED) - A critical evaluation by LCA and recommendations for improvement

    E-Print Network [OSTI]

    Humbert, Sebastien; Abeck, Heike; Bali, Nishil; Horvath, Arpad

    2007-01-01

    use, global warming, non-renewable energy consumption, andglobal warming potential (GWP), 68% of electricity consumption, and 39% of total energy

  2. Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy

    E-Print Network [OSTI]

    Ballestrero, Alessandro; Maina, Ezio

    2012-01-01

    In view of the annnouncement that in 2012 the LHC will run at 8 TeV, we study the possibility of detecting signals of alternative mechanisms of ElectroWeak Symmetry Breaking, described phenomenologically by unitarized models, at energies lower than 14 TeV. A complete calculation with six fermions in the final state is performed using the PHANTOM event generator. Our results indicate that at 8 TeV some of the scenarios with TeV scale resonances are likely to be identified while models with no resonances or with very heavy ones will be inaccessible, unless the available luminosity will be much higher than expected.

  3. Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy

    E-Print Network [OSTI]

    Alessandro Ballestrero; Diogo Buarque Franzosi; Ezio Maina

    2012-03-13

    In view of the annnouncement that in 2012 the LHC will run at 8 TeV, we study the possibility of detecting signals of alternative mechanisms of ElectroWeak Symmetry Breaking, described phenomenologically by unitarized models, at energies lower than 14 TeV. A complete calculation with six fermions in the final state is performed using the PHANTOM event generator. Our results indicate that at 8 TeV some of the scenarios with TeV scale resonances are likely to be identified while models with no resonances or with very heavy ones will be inaccessible, unless the available luminosity will be much higher than expected.

  4. The Price-Independent Trend in Energy Efficiency in Canada and the Potential Influence of Non-Price Policies

    E-Print Network [OSTI]

    The Price-Independent Trend in Energy Efficiency in Canada and the Potential Influence of Non-Price Management In the School of Resource and Environmental Management Report No. 245 Title of Research: The Price-Independent Trend in Energy Efficiency in Canada and the Potential Influence of Non-Price Policies Examining

  5. The New European GreenBuilding Programme to Promote Energy Efficiency Investments in non-Residential Buildings 

    E-Print Network [OSTI]

    Adnot, J.; Bertoldi, P.

    2004-01-01

    Energies The New European GreenBuilding Programme to Promote Energy Efficiency Investmentsin non-Residential Buildings Jerome Adnot, Centerfor Energy Studies,Ecole desMines de ParisPaolo Bertoldi, European Commission ?5?5 Renewable Energies Objectives... of the GreenBuilding Programme ?GBP is designed and will be operated in order to contribute to the EU objective to reduce energy demand in buildings.?GBP main goal is to stimulate ?additional? cost-effectiveenergy efficiency and renewable energies projects...

  6. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet)Product: Total

  7. Power-Law Energy Splitting Generated By Tunneling Between Non-smooth Tori

    E-Print Network [OSTI]

    Z. Q. Bai

    2001-12-20

    We discuss the energy level splitting $\\Delta\\epsilon$ due to quantum tunneling between congruent tori in phase space. In analytic cases, it is well known that $\\Delta\\epsilon$ decays faster than power of $\\hbar$ in the semi-classical limit. This is not true in non-smooth cases, specifically, when the tori are connected by line on which the Hamiltonian is not smooth. Under the assumption that the non-smoothness depends only upon the x- or p-coordinate, the leading term in the semi-classical expansion of $\\Delta\\epsilon$ is derived, which shows that $\\Delta \\epsilon$ decays as $\\hbar^{k+1}$ when $\\hbar\\to 0$ with k being the order of non-smoothness.

  8. The time evolution of cosmological redshift in non-standard dark energy models

    E-Print Network [OSTI]

    Balbi, A

    2007-01-01

    The variation of the expansion rate of the universe with time produces an evolution in the cosmological redshift of distant sources (for example quasars), that might be directly observed (over a decade or so) by future ultra stable, high-resolution spectrographs (such as CODEX) coupled to extremely large telescopes (such as ESO's ELT). This would open a new window to explore the physical mechanism responsible for the current acceleration of the universe. We investigate the evolution of cosmological redshift from a variety of non-standard dark energy models, and compare it with simulated data based on realistic assumptions. We perform a Fisher matrix analysis, in order to estimate the expected constraints on the parameters of the models. We find that there are interesting prospects for constraining the parameters of non-standard dark energy models and for discriminating among competing candidates.

  9. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect (OSTI)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  10. Interacting holographic dark energy model and generalized second law of thermodynamics in non-flat universe

    E-Print Network [OSTI]

    M. R. Setare

    2007-01-26

    In the present paper we consider the interacting holographic model of dark energy to investigate the validity of the generalized second laws of thermodynamics in non-flat (closed) universe enclosed by the event horizon measured from the sphere of the horizon named $L$. We show that for $L$ as the system's IR cut-off the generalized second law is respected for the special range of the deceleration parameter.

  11. Non-equilibrium thermodynamics of dark energy on the power-law entropy corrected apparent horizon

    E-Print Network [OSTI]

    M. Umar Farooq; Mubasher Jamil

    2011-11-24

    We investigate the Friedmann-Robertson-Walker (FRW) universe (containing dark energy) as a non-equilibrium (irreversible) thermodynamical system by considering the power-law correction to the horizon entropy. By taking power-law entropy area law which appear in dealing with the entanglement of quantum fields in and out the horizon, we determine the power-law entropy corrected apparent horizon of the FRW universe.

  12. Non-linear energy conservation theorem in the framework of Special Relativity

    E-Print Network [OSTI]

    Ginés R. Pérez Teruel

    2015-05-03

    In this work we revisit the study of the gravitational interaction in the context of the Special Theory of Relativity. It is found that, as long as the equivalence principle is respected, a relativistic non-linear energy conservation theorem arises in a natural way. We interpret that this non-linear conservation law stresses the non-linear character of the gravitational interaction.The theorem reproduces the energy conservation theorem of Newtonian mechanics in the corresponding low energy limit, but also allows to derive some standard results of post-Newtonian gravity, such as the formula of the gravitational redshift. Guided by this conservation law, we develop a Lagrangian formalism for a particle in a gravitational field. We realize that the Lagrangian can be written in an explicit covariant fashion, and turns out to be the geodesic Lagrangian of a curved Lorentzian manifold. Therefore, any attempt to describe gravity within the Special Theory, leads outside their own domains towards a curved space-time. Thus, the pedagogical content of the paper may be useful as a starting point to discuss the problem of Gravitation in the context of the Special Theory, as a preliminary step before introducing General Relativity.

  13. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Beneke, Martin

    2015-01-01

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Sup...

  14. Non-relativistic high-energy physics: top production and dark matter annihilation

    E-Print Network [OSTI]

    Martin Beneke; Matthias Steinhauser

    2015-06-26

    Non-relativistic physics is often associated with atomic physics and low-energy phenomena of the strong interactions between nuclei and quarks. In this review we cover three topics in contemporary high-energy physics at or close to the TeV scale, where non-relativistic dynamics plays an important if not defining role. We first discuss in detail the third-order corrections to top-quark pair production in electron-positron collisions in the threshold region, which plays a major role at a future high-energy e+ e- collider. Threshold effects are also relevant in the production of heavy particles in hadronic collisions, where in addition to the Coulomb force soft gluon radiation contributes to enhanced quantum corrections. We review the joint resummation of non-relativistic and soft gluon effects for pair production of top quarks and supersymmetric particles to next-to-next-to-leading logarithmic accuracy. The third topic deals with pair annihilation of dark matter particles within the framework of the Minimal Supersymmetric Standard Model. Here the electroweak Yukawa force generated by the exchange of gauge and Higgs bosons can cause large "Sommerfeld" enhancements of the annihilation cross section in some parameter regions.

  15. Non-linear energy conservation theorem in the framework of Special Relativity

    E-Print Network [OSTI]

    Teruel, Ginés R Pérez

    2015-01-01

    In this work we revisit the study of the gravitational interaction in the context of the Special Theory of Relativity. It is found that, as long as the equivalence principle is respected, a relativistic non-linear energy conservation theorem arises in a natural way. We interpret that this non-linear conservation law stresses the non-linear character of the gravitational interaction.The theorem reproduces the energy conservation theorem of Newtonian mechanics in the corresponding low energy limit, but also allows to derive some standard results of post-Newtonian gravity, such as the formula of the gravitational redshift. Guided by this conservation law, we develop a Lagrangian formalism for a particle in a gravitational field. We realize that the Lagrangian can be written in an explicit covariant fashion, and turns out to be the geodesic Lagrangian of a curved Lorentzian manifold. Therefore, any attempt to describe gravity within the Special Theory, leads outside their own domains towards a curved space-time. ...

  16. VOLUME 71, NUMBER 19 PHYSICAL REVIEW LETTERS 8 NOVEMBER 1993 Non-Gaussian Energy Level Statistics for Some Integrable Systems

    E-Print Network [OSTI]

    Bleher, Pavel

    VOLUME 71, NUMBER 19 PHYSICAL REVIEW LETTERS 8 NOVEMBER 1993 Non-Gaussian Energy Level Statistics statistics [1,4). We first describe the results informally in the language of energy levels and then give with energy less than E of an integrable quantum system with two degrees of freedom is equal to XE+sE', where

  17. Specific Energy and Energy Density Analysis of Conventional and NonConventional Flywheels 

    E-Print Network [OSTI]

    Reyna, Ruben

    2013-12-09

    Flywheels are widely used as a means of energy storage throughout different applications such as hybrid electric vehicles, spacecraft, and electrical grids. The research presented here investigates various steel flywheel constructions. The purpose...

  18. Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    E-Print Network [OSTI]

    D. S. Leonard; H. J. Karwowski; C. R. Brune; B. M. Fisher; E. J. Ludwig

    2006-06-01

    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe $\\Omega_b$ with a precision of about 4%. With $\\Omega_b$ tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.

  19. Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes

    E-Print Network [OSTI]

    Cui, Jie

    2015-01-01

    We propose a Gaussian Process (GP) model as an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PES) for polyatomic molecules. Using an example of the molecule N$_4$, we show that a realistic GP model of the six-dimensional PES can be constructed with only 240 potential energy points. We construct a series of the GP models and illustrate the accuracy of the resulting surfaces as a function of the number of {\\it ab initio} points. We show that the GP model based on 1800 potential energy points achieves the same level of accuracy as the conventional regression fits based on 16,421 points. The GP model of the PES requires no fitting of {\\it ab initio} data with analytical functions and can be readily extended to surfaces of higher dimensions.

  20. Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions

    E-Print Network [OSTI]

    M. Gyulassy; P. Levai; I. Vitev; T. Biro

    2014-05-30

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic non-flow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd $v_n$ without invoking $k_T$ factorization. A test of CSA mechanism is the predicted nearly linear $\\eta$ rapidity dependence of the $v_n(k_T,\\eta)$. Non-abelian beam jet \\br may thus provide a simple analytic solution to Beam Energy Scan (BES) puzzle of the near $\\sqrt{s}$ independence of $v_n(p_T)$ moments observed down to 10 AGeV where large $x$ valence quark beam jets dominate inelastic dynamics. Recoil \\br from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of $v_n$ in $p(D)+A$ and non-central $A+A$ at same $dN/d\\eta$ multiplicity as observed at RHIC and LHC.

  1. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinna GroupToppan Printing Co

  2. Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions

    E-Print Network [OSTI]

    Gyulassy, M; Vitev, I; Biro, T

    2014-01-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian...

  3. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

  4. Three Non-Technical Challenges in the Development of Biomass-based Energy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Savage, Steve

    2011-04-25

    Steve Savage from Cirrus Partners on "Three Non-Technical Challenges in the Development of Biomass-based Energy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  5. The fluctuation energy balance in non-suspended fluid-mediated particle transport

    E-Print Network [OSTI]

    Thomas Pähtz; Orencio Durán; Tuan-Duc Ho; Alexandre Valance; Jasper F. Kok

    2015-01-16

    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

  6. Dark Energy from Gauss-Bonnet and non-minimal couplings

    E-Print Network [OSTI]

    L. N. Granda; D. F. Jimenez

    2014-11-16

    We consider a scalar-tensor model of dark energy with Gauss-Bonnet and non-minimal couplings. Exact cosmological solutions were found in absence of potential, that give equations of state of dark energy consistent with current observational constraints, but with different asymptotic behaviors depending on the couplings of the model. A detailed reconstruction procedure is given for the scalar potential and the Gauss-Bonnet coupling for any given cosmological scenario. Particularly, we consider conditions for the existence of a variety of cosmological solutions with accelerated expansion, including quintessence, phantom, de Sitter, Little Rip. For the case of quintessence and phantom we have found a scalar potential of the Albrecht-Skordis type, where the potential is an exponential with a polynomial factor.

  7. Non-thermal Cosmic Backgrounds and prospects for future high-energy observations of blazars

    E-Print Network [OSTI]

    P. Giommi; S. Colafrancesco

    2006-02-10

    We discuss the contribution of the blazar population to the extragalactic background radiation across the electromagnetic (e.m.) spectrum with particular reference to the microwave, hard-X-ray and gamma-ray bands. Our estimates are based on a recently derived blazar radio LogN-LogS that was built by combining several radio and multi-frequency surveys. We show that blazar emission integrated over cosmic time gives rise to a considerable broad-band non-thermal cosmic background that dominates the extragalactic brightness in the high-energy part of the e.m. spectrum. We also estimate the number of blazars that are expected to be detected by future planned or hypothetical missions operating in the X-ray and gamma-ray energy bands.

  8. Thermodynamics of Markov Processes with Non-extensive Entropy and Free Energy

    E-Print Network [OSTI]

    Hong Qian

    2011-02-02

    Parallel to the recent presented complete thermodynamic formalism for master equation systems, we show that a "thermodynamic" theory can also be developed based on Tsallis' generalized entropy $S_q and Shiino's generalized free energy F_q which depends on \\pi_i, the stationary distribution of the master equation. $dF_q/dt=-f_d\\le 0$ and it is zero iff the system is in its stationary state. $dS_q/dt = f_d-Q_{ex}$ where $Q_{ex}$ characterizes the heat exchange. For systems approaching equilibrium with detailed balance, $f_d$ is the product of Onsager's thermodynamic flux and force. However, it is discovered that the Onsager's force is non-local. This is a consequence of the particular transformation invariance for zero energy of Tsallis' statistics.

  9. Cincinnati Non-profits Getting Help Saving Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying2-2002Joshua DeLung What does this mean

  10. Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2010-10-21

    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach $10^{-9}$ G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.

  11. FORECASTS ON THE DARK ENERGY AND PRIMORDIAL NON-GAUSSIANITY OBSERVATIONS WITH THE TIANLAI CYLINDER ARRAY

    SciTech Connect (OSTI)

    Xu, Yidong; Chen, Xuelei [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wang, Xin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-01-01

    The Tianlai experiment is dedicated to the observation of large-scale structures (LSS) by the 21 cm intensity mapping technique. In this paper, we make forecasts concerning its ability to observe or constrain the dark energy parameters and the primordial non-Gaussianity. From the LSS data, one can use the baryon acoustic oscillation (BAO) and growth rate derived from the redshift space distortion (RSD) to measure the dark energy density and equation of state. The primordial non-Gaussianity can be constrained either by looking for scale-dependent bias in the power spectrum, or by using the bispectrum. Here, we consider three cases: the Tianlai cylinder array pathfinder that is currently being built, an upgrade of the Pathfinder Array with more receiver units, and the full-scale Tianlai cylinder array. Using the full-scale Tianlai experiment, we expect ?{sub w{sub 0}}?0.082 and ?{sub w{sub a}}?0.21 from the BAO and RSD measurements, ?{sub f{sub N{sub L}{sup local}}}?14 from the power spectrum measurements with scale-dependent bias, and ?{sub f{sub N{sub L}{sup local}}}?22 and ?{sub f{sub N{sub L}{sup equil}}}?157 from the bispectrum measurements.

  12. Multi-scale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its non-linear dependence on the 11-year solar cycle

    E-Print Network [OSTI]

    Nicola Scafetta; Richard C. Willson

    2013-11-26

    Herein we adopt a multi-scale dynamical spectral analysis technique to compare and study the dynamical evolution of the harmonic components of the overlapping ACRIMSAT/ACRIM3, SOHO/VIRGO and SORCE/TIM total solar irradiance (TSI) records during 2003.15 to 2013.16 in solar cycles 23 and 24. The three TSI time series present highly correlated patterns. Significant power spectral peaks are common to these records and are observed at the following periods: 0.070 year, 0.097 year, 0.20 year, 0.25 year, 0.30-0.34 year, 0.39 year. Less certain spectral peaks occur at about 0.55 year, 0.60-0.65 year and 0.7-0.9 year. Four main frequency periods at 24.8 days (0.068 year), 27.3 days (0.075 year), at 34-35 days (0.093-0.096 year) and 36-38 days (0.099-0.104 year) characterize the solar rotation cycle. The amplitude of these oscillations, in particular of those with periods larger than 0.5 year, appears to be modulated by the 11-year solar cycle. Similar harmonics have been found in other solar indices. The observed periodicities are found highly coherent with the spring, orbital and synodic periods of Mercury, Venus, Earth and Jupiter. We conclude that solar activity is likely modulated by planetary gravitational and electromagnetic forces acting on the sun. The strength of the sun's response to planetary forcing depends non-linearly on the state of internal solar dynamics: planetary-sun coupling effects are enhanced during solar activity maxima and attenuated during minima.

  13. On the global economic potentials and marginal costs of non-renewable resources and the price dynamics of energy commodities

    E-Print Network [OSTI]

    Mercure, Jean-Francois

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an exogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the cur...

  14. Zero energy correction method for non-Hermitian Harmonic oscillator with simultaneous transformation of co-ordinate and momentum and

    E-Print Network [OSTI]

    Biswanath Rath; P. Mallick

    2015-01-25

    We propose zero energy correction method for non-Hermiition Harmonic oscillator under simultaneous transformation of co-ordinate $(x \\rightarrow \\frac{(x+ i\\lambda p)}{\\sqrt{(1+\\beta \\lambda)}}$ and momentum $(p \\rightarrow \\frac{(p+ i\\beta x)}{\\sqrt{(1+\\beta \\lambda)}}$ for getting energy eigenvalue in place of extending the idea of gaugelike transformation proposed earlier in momentum transformation $(p \\rightarrow p+i\\beta x)$ by Z.Ahmed [Phys.Lett A 294,287 (2002)]. Further energy of non-Hermitian Harmonic oscillator remains the same as that of Harmonic oscillator. PACS: 03. 65 Db Key words.Non-Hermitian Harmonic oscillator, Perturbation theory,Energy level.

  15. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01

    is in final energy and is not converted to primary energy.A-3.3.2 China 2006 Primary Energy Use (Fuel and Non-fuel) of11 4.1 Total Primary Energy

  16. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  18. Robust energy transfer mechanism and critically balanced turbulence via non-resonant triads in nonlinear wave systems

    E-Print Network [OSTI]

    Miguel D. Bustamante; Brenda Quinn

    2013-09-02

    A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via non-resonant triads, applicable in meteorology, nonlinear optics and plasma wave turbulence. Transfer efficiency is maximal when the frequency mismatch of the non-resonant triad balances the system's nonlinear frequency: at intermediate levels of oscillation amplitudes an instability is triggered that explores unstable manifolds of periodic orbits, so turbulent cascades are most efficient at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

  19. Entropy production in chemically non-equilibrium quark-gluon plasma created in central Pb+Pb collisions at LHC energies

    E-Print Network [OSTI]

    Vovchenko, V; Satarov, L M; Mishustin, I N; Csernai, L P; Kisel, I; Stoecker, H

    2015-01-01

    We study the possibility that partonic matter produced at early stage of ultrarelativistic heavy-ion collisions is out of chemical equilibrium. It is assumed that initially this matter is mostly composed of gluons, but quarks and antiquarks are produced at later times. The dynamical evolution of partonic system is described by the Bjorken-like ideal hydrodynamics with a time dependent quark fugacity. The results of this model are compared with those obtained by assuming the complete chemical equilibrium of partons already at the initial stage. It is shown that in a chemically non-equilibrium scenario the entropy gradually increases, and about 25% of the total final entropy is generated during the hydrodynamic evolution of deconfined matter. We argue that the (anti)quark suppression included in this approach may be responsible for reduced (anti)baryon to meson ratios observed in heavy-ion collisions at LHC energies.

  20. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  5. Non-thermal high-energy emission from colliding winds of massive stars

    E-Print Network [OSTI]

    A. Reimer; M. Pohl; O. Reimer

    2005-10-25

    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

  6. A computer simulation appraisal of non-residential low energy cooling systems in California

    E-Print Network [OSTI]

    Bourassa, Norman; Haves, Philip; Huang, Joe

    2002-01-01

    of Nonresidential Low Energy Cooling Systems in California-of Nonresidential Low Energy Cooling Systems in Californiaof Nonresidential Low Energy Cooling Systems in California

  7. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    and electricity energy providers, RTP can be provided toIn an RTP program, the energy provider announces electricitypreferences. From the energy provider’s perspective,

  8. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01

    and electricity energy providers, RTP can be provided toIn an RTP program, the energy provider announces electricitypreferences. From the energy provider’s perspective,

  9. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  10. Renewable Energy, Nuclear Power and Galileo: Do Scientists Have a Duty to Expose Popular Misconceptions?

    E-Print Network [OSTI]

    Hansen, James E.

    1 OPINION Renewable Energy, Nuclear Power and Galileo: Do Scientists Have a Duty to Expose Popular misconception discussed below concerns the fallacy that renewable energy is rapidly supplanting conventional energy. Total non-hydro renewables today offset o

  11. ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design

    E-Print Network [OSTI]

    Polman, Albert

    demonstrated ultra-thin silicon solar cells on glass, world-record efficiency thin-film GaAs solar cells to solar cell design are applicable to other solar cell technologies as well, including thin-film CuInSe2ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

  12. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using...

  13. Thermodynamics of baryonic matter with strangeness within non-relativistic energy density functional model

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli; M. Oertel

    2014-09-15

    We study the thermodynamical properties of compressed baryonic matter with strangeness within non-relativistic energy density functional models with a particular emphasis on possible phase transitions found earlier for a simple $n,p,e,\\Lambda$-mixture. The aim of the paper is twofold: I) examining the phase structure of the complete system, including the full baryonic octet and II) testing the sensitivity of the results to the model parameters. We find that, associated to the onset of the different hyperonic families, up to three separate strangeness-driven phase transitions may occur. Consequently, a large fraction of the baryonic density domain is covered by phase coexistence with potential relevance for (proto)-neutron star evolution. It is shown that the presence of a phase transition is compatible both with the observational constraint on the maximal neutron star mass, and with the present experimental information on hypernuclei. In particular we show that two solar mass neutron stars are compatible with important hyperon content. Still, the parameter space is too large to give a definitive conclusion of the possible occurrence of a strangeness driven phase transition, and further constraints from multiple-hyperon nuclei and/or hyperon diffusion data are needed.

  14. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  15. BIM Game : a "serious game" to educate non-experts about energy related design and living

    E-Print Network [OSTI]

    Yang, Lin, S.M. Massachusetts Institute of Technology

    2009-01-01

    Climate Change is one defining issue of our time. With the increasingly sophisticated uses of energy, we have to face the problem as energy shortage and global warming. Since almost one-fourth of US energy is consumed by ...

  16. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    E-Print Network [OSTI]

    Ravindranath, N.H.; Meili, Anandi; Anita, R.

    1998-01-01

    on renewable sources of energy. In rural areas of India,renewable energy sources in the long term (Planning Commission, 1992). Current plans and programs: In India,

  17. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy

    Reports and Publications (EIA)

    2007-01-01

    This report summarizes the methodology used to split the heat content of municipal solid waste (MSW) into its biogenic and non-biogenic shares.

  18. Total Sustainability Humber College

    E-Print Network [OSTI]

    Thompson, Michael

    1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

  19. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    per Total Primary Energy Supply (2009) tonnes CO 2 /tceChanges Total Primary Energy Supply Transfer The east regionconsumers. Total primary energy supply equals to the total

  20. Effect of non-uniform electron energy distribution function on plasma production in large arc driven negative ion source

    SciTech Connect (OSTI)

    Shibata, T.; Koga, S.; Terasaki, R.; Hatayama, A.; Inoue, T.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Tsuchida, K.; Umeda, N.; Watanabe, K.

    2012-02-15

    Spatially non-uniform electron energy distribution function (EEDF) in an arc driven negative ion source (JAEA 10A negative ion source: 10 A NIS) is calculated numerically by a three-dimensional Monte Carlo kinetic model for electrons to understand spatial distribution of plasma production (such as atomic and ionic hydrogen (H{sup 0}/H{sup +}) production) in source chamber. The local EEDFs were directly calculated from electron orbits including electromagnetic effects and elastic/inelastic collision forces. From the EEDF, spatial distributions of H{sup 0}/H{sup +} production rate were obtained. The results suggest that spatial non-uniformity of H{sup 0}/H{sup +} productions is enhanced by high energy component of EEDF.

  1. Scaling of the known exact explicit forms of the non-interacting kinetic-energy density functional

    E-Print Network [OSTI]

    Lázaro Calderín

    2014-10-15

    It has been previously proven that the Kohn-Sham kinetic energy functional scales homogeneusly under generalized coordinate scaling, in a way that is obeyed by the von Weiz\\"acker functional, but seems to be in contradiction with the scaling of the Thomas-Fermi functional. A very puzzling situation, taking in to account that the von Weiz\\"acker and Thomas-Fermi functionals are exact cases of the Kohn-Sham kinetic energy functional for two electron systems, and the non-interacting electron gas, respectively. The apparent contradiction is resolved in this paper.

  2. Non-perturbative renormalization of the energy-momentum tensor in SU(3) Yang-Mills theory

    E-Print Network [OSTI]

    Leonardo Giusti; Michele Pepe

    2014-10-30

    We present a strategy for a non-perturbative determination of the finite renormalization constants of the energy-momentum tensor in the SU(3) Yang-Mills theory. The computation is performed by imposing on the lattice suitable Ward Identites at finite temperature in presence of shifted boundary conditions. We show accurate preliminary numerical data for values of the bare coupling g_0^2 ranging for 0 to 1.

  3. Energy 2050: Bio-inspired Renewable Non-Fossil Liquid Fuel

    E-Print Network [OSTI]

    Datta, Shoumen

    We propose an intelligent Energy Transparency model and a bio-inspired hypothetical mechanical mitochondria to optimize energy efficiency. iET seeks learning algorithms to build intelligence in order to pursue carbon-based ...

  4. An Assessment of Energy Potential at Non-Powered Dams in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem

    2012-04-01

    This document provides results from a nation-scale analysis to determine the potential capacity and generation available from adding power production capability to U.S. non-powered dams.

  5. Extreme water repellency of nanostructured low-surface-energy non-woven Bongsu Shin,a

    E-Print Network [OSTI]

    Kim, Ho-Young

    but also as industrial materials including filters, oil absorption fabrics, hygiene items, and geotextiles- repellent ability of the plasma treated non-woven fabric can be exploited in a variety of industrial

  6. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect (OSTI)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  7. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  8. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.

  9. Small-energy series for one-dimensional quantum-mechanical models with non-symmetric potentials

    E-Print Network [OSTI]

    Paolo Amore; Francisco M. Fernández

    2014-10-21

    We generalize a recently proposed small-energy expansion for one-dimensional quantum-mechanical models. The original approach was devised to treat symmetric potentials and here we show how to extend it to non-symmetric ones. Present approach is based on matching the logarithmic derivatives for the left and right solutions to the Schr\\"odinger equation at the origin (or any other point chosen conveniently) . As in the original method, each logarithmic derivative can be expanded in a small-energy series by straightforward perturbation theory. We test the new approach on four simple models, one of which is not exactly solvable. The perturbation expansion converges in all the illustrative examples so that one obtains the ground-state energy with an accuracy determined by the number of available perturbation corrections.

  10. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    E-Print Network [OSTI]

    Williams, Charles

    2014-01-01

    In addition to generating energy, water and dollar savings,in the cost of energy, water, wastewater treatment, fuelpurpose of achieving energy and water savings, in which a

  11. Non-linear QCD dynamics in two-photon interactions at high energies

    SciTech Connect (OSTI)

    Carvalho, F.; Navarra, F. S.; Cazaroto, E.; Goncalves, V. P.

    2013-03-25

    Assuming that the dipole - dipole cross section can be related with the dipole - proton cross section, we calculate the total {gamma}{gamma}, {gamma}*{gamma}* cross-sections and the real photon structure function F{sup {gamma}}{sub 2}(x,Q{sup 2}) using the recent solution of the BK equation with running coupling constant.

  12. Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production By State 2009 Total Energy Production by State 2009 Total Energy Production by State 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person...

  13. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  14. Unitarity and non-relativistic potential energy in a higher-order Lorentz symmetry breaking electromagnetic model

    E-Print Network [OSTI]

    Eslley Scatena; Rodrigo Turcati

    2014-11-17

    The Lorentz-violating model proposed by Myers and Pospelov suffers from a higher-derivative pathology due to a dimension-5 operator. In particular, its electromagnetic sector exhibits an spectrum which contains, in addition to an expected massless photon, ghost contributions that could (in principle) spoil the unitarity of the model. We find that unitarity at tree-level can be assured for pure spacelike, timelike and lightlike background four-vectors (the last two under restrictions upon the allowed momenta). We then analyze the non-relativistic interparticle potential energy behavior for different background four-vectors and compare to the usual Coulomb potential.

  15. Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED

    E-Print Network [OSTI]

    Jean-Marie Barbaroux; Thomas Chen; Semjon Vugalter; Vitali Vougalter

    2010-06-04

    In this paper, we determine the exact expression for the hydrogen binding energy in the Pauli-Fierz model up to the order $O(\\alpha^5\\log\\alpha^{-1})$, where $\\alpha$ denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order $o(\\alpha^5\\log\\alpha^{-1})$. As a consequence, we prove that the binding energy is not a real analytic function of $\\alpha$, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of $\\alpha$, as conjectured in the recent literature.

  16. Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED

    E-Print Network [OSTI]

    Barbaroux, Jean-Marie; Vugalter, Semjon; Vougalter, Vitali

    2009-01-01

    We determine the exact expression for the hydrogen ground state energy in the Pauli-Fierz model up to the order $O(\\alpha^5\\log\\alpha^{-1})$, where $\\alpha$ denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order $o(\\alpha^5\\log\\alpha^{-1})$. As a consequence, we prove that the ground state energy is not a real analytic function of $\\alpha$, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of $\\alpha$, as conjectured in the recent literature.

  17. Energy Department Announces $7 Million to Reduce Non-Hardware Costs of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJuly 8, 2015inSolar Power |Solar Energy

  18. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |ToolAppliances | Department of Energy

  19. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  20. Non-invasive energy meter for fixed and variable flow systems

    DOE Patents [OSTI]

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  1. Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc Jump to:SolergySolsilSombrillo, New

  2. SoCalGas - Non-Residential Energy Efficiency Rebate Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth Brome Monitoring atof Energy

  3. New Licensing Agreement Opens Energy Patents to NGOs, Non-Profits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of EnergyDepartment of|

  4. Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form

    E-Print Network [OSTI]

    Guendelman, Eduardo; Pacheva, Svetlana

    2015-01-01

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume-forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by the square-root of the determinant of the pertinent Riemannian metric and another non-Riemannian volume-form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decouple...

  5. Strict convexity of the free energy for non-convex gradient models at moderate $?$

    E-Print Network [OSTI]

    Codina Cotar; Jean-Dominique Deuschel; Stefan Müller

    2008-01-08

    We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. We show using a one-step multiple scale analysis the strict convexity of the surface tension at high temperature. This is an extension of Funaki and Spohn's result, where the strict convexity of potential was crucial in their proof that for every tilt there is a unique, shift invariant, ergodic Gibbs measure for the $\

  6. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  7. 21 briefing pages total

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of| Department offorGuide

  8. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  9. Agegraphic Dark Energy Model in Non-Flat Universe: Statefinder Diagnostic and $w-w^{\\prime}$ Analysis

    E-Print Network [OSTI]

    M. Malekjani; A. Khodam-Mohammadi

    2010-06-06

    We study the interacting agegraphic dark energy (ADE) model in non-flat universe by means of statefinder diagnostic and $w-w^{\\prime}$ analysis. First, the evolution of EoS parameter ($w_d$) and deceleration parameter ($q$) in terms of scale factor for interacting ADE model in non-flat universe are calculated. Dependence of $w_d$ on the ADE model parameters $n$ and $\\alpha$ in different spatial curvatures is investigated. We show that the evolution of $q$ is dependent on the type of spatial curvature, beside of dependence on parameters $n$ and $\\alpha$. The accelerated expansion takes place sooner in open universe and later in closed universe compare with flat universe. Then, we plot the evolutionary trajectories of the interacting ADE model for different values of the parameters $n$ and $\\alpha$ as well as for different contributions of spatial curvature, in the statefinder parameters plane. In addition to statefinder, we also investigate the ADE model in non-flat universe with $w-w^{\\prime}$ analysis.

  10. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer���¢��������s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  11. A computer simulation appraisal of non-residential low energy cooling systems in California

    SciTech Connect (OSTI)

    Bourassa, Norman; Haves, Philip; Huang, Joe

    2002-05-17

    An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

  12. AN UPWIND FINITE-DIFFERENCE METHOD FOR TOTAL ...

    E-Print Network [OSTI]

    2010-09-17

    their problem, unlike ours, has a true notion of “wind”. In the present ...... Total variation minimization and a class of binary mrf models, in Energy Minimization.

  13. Revisiting the holographic dark energy in a non-flat universe: alternative model and cosmological parameter constraints

    E-Print Network [OSTI]

    Zhang, Jing-Fei; Cui, Jing-Lei; Zhang, Xin

    2014-01-01

    We propose an alternative model for the holographic dark energy in a non-flat universe. This new model differs from the previous one in that the IR length cutoff $L$ is taken to be exactly the event horizon size in a non-flat universe, which is more natural and theoretically/conceptually concordant with the model of holographic dark energy in a flat universe. We constrain the model using the recent observational data including the type Ia supernova data from SNLS3, the baryon acoustic oscillation data from 6dF, SDSS-DR7, BOSS-DR9, and WiggleZ, the cosmic microwave background data from Planck, and the Hubble constant measurement from HST. In particular, since some previous studies have shown that the color-luminosity parameter $\\beta$ of supernovae is likely to vary during the cosmic evolution, we also consider such a case that $\\beta$ in SNLS3 is time-varying in our data fitting. Compared to the constant $\\beta$ case, the time-varying $\\beta$ case reduces the value of $\\chi^2$ by about 35 and results in that ...

  14. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. PG&E - Non-Residential Energy Efficiency Financing Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas of theConference on Fuel CellsEnergy Local Government

  16. Management of nuclear materials and non-HLW | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbineProcessesEnergyofEnergyThe 2020consolidation

  17. An Assessment of Energy Potential at Non-Powered Dams in the United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiencyEnergy 2:00PM EDTPerformance ||

  18. Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation

    SciTech Connect (OSTI)

    Greeney, Nathan S.; Strovink, Kurt M.; Scales, John A. [Physics Department, Colorado School of Mines, Golden, Colorado 80401 (United States); Jessop, Andrew M.; Stuart Bolton, J. [Ray W. Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907-2099 (United States); Watson, Christopher C.; Adams, Douglas E. [Purdue Center for Systems Integrity, Purdue University, Lafayette, Indiana 47905 (United States)

    2014-05-21

    Non-contacting acoustical methods can be used to extract various material properties of liquid or solid samples without disturbing the sample. These methods are useful even in the lab since they do not involve coupling anything to the sample, which might change its properties. A forteriori, when dealing with potentially dangerous materials, non-contacting methods may be the only safe solutions to mechanical characterization. Here, we show examples of using laser ultrasound to remotely insonify and monitor the elastic properties of several granular explosive simulants. The relatively short near-infrared laser pulse length (a few hundred nanoseconds) provides a broad-band thermoelastic source of ultrasound; we intentionally stay in the thermoelastic regime to avoid damaging the material. Then, we use a scanning laser Doppler vibrometer to measure the ultrasonic response of the sample. LDV technology is well established and very sensitive at ultrasonic frequencies; atomic level motions can be measured with modest averaging. The resulting impulse response of the explosive simulant can be analyzed to determine decay rates and wave speeds, with stiffer samples showing faster wave speeds and lower decay rates. On the other hand, at the low-frequency end of the acoustic spectrum, we use an electronically phased array to couple into a freely suspended sample's normal modes. This allows us to gently heat up the sample (3?°C in just under 5 min, as shown with a thermal IR camera). In addition to the practical interest in making the sample more chemically visible through heat, these two measurements (low-frequency resonant excitation vs high-frequency wave propagation) bracket the frequency range of acoustic non-destructive evaluation methods available.

  19. Strategic Partnership Projects [Formerly Known as Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Strategic Partnership Projects is work performed for non-DOE entities by DOE/(NNSA personnel and/or their respective contractor personnel or the use of DOE/NNSA facilities for work that is not directly funded by DOE/NNSA appropriations. This Admin Chg address primarily address references to revised directives and the results of departmental reorganization. In addition, the Secretary directed effective immediately work formerly known as Work for Others (WFO) to be renamed Strategic Partnership Projects (SPPs). Admin Chg 2, dated 3-9-15, supersedes DOE O 481.1C Admin Chg 1, dated 3-14-11.

  20. Abstract--The variability and non-dispatchable nature of wind and solar energy production presents

    E-Print Network [OSTI]

    Western Electricity Coordinating Council (WECC) system model. Some results of this study are provided. Energy Storage as an Ancillary Service Resource Today, many electricity storage technologies, including.O. Box 999, MSIN: K5- 20, Richland, WA - 99352, USA (e-mail: yuri.makarov@pnl.gov, michael

  1. Revisiting the holographic dark energy in a non-flat universe: alternative model and cosmological parameter constraints

    E-Print Network [OSTI]

    Jing-Fei Zhang; Ming-Ming Zhao; Jing-Lei Cui; Xin Zhang

    2014-11-25

    We propose an alternative model for the holographic dark energy in a non-flat universe. This new model differs from the previous one in that the IR length cutoff $L$ is taken to be exactly the event horizon size in a non-flat universe, which is more natural and theoretically/conceptually concordant with the model of holographic dark energy in a flat universe. We constrain the model using the recent observational data including the type Ia supernova data from SNLS3, the baryon acoustic oscillation data from 6dF, SDSS-DR7, BOSS-DR11, and WiggleZ, the cosmic microwave background data from Planck, and the Hubble constant measurement from HST. In particular, since some previous studies have shown that the color-luminosity parameter $\\beta$ of supernovae is likely to vary during the cosmic evolution, we also consider such a case that $\\beta$ in SNLS3 is time-varying in our data fitting. Compared to the constant $\\beta$ case, the time-varying $\\beta$ case reduces the value of $\\chi^2$ by about 35 and results in that $\\beta$ deviates from a constant at about 5$\\sigma$ level, well consistent with the previous studies. For the parameter $c$ of the holographic dark energy, the constant $\\beta$ fit gives $c=0.65\\pm 0.05$ and the time-varying $\\beta$ fit yields $c=0.72\\pm 0.06$. In addition, an open universe is favored (at about 2$\\sigma$) for the model by the current data.

  2. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    SciTech Connect (OSTI)

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound; Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.

  3. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    SciTech Connect (OSTI)

    Leonard, T.; Lander, B.; Seifert, U.; Speck, T.

    2013-11-28

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  4. Thermal right-handed neutrino self-energy in the non-relativistic regime

    E-Print Network [OSTI]

    M. Laine

    2012-09-13

    Recently the issue of radiative corrections to leptogenesis has been raised. Considering the "strong washout" regime, in which OPE-techniques permit to streamline the setup, we report the thermal self-energy matrix of heavy right-handed neutrinos at NLO (resummed 2-loop level) in Standard Model couplings. The renormalized expression describes flavour transitions and "inclusive" decays of chemically decoupled right-handed neutrinos. Although CP-violation is not addressed, the result may find use in existing leptogenesis frameworks.

  5. Non-Photosynthetic Biohydrogen--Overview of Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects on

  6. Non-Residential Solar & Wind Tax Credit (Personal) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects onPlatinum

  7. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA LNG Exports from Babb, MT LNG Exports from Buffalo, NY LNG Exports from Kenai, AK LNG Exports...

  8. Distinguishing total and partial identity: Evidence from Chol

    E-Print Network [OSTI]

    Gallagher, Gillian

    This paper argues that long-distance assimilations between consonants come in two varieties: Total identity, which arises via a non-local relation between the interacting segments; and partial identity, which results from ...

  9. SoCalGas - Custom Non-Residential Energy Efficiency Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000 Independence

  10. SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000 Independence< Back Eligibility< Back

  11. SCE - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTON PACIFICand< Back

  12. SDG&E - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTONtransmissionCommercial

  13. PG&E (Gas) - Non-Residential Energy Efficiency Rebates | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas of theConference on Fuel Cells |ActionSignSystems|Y-12

  14. Non-Residential Solar & Wind Tax Credit (Corporate) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey isDepartmentGasFacility Contractor< Back

  15. Dark Matter and a Definite Non-Definite | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis,Department of U.S.DURA URBANMaterial

  16. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    2 Emissions per Total Primary Energy Supply (2008) tonne COStock Changes Total Primary Energy Supply Transfer The eastlarge consumers. Total primary energy supply equals to the

  17. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01

    2 Emissions per Total Primary Energy Supply (2009) tonnes COStock Changes Total Primary Energy Supply Transfer The eastlarge consumers. Total primary energy supply equals to the

  18. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformationBrownfieldsEPIR

  19. Property:TotalValue | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to:SpatialResolution Jump

  20. Energy-momentum tensor on the lattice: non-perturbative renormalization in Yang--Mills theory

    E-Print Network [OSTI]

    Leonardo Giusti; Michele Pepe

    2015-06-04

    We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward Identities (WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs associated to the Poincare` invariance of the continuum theory. These relations come forth when the length of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and the periodicity axes are not aligned. We implement the method for the SU(3) Yang--Mills theory discretized with the standard Wilson action in presence of shifted boundary conditions in the (short) temporal direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless components of the tensor are determined with a precision of roughly half a percent for values of the bare coupling constant in the range 0<= g^2_0<=1.

  1. The $?^* ?^*$ total cross section in NLA BFKL

    E-Print Network [OSTI]

    Dmitry Yu. Ivanov; Beatrice Murdaca; Alessandro Papa

    2014-11-16

    We study the $\\gamma^* \\gamma^*$ total cross section in the NLA BFKL approach. We have extracted the NLO corrections to the photon impact factor from two recent papers of Balitsky and Chirilli and Chirilli and Kovchegov and used them to build several representations of the total cross section, equivalent within the NLA. We have combined these different representations with two among the most common methods for the optimization of a perturbative series, namely PMS and BLM, and compared their behavior with the energy with the only available experimental data, those from the LEP2 collider.

  2. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy buildings reduce energy consumption and reduce dependence on non- renewable energy sources. · As interestThesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  4. EUV Non-thermal Line Broadening and High-energy particles during Solar Flares

    E-Print Network [OSTI]

    Kawate, Tomoko

    2013-01-01

    We have studied the relationship between the location of EUV nonthermal broadening and high-energy particles during the large flares by using EUV imaging spectrometer onboard {\\it Hinode}, Nobeyama Radio Polarimeter, Nobeyama Radioheliograph, and Atmospheric Imaging Assembly onboard {\\it Solar Dynamic Observatory}. We have analyzed the five large flare events which contain thermal rich, intermediate, and thermal poor flares classified by the definition discussed in the paper. We found that, in the case of thermal rich flares, the nonthermal broadening of \\ion{Fe}{24} occurred at the top of the flaring loop at the beginning of the flares. The source of the 17 GHz microwave is located at the footpoint of the flare loop. On the other hand, in the case of intermediate/thermal poor flares, the nonthermal broadening of \\ion{Fe}{24} occurred at the footpoint of the flare loop at the beginning of the flares. The source of the 17 GHz microwave is located at the top of the flaring loop. We discussed the difference betw...

  5. Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions

    E-Print Network [OSTI]

    Eric-Olivier Le Bigot; Ulrich D. Jentschura; Paul Indelicato; Peter J. Mohr

    2004-10-22

    The method and status of a study to provide numerical, high-precision values of the self-energy level shift in hydrogen and hydrogen-like ions is described. Graphs of the self energy in hydrogen-like ions with nuclear charge number between 20 and 110 are given for a large number of states. The self-energy is the largest contribution of Quantum Electrodynamics (QED) to the energy levels of these atomic systems. These results greatly expand the number of levels for which the self energy is known with a controlled and high precision. Applications include the adjustment of the Rydberg constant and atomic calculations that take into account QED effects.

  6. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  7. MUJERES TOTAL BIOLOGIA 21 32

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    CIENCIAS ECON�MICAS Y EMPRESARIALES TOTAL DERECHO Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS CIENCIAS MEDICINA TOTAL MEDICINA #12;MUJERES TOTAL Nº de tesis leídas y aprobadas por centro y departamento en el año 2014 CENTRO DEPARTAMENTO Nº DE TESIS

  8. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    1.4 0.4 0.5 1.0 1.2 1.4 2.1 1.3 Table HC5.2 Living Space Characteristics by Year of Construction, 2005 Living Space Characteristics 1970 to 1979 1980 to 1989 1990 to 1999 2000 to...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump... 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat...

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    em... 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump... 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump... 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    1.5 2.3 3.0 6.0 For Two Housing Units... 0.9 0.3 0.4 Q Q N Q 0.4 Heat Pump... 9.2 1.2 2.2 2.0 1.3 2.4 0.6 1.9...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump... 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    tem... 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump... 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 22.9 9.8 14.1 11.9...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 14.1 10.0 4.0...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 10.4 14.1 20.5 13.7...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 20.5 11.0 3.4 6.1...

  1. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 11.4 8.1 3.3 Flat-panel...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 11.4 15.4 10.2 Flat-panel...

  3. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 2.3 2.5 3.1 4.8...

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 7.9 5.6 2.4 Flat-panel...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 15.4 7.9 2.8 4.8 Flat-panel...

  6. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 17.7 7.5 10.2 9.6 Flat-panel...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 13.7 4.2 9.5 Laptop...

  8. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)... 45.0 10.2 3.2 7.0 Flat-panel...

  9. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model... 58.6 3.2 3.9 4.0 6.7...

  10. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.2 0.5 0.9 3 or More... 0.6 Q Q Q Q Q N Q Plasma Television Sets... 3.6 0.6 0.8 0.5 0.6 1.2 0.3 0.9...

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 2.9 Q Q Q N For Two Housing Units... 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace... 2.8 2.4 Q Q Q 0.2 Other...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  15. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central Warm-Air Furnace... 44.7 5.2 3.1 5.6 5.2 7.1 7.4 7.3 3.9 For...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38.9 12.9 Have Equipment But Do Not Use it... 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System......

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..............................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 86.6

  2. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  3. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1 111.1

  4. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1

  5. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1Q

  6. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ

  7. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6 111.1QQ14.7

  8. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4 12.55.6

  9. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  10. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.4

  11. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6 13.1

  12. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6

  13. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do Not

  14. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do

  15. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8 20.6Do0.7

  16. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8

  17. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not Have

  18. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  19. Total................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not

  20. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do Not49.2

  1. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do

  2. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7 28.8

  3. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.7

  4. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0

  5. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7 28.8Do26.733.0.

  6. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.7

  7. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0 1.2

  8. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0

  9. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8 1.0Type

  10. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.8

  11. Total....................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7 7.4

  12. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.7

  13. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2 7.814.75.6

  14. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.2

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6 40.7

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.6

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6 17.7

  18. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.6

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7 7.426.715.225.65.64.2

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.7

  1. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3 Do

  2. Total.........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.3

  3. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6

  4. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7 22.325.6.

  5. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.7

  6. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.7

  7. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7 21.74.2

  8. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.7

  9. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1 19.0

  10. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.1

  11. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0 22.70.77.15.6

  12. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0

  13. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not Have

  14. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do Not

  15. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCooking

  16. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do NotCookingDo

  17. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0Do

  18. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCooking

  19. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo Not

  20. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 19.0DoCookingDo