Powered by Deep Web Technologies
Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

2

Table C1. Total Energy Consumption by Major Fuel for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Plumbing System Upgrade ... Building Newer than 1980 ... 2003 Commercial Buildings Energy Consumption Survey: ...

3

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

4

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

5

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

6

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State Click on a state for more information. Addthis Browse By Topic...

8

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

9

Total Energy | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What's New in Total Energy. Monthly Energy Review September 25, 2013. Monthly Energy Review August 27, 2013. Monthly Energy Review July 26, 2013.

10

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

11

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams Creating an Energy Innovation Ecosystem Creating an Energy Innovation Ecosystem Sunshot Rooftop Solar...

12

Solar Total Energy Project final test report  

DOE Green Energy (OSTI)

The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

1990-09-01T23:59:59.000Z

13

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Total embodied energy was highest for the hotel subsector,School Hotel The total non-operational embodied energy ofEnergy, Reference Case) Million Tonnes CO2 Hospital Hotel

Fridley, David G.

2008-01-01T23:59:59.000Z

14

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

15

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

16

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

17

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

18

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

19

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

20

Cogeneration Plant is Designed for Total Energy  

E-Print Network (OSTI)

This paper describes application considerations, design criteria, design features, operating characteristics and performance of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle cogeneration in an energy intensive electrochemical manufacturing process has resulted in an efficient reliable energy supply that has significantly reduced energy cost and therefore manufacturing cost.

Howell, H. D.; Vera, R. L.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... They are for public testing and comment only. We ...

22

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

23

Total Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Glossary FAQS Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States EIA's latest Short-Term...

24

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

25

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

26

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu. Figures in this table...

27

Total Energy - Analysis & Projections - U.S. Energy Information...  

Annual Energy Outlook 2012 (EIA)

Current & Selected Reports Most Requested Annual Monthly Projections U.S. States Search within Total Energy Search By: Go Pick a date range: From: To: Go Search All Reports &...

28

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

29

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

30

AEO2011: Total Energy Supply, Disposition, and Price Summary...  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

31

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

32

Annual Energy Outlook with Projections to 2025-Figure 5. Total...  

Gasoline and Diesel Fuel Update (EIA)

5. Total energy production and consumption, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

33

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

34

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

35

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

36

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

37

NON INVASIVE ENERGY METER  

POTENTIAL APPLI ATIONS flow systems Fixed and variable liquid flow systems (e.g., solar systems) Energy Measurement TE HNOLOGI AL ENEFITS

38

Award Number: Federal Non-Federal Federal Non-Federal Total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

j. Indirect Charges j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies Prescribed by OMB Circular A-102 Previous Edition Usable

39

Award Number: Federal Non-Federal Federal Non-Federal Total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prescribed by OMB Circular A-102 Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary

40

A Total Energy & Water Quality Management System  

Science Conference Proceedings (OSTI)

This report develops a generic model for an energy and water quality management system for the water community, and defines standard specifications for software applications required to minimize energy costs within the constraints of water quality and operation goals.

1999-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar total energy systems final technical summary report. Volume I. Solar total energy systems market penetration  

SciTech Connect

The results of the market penetration analysis of Solar Total Energy Systems (STES) for the industrial sector are described. Performance data derived for STES commercial applications are included. The energy use and price forecasts used in the analysis are summarized. The STES Applications Model (SAM), has been used to develop data on STES development potential by state and industry as a function of time from 1985 through 2015. A second computer code, the Market Penetration Model (MPM), has been completed and used to develop forecasts of STES market penetration and national energy displacement by fuel type. This model was also used to generate sensitivity factors for incentives, and variations in assumptions of cost of STES competing fuel. Results for the STES performance analysis for commercial applications are presented. (MHR)

Bush, L.R.; Munjal, P.K.

1978-03-31T23:59:59.000Z

42

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Raytheon Employee Engagement Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010 Raytheon ... What We Do Raytheon is a global technology company that provides innovative solutions to customers in 80 nations. Through strategic vision, disciplined management and world-class talent, Raytheon is delivering operational advantages for customers every day while helping them prepare for the

43

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

44

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Total Economics of Energy Efficient Motors  

E-Print Network (OSTI)

Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part of the story. Engineers responsible for the selection of motors for many varying uses must also consider many less tangible factors when deciding whether a price premium for an energy-efficient motor is justified. These important intangible factors may throw a borderline decision in favor of a premium motor; at other times these factors may dictate that the capital money could be spent more wisely in other areas. This paper will point out those factors which effect the decision of whether or not to buy a premium priced energy-efficient motor or a standard electric motor. It will also address the question of whether it is cost-effective to rewind an old motor which has failed or to replace it with a new energy-efficient motor.

Nester, A. T.

1984-01-01T23:59:59.000Z

46

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

47

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

49

"Table 17. Total Delivered Residential Energy Consumption, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,...

50

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Facebook icon Twitter icon Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

51

Atomic total energies: Atomic Ref.Data Elec Struc Cal  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

52

Atomic total energies: Atomic Ref. Data Elec. Struc. Cal.  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

53

Energy dependence of the total photoproduction cross section at HERA  

E-Print Network (OSTI)

The energy dependence of the total photon-proton cross-section is determined from data collected with the ZEUS detector at HERA with two different proton beam energies.

Aharon Levy

2008-07-01T23:59:59.000Z

54

The Total Energy Norm in a Quasigeostrophic Model  

Science Conference Proceedings (OSTI)

Total energy E as the sum of kinetic and available potential energies is considered here for quasigeostrophic (QG) dynamics. The discrete expression for E is derived for the QG model formulation of Marshall and Molteni. While E is conserved by ...

Martin Ehrendorfer

2000-10-01T23:59:59.000Z

55

Total Energy - Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy ... Solar Energy in Brief. What's ... They are for public testing and comment ...

56

Total Energy - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy Consumption ... Solar Energy in ... testing but not to operate at full power.

57

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Maps. Maps by energy source and topic, ... Solar Energy in Brief. ... U.S. Department of Energy USA.gov FedStats. Stay Connected

58

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. ... is the U.S. Energy Information Administration's primary report of recent energy statistics.

59

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook Energy Disruptions International Energy Outlook ... A B C D E F G H I J K L M N O P Q R S T U V ...

60

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandy Alternative Fueling Station Locator Alternative Fueling Station Locator Energy Department National Labs and Minority Serving Institutions Energy Department National...

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total Energy - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Released: July 25, 2013. This report presents international energy projections through 2040, ... 2012. A report of historical annual energy ...

62

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

63

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

64

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

65

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

66

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

67

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

68

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

69

non-energy | OpenEI  

Open Energy Info (EERE)

non-energy non-energy Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol for non-energy uses. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords consumption dataset non-energy UN Data application/xml icon Consumption by non-energy uses XML (xml, 10.7 KiB) text/csv icon Consumption by non-energy uses CSV (csv, 2.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

70

Energy Performance Certificate Non-Domestic Building  

U.S. Energy Information Administration (EIA)

66 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

71

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

72

AEO2011:Total Energy Supply, Disposition, and Price Summary ...  

Open Energy Info (EERE)

AEO2011:Total Energy Supply, Disposition, and Price Summary

73

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

74

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

75

Total Prompt Energy Release in the Neutron-Induced Fission  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235 U, 238 U, and 239 Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study. Key words: Energy release and energy deposition in neutron-induced fission,

D. G. Madland

2006-01-01T23:59:59.000Z

76

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

E-Print Network (OSTI)

the purposes of this paper, non-energy benefits are definedthat Incorporate Non-energy Benefits This paper identified aPaper presented to American Council for an Energy Efficient

Larsen, Peter

2013-01-01T23:59:59.000Z

77

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

What's New in Monthly Energy Review What's New in Monthly Energy Review December 2013 PDF | previous editions Release Date: December 24, 2013 Next Update: January 28, 2014 Listed below are changes in Monthly Energy Review content. Only months with changes beyond the standard updates are shown. CONTENT CHANGES + EXPAND ALL Changes in 2013 December 2013 Release Electricity statistics have been revised in coordination with EIA's Electric Power Annual 2012. Revisions affect data series in Energy Overview, Energy Consumption, Petroleum, Natural Gas, Coal, Electricity, Nuclear Energy, Energy Prices, Renewable Energy, and Environment. Final 2012 heat content values for electricity (Table A6) have also been incorporated. October 2013 Release Excel and CSV files now include pre-1973 data for all series except for Section 12. The Excel files now have two worksheets, one for monthly data and one for annual data.

78

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources. Highlights This Week in Petroleum ... Wind Geothermal

79

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

80

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total Energy - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

82

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

83

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

84

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

85

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

86

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Superseded -- see MER for key annual tables Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go CONTENT CHANGES + EXPAND ALL Changes in Annual Energy Review 2011 Annual Energy Review 2011 Release: September 27, 2012 1. Energy Consumption, Expenditures, and Emissions Indicators Estimates (Table 1.5) has been modified to include columns for Gross Output and Energy Expenditures as Share of Gross Output and remove Greenhouse Gas Emissions per Real Dollar of Gross Domestic Product. 2. Sales of Fossil Fuels Produced on Federal and American Indian Lands (Table 1.14) was previously titled "Fossil Fuel Production on Federally Administered Lands." It has been redesigned and now provides data on sales of fossil fuels from Federal and American Indian lands for fiscal years 2003 through 2011.

87

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

88

The Use of Trust Regions in Kohn-Sham Total Energy Minimization  

E-Print Network (OSTI)

of the KS total energy optimization problem, which has beenthe original total energy minimization problem is. Secondly,the KS total energy minimiza- tion problem as min E total (

Yang, Chao; Meza, Juan C.; Wang, Lin-wang

2006-01-01T23:59:59.000Z

89

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

E-Print Network (OSTI)

energy conservation measures State Virginia (2001) New Mexico (types of non-energy benefits. New Mexico (2011) has specificenergy savings contracts by governmental entities, June. New Mexico.

Larsen, Peter

2013-01-01T23:59:59.000Z

90

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

91

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

92

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

93

DARK ENERGY AND NONLINEAR PERTURBATIONS  

E-Print Network (OSTI)

Dark energy might have an influence on the formation of nonlinear structures during the cosmic history. For example, in models in which dark energy couples to dark matter, it will be nonhomogeneous and will influence on the collapse of a dark matter overdensity. We use the spherical collapse model to estimate how much influence dark energy might have. 1.

C. Van; De Bruck; D. F. Mota

2005-01-01T23:59:59.000Z

94

Dark Energy and Non-linear Perturbations  

E-Print Network (OSTI)

Dark energy might have an influence on the formation of non--linear structures during the cosmic history. For example, in models in which dark energy couples to dark matter, it will be non--homogeneous and will influence the collapse of a dark matter overdensity. We use the spherical collapse model to estimate how much influence dark energy might have.

C. van de Bruck; D. F. Mota

2005-01-14T23:59:59.000Z

95

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

96

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

97

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

98

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

99

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

100

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

102

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

103

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

104

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

105

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

106

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

107

Non-Invasive Energy Meter  

Sandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique that ...

108

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

109

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

E-Print Network (OSTI)

Swedish ESCO Experience. Energy Efficiency, 3(3), 237-256.2001 Session. Chapter 219: Energy and Operational Efficiency2008. NAESCO Analysis of Non-energy Benefits of Efficiency

Larsen, Peter

2013-01-01T23:59:59.000Z

110

Category:Non-governmental Organizations | Open Energy Information  

Open Energy Info (EERE)

governmental Organizations governmental Organizations Jump to: navigation, search Non-governmental Organizations For our purposes here, Non-governmental Organizations are defined as organizations that are classified under section 501(c)(3) of the Internal Revenue Code Pages in category "Non-governmental Organizations" The following 39 pages are in this category, out of 39 total. 2 25 x 25 America s Energy Future A Alliance for Clean Energy New York Alliance for Climate Protection B Bonneville Environmental Foundation Boston Area Solar Energy Association C California Center for Sustainable Energy California Fuel Cell Partnership Carbon War Room Clean Energy States Alliance Clean Tech Los Angeles Clean Tech San Diego CleanTX Foundation Colorado Renewable Energy Society C cont. Community Environmental Council

111

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

112

Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

113

Total Primary Energy Use in the U.S. by Sector, 1998 (chart)  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Energy Efficiency Page > Figure 1. Total Primary Energy Use by Sector [Trends in Building-Related Energy and ...

114

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-energy Benefits into Energy Savings Performance Contracts Non-energy Benefits into Energy Savings Performance Contracts Title Incorporating Non-energy Benefits into Energy Savings Performance Contracts Publication Type Conference Paper Year of Publication 2012 Authors Larsen, Peter H., Charles A. Goldman, Donald Gilligan, and Terry E. Singer Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 2012 Publisher ACEEE Conference Location Asilomar Conference Center, Pacific Grove, California Abstract This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry-a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances -- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Non- energy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100% of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings Agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

115

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

116

Table 1.4b Primary Energy Exports by Source and Total Net Imports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 11 Table 1.4b Primary Energy Exports by Source and Total Net Imports

117

Solar total energy systems (STES) simulation program user's guide  

DOE Green Energy (OSTI)

A computer program which simulates the operations of a STES facility and evaluates its annualized costs and energy displacement is described. The program contains a dynamic model which simulates the interaction of the insolation and electrical and thermal demands on an hourly basis. The program is flexible enough to allow thousands of different configurations to be simulated under a wide variety of conditions. Moreover, with this program, the sizes of the STES components can be adjusted to maximize the return on invested capital or the savings in fossil fuels. The program can also be used to simulate conventional fossil fuel Total Energy (TE) systems and solar thermal energy systems for comparison with STES. The program is written in Fortran for the FTN compiler on The Aerospace Corporation's CDC 7600 computer. It consists of 9 routines and approximately 1300 cards, including comments. A description of the program, its inputs and its outputs are presented. Examples of program input and otput as well as a sample deck structure are provided. A source listing appears in the appendix.

Timmer, B.R.

1979-01-04T23:59:59.000Z

118

Duke Energy - Non-Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Non-Residential Energy Efficiency Rebate Program - Non-Residential Energy Efficiency Rebate Program Duke Energy - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: 50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Fluorescent Lighting and Reduced Wattage: $3-$50/fixture

119

Needs of Non Energy-Focused Contractors  

SciTech Connect

To better understand the informational needs of non energy-focused contractors, including what information they need to motivate them to become energy-focused, the BARA team studied the type of information provided by the national programs, trade associations, and manufacturers that were researched for the related technical report: Effective Communication of Energy Efficiency. While that report focused on the delivery method, format, and strategy of the information, this study examines the content being put forward.

Liaukus, C.

2012-12-01T23:59:59.000Z

120

A Total Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers  

Science Conference Proceedings (OSTI)

This paper presents a turbulence closure for neutral and stratified atmospheric conditions. The closure is based on the concept of the total turbulent energy. The total turbulent energy is the sum of the turbulent kinetic energy and turbulent ...

Thorsten Mauritsen; Gunilla Svensson; Sergej S. Zilitinkevich; Igor Esau; Leif Enger; Branko Grisogono

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

122

Total Floorspace of Commercial Buildings - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities >Table 4

123

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Unitary and Split Air Conditioning Systems and Air Source Heat Pumps: $25-$45/ton Chillers: $10-$40/ton Ground Source Heat Pumps: $40/ton Hotel Occupancy Sensors: $20-$40 Energy Management Control System: $0.10/sq. ft. or $0.21/sq. ft.

124

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

125

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

126

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

127

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

128

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

129

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

130

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

131

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

132

UN Alcohol Energy Data: Consumption for Non-Energy Uses The Energy  

Open Energy Info (EERE)

for Non-Energy Uses The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

133

Market assessment of fuel cell total energy systems summary report  

DOE Green Energy (OSTI)

An investigation of the potential market penetration of fuel cell total energy systems (FCTES) into the nonindustrial, single building market is summarized. Nine building types, two types of construction, and the ten Department of Energy (DOE) regions were used to model the market for the time period 1985--2000. Input data developed for the penetration model included size distributions of each building type and performance and cost characteristics of FCTES and competing conventional systems. Two fuel cell systems, fuel cell - heat pump and fuel cell - central boiler and chiller, were assumed to compete with two conventional systems, electric heat pump and central chiller-boiler models. Two fuel cell supply situations were considered: (a) one in which only 40 kW(e) modules were available, and (b) one in which a catalog of 25, 40, 100, and 250 kW(e) modules were available. Data characterizing the economic climate, the intended market, and system cost and performance were used to determine the present value of life-cycle costs for each system in each market segment. Two market models were used to estimate FCTES sales. In the first, the perfect market model, FCTES sales were assumed to occur in all segments in which that system had the lowest present-valued costs. In the second, a market diffusion model was used to obtain a more probable (and lower) sales estimate than that of the perfect market model. Results are presented as FCTES sales for each market segment by FCTES module size and the effect on primary energy use by fuel type.

Mixon, W.R.; Christian, J.E.; Jackson, W.L.; Pine, G.D.; Hagler, H.; Shanker, R.; Koppelman, L.; Greenstein, D.

1979-03-01T23:59:59.000Z

134

Eau Claire Energy Cooperative - Non-Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eau Claire Energy Cooperative - Non-Residential Energy Efficiency Eau Claire Energy Cooperative - Non-Residential Energy Efficiency Rebate Programs Eau Claire Energy Cooperative - Non-Residential Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Schools Savings Category Other Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Heating Commercial Lighting Lighting Water Heating Maximum Rebate Variable Drives and Compressors: $500 Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Clothes washer: $25 Dishwashers: $25 Refrigerators: $25 Room Air Conditioner: $25 Dehumidifier: $25 Refrigerator/Freezer/Room AC Recycling: $25 Central Air Conditioner/Mini Split: $40 - $80/Ton Air Source Heat Pump/Mini-Split Heat Pumps: $150/Ton

135

Non-ferrous Metals Industry Energy Management System Certification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-ferrous Metals Industry Energy Management System Certification Details about China Quality Certification Center and Energy Management System certifications....

136

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

137

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

138

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

139

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

140

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

142

Energy Crossroads: Non-Governmental Organizations | Environmental Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Governmental Organizations Non-Governmental Organizations Suggest a Listing Advanced Energy (North Carolina) The non-profit Advanced Energy focuses on energy-efficiency in industrial process technologies, motors and drives testing, and applied building science, with state-of-the-art laboratories in which to do testing and applied research. Advanced Energy offers consulting, testing, and training. Affordable Comfort It is the purpose of Affordable Comfort, Inc. to promote resource efficiency, comfort, and affordability in buildings. This will be done particularly through educational, training, and charitable activities aimed at the use of energy in the residential sector, including the Affordable Comfort Conference. It will promote the general health and welfare of

143

Medical Area Total Egy Plt Inc | Open Energy Information  

Open Energy Info (EERE)

Total Egy Plt Inc Jump to: navigation, search Name Medical Area Total Egy Plt Inc Place Massachusetts Utility Id 12258 References EIA Form EIA-861 Final Data File for 2010 -...

144

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

145

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

component of Chinas total energy consumption mix. However,China-specific factors were used to calculate the energy mix

Fridley, David G.

2008-01-01T23:59:59.000Z

146

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

147

Non-Proliferation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Proliferation Non-Proliferation Non-Proliferation GC-52 provides legal advice to DOE regarding the transfer, storage or disposition of nuclear materials recovered by DOE for public health, safety or nonproliferation purposes. DOE's National Nuclear Security Administration (NNSA) operates several domestic and international programs aimed at securing vulnerable nuclear materials, such as orphan and disused sealed sources and foreign research reactor fuel, in support of nuclear nonproliferation and nuclear security initiatives. GC-52 also supports DOE in its interactions with other federal agencies, state and local governments, and the public. Applicable Laws Atomic Energy Act of 1954 Nuclear Non-Proliferation Act of 1978 National Nuclear Security Administration Act Further Information

148

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

150

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

151

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

152

U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total (Million Cubic Feet) Total (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Total (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 5,842,438 5,352,874 5,220,483 5,427,454 5,807,019 6,150,408 6,523,428 6,855,588 7,153,329 7,314,086 7,214,150 6,852,919 1995 6,283,457 5,791,160 5,581,144 5,619,397 5,933,659 6,286,946 6,510,677 6,716,782 7,008,042 7,191,015 6,931,287 6,371,139 1996 5,694,851 5,258,703 4,947,685 5,046,305 5,367,004 5,734,954 6,102,705 6,440,727 6,797,354 6,997,046 6,737,406 6,364,016 1997 5,720,628 5,372,450 5,214,628 5,269,851 5,566,356 5,942,439 6,241,244 6,562,763 6,889,752 7,084,695 6,896,165 6,374,770 1998 5,923,228 5,632,905 5,393,111 5,576,347 5,963,201 6,299,655 6,649,456 6,879,896 7,117,737 7,350,123 7,312,560 6,884,476

153

Scenarios for Benefits Analysis of Energy Research, Development, Demonstration and Deployment  

E-Print Network (OSTI)

18 Figure 7 Total Non-Renewable Energy24 Figure 17 Total Non-Renewable EnergyFigure 31 Total Non-Renewable Energy Expenses in Scenarios

Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

154

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

155

Property:Building/SPElectrtyUsePercTotal | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercTotal SPElectrtyUsePercTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 + 100.0 + Sweden Building 05K0004 + 100.0 + Sweden Building 05K0005 + 100.0 + Sweden Building 05K0006 + 100.0 + Sweden Building 05K0007 + 100.0 + Sweden Building 05K0008 + 100.0 + Sweden Building 05K0009 + 100.0 + Sweden Building 05K0010 + 100.0 + Sweden Building 05K0011 + 100.0 + Sweden Building 05K0012 + 100.0 + Sweden Building 05K0013 + 100.0 + Sweden Building 05K0014 + 100.0 + Sweden Building 05K0015 + 100.0 + Sweden Building 05K0016 + 100.0 +

156

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

157

Conceptual design of a 5x CPC for solar total energy systems  

DOE Green Energy (OSTI)

The results of a conceptual design of a nontracking collector for a solar total energy system are described. Sandia Laboratories has responsibility for the evaluation of concentrating collectors in a total energy test bed. A Rankine cycle turbine, generator, controls, thermal storage, and air conditioning equipment have been installed and checked out. The thermal energy for the facility is to be provided by a large (approximately 800 m/sup 2/) concentrating collector field. At present a portion of the area is installed as E-W oriented linear parabolic troughs. Three additional concepts for the remaining area have been selected--a fixed mirror-moving receiver system, fixed receiver-moving reflector slats, and a two-axis tracking parabolic dish. All four systems use diurnal tracking and have the reflecting surfaces exposed to the elements. Argonne National Laboratory has been working on the development of non-tracking concentrators for high temperature operation. The recent experimental results indicate that a 5x CPC collector with only 12 adjustments per year could effectively compete with the systems presently being considered. These collectors would be enclosed under a protective cover glass, eliminating many of the problems with dirt, etc. A conceptual design of a CPC collector system is presented.

Cole, R; Schertz, W W; Teagan, W P

1977-01-01T23:59:59.000Z

158

SCE - Non-Residential Energy Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Programs Energy Efficiency Programs SCE - Non-Residential Energy Efficiency Programs < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Windows, Doors, & Skylights Ventilation Heat Pumps Heating Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Standard Performance Contracting: 50% of cost; $2,400,000 Customized Solutions: Up to 50% of cost Direct Install Program: $10,000 Program Info Funding Source Public Purpose Program State California Program Type Utility Rebate Program

159

T O T Section 7. Total Energy L E N E R G Y Total Energy Consumption  

U.S. Energy Information Administration (EIA)

Residential Sector Solar thermal direct use energy and photovoltaic electricity net generation ... dent population as published by the U.S. Department of Commerce, Bu-

160

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ; Materials; ... Non-Nuclear Energy Method of Producing Hydrogen. Related Patents: 7153489; 7,665,328; 7078012.

162

U.S. Department of Energy Releases Revised Total System Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost...

163

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

164

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

165

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

166

Table A4. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" "...

167

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A36. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Fuel Type, Industry Group, Selected Industries, and End Use, 1991:" " Part 2" " (Estimates in...

168

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in...

169

Table A26. Total Quantity of Purchased Energy Sources by Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)"...

170

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

171

Table A12. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical...

172

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Conference Proceedings (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

173

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network (OSTI)

square foot on campus has flattened out. Students making a difference In 2004, Colorado State became one, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

174

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

175

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

176

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

177

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

178

Engineering guidelines for total energy are even more vital during fuel shortage  

SciTech Connect

Large total-energy facilities, from 3 to 20 MW in capacity, are studied, but the guidelines are applicable to small units also. Heat-balance analysis, fuel costs, load factor, load-profile match, and control-system design are engineering parameters for total-energy systems that will improve fuel economy. (MCW)

Kauffmann, W.M.

1974-04-01T23:59:59.000Z

179

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

180

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

182

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

183

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

184

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

185

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

186

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

187

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

188

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

189

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

190

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

191

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Idaho National Laboratory Technologies Available for Licensing ... Non-Nuclear Energy Nanoantenna Electromagnetic Collectors. Related Patents: 7,792,644; 8,071,931; ...

192

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Non-Nuclear Energy Cermet Materials, Self-Cleaning Cermet Filters. Related Patents: 6918941; 7,470,393; 7,468,089. Contact: David R. Anderson

193

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Non-Nuclear Energy Reducing Contact Resistance in Tubular Fuel Cell and Electrolysis Cell Geometry Bundles. Related Patents: 8,389,180. Contact: David R. Anderson

194

Low Energy Ventilation and Cooling of Non-Domestic Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

of Contact: Paul Mathew Short's Cambridge University-based research group develops passive and hybrid low-energy design strategies for non-domestic buildings in different...

195

The Department of Energy is hosting a Non-Destructive ...  

The Department of Energy is hosting a Non-Destructive Examination Independent Review in Atlanta, GA . ... AGENDA I HOTEL I REGISTER I PRESENTER GUIDELINES I WEBCAST ...

196

Enhancement of historical printed document images by combining Total Variation regularization and Non-local Means filtering  

Science Conference Proceedings (OSTI)

This paper proposes a novel method for document enhancement which combines two recent powerful noise-reduction steps. The first step is based on the Total Variation framework. It flattens background grey-levels and produces an intermediate image where ... Keywords: Character recognition, Document image enhancement, Historical documents, Image processing, Non-local Means, Variational approach

Laurence Likforman-Sulem; Jrme Darbon; Elisa H. Barney Smith

2011-04-01T23:59:59.000Z

197

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

198

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

199

Interacting holographic dark energy model in non-flat universe  

E-Print Network (OSTI)

We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named $L$.

M R Setare

2006-09-11T23:59:59.000Z

200

Energy Use and Carbon Emissions: Non-OECD Countries  

Gasoline and Diesel Fuel Update (EIA)

Non-OECD Non-OECD Countries December 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Energy Use and Carbon Emissions: Non-OECD Countries was prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be referred to W. Calvin Kilgore (202-586-1617), Director of EMEU; Mark Rodekohr (202-586-1130), Director of Energy Markets and Contingency Information Division; or Derriel Cato (202-586-6574),

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Liu, Yu-Xiao; Yang Jie; Duan Yi Shi

2007-01-01T23:59:59.000Z

202

The total energy-momentum of the universe in teleparallel gravity  

E-Print Network (OSTI)

We investigate the conservation law of energy-momentum in teleparallel gravity by using general Noether theorem. The energy-momentum current has also superpotential and is therefore identically conserved. The total energy-momentum, which includes the contributions of both matter and gravitational fields, is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. As an example, the universe in teleparallel gravity is investigated. It is shown that the total energy-momentum vanishes independently of both the curvature parameter and the three dimensionless coupling constants of teleparallel gravity.

Yu-Xiao Liu; Zhen-Hua Zhao; Jie Yang; Yi-Shi Duan

2007-06-22T23:59:59.000Z

203

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

204

Fort Hood Solar Total Energy Project. Volume I. Executive summary. Final report  

DOE Green Energy (OSTI)

A summary of the history, design, performance, supporting activities, and management plans for the Solar Total Energy System for the troop housing complex at Fort Hood, Texas, is presented. (WHK)

None

1979-01-01T23:59:59.000Z

205

Non-flat time-variable dark energy cosmology  

E-Print Network (OSTI)

We generalize the time-variable dark energy scalar field $\\Phi$ model ($\\Phi$CDM) to non-flat space. We show that even in the space-curvature-dominated epoch the scalar field solution is a time-dependent fixed point or attractor, with scalar field energy density that grows relative to the energy density in spatial curvature. This is the first example of a physically consistent and complete model of dynamical dark energy in a non-flat geometry.

Pavlov, Anatoly; Saaidi, Khaled; Ratra, Bharat

2013-01-01T23:59:59.000Z

206

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

207

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

208

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

209

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

210

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

211

Harvesting energy from non-ideal vibrations  

E-Print Network (OSTI)

Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

Chang, Samuel C

2013-01-01T23:59:59.000Z

212

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

213

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

214

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

215

Non-Tectonic | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Non-Tectonic Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Non-Tectonic Dictionary.png Non-Tectonic: A region far from any tectonic plate boundaries which is tectonically stable Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip Many geothermal areas may be considered to have no tectonic contribution to the geothermal resource. These areas are thought to have high heat flow resulting from high radiogenic sources beneath the crust, typically located

216

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

217

Energy Crossroads: Governmental & Non-Governmental Activities...  

NLE Websites -- All DOE Office Websites (Extended Search)

not be updated until Congress approves funds for Fiscal Year 2014. < Previous Topic Energy Crossroads Index Next Topic > Suggest a Listing International Organizations...

218

Energy use and carbon emissions: Non-OECD countries  

SciTech Connect

This report surveys world energy use and carbon emissions patterns, with particular emphasis on the non-OECD countries. The non OECD is important not only because it currently makes up 84% of world population, but because its energy consumption, carbon emissions, population, and grow domestic product have all been growing faster than OECD`s. This presentation has seven major sections: (1) overview of key trends in non-OECD energy use and carbon emissions since 1970; (2) Comparison and contrasting energy use and carbon emissions for five major non OEDC regions (former Soviet Union and eastern Europe, Pacific Rim including China, Latin America, other Asia; Africa; 3-7) presentation of aggregate and sectoral energy use and carbon emissions data for countries within each of the 5 regions.

Not Available

1994-12-01T23:59:59.000Z

219

Scenarios for Benefits Analysis of Energy Research, Development, Demonstration and Deployment  

E-Print Network (OSTI)

18 Figure 7 Total Non-Renewable Energy24 Figure 17 Total Non-Renewable EnergyEnergy Efficiency and Renewable Energy U.S. Department of

Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

220

Non-contact pumping of light emitters via non-radiative energy transfer  

DOE Patents (OSTI)

A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

2010-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

E-Print Network (OSTI)

National Association of Energy Service Companies Report,and S. Rezessy. 2010. Energy Service Companies Market inSurvey of the U.S. Energy Services Company (ESCO) Industry:

Larsen, Peter

2013-01-01T23:59:59.000Z

222

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

223

Eau Claire Energy Cooperative - Non-Residential Energy Efficiency...  

Open Energy Info (EERE)

Lighting ControlsSensors, Refrigerators, Water Heaters, Geothermal Heat Pumps, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

224

Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems  

DOE Green Energy (OSTI)

This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

1980-07-01T23:59:59.000Z

225

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

226

Non-Profit Brighter After Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Profit Brighter After Upgrade Non-Profit Brighter After Upgrade Non-Profit Brighter After Upgrade September 21, 2010 - 11:09am Addthis Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy In the Spring of 2010, the Arizona State Energy Program awarded Recovery Act funds to 14 non-profit organizations throughout the state for energy projects. One of the recipients, St. Vincent de Paul, is a human services organization that assists people in need throughout Central and Northern Arizona. The nonprofit partnered with Glendale, Arizona-based Natural Lighting Company to install skylights at the facility. In the above video, find out how this project is helping both the nonprofit and the local company. The video was created by Jim Arwood, an independent producer and former

227

Energy Department Announces $7 Million to Reduce Non-Hardware...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

announced up to 7 million to reduce the non-hardware costs of residential and commercial solar energy installations. Made available through the SunShot Incubator Program, this...

228

Commercial applications of solar total energy systems. Final report. Volume 2. Technical  

SciTech Connect

The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. This volume of the final report discusses the approach employed to develop: (1) STES concept configurations and component data, (2) commercial buildings application data, and (3) computer simulation programs for evaluating various STES concept-commercial buildings applications. Various solar thermal and photovoltaic solar total energy systems (STES) configurations were considered. Concurrently, data on commercial buildings (e.g., categories, energy demand, demographic population, etc.) were developed and used to define six model building configurations which could be used as representative commercial buildings within six various regions (12 specific sites) of the United States. The six configurations included four building types (a low rise office building, a large retail store, a medium-size shopping center and a large shopping center) typifying current building designs. The remaining two configurations used the large shopping center model except that the energy demand was changed to reflect future building designs. The STESEP Computer Code was developed for a quick evaluation method for tradeoffs related to (1) cascading of thermal power conversion systems, (2) determination of optimum collector sizes and operating conditions (make or buy decisions for auxiliary energy), and (3) comparison of solar total energy concepts in various parts of the country and in various types of commercial buildings to assess their future economic potential for various economic scenarios. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

229

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

230

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

231

Fort Hood Solar Total Energy Project. Volume III. Engineering drawings. Final report  

DOE Green Energy (OSTI)

Engineering drawings are presented for the Solar Total Energy System at Fort Hood, Texas. Drawings are given for the solar collector subsystem, power conversion subsystem, instrumentation and control subsystem, thermal storage subsystem, site preparation, thermal storage area piping and equipment layout, heating/cooling and domestic hot water subsystem, STES building and facility, and electrical distribution. (WHK)

None,

1979-01-01T23:59:59.000Z

232

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

233

Analysis of photovoltaic total energy systems for single family residential applications  

DOE Green Energy (OSTI)

The performance and cost-effectiveness of three photovoltaic total energy system concepts designed to meet the thermal and electrical demands of a typical single family house are compared. The three photovoltaic total energy system concepts considered are: (1) All-photovoltaic systems. Passively air-cooled photovoltaic panels provide electricity to meet both electrical and thermal demands. (2) Separate-panel systems. Solar thermal panels provide thermal energy, while passively air-cooled photovoltaic panels serve the purely electric demand. (3) Combined thermal/electric panel systems. Water-cooled photovoltaic panels provide both thermal energy (transported by cooling water) and electrical energy to meet the separate thermal and electrical demands. Additional passively air-cooled photovoltaic panels are added, as required, to meet the electrical demand. The thermal demand is assumed to consist of the energy required for domestic hot water and space heating, while the electrical demand includes the energy required for baseload power (lights, appliances, etc.) plus air conditioning. An analysis procedure has been developed that permits definition of the panel area, electrical and/or thermal storage capacity, and utility backup energy level that, in combination, provide the lowest annual energy cost to the homeowner for each system concept for specified assumptions about costs and system operations. The procedure appears capable of being used to approximately any size system using solar collectors, as well as in any application where the thermal and/or electrical demand is being provided by solar energy, with utility or other conventional backup. This procedure has been used to provide results for homes located in Phoenix, Arizona, and Madison, Wisconsin, and to evaluate the effects of array and backup power costs and the desirability of selling excess electrical energy back to the utility. (WHK)

Chobotov, V.; Siegel, B.

1978-08-01T23:59:59.000Z

234

Eau Claire Energy Cooperative - Non-Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Schools Savings Category Other Heating & Cooling...

235

Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes  

DOE Green Energy (OSTI)

The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

None

1978-07-01T23:59:59.000Z

236

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. Production| ... Total Non-Hydro Renewable Electricity Net Generation ...

237

National Grid (Electric) - Non-Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential Energy Efficiency Non-Residential Energy Efficiency Program (Upstate New York) National Grid (Electric) - Non-Residential Energy Efficiency Program (Upstate New York) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Large Business Energy Initiative Program: Technical Service, Financial Services, and 50% of the project cost Custom Engineering Study: Up to 50% of the project cost Custom Small Business: Up to 70% of project costs: remaining share financed by National Grid with a 0% interest loan: payback time of up to 24 months. Linear/Parabolic/Recessed Fluorescent Fixtures: $15-$50/fixture

238

River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Non-Profit Energy Efficiency River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Non-Profit Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Nonprofit Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate 60% of project cost, up to $5,000 Program Info Funding Source POWERful Choices Initiative Expiration Date 12/31/2012 State Wisconsin Program Type Utility Rebate Program Rebate Amount Incentive equal to Focus on Energy Incentive River Falls Municipal Utility (RFMU) provides matching rebates to

239

Role of non-fossil energy in meeting China's energy and climate target for 2020  

SciTech Connect

China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

2012-12-01T23:59:59.000Z

240

Stirling total energy systems study. Final report, May 15, 1976--June 13, 1977  

SciTech Connect

The application of Stirling cycle prime movers to total energy power generation systems was investigated. Electrical, heating, and cooling demand profiles for a typical residential complex, hospital, and office building were studied, and alternative Stirling total energy systems were conceptualized for each site. These were analyzed in detail and contrasted with purchased-power systems for these sites to determine fuel-energy savings and investment attractiveness. The residential complex and hospital would be excellent candidates for total energy systems, and prime movers in the 1000 kW output range would be required. Stirling engines with so large an output have not been built to date, although there would be no fundamental technical barrier to prevent this. However, careful consideration must be given to the following technological decision areas before arriving at a final design, if its potential is to be realized: engine configuration, hotside heat exchange interface, engine control system, internal gas seals, and advanced coal combustion technology. The principal advantage of a Stirling prime mover in this application, in view of national concern over present and future dependence on oil, is that it could utilize low-grade liquid fuels and coal.

Lehrfeld, D.

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Duke Energy (Electric) - Non-Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Central Air conditioners, Chillers, Compressed air, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat pumps, Lighting,...

242

Non-Profit Rebate Program | Open Energy Information  

Open Energy Info (EERE)

Rebate Program Rebate Program Jump to: navigation, search States, local governments and utilities offer rebates to promote the installation of renewable energy systems and energy efficiency measures. The majority of rebate programs that support renewable energy are administered by states, municipal utilities and electric cooperatives; these programs commonly provide funding for solar water heating and/or photovoltaic (PV) systems. Most rebate programs that support energy efficiency are administered by utilities. Rebate amounts vary widely based on technology and program administrator. [1] Non-Profit Rebate Program Incentives CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Green Energy Ohio - GEO Solar Thermal Rebate Program (Ohio) Non-Profit Rebate Program Ohio Residential Solar Water Heat Yes

243

Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report  

DOE Green Energy (OSTI)

This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

Not Available

1979-07-01T23:59:59.000Z

244

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

245

Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979  

DOE Green Energy (OSTI)

A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

1979-01-01T23:59:59.000Z

246

Institutional applications of solar total-energy systems. Draft final report  

DOE Green Energy (OSTI)

Conceptual designs are presented for thermal and photovoltaic solar total energy (STE) systems optimized to have the lowest possible life-cycle costs. An analysis is made of the market for STE systems, synthesizing the results of interviews with institutional-sector decision-makers and representatives of utilities, component manufacturers, architect/engineers, contractors, and labor unions. The operation and outputs of the market model developed to estimate potential STE system sales and resultant energy savings are presented. Outlined are the preliminary guidelines for selecting sites and conducting the planned federal demonstration program. (LEW)

None

1978-07-01T23:59:59.000Z

247

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

248

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

249

Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Verifiable Savings: up to 70% of project cost Heat Pumps/Air Conditioners: 50% of actual project cost Economizers: 50% of actual economizer system installed cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Verifiable Savings: $0.17/kWh, based upon annual kilowatt-hours saved Heat Pumps/Air Conditioners: $200 per ton X minimum or actual SEER

250

SMECO - Non-Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SMECO - Non-Residential Energy Efficiency Rebate Program SMECO - Non-Residential Energy Efficiency Rebate Program SMECO - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate New Construction: $20,000 New Construction Design Assistance: $5,000 Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Custom: varies, contact SMECO for details New Construction: $0.25 - $0.40/first year kWh savings Lighting: varies widely Unitary/Matched Split AC/Heat Pump Systems: $100/ton

251

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pumps: 25-45ton Chillers: 10-40ton Ground Source Heat Pumps: 40ton Hotel Occupancy Sensors: 20-40 Energy Management Control System: 0.10sq. ft. or 0.21...

252

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

253

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

254

Compilation of selected non-nuclear energy legislation. [19 items  

SciTech Connect

Nineteen legislative actions dealing with non-nuclear energy are collected here. Section A, Organic Legislation Directly Related to ERDA includes: Energy Reorganization Act of 1974, Public Law 93-438; Federal Non-nuclear Energy Research and Development Act of 1974, Public Law 93-577; Solar Heating and Cooling Demonstration Act of 1974, Public Law 93-409; Geothermal Energy Research, Development, and Demonstration Act of 1974, Public Law 94-410; Solar Energy Research, Development, and Demonstration Act of 1974, Public Law 94-473; and Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976, Public Law 94-413. Section B, ERDA Authorizing Legislation, includes: Energy Research and Development Administration Appropriation Authorization Act for Fiscal Year 1976, Public Law 94-187. Section C, ERDA Appropriation Legislation, includes; Second Supplemental Appropriation Act for Fiscal Year 1975, Public Law 94-32; Continuing Appropriations for Fiscal Year 1976, Public Law 94-41; Department of the Interior and Related Agencies Appropriation Act for Fiscal Year 1976, Public Law 94-165; Public Works for Water and Power Development and Energy Research Appropriation Act for Fiscal Year 1976, Public Law 94-180; Second Supplemental Appropriations Act for Fiscal Year 1976, Public Law 94-303; Public Works for Water and Power Development and Energy Research Appropriation Act for Fiscal Year 1977, Public Law 94-355; Department of the Interior and Related Agencies Appropriation Act for Fiscal Year 1977, Public Law 94-373; and Continuing Appropriations for Fiscal Year 1977, Public Law 94-473. Section D, Related Energy Legislation, includes: Federal Energy Administration Act of 1974, Public Law 93-275; Energy Supply and Environmental Coordination Act of 1974, Public Law 93-319; Energy Policy and Conservation Act, Public Law 94-163; and Energy Conservation and Production Act, Public Law 94-385.

1977-01-01T23:59:59.000Z

255

Framework for Evaluating the Total Value Proposition of Clean Energy Technologies  

SciTech Connect

Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

Pater, J. E.

2006-02-01T23:59:59.000Z

256

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

257

Wright-Hennepin Cooperative Electric Association - Non-Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wright-Hennepin Cooperative Electric Association - Non-Residential Wright-Hennepin Cooperative Electric Association - Non-Residential Energy Efficient Rebate Program Wright-Hennepin Cooperative Electric Association - Non-Residential Energy Efficient Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies widely Motors (Replacement): 15/HP Rooftop Units/Split Systems/Condensers: $18/ton, plus $5/ton per 0.1 EER above base Air Source Heat Pumps: $118, plus $5/ton per 0.1 EER above base RTU Economizers: $13/ton Packaged Terminal AC: $10/ton, plus $1.75 - $3.50/ton per EER above base

258

Commercial applications of solar total energy systems. Volume 1. Summary. Final report  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. The photovoltaic STES appears favorable for applications under 800 kWe; whereas the organic Rankine STES would be more cost effective for larger energy demand applications. Initial penetration of these systems are expected to occur in the northeast for large shopping centers in the 1990 to 2000 time period. Such systems could provide about 0.8 to 1.8 quads (8 x 10/sup 14/ to 1.8 x 10/sup 15/ Btu) of energy per year for commercial applictions by the year 2010.

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

259

NON  

NLE Websites -- All DOE Office Websites (Extended Search)

NON-ENERGY BENEFITS OF ADVANCED WINDOWS NON-ENERGY BENEFITS OF ADVANCED WINDOWS Objectives: The project aims to discover and quantify the correlations between advanced windows and human comfort. This project builds on comfort research and applies it to fenestration products. When properly selected and operated, high-performance windows reduce energy use and greenhouse gas emissions. Individual designers and consumers, who are not easily persuaded that operational energy savings justify a capital cost premium, would probably respond well if improved comfort were recognized and quantified. High-performance glazing systems also provide improved protection for interior furnishings against fading damage caused by ultraviolet and short-wave visible light. This project builds on ongoing LBNL research on glazing properties to provide technical information to window specifiers regarding fading protection and advanced windows.

260

"Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Energy End Uses, Floorspace for Non-Mall Buildings, 2003" 5. Energy End Uses, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",64783,60028,56940,56478,22237,3138 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,5007,4759,997,"Q" "5,001 to 10,000 ..............",6585,5786,5408,5348,1136,214 "10,001 to 25,000 .............",11535,10387,9922,9562,1954,472 "25,001 to 50,000 .............",8668,8060,7776,7734,2511,"Q"

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

LADWP - Non-Residential Custom Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential Custom Performance Program Non-Residential Custom Performance Program LADWP - Non-Residential Custom Performance Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting: $ 0.05 per kWh saved Air-Conditioning and Refrigeration (AC&R): $ 0.14 per kWh saved Other Equipment: $ 0.08 per kWh saved Wet Cleaning: $4,000 per cleaner Provider Los Angeles Department of Water and Power Los Angeles Department of Water and Power offers incentives to non-residential customers for the installation of energy saving measures,

262

Survey and screening of intermediate-size photovoltaic total energy and electric applications  

DOE Green Energy (OSTI)

One of the principal objectives of this photovoltaic mission analysis effort has been to identify and evaluate applications for photovoltaic solar energy conversion that could lead to significant contributions to the national energy supply and that would provide attractive opportunities for application experiments aimed at stimulating the adoption of photovoltaic technology. The scope of the study has included applications both for electric-only photovoltaic (PV) systems and for photovoltaic total energy systems (PTES), i.e., systems that provide both photovoltaic electricity and solar thermal energy to meet all or part of the energy demand at a single load point or a group of related load points. In either case, both flat-plate and concentrating systems have been considered and it has been assumed that the thermal energy is collected in and transported by the fluid used in an active cooling system for the photovoltaic cells. Because the efficiency of photovoltaic devices decreases rapidly with increasing temperature and because the operational lifetime of such devices is reduced by prolonged operation at elevated temperatures, a practical upper limit of about 200/sup 0/C (400/sup 0/F) was assumed for the temperature at which arrays can be allowed to be operated. This limitation, in turn, places an upper bound on the temperature at which solar thermal energy is available in PTES applications. An initial screening aimed at identifying the most promising applications has therefore been required, with the expectation that detailed evaluation will be made of only the higher-ranking candidates. A description of the screening procedure that was adopted and a discussion of the results are presented.

Rattin, E.J.

1978-08-01T23:59:59.000Z

263

Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979  

DOE Green Energy (OSTI)

A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

Ney, E.J.

1979-07-01T23:59:59.000Z

264

Alternative energy sources for non-highway transportation. Appendices  

DOE Green Energy (OSTI)

A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

Not Available

1980-06-01T23:59:59.000Z

265

Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings  

E-Print Network (OSTI)

Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" is only a small piece of the puzzle. We have to think broader in order to gain the greater energy savings and efficiencies that are possible. "Total Facility Control" is a concept that we need to embrace and consider when we design, commission, and retrofit our facilities. Very often a single building is part of a larger campus or collection of buildings under a common management domain. Be it a university, public school district, office complex, or multiuse tenant space, there are often multiple "buildings" plus the connectivity between buildings: walkway lighting, signage, parking structures, and even the irrigation systems. We don't often think about the outdoor lighting, security, or irrigation as part of the building management plan, but it can be a significant contributing factor when looking at places to save on energy and improve operational efficiency. We must change the way we design our buildings, facilities, campuses, and enterprises in order to be more energy efficient and be green. A variety of technologies and design principles are available to ensure we move in a positive direction. We must make our systems and processes more visible and, hence, more accessible. At the core of this is the visibility and control of the systems within these environments. A majority of the building control systems in operation today are extremely limited in their ability to achieve higher efficiencies because there is no intelligent control or communication system available; and the amount of cross system interoperability is even scarcer. What does an interoperable system architecture look like? It's one in which a wide variety of energy consuming, intelligent devices can share their information and be controlled by an energy management system. Newer technologies use open systems, open protocols, and higher levels of interoperability, all of which have been proven to cost effectively provide competitive solutions. Better energy efficiency and improved operational costs start with better visibility and control of the myriad of systems within a facility. They must communicate together in a way that enables greater functionality and lower costs. Total Facility Control must be considered as we look at the entire building envelope as well as the rest of the facility systems. Included in the mix are HVAC, indoor lighting, security, access, sun shading, indoor air quality, sound masking and alarm annunciation, elevators/escalators, appliances, power conditioning, irrigation, energy metering, outdoor/parking lot lighting, street lighting, co-generation stations, and much more. This paper will discuss some of the basic concepts, architectures, and technologies that are being used today to implement a Total Facility Control model.

Bernstein, R.

2010-01-01T23:59:59.000Z

266

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

267

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

268

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

269

Total Prompt Energy Release in the Neutron-Induced Fission of 235-U, 238-U, and 239-Pu  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235-U, 238-U, and 239-Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

Madland, D G

2006-01-01T23:59:59.000Z

270

Total Prompt Energy Release in the Neutron-Induced Fission of 235-U, 238-U, and 239-Pu  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235-U, 238-U, and 239-Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

D. G. Madland

2006-03-29T23:59:59.000Z

271

Agency for Non conventional Energy and Rural Technology ANERT | Open Energy  

Open Energy Info (EERE)

Non conventional Energy and Rural Technology ANERT Non conventional Energy and Rural Technology ANERT Jump to: navigation, search Name Agency for Non-conventional Energy and Rural Technology (ANERT) Place Thiruvananthapuram, Kerala, India Zip 695004 Product Kerala state's nodal agency responsible for identification, promotion and development of non-conventional energy sources. Coordinates 8.50838°, 76.94773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":8.50838,"lon":76.94773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

construction, Energy and Buildings 20: 205217. Chau 2007.management in China, Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

Fridley, David G.

2008-01-01T23:59:59.000Z

273

Solar Total Energy Test Facility Project. Semiannual report, October 1976--March 1977  

DOE Green Energy (OSTI)

The Solar Total Energy System will operate as follows: A heat transfer fluid (Therminol 66) is heated in the receiver tubes of the solar collectors by reflected and focused solar radiation. This fluid is pumped to the high-temperature storage subsystem. Fluid is extracted from this storage on a demand basis and pumped to the heat exchanger which produces superheated toluene vapor to power the turbine/generator. The boiler can also be operated from a fossil fuel-fired heater to insure continuity of operation during extended cloudy periods. Turbine condenser coolant is pumped to the low-temperature storage tank and becomes the energy source for heating and air-conditioning components of the system. Progress is reported on the design, fabrication, installation, and checkout of the first 200 m/sup 2/ collector field quadrant, a high-temperature stratified storage tank, a 32-kW turbine/generator and Therminol-to-toluene heat exchanger, an instrumentation and control subsystem, a cooling tower, the turbine and control building, and all necessary pumps and fluid loops to interconnect these subsystems. Also, experience with operating the facility in accordance with a detailed test plan to provide performance data on all subsystems and to accumulate operating and maintenance experience which can provide a basis for the design of large-scale experimental plants and future solar energy systems is described. (WHK)

Petterson, B. Jr. (ed.)

1977-08-01T23:59:59.000Z

274

Holographic dark energy with non-minimal coupling  

E-Print Network (OSTI)

We study a scalar field non-minimally coupled to the curvature, in the framework of holographic dark energy. We obtain a relation between the coupling of the scalar field and the holographic DE parameters. In the model without potential we found the EOS parameter in different regions of the parameters, giving rise to accelerated expansion. For some restrictions on the parameters, the model presents quintom behavior.

L. N. Granda; L. D. Escobar

2009-10-03T23:59:59.000Z

275

Cincinnati Non-profits Getting Help Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cincinnati Non-profits Getting Help Saving Energy Cincinnati Non-profits Getting Help Saving Energy Cincinnati Non-profits Getting Help Saving Energy May 14, 2010 - 11:32am Addthis Joshua DeLung What does this mean for me? One Cincinnati church is saving money and saving energy by retrofitting their facilities with energy efficient light bulbs, programmable thermostats and insulating windows and doors to prevent heating and cooling from escaping. The congregation at Mt. Washington United Methodist Church is working hard to protect the Earth and cut costs, something the Rev. Rick Riggs believes would get a nod of approval from a higher power. "We're like most churches - we're limited in our resources," the pastor says. "We should be careful in how we spend money, do it wisely and be good stewards."

276

Cincinnati Non-profits Getting Help Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cincinnati Non-profits Getting Help Saving Energy Cincinnati Non-profits Getting Help Saving Energy Cincinnati Non-profits Getting Help Saving Energy May 14, 2010 - 11:32am Addthis Joshua DeLung What does this mean for me? One Cincinnati church is saving money and saving energy by retrofitting their facilities with energy efficient light bulbs, programmable thermostats and insulating windows and doors to prevent heating and cooling from escaping. The congregation at Mt. Washington United Methodist Church is working hard to protect the Earth and cut costs, something the Rev. Rick Riggs believes would get a nod of approval from a higher power. "We're like most churches - we're limited in our resources," the pastor says. "We should be careful in how we spend money, do it wisely and be good stewards."

277

Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum  

Science Conference Proceedings (OSTI)

The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM advances a radically different approach to commercial building design, operation, maintenance, and end-?of-?life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM courses and certificates to the professional community and continuously improve TE2AM course materials. The TE2AM project supports the DOE Strategic Theme 1 -? Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and deliverables set forth in the original proposal. Though attempts were made to adhere to the original project timeline, the team requested, and was granted a 6-?month project extension, during which time the project was completed.

None

2012-12-31T23:59:59.000Z

278

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network (OSTI)

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

279

Apps for Energy Non-Governmental Resource Disclaimer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apps for Energy Non-Governmental Resource Disclaimer Apps for Energy Non-Governmental Resource Disclaimer Apps for Energy Non-Governmental Resource Disclaimer The non-governmental resources are provided strictly for education purposes, and should not be considered a complete list of available resources. Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

280

Total Energy Recovery System for Agribusiness: Lake County study. Final report  

DOE Green Energy (OSTI)

A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Case history study of total energy system at Western Mall Shopping Center, Sioux Falls, South Dakota  

SciTech Connect

Western Mall Total Energy Plant in Sioux Falls, South Dakota, serves an enclosed mall shopping center of 462,000 ft/sup 2/. The plant provides most of the mall and tenants with electricity, space-heating, and air-conditioning services from a natural gas-fueled engine-generator plant with hot water heat recovery, supplementary gas-fueled boiler, and absorption water chiller. Heating load served by the plant is calculated to be 15,000,000 Btu at -30/sup 0/F winter design condition with 70/sup 0/F space temperature. Maximum observed cooling load at 100/sup 0/F, 75/sup 0/ W.B. outdoor conditions is about 750 tons of refrigeration. Engine heat is recovered in a water system operated at 210 to 240/sup 0/F; an auxiliary scotch marine type, firetype gas-fueled boiler provides up to 14,000,000 Btu/h or supplementary heat. Energy customers have recently begun to exercise considerable control over their uses of electricity with more careful operation of lighting and appliances and with some replacement of illumination devices with more-efficient equipment. It is concluded that central heating and air-conditioning facilities provide the owner with an assured means for serving the shopping center, regardless of which energy source is most economical or least available. The hot and chilled water can be obtained from gas fuel as at present, from fuel oil, propane, all electric, or coal firing. Adapting the conversion equipment is difficult only for coal because of the space requirement for storage and handling that fuel. The power-generating capacity in place is an asset that should be used to serve the tenants because it reduces the public utility company need for expanded capacity. (MCW)

1977-11-01T23:59:59.000Z

282

RSEs for Table C1. Total Energy Consumption by Major Fuel for Non ...  

U.S. Energy Information Administration (EIA)

Wall Material Brick, Stone or Stucco ..... 4.4 4.4 4.3 5.9 5.9 6.5 15.4 23.9 Concrete (Block or Poured) ..... 7.1 6.2 9.5 8.3 8.3 14.9 27 .9 41.6 Concrete Panels ...

283

Table C1. Total Energy Consumption by Major Fuel for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Insulation Upgrade ..... 227 4,015 381 526 174 132 21 Q Other Renovation ..... 19 523 50 49 16 26 Q Q No Renovations Since 1980 ...

284

Table C1. Total Energy Consumption by Major Fuel for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Insulation Upgrade ..... 227 4,015 17.7 381 1,676 94.8 75.8 Other Renovation ..... 19 523 27.3 50 2,587 94.9 104.1 No Renovations Since 1980 ...

285

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

1998-01-01T23:59:59.000Z

286

Fort Hood solar total energy project. Technical support and systems integration. First semiannual report, May 1-October 31, 1978  

DOE Green Energy (OSTI)

Progress on the design of a Solar Total Energy System which will supply a significant portion of the energy requirements of a troop housing complex at Fort Hood, Texas, is described. Selection and sizing of the distributed collector field are discussed, and parabolic trough collector technology is reviewed. Energy load measurements and insolation models for the Fort Hood site are described. Technical project support efforts are reviewed. (WHK)

None,

1978-01-01T23:59:59.000Z

287

PG&E - Non-Residential Energy Efficiency Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E - Non-Residential Energy Efficiency Rebates PG&E - Non-Residential Energy Efficiency Rebates PG&E - Non-Residential Energy Efficiency Rebates < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Schools Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Manufacturing Heating Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.05/kWh saved Custom Air Conditioning and Refrigeration: $0.09 - $0.15/kWh saved Business Computing: $15/Sensor or Power Management Software Electric Food Service Equipment: $50 - $1,250/unit

288

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

from the Long-Range Energy Alternatives Planning (LEAP) end-using the Long-Range Energy Alternatives Planning (LEAP)Primary Energy Savings by Fuel, Alternative Case, Trillion

Fridley, David G.

2008-01-01T23:59:59.000Z

289

Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe  

E-Print Network (OSTI)

Motivated by our recent work \\cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named $L$.

M R Setare; Alberto Rozas-Fernndez

2009-06-10T23:59:59.000Z

290

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

291

Relationship Between Surface Free Energy and Total Work of Fracture of Asphalt Binder and Asphalt Binder-Aggregate Interfaces  

E-Print Network (OSTI)

Performance of asphalt mixtures depends on the properties of its constituent materials, mixture volumetrics, and external factors such as load and environment. An important material property that influences the performance of an asphalt mixture is the surface free energy of the asphalt binder and the aggregate. Surface free energy, which is a thermodynamic material property, is directly related to the adhesive bond energy between the asphalt binder and the aggregate as well as the cohesive bond energy of the asphalt binder. This thermodynamic material property has been successfully used to select asphalt binders and aggregates that have the necessary compatibility to form strong bonds and resist fracture. Surface free energy, being based on thermodynamics, assumes the asphalt binder is a brittle elastic material. In reality, the asphalt binder is not brittle and dissipates energy during loading and unloading. The total work of fracture is the culmination of all energy inputted into the sample to create two new surfaces of unit area and is dependent on the test geometry and testing conditions (e.g., temperature, loading rate, specimen size, etc.). The magnitude of the bond energy (either adhesive or cohesive) can be much smaller in magnitude when compared to the total work of fracture measured using mechanical tests (i.e., peel test, pull-off test, etc.). Despite the large difference in magnitude, there exists evidence in the literature supporting the use of the bond energy to characterize the resistance of composite systems to cohesive and/or adhesive failures. If the bond energy is to be recognized as a useful screening tool by the paving industry, the relationship between the bond energy and total work of fracture needs to be understood and verified. The effect of different types of modifications (addition of polymers, addition of anti-strip agents, and aging) on the surface free energy components of various asphalt binders was explored in order to understand how changes in the surface free energy components are related to the performance of the asphalt mixtures. After the asphalt binder-aggregate combination was explored, the next step was to study how the surface free energy of water was affected by contact with the asphalt binder-aggregate interface. Aggregates, which have a pH of greater than seven, will cause the pH of water that contacts them to increase. A change in the pH of the contacting water could indicate a change in its overall surface free energy, which might subsequently increase or decrease the water's moisture damage potential. With surface free energy fully explored, the total work of fracture was measured using pull-off tests for asphalt binder-aggregate combinations with known surface free energy components. In order to fully explore the relationship between bond energy and total work of fracture, temperature, loading rate, specimen geometry, and moisture content were varied in the experiments. The results of this work found that modifications made to the asphalt binder can have significant positive or negative effects on its surface free energy components and bond energy. Moreover, the results from the pull-off tests demonstrated that a relationship exists between bond energy (from surface free energy) and total work of fracture (from pull-off tests), and that surface free energy can be used to estimate the performance of asphalt binder-aggregate combinations.

Howson, Jonathan Embrey

2011-08-01T23:59:59.000Z

292

Indian Ministry of New and Renewable Energy formerly Ministry of Non  

Open Energy Info (EERE)

Ministry of New and Renewable Energy formerly Ministry of Non Ministry of New and Renewable Energy formerly Ministry of Non Conventional Energy Sources Jump to: navigation, search Name Indian Ministry of New and Renewable Energy (formerly Ministry of Non-Conventional Energy Sources) Place New Delhi, India Zip 110 003 Product Involved in policy making, planning, programme formulation and implementation, R&D and other means of promoting alternative energy in India. References Indian Ministry of New and Renewable Energy (formerly Ministry of Non-Conventional Energy Sources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Indian Ministry of New and Renewable Energy (formerly Ministry of Non-Conventional Energy Sources) is a company located in New Delhi, India .

293

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

294

Fort Hood solar total energy project: technical support and systems integration. Third semiannual report, May 1, 1979-October 31, 1979  

DOE Green Energy (OSTI)

Work on the Fort Hood STES which was planned by DOE as a Large Scale Experiment for the Solar Total Energy Program is described. The history of the design evolution and management of the project which began in 1973 is summarized. The project was discontinued by DOE in December 1979. Supporting studies underway at the time are reported including: (1) reassessment of energy loads, (2) revised system concept, (3) plant sizing calculations, and (4) insolation variation measurement planning. (WHK)

Not Available

1980-02-01T23:59:59.000Z

295

An Exploratory study on energy consumption of Energy Star and non-Energy Star homes.  

E-Print Network (OSTI)

??The reduction of energy consumption is one of the economic necessities in the United States due to depleting energy sources in the world. The construction (more)

Kulkarni, Prajakta

2010-01-01T23:59:59.000Z

296

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

297

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

298

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

299

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

ElctrtyTotal ElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.2214478303 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

300

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

302

Commercial applications of solar total energy systems. Volume 3. Conceptual designs and market analyses. Final report  

DOE Green Energy (OSTI)

The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. The STES concept trade studies, sensitivity parameters, performance characteristics, and selected concepts are discussed. Market penetration rate estimates are provided, and technology advancements and utilization plans are discussed. Photovoltaic STES configurations and Rankine cycle thermal STES systems are considered. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

303

Table 1. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ho ...

304

Table A13. Total Consumption of Offsite-Produced Energy for...  

U.S. Energy Information Administration (EIA) Indexed Site

of energy originally produced offsite," "acquired as a result of a purchase or transfer and consumed onsite for the" "production of heat and power. This definition is...

305

Table 3. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ...

306

Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept  

DOE Green Energy (OSTI)

The technology development activities of the Geothermal Energy Program at the Lawrence Livermore Laboratory are summarized. Significant progress toward development of the Total-Flow concept was made during FY 1978. The results show that the original goal of 70% engine efficiency for the Total-Flow impulse turbine is achievable, that a Total-Flow system is competitive economically with conventional systems, and that the Total-Flow concept offers the benefit of more efficient utilization of geothermal resources for electric power production. The evaluation of several liquid expanders designed for low-temperature (including geopressured) resources suggests that if development were continued, these expanders could be used in combination with conventional systems to increase overall system efficiency. Although the program was terminated before complete field testing of prototype systems could be carried out, the concepts have been adopted in other countries (Japan and Mexico), where development is continuing.

Austin, A.L.; Lundberg, A.W.

1978-10-02T23:59:59.000Z

307

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

308

THE U.S. DEPARTMENT OF ENERGY'S NON-NUCLEAR MATERIALS INVENTORY...  

NLE Websites -- All DOE Office Websites (Extended Search)

PLANT, IG-0450 The Department of Energy (Department) maintains the majority of non-nuclear components of nuclear weapons at its Kansas City Plant. Allied Signal Federal...

309

Economic growth and the use of non-renewable energy resources.  

E-Print Network (OSTI)

??This thesis is a contribution to the analysis of the relationship between the economic growth and the usage of non-renewable energy resources. More precisely, it (more)

Prez-Barahona, Agustn

2007-01-01T23:59:59.000Z

310

THE FINANCIAL SECTOR AND RENEWABLE ENERGY DEVELOPMENT IN NON-OECD COUNTRIES: AN EMPIRICAL ANALYSIS.  

E-Print Network (OSTI)

??This paper examines the role of the financial sector in the development of renewable energy generation in non-OECD countries. A panel dataset of 156 countries (more)

NADEEM, SYED ALI

2013-01-01T23:59:59.000Z

311

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

312

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

313

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

314

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

315

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

316

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

317

Bounds on the Solar Antineutrino total Flux and Energy spectrum from the SK experiment  

E-Print Network (OSTI)

A search for inverse beta decay electron antineutrinos has been carried out using the 825 days sample of solar data obtained at SK. The absence of a significant signal, that is, contributions to the total SK background and their angular variations has set upper bounds on a) the absolute flux of solar antineutrinos originated from ${}^8 B$ neutrinos $\\Phi_{\\bar{\

E. Torrente-Lujan

1999-11-23T23:59:59.000Z

318

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of energy consumed from coal, coke, liquid fuels, naturalwas expressed in terms of coal equivalency. 2.1.8.1 Tnational fuel inputs of coal, natural gas and petroleum were

Fridley, David G.

2008-01-01T23:59:59.000Z

319

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

320

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment  

E-Print Network (OSTI)

M (2009) Non-energy use of fossil fuels and resulting carbonThe combustion of fossil fuels for energy purposes is by farGHG) emissions. However, fossil fuels also contribute to GHG

Masanet, Eric; Sathaye, Jayant

2009-01-01T23:59:59.000Z

322

Evaluating energy and non-energy impacts of energy conservation programs: A supply curve framework of analysis  

Science Conference Proceedings (OSTI)

Historically, the evaluation of energy conservation programs has focused primarily on energy savings and costs. The recent, increased interest in global environmental problems (e.g., acid rain, ozone depletion, and the greenhouse effect), has made decision makers, as well as program evaluators, sensitive to the environmental impacts of all programs, including energy conservation programs. Economic impacts of programs remain important policy concerns. Many state and local jurisdictions are concerned with the net effects of energy policies on economic growth, jobs, and tax revenues, as well as the impacts of growth and development on local energy issues (e.g., construction of new power plants). Consequently, policy makers need a methodology to compare easily the energy and non-energy impacts of a specific program in a consistent way, for both retrospective analysis and for prospective planning. We present the general concepts of a proposed new approach to multi-attribute analysis, as an extension of the concept of ''supply curves of conserved energy.'' In their simplest form, energy conservation supply curves rank and display the savings from conservation measures in order of their cost-effectiveness. This simple concept is extended to reflect multiple decision criteria and some important linkages between energy and non-energy policy decisions (e.g., a ''supply curve of reduced carbon emissions, ''or a ''supply curve of net local job-creation''). The framework is flexible enough, so that policy makers can weigh and compare each of the impacts to reflect their concerns, and see the results in terms of program rankings. The advantages of this analysis framework are that it is simple to use, flexible, and replicable. 15 refs., 6 figs.

Vine, E.; Harris, J.

1989-06-01T23:59:59.000Z

323

Veeraiah Non Conventional Power Projects Ltd VNCPPL | Open Energy  

Open Energy Info (EERE)

Veeraiah Non Conventional Power Projects Ltd VNCPPL Veeraiah Non Conventional Power Projects Ltd VNCPPL Jump to: navigation, search Name Veeraiah Non Conventional Power Projects Ltd. (VNCPPL) Place Krishna Dist, Andhra Pradesh, India Zip 521 157 Sector Biomass Product AP-based, biomass project developers References Veeraiah Non Conventional Power Projects Ltd. (VNCPPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Veeraiah Non Conventional Power Projects Ltd. (VNCPPL) is a company located in Krishna Dist, Andhra Pradesh, India . References ↑ "Veeraiah Non Conventional Power Projects Ltd. (VNCPPL)" Retrieved from "http://en.openei.org/w/index.php?title=Veeraiah_Non_Conventional_Power_Projects_Ltd_VNCPPL&oldid=352749"

324

Commercial applications of solar total energy systems. Third quarterly progress report, November 1, 1976--January 31, 1977  

DOE Green Energy (OSTI)

The application of Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States is investigated. Candidate solar-thermal and solar-photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar-thermal concepts include the use of solar concentrators (distributed or central-receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine-cycle or Brayton-cycle power-conversion system. Recoverable waste heat from the power-generation process is utilized to help meet the building thermal-energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial-building applications.

Not Available

1977-09-01T23:59:59.000Z

325

Commercial applications of solar total energy systems. Second quarterly progress report, August 1, 1976--October 31, 1976  

DOE Green Energy (OSTI)

This report investigates the application of the Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States. Candidate solar thermal and solar photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar thermal concepts include the use of solar concentrators (distributed or central receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine cycle or Brayton cycle power conversion system. Recoverable waste heat from the power generation process is utilized to help meet the building thermal energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial building applications.

Not Available

1977-04-25T23:59:59.000Z

326

Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2Total" SPBreakdownOfElctrcityUseKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.4577086539 + Sweden Building 05K0002 + 110.926946534 + Sweden Building 05K0003 + 72.9096074806 + Sweden Building 05K0004 + 66.0248923654 + Sweden Building 05K0005 + 54.8654809632 + Sweden Building 05K0006 + 65.291976787 + Sweden Building 05K0007 + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 + 27.5018481341 + Sweden Building 05K0012 + 37.9937990385 + Sweden Building 05K0013 + 68.8990371973 + Sweden Building 05K0014 + 166.794253904 + Sweden Building 05K0015 + 71.0813662687 + Sweden Building 05K0016 + 38.5267410327 +

327

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Total" SPPurchasedEngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden Building 05K0003 + 195.801526718 + Sweden Building 05K0004 + 174.148148148 + Sweden Building 05K0005 + 340.088495575 + Sweden Building 05K0006 + 211.255924171 + Sweden Building 05K0007 + 144.028151521 + Sweden Building 05K0008 + 171.282051282 + Sweden Building 05K0009 + 140.296360236 + Sweden Building 05K0010 + 300.961098398 + Sweden Building 05K0011 + 98.1045751634 + Sweden Building 05K0012 + 106.609793929 + Sweden Building 05K0013 + 175.776187637 + Sweden Building 05K0014 + 291.160427408 + Sweden Building 05K0015 + 174.193548387 + Sweden Building 05K0016 + 145.793794187 +

328

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

329

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

330

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

331

Energy Department Announces $7 Million to Reduce Non-Hardware Costs of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to Reduce Non-Hardware Costs 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces $7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 - 4:52pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, Energy Secretary Steven Chu today announced up to $7 million to reduce the non-hardware costs of residential and commercial solar energy installations. Made available through the SunShot Incubator Program, this funding will support the development of tools and approaches that reduce non-hardware, or "soft" costs, such as installation, permitting, interconnection, and inspection. These expenses can amount to up to half of the cost of residential systems. The Incubator will make the process of

332

Direct measurement of the 15N(p,gamma)16O total cross section at novae energies  

E-Print Network (OSTI)

The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

D Bemmerer; A Caciolli; R Bonetti; C Broggini; F Confortola; P Corvisiero; H Costantini; Z Elekes; A Formicola; Zs Fulop; G Gervino; A Guglielmetti; C Gustavino; Gy Gyurky; M Junker; B Limata; M Marta; R Menegazzo; P Prati; V Roca; C Rolfs; C Rossi Alvarez; E Somorjai; O Straniero

2009-02-04T23:59:59.000Z

333

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

334

High energy Gamma-Ray Bursts as a result of the collapse and total annihilation of neutralino clumps  

E-Print Network (OSTI)

Rare astrophysical events - cosmological gamma-ray bursts with energies over GeV - are considered as an origin of information about some SUSY parameters. The model of generation of the powerful gamma-ray bursts is proposed. According to this model the gamma-ray burst represents as a result of the collapse and the total annihilation of the neutralino clump. About 80 % of the clump mass radiates during about 100 second at the final stage of annihilation. The annihilation spectrum and its characteristic energies are calculated in the framework of Split Higgsino model.

R. S. Pasechnik; V. A. Beylin; V. I. Kuksa; G. M. Vereshkov

2006-02-20T23:59:59.000Z

335

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 3: appendix E to technical report, comprehensive EVTECA results tables  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume III presents the results of the total energy cycle model runs, which are summarized in Volume I.

NONE

1998-01-01T23:59:59.000Z

336

Abstract--The variability and non-dispatchable nature of wind and solar energy production presents  

E-Print Network (OSTI)

storage (for over several hours or for a day) are generally pumped hydro or compressed air energy storage1 Abstract--The variability and non-dispatchable nature of wind and solar energy production, energy storage can be a viable solution to balance energy production against its consumption. This paper

337

Analyticity of the self-energy in total momentum of an atom coupled to the quantized radiation field  

E-Print Network (OSTI)

We study a neutral atom with a non-vanishing electric dipole moment coupled to the quantized electromagnetic field. For a sufficiently small dipole moment and small momentum, the one-particle (self-) energy of an atom is proven to be a real-analytic function of its momentum. The main ingredient of our proof is a suitable form of the Feshbach-Schur spectral renormalization group.

Jrmy Faupin; Juerg Froehlich; Baptiste Schubnel

2013-08-12T23:59:59.000Z

338

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

339

Interacting agegraphic dark energy models in non-flat universe  

E-Print Network (OSTI)

A so-called "agegraphic dark energy" was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate $w_D = -1 $ crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. $k = 0$, all previous results of agegraphic dark energy in flat universe are restored.

Ahmad Sheykhi

2009-07-29T23:59:59.000Z

340

Electricity Markets and Policy Group Energy Analysis Department Financing Non-Residential  

E-Print Network (OSTI)

Electricity Markets and Policy Group · Energy Analysis Department 1 Financing Non-Residential Introduction · Growth in the non-residential PV sector has outpaced that of the residential PV sector in recent years: by one estimate, US non-residential PV capacity has grown from less than half of aggregate annual

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative energy sources for non-highway transportation: executive summary  

DOE Green Energy (OSTI)

A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. In the near term (present-1985), there is unlikely to be any major change in the fuels used in any of the four modes of transportation except that the average quality of the marine fuel is likely to get worse. In the mid-term period (1985-2000), there will be a transition to non-petroleum fuels, based primarily on shale oil derived liquids assuming a shale oil industry is started during this time.

Not Available

1980-06-01T23:59:59.000Z

342

National Grid (Electric) - Non-Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Program (Upstate New York) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings...

343

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report  

DOE Green Energy (OSTI)

The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

None,

1979-01-01T23:59:59.000Z

344

Property:NumberOfNonCorporateOrganizations | Open Energy Information  

Open Energy Info (EERE)

NumberOfNonCorporateOrganizations NumberOfNonCorporateOrganizations Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfNonCorporateOrganizations" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

345

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

346

Using Non-Government Domain Names | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Non-Government Domain Names Using Non-Government Domain Names Using Non-Government Domain Names There may be occasion where it is necessary to utilize a non-government domain. The OMB Policies for Federal Agency Public Websites states: Your agency must use only .gov, .mil, or Fed.us domains unless the agency head explicitly determines another domain is necessary for the proper performance of an agency function. This requirement recognizes the proper performance of agency functions includes an obligation for clear and unambiguous public notification of the agency's involvement in or sponsorship of its information dissemination products including public websites. It also recognizes in certain limited circumstances other domains may be necessary for the proper performance of an agency function.

347

Non-ferrous Metals Industry Energy Management System Certification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ferrous Metals Industry ferrous Metals Industry Energy Management System Certification China Quality Certification Center Zhigang Wang 1. Importance Energy Management System 2. Pilot Programs of Energy Management System Certification Contents China Quality Certification Center A professional certification body under the General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Member of the following international organizations: IECEE and IQNet. CQC provides the following services; System certification, Product certification and Training . Main Qualifications -State authorized administrator of the Energy Conservation Label -Provides compulsory product certification as outlined by the Certification and Accreditation Administration(CNCA) of the PRC

348

Availability and Price of Non-Iranian Petroleum - Energy ...  

U.S. Energy Information Administration (EIA)

The U.S . Energy Information ... indicating that the recent tightness is not limited to light ... August prices include data through market close on August 27, 2013 ...

349

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

350

Interacting polytropic gas model of phantom dark energy in non-flat universe  

E-Print Network (OSTI)

By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing $K>Ba^{\\frac{3}{n}}$, one can obtain $\\omega^{\\rm eff}_{\\Lambda}dark energy.

K. Karami; S. Ghaffari; J. Fehri

2009-11-25T23:59:59.000Z

351

Interacting new agegraphic Phantom model of dark energy in non-flat universe  

E-Print Network (OSTI)

In this paper we consider the new agegraphic model of interacting dark energy in non-flat universe. We show that the interacting agegraphic dark energy can be described by a phantom scalar field. Then we show this phantomic description of the agegraphic dark energy and reconstruct the potential of the phantom scalar field.

M. R. Setare

2009-07-28T23:59:59.000Z

352

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications  

E-Print Network (OSTI)

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

Paris-Sud XI, Université de

353

Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant  

DOE Green Energy (OSTI)

The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

None,

1978-06-01T23:59:59.000Z

354

Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report  

DOE Green Energy (OSTI)

The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

Not Available

1979-07-01T23:59:59.000Z

355

Attaining and using extremely high intensities of solar energy with non-imaging concentrators  

SciTech Connect

Using the principles and techniques of non-imaging optics, solar concentrations that approach the theoretical maximum can be achieved. In this paper, the authors review recent progress in attaining, measuring, and using such ultrahigh solar fluxes. In particular, they review the design principles for optimized two-stage concentrators and solar furnaces and discuss the characteristics and properties of a variety of non-imaging secondaries which have been employed. These include Compound Parabolic Concentrators (CPC) type secondaries, Dielectric Totally Internally Reflecting Concentrators (DTIRC), and flow-line or {open_quotes}trumpet{close_quotes} concentrators. The usual design is a configuration where {phi}, the rim angle of the primary, is small, that is, corresponding to a system with a relatively large focal length to diameter (F/D) ratio. All three types of secondary are characterized by a design acceptance angle {phi}{sub a} which must be greater than or equal to {phi}. The design parameters and trade-offs for each of these systems including strategies for choice of particular secondary and degree of truncation, are presented. The authors review the calorimetric techniques used to measure these high intensities and describe a newly developed technique for {open_quotes}extracting{close_quotes} light from inside a high index medium. Finally they review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potential economic uses of solar energy. 63 refs., 34 figs., 3 tabs.

Jenkins, D.; O`Gallagher, J.; Winston, R.

1997-12-31T23:59:59.000Z

356

River Falls Municipal Utilities - Non-Profit Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The combined value of RFMU and Focus on Energy incentives will cover 60% of the project costs, up to 5,000. Eligible measures include but are not limited to lighting,...

357

Definition: Non-Spinning Reserve | Open Energy Information  

Open Energy Info (EERE)

Spinning Reserve Spinning Reserve Jump to: navigation, search Dictionary.png Non-Spinning Reserve That generating reserve not connected to the system but capable of serving demand within a specified time., Interruptible load that can be removed from the system in a specified time.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve is made up of the spinning reserve as well as the non-spinning or

358

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

359

Non-Profit Grant Program | Open Energy Information  

Open Energy Info (EERE)

Grant Program Grant Program Jump to: navigation, search States offer a variety of grant programs to encourage the use and development of renewable energy technologies and energy efficiency measures. Most programs offer support for a broad range of technologies, while a few programs focus on promoting one particular technology, such as photovoltaic (PV) systems. Grants are available primarily to the commercial, industrial, utility, education and government sectors. Most grant programs are designed to pay down the cost of eligible systems or equipment. Others focus on research and development, or support project commercialization. In recent years, the federal government has offered grants for renewables and energy efficiency projects for end-users. Grants are typically available on a competitive basis. [1]

360

U.S. Department of Energy Supervisory/Non-supervisory Employee Performance Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supervisory/Non-supervisory Supervisory/Non-supervisory Employee Performance Management and Recognition Program Desk Reference U.S. Department of Energy Office of the Chief Human Capital Officer October 1, 2010 2 Table of Contents Introduction .................................................................................................................................................. 4 DOE Performance Management Process ..................................................................................................... 5 PHASE I - Planning Performance ............................................................................................................... 5 Setting Goals and Measures ...................................................................................................................... 8

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New Licensing Agreement Opens Energy Patents to NGOs, Non-Profits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Licensing Agreement Opens Energy Patents to NGOs, Non-Profits Licensing Agreement Opens Energy Patents to NGOs, Non-Profits New Licensing Agreement Opens Energy Patents to NGOs, Non-Profits February 17, 2012 - 11:20am Addthis To reduce the amount of firewood Darfur refugees need, Berkeley Lab scientist Ashok Gadgil and colleagues modified an existing cookstove design to create one that is 75 percent more energy-efficient than the three-stone stove traditionally used in Darfur, and is appropriate to the environmental conditions and food preferences of the local inhabitants. | Photo courtesy of Lawrence Berkeley National Laboratory. To reduce the amount of firewood Darfur refugees need, Berkeley Lab scientist Ashok Gadgil and colleagues modified an existing cookstove design to create one that is 75 percent more energy-efficient than the three-stone

362

Total Body Irradiation Compared With BEAM: Long-Term Outcomes of Peripheral Blood Autologous Stem Cell Transplantation for Non-Hodgkin's Lymphoma  

Science Conference Proceedings (OSTI)

Purpose: The optimal preparative regimen for non-Hodgkin's lymphoma patients undergoing autologous peripheral blood stem cell transplantation (PBSCT) is unknown. We compared a total body irradiation (TBI)-based regimen with a chemotherapy-alone regimen. Methods and Materials: A retrospective cohort study was performed at a Canadian cancer center. The TBI regimen consisted of cyclophosphamide, etoposide, and TBI 12 Gy in six fractions (CY/E/TBI). The chemotherapy-alone regimen consisted of carmustine, etoposide, cytarabine, and melphalan (BEAM). We compared the acute and long-term toxicities, disease relapse-free survival, and overall survival (OS). Results: Of 73 patients, 26 received CY/E/TBI and 47 received BEAM. The median follow-up for the CY/E/TBI group was 12.0 years and for the BEAM group was 7.3 years. After PBSCT, no differences in acute toxicity were seen between the two groups. The 5-year disease relapse-free survival rate was 50.0% and 50.7% in the CY/E/TBI and BEAM groups, respectively (p = .808). The 5-year OS rate was 53.9% and 63.8% for the CY/E/TBI and BEAM groups, respectivey (p = .492). The univariate analysis results indicated that patients with Stage IV, with chemotherapy-resistant disease, and who had received PBSCT before 2000 had inferior OS. A three-way categorical analysis revealed that transplantation before 2000, rather than the conditioning regimen, was a more important predictive factor of long-term outcome (p = .034). Conclusion: A 12-Gy TBI-based conditioning regimen for PBSCT for non-Hodgkin's lymphoma resulted in disease relapse-free survival and OS similar to that after BEAM. PBSCT before 2000, and not the conditioning regimen, was an important predictor of long-term outcomes. TBI was not associated with more acute toxicity or pneumonitis. We found no indication that the TBI regimen was inferior or superior to BEAM.

Liu, Hong-Wei [Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB (Canada); University of Manitoba, Winnipeg, MB (Canada); Seftel, Matthew D.; Rubinger, Morel; Szwajcer, David [University of Manitoba, Winnipeg, MB (Canada); Department of Hematology, Oncology, CancerCare Manitoba, Winnipeg, MB (Canada); Demers, Alain [University of Manitoba, Winnipeg, MB (Canada); Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB (Canada)

2010-10-01T23:59:59.000Z

363

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System  

E-Print Network (OSTI)

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D of methodology and analysis of the energy sector, considering whether they are simulation models. Molina C. GSM Victor J. Martinez A. GSM Hugh Rudnick, Fellow Department of Electrical Engineering

Rudnick, Hugh

364

Non-profit Making a Difference in Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-profit Making a Difference in Louisiana Non-profit Making a Difference in Louisiana Non-profit Making a Difference in Louisiana March 12, 2010 - 4:58pm Addthis SMILE Weatherization Coordinator Venice Roberts shows client Shelia Sturgis an attic tent, which conserves energy and decreases costs. | Photo by Susannah Malbreau SMILE Weatherization Coordinator Venice Roberts shows client Shelia Sturgis an attic tent, which conserves energy and decreases costs. | Photo by Susannah Malbreau Change is in the air at SMILE Community Action Agency. The non-profit received a $3 million American Recovery and Reinvestment Act grant for its weatherization program. With the needed boost in funding Louisiana-based SMILE can increase its reach. SMILE targets five unique parishes, helping locals conserve energy and save

365

The holographic dark energy in non-flat Brans-Dicke cosmology  

E-Print Network (OSTI)

In this paper we study cosmological application of holographic dark energy density in the Brans-Dicke framework. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named $L$. Our calculation show, taking $\\Omega_{\\Lambda}=0.73$ for the present time, the lower bound of $w_{\\rm \\Lambda}$ is -0.9. Therefore it is impossible to have $w_{\\rm \\Lambda}$ crossing -1. This implies that one can not generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework. In the other hand, we suggest a correspondence between the holographic dark energy scenario in flat universe and the phantom dark energy model in framework of Brans-Dicke theory with potential.

M R Setare

2006-10-17T23:59:59.000Z

366

Non-locality of energy separating transformations for Dirac electrons in a magnetic field  

E-Print Network (OSTI)

We investigate a non-locality of Moss-Okninski transformation (MOT) used to separate positive and negative energy states in the 3+1 Dirac equation for relativistic electrons in the presence of a magnetic field. Properties of functional kernels generated by the MOT are analyzed and kernel non-localities are characterized by calculating their second moments parallel and perpendicular to the magnetic field. Transformed functions are described and investigated by computing their variances. It is shown that the non-locality of the energy-separating transformation in the direction parallel to the magnetic field is characterized by the Compton wavelength $\\lambda_c=\\hbar/mc$. In the plane transverse to magnetic field the non-locality depends both on magnetic radius $L=(\\hbar/eB)^{1/2}$ and $\\lambda_c$. The non-locality of MO transformation for the 2+1 Dirac equation is also considered.

Tomasz M. Rusin; Wlodek Zawadzki

2011-10-12T23:59:59.000Z

367

Modified Holographic Dark Energy in Non-flat Kaluza-Klein Universe with Varying G  

E-Print Network (OSTI)

The purpose of this paper is to discuss the evolution of modified holographic dark energy with variable $G$ in non-flat Kaluza$-$Klein universe. We consider the non-interacting and interacting scenarios of the modified holographic dark energy with dark matter and obtain the equation of state parameter through logarithmic approach. It turns out that the universe remains in different dark energy eras for both cases. Further, we study the validity of the generalized second law of thermodynamics in this scenario. We also justify that the statefinder parameters satisfy the limit of $\\Lambda$CDM model.

M. Sharif; A. Jawad

2012-04-30T23:59:59.000Z

368

Highlights of the solar total energy systems, distributed collector systems, and research and development projects. Semiannual review, 26-27 January 1976, Atlanta, Georgia  

DOE Green Energy (OSTI)

The highlights of the ERDA Solar Thermal Branch Semiannual Review held in Atlanta, Georgia, on January 26-27, 1976, are presented. Status and plans for Total Energy Systems, Distributed Collectors, and Research and Development Projects are reviewed. (WHK)

Latta, A.F.

1976-03-26T23:59:59.000Z

369

Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part I: Stationary Case  

Science Conference Proceedings (OSTI)

A baroclinic model of intermediate complexity for the atmospheric jet at middle latitudes is used as a stochastic generator of atmosphere-like time series. In this case, time series of the total energy of the system are considered. Statistical ...

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

2007-07-01T23:59:59.000Z

370

SoCalGas - Custom Non-Residential Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom Non-Residential Energy Efficiency Program Custom Non-Residential Energy Efficiency Program SoCalGas - Custom Non-Residential Energy Efficiency Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Water Heating Maximum Rebate Energy Efficiency Calculated Incentive Program: $1,000,000/project and $2,000,000/premise/year Savings By Design Program: $500,000/year Program Info Funding Source Public Purpose Goods Surcharge Start Date 1/1/2010 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount $1/therm saved annually or 50% of the project cost (excluding taxes and

371

Generalization of radiative jet energy loss to non-zero magnetic mass  

E-Print Network (OSTI)

Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computation of radiative energy loss. With this goal, an energy loss formalism in a realistic finite size dynamical QCD medium was recently developed. While this formalism assumes zero magnetic mass - in accordance with the one-loop perturbative calculations - different non-perturbative approaches report a non-zero magnetic mass at RHIC and LHC. We here generalize the energy loss to consistently include a possibility for existence of non-zero magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss results. Our analysis indicates a fundamental constraint on magnetic to electric mass ratio.

Magdalena Djordjevic; Marko Djordjevic

2011-05-22T23:59:59.000Z

372

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

373

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

374

International Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Liquid fuels Unconventional Total Reference High Oil Price Low Oil Price Non-OPEC conventional OPEC conventional (million barrels per day) U.S. Energy Information ...

375

Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics  

E-Print Network (OSTI)

In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.

Maity, Sayani; Debnath, Ujjal

2011-01-01T23:59:59.000Z

376

Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics  

E-Print Network (OSTI)

In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.

Sayani Maity; Shuvendu Chakraborty; Ujjal Debnath

2011-04-12T23:59:59.000Z

377

The Balance of Kinetic and Total Energy Simulated by the OSU Two-Level Atmospheric General Circulation Model for January and July  

Science Conference Proceedings (OSTI)

The horizontal structure of the balances of kinetic energy and total energy simulated by the Oregon State University (OSU) two-level atmospheric general circulation model are studied for January and July on the basis of a three-year simulation ...

Jough-Tai Wang; Jeong-Woo Kim; W. Lawrence Gates

1984-05-01T23:59:59.000Z

378

Homeowners energy conservation and consumption behavior: wood users and non/low wood users  

SciTech Connect

Relationships among energy expenditure, energy consumption, energy-budget share, energy managerial practices, housing, and household-membership factors for non/low wood-user and high wood-user households were examined to explain substitution of fuelwood for primary fuels. Data were from a nationwide representative sample of 1599 homeowners collected by the Department of Energy in 1982-1983 Residential Energy Conservation Survey. In three multivariate regression models, different dependent variables - energy expenditure, energy consumption, and energy budget share, were used. The same independent variables - housing factors, household energy managerial practices, and household membership factors, were used in the three models. Finally, in a fourth model, discriminant analysis with the dichotomous criterion variable of non/low or high wood users and significant variables from the multivariate regressions models were used to explain 34% of the variance. The amount of space heated, their appliance use, whether they had teenage children, and if they were single-earner households were significant explanatory variables in all four models.

Urich, J.R.

1986-01-01T23:59:59.000Z

379

PG&E (Gas) - Non-Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Non-Residential Energy Efficiency Rebates PG&E (Gas) - Non-Residential Energy Efficiency Rebates PG&E (Gas) - Non-Residential Energy Efficiency Rebates < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Equipment Insulation: $2 - $4/sq. ft. Pipe Insulation: $2 - $3/linear ft. Steam Traps: $50 - $290/unit Pool Heating: $2/Mbtuh Attic/Roof/Ceiling Insulation: $0.15/sq. ft. Domestic Hot Water Boiler: $1.50/MBtu/h Natural Gas Storage Water Heaters: $200/unit

380

Sourcebook on the production of electricity from geothermal energy. Draft: Chapter 4, Section 4. 4. Status of the development of the total flow system for electric power production from geothermal energy. [Includes glossary  

DOE Green Energy (OSTI)

Discussion is presented under the following section headings: introduction; characteristics of wellhead fluid; energy conversion concepts (including subsections, the flashed steam system, the total flow concept, and comparison of total flow expanders); brine chemistry effects; a possible total flow system design; and references, bibliography, glossary, and figures. (JGB)

Austin, A.L.; Ryley, D.J.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report  

DOE Green Energy (OSTI)

This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

None,

1979-01-01T23:59:59.000Z

382

Session: Non-fatality and habitat impacts on birds from wind energy development  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was consisted of one paper presentation followed by a discussion/question and answer period. The session focused on discussion of non-collision impacts of wind energy projects on birds, primarily impacts to habitat. The presentation included information about the impacts of habitat fragmentation, disturbance, and site avoidance from wind turbines, as well as from roads, transmission facilities, and other related construction at wind project sites. Whether birds habituate to the presence of turbines and the influence of regional factors were also addressed. The paper given by Dale Strickland was titled ''Overview of Non-Collision Related Impacts from Wind Projects''.

Strickland, Dale

2004-09-01T23:59:59.000Z

383

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

384

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

385

Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power  

E-Print Network (OSTI)

Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in g...

Xu, Jie

2012-01-01T23:59:59.000Z

386

A Non-minimally Coupled Quintom Dark Energy Model on the Warped DGP Brane  

E-Print Network (OSTI)

We study dynamics of equation of state parameter for a non-minimally coupled quintom dark energy component on the warped DGP brane. We investigate crossing of the cosmological constant line in this scenario. This crossing occurs in both DGP$^{\\pm}$ branches of the model.

Kourosh Nozari; M. R. Setare; Tahereh Azizi; Noushin Behrouz

2008-10-08T23:59:59.000Z

387

From Dark Energy to Dark Matter via Non-Minimal Coupling  

E-Print Network (OSTI)

Toy cosmological models based on non-minimal coupling between gravity and scalar dilaton-like field are presented in the framework of Palatini formalism. They have the following property: preceding to a given cosmological epoch is a dark energy epoch with an accelerated expansion. The next (future) epoch becomes dominated by some kind of dark matter.

A. Borowiec

2008-12-23T23:59:59.000Z

388

Policies to Promote Non-Hydro Renewable Energy in the United States and Selected Countries  

Reports and Publications (EIA)

This article examines policies designed to encourage the development of non-hydro renewable energy in four countries - Germany, Denmark, the Netherlands, and Japan - and compares the policies enacted in each of these countries to policies that were used in the United States between 1970 and 2003.

Fred Mayes

2005-03-01T23:59:59.000Z

389

Parametric and non-parametric approaches in evaluating martingale hypothesis of energy spot markets  

Science Conference Proceedings (OSTI)

This study examined the martingale hypothesis in the spot prices of the petroleum products markets. Under the parametric and non-parametric variance ratio tests, the independent and identically distributed increments and less restrictive martingale increments ... Keywords: Energy spot markets, Financial time series, Martingale process, Structural break, Variance ratio test

Chin Wen Cheong

2011-09-01T23:59:59.000Z

390

DOE O 481.1C Admin Chg 1, Work for Others (Non-Department of Energy Funded Work)  

Directives, Delegations, and Requirements

Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their ...

2005-01-24T23:59:59.000Z

391

U.S. DEPARTMENT OF ENERGY WORK FOR OTHERS AGREEMENT WITH NON-FEDERAL SPONSORS  

NLE Websites -- All DOE Office Websites (Extended Search)

WORK FOR OTHERS AGREEMENT WITH NON-FEDERAL SPONSORS WORK FOR OTHERS AGREEMENT WITH NON-FEDERAL SPONSORS The following is a Work for Others agreement for use with non-Federal sponsors, which includes articles that must be used in the agreement. Optional information that may be used in lieu of or in addition to the required articles is identified. These articles have been approved by the Department of Energy (DOE). Recommended language is italicized. Additional articles may also be used with the approval of the cognizant DOE operations office. Deletions of articles not applicable to a particular Statement of Work may be made with approval of the cognizant DOE operations office. LANGUAGE: Work for Others Agreement No. ____________ Between (Insert here the name of the U.S. Department of Energy Contractor)

392

Energy Positivity, Non-Renormalization, and Holomorphy in Lorentz-Violating Supersymmetric Theories  

E-Print Network (OSTI)

This paper shows that the positive-energy and non-renormalization theorems of traditional supersymmetry survive the addition of Lorentz violating interactions. The Lorentz-violating coupling constants in theories using the construction of Berger and Kostelecky must obey certain constraints in order to preserve the positive energy theorem. Seiberg's holomorphic arguments are used to prove that the superpotential remains non-renormalized (perturbatively) in the presence of Lorentz-violating interactions of the Berger-Kostelecky type. We briefly comment on Lorentz-violating theories of the type constructed by Nibbelink and Pospelov to note that holomorphy arguments offer elegant proofs of many non-renormalization results, some known by other arguments, some new.

Adam B. Clark

2013-03-02T23:59:59.000Z

393

Energy Conditions in $f(G)$ Modified Gravity with Non-minimal Coupling to Matter  

E-Print Network (OSTI)

In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, $f(G)$, and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.

A. Banijamali; B. Fazlpour; M. R. Setare

2011-11-15T23:59:59.000Z

394

Figure 69. Change in delivered energy consumption for non-energy ...  

U.S. Energy Information Administration (EIA)

Computer and electronic products Transportation equipment Non-manufacturing Mining Agriculture Construction 1540.13 841.02 328.60 56.27-3.26-48.98 50.25 23.42 2.62 176.28

395

Energy conservation in ethanol production from renewable resources and non-petroleum energy sources  

DOE Green Energy (OSTI)

The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

Not Available

1981-03-01T23:59:59.000Z

396

Problems of antimatter after Big Bang, dark energy and dark matter. Solutions in the frame of non-local physics  

E-Print Network (OSTI)

Quantum solitons are discovered with the help of generalized quantum hydrodynamics. The solitons have the character of the stable quantum objects in the self consistent electric field. The delivered theory demonstrates the great possibilities of the generalized quantum hydrodynamics in investigation of the quantum solitons. The theory leads to solitons as typical formations in the generalized quantum hydrodynamics. The principle of universal antigravitation is considered from positions of the Newtonian theory of gravitation and non-local kinetic theory. It is found that explanation of Hubble effect in the Universe and peculiar features of the rotational speeds of galaxies need not in introduction of new essence like dark matter and dark energy. Problems of antimatter after Big Bang are considered from positions of non-local physics. The origin of difficulties consists in total Oversimplification following from principles of local physics and reflects the general shortenings of the local kinetic transport theory. Keywords: Foundations of the theory of transport processes; generalized Boltzmann physical kinetics; plasma - gravitational analogy; antigravitation; dark energy; dark matter; the theory of solitons; antimatter after Big Bang. PACS: 67.55.Fa, 67.55.Hc

Boris V. Alexeev

2010-12-22T23:59:59.000Z

397

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Steve Taylor, the principal of Taylor Engineering, will be providing an overview of the envelope, lighting, and HVAC requirements of Standard 90.1. Mr. Taylor is a registered mechanical engineer specializing in HVAC system design, control system design, indoor air quality engineering, computerized building energy analysis, and HVAC system commissioning. He graduated from Stanford University with a BS in Physics and a MS in Mechanical Engineering and has over 20 years of commercial HVAC system design and construction experience. He was the primary author of the HVAC

398

SoCalGas - Non-Residential Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Programs Energy Efficiency Rebate Programs SoCalGas - Non-Residential Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Water Heating Maximum Rebate Energy Efficiency Rebates for Businesses: $200,000/customer/year; $50,000 for greenhouse curtains, $25,000 for boilers and water heaters Savings By Design Program: $150,000/year Program Info Start Date 1/1/2010 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount Business Energy Efficiency Program: $1/therm saved annually or 50% of cost Furnaces: Varies

399

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

the share of non-fossil energy sources in total primaryF Y 2050. As a result, non-fossil energy sources (nuclear,the reference scenario, non-fossil energy sources' share of

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

400

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison of Frames: Jordan vs Einstein Frame for a Non-minimal Dark Energy Model  

E-Print Network (OSTI)

We construct a dark energy model where a scalar field non-minimally coupled to gravity plays the role of the dark component. We compare cosmological consequences of this non-minimal coupling of the scalar field and gravity in the spirit of the dark energy paradigm in Jordan and Einstein frames. Some important issues such as phantom divide line crossing, existence of the bouncing solutions and the stability of the solutions are compared in these two frames. We show that while a non-minimally coupled scalar field in the Jordan frame is a suitable dark energy component with capability to realize phantom divide line crossing, its conformal transformation in the Einstein frame has not this capability. The conformal transformation from Jordan frame to Einstein frame transforms the equation of state parameter of the dark energy component to its minimal form with a redefined scalar field and in this case it is impossible to realize a phantom phase with possible crossing of the phantom divide line.

Kourosh Nozari; S. Davood Sadatian

2009-05-03T23:59:59.000Z

402

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

403

Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part II: Trend Detection and Assessment  

Science Conference Proceedings (OSTI)

A baroclinic model for the atmospheric jet at middle latitudes is used as a stochastic generator of nonstationary time series of the total energy of the system. A linear time trend is imposed on the parameter TE, descriptive of the forced equator-...

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

2007-07-01T23:59:59.000Z

404

Stock mechanics: theory of conservation of total energy and predictions of coming short-term fluctuations of Dow Jones Industrials Average (DJIA)  

E-Print Network (OSTI)

Predicting absolute magnitude of fluctuations of price, even if their sign remains unknown, is important for risk analysis and for option prices. In the present work, we display our predictions about absolute magnitude of daily fluctuations of the Dow Jones Industrials Average (DJIA), utilizing the original theory of conservation of total energy, for the coming 500 days.

Tuncay, C

2006-01-01T23:59:59.000Z

405

Session: Non-fatality and habitat impacts on birds from wind energy development  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop was consisted of one paper presentation followed by a discussion/question and answer period. The session focused on discussion of non-collision impacts of wind energy projects on birds, primarily impacts to habitat. The presentation included information about the impacts of habitat fragmentation, disturbance, and site avoidance from wind turbines, as well as from roads, transmission facilities, and other related construction at wind project sites. Whether birds habituate to the presence of turbines and the influence of regional factors were also addressed. The paper given by Dale Strickland was titled ''Overview of Non-Collision Related Impacts from Wind Projects''.

Strickland, Dale

2004-09-01T23:59:59.000Z

406

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

407

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

DOE Green Energy (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

408

Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars  

E-Print Network (OSTI)

Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars can not rule out the super-soft nuclear symmetry energies at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

De-Hua Wen; Bao-An Li; Lie-Wen Chen

2009-08-13T23:59:59.000Z

409

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

410

Non Linear Techniques for Increasing Harvesting Energy from Piezoelectric and Electromagnetic Micro-Power-Generators  

E-Print Network (OSTI)

Non-linear techniques are used to optimize the harvested energy from piezoelectric and electromagnetic generators. This paper introduces an analytical study for the voltage amplification obtained from these techniques. The analytical study is experimentally validated using a macro model of piezoelectric generator. Moreover, the integration influences on these techniques is studied. Through all the obtained results, a suitable structure for autonomous microsystems is proposed.

Ammar, Yasser

2007-01-01T23:59:59.000Z

411

Energy values and estimation of power generation potentials of some non-woody biomass species  

Science Conference Proceedings (OSTI)

In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

Kumar, M.; Patel, S.K. [National Institute of Technology, Rourkela (India)

2008-07-01T23:59:59.000Z

412

PA_Format_WAP April Production Numbers and Total ARRA and Non-ARRA production to date_6 23 10.xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

**Homes **Homes Weatherized in April 2010 (Recovery Act) Total Number of Homes Weatherized through April 2010 (Recovery Act) ***Total Number of Homes Weatherized Calendar Year 2009 - April 2010 (Recovery Act + Annual Program Funding) Alabama 263 1,493 2,168 Alaska 0 0 709 Arizona 136 1,360 2,545 Arkansas 258 1,509 2,639 California 1,825 4,233 6,201 Colorado 291 2,490 6,482 Connecticut 189 690 1,759 Delaware 253 940 1,110 District of Columbia 27 137 213 Florida 602 2,356 3,432 Georgia 430 2,002 2,694 Hawaii 368 Idaho 317 1,683 3,607 Illinois 1,941 5,698 12,636 Indiana 978 3,924 6,333 Iowa 401 1,570 2,873 Kansas 232 1,502 2,318 Kentucky 409 1,690 4,395 Louisiana 186 925 2,588 Maine 277 1,583 2,689 Maryland 278 992 1,817 Massachusetts 395 3,258 6,076 Michigan 987 3,563 8,704 Minnesota 918 4,349 7,793 Mississippi 124 2,584

413

Thermodynamics of Markov Processes with Non-extensive Entropy and Free Energy  

E-Print Network (OSTI)

Parallel to the recent presented complete thermodynamic formalism for master equation systems, we show that a "thermodynamic" theory can also be developed based on Tsallis' generalized entropy $S_q and Shiino's generalized free energy F_q which depends on \\pi_i, the stationary distribution of the master equation. $dF_q/dt=-f_d\\le 0$ and it is zero iff the system is in its stationary state. $dS_q/dt = f_d-Q_{ex}$ where $Q_{ex}$ characterizes the heat exchange. For systems approaching equilibrium with detailed balance, $f_d$ is the product of Onsager's thermodynamic flux and force. However, it is discovered that the Onsager's force is non-local. This is a consequence of the particular transformation invariance for zero energy of Tsallis' statistics.

Hong Qian

2010-05-07T23:59:59.000Z

414

Non-Perturbative Renormalization for Staggered Fermions (Self-energy Analysis)  

E-Print Network (OSTI)

We present preliminary results of data analysis for the non-perturbative renormalization (NPR) on the self-energy of the quark propagators calculated using HYP improved staggered fermions on the MILC asqtad lattices. We use the momentum source to generate the quark propagators. In principle, using the vector projection operator of $(\\bar{\\bar{\\gamma_\\mu \\otimes 1}})$ and the scalar projection operator $(\\bar{\\bar{1 \\otimes 1}})$, we should be able to obtain the wave function renormalization factor $Z_q'$ and the mass renormalization factor $Z_q \\cdot Z_m$. Using the MILC coarse lattice, we obtain a preliminary but reasonable estimate of $Z_q'$ and $Z_q \\cdot Z_m$ from the data analysis on the self-energy.

Jangho Kim; Boram Yoon; Weonjong Lee

2012-11-09T23:59:59.000Z

415

Application analysis of solar total energy systems to the residential sector. Volume IV, market penetration. Final report  

DOE Green Energy (OSTI)

This volume first describes the residential consumption of energy in each of the 11 STES regions by fuel type and end-use category. The current and projected costs and availability of fossil fuels and electricity for the STES regions are reported. Projections are made concerning residential building construction and the potential market for residential STES. The effects of STES ownership options, institutional constraints, and possible government actions on market penetration potential were considered. Capital costs for two types of STES were determined, those based on organic Rankine cycle (ORC) heat engines and those based on flat plate, water-cooled photovoltaic arrays. Both types of systems utilized parabolic trough collectors. The capital cost differential between conventional and STE systems was calculated on an incremental cost per dwelling unit for comparison with projected fuel savings in the market penetration analysis. The market penetration analysis was planned in two phases, a preliminary analysis of each of the geographical regions for each of the STE systems considered; and a final, more precise analysis of those regions and systems showing promise of significant market penetration. However, the preliminary analysis revealed no geographical regions in which any of the STES considered promised to be competitive with conventional energy systems using utility services at the prices projected for future energy supplies in the residential market. Because no promising situations were found, the analysis was directed toward an examination of the parameters involved in an effort to identify those factors which make a residential STES less attractive than similar systems in the commercial and industrial areas. Results are reported. (WHK)

Not Available

1979-07-01T23:59:59.000Z

416

Allocating Municipal Solid Waste to Renewable and Non-renewable Energy  

U.S. Energy Information Administration (EIA)

Plastic. MillionBtus to total. Heat Content. Btus. Total Btus/Total Tons. ... Containers & Packaging. Material Group (million tons)a (million Btu per ton) b. Heat ...

417

Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy  

E-Print Network (OSTI)

In view of the annnouncement that in 2012 the LHC will run at 8 TeV, we study the possibility of detecting signals of alternative mechanisms of ElectroWeak Symmetry Breaking, described phenomenologically by unitarized models, at energies lower than 14 TeV. A complete calculation with six fermions in the final state is performed using the PHANTOM event generator. Our results indicate that at 8 TeV some of the scenarios with TeV scale resonances are likely to be identified while models with no resonances or with very heavy ones will be inaccessible, unless the available luminosity will be much higher than expected.

Alessandro Ballestrero; Diogo Buarque Franzosi; Ezio Maina

2012-03-13T23:59:59.000Z

418

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

419

Non-Residential Solar and Wind Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Non-Residential Solar and Wind Tax Credit (Personal) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate 25,000 for any one building in the same year and 50,000 per business in total credits in any year Program Info Start Date 1/1/2006 State Arizona Program Type Personal Tax Credit Rebate Amount 10% of installed cost Provider Arizona Commerce Authority Arizona's tax credit for solar and wind installations in commercial and

420

On the global economic potentials and marginal costs of non-renewable resources and the price dynamics of energy commodities  

E-Print Network (OSTI)

A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an exogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the cur...

Mercure, Jean-Francois

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

and paper pulp and paper Non-Energy Benefits While energyin the energy-intensive sectors (steel, petroleum, paper,1 Glass-1 Other-1 Paper-4 Refin-1 Total Energy Savings High

2005-01-01T23:59:59.000Z

422

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Biofuels Consumption | Heat Content ; Total Energy. Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ;

423

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

424

ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977  

SciTech Connect

The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

1977-01-01T23:59:59.000Z

425

Measured energy savings from the application of reflective roofsin 2 small non-residential buildings  

SciTech Connect

Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

Akbari, Hashem

2003-01-14T23:59:59.000Z

426

Non-thermal high-energy emission from colliding winds of massive stars  

E-Print Network (OSTI)

Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

A. Reimer; M. Pohl; O. Reimer

2005-10-25T23:59:59.000Z

427

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

P400-01-005S. California Energy Commission, Sacramento, CA.I, Report to the California Energy Commission, LawrenceLaboratory, Berkeley CA. California Energy Commission, 2002,

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

428

Combined cycle total energy system  

SciTech Connect

A system is described for the co-generation of steam and electricity comprising: a source of gaseous fuel, a source of air, means for mixing the fuel and air to form a relatively lean fuel/air mixture, a gas turbine, a first fuel/air mixture compressor directly driven by the turbine, a second fuel/air mixture compressor driven by the turbine for further compressing the fuel/air mixture, a catalytic burner between the second compressor and gas turbine, a motor/generator, a steam turbine, means coupling the gas turbine, motor/generator, first and second compressors and steam turbine to one another, a source of water, a steam boiler connected to the source of water and to the exhaust system of the gas turbine, a steam economizer connected to the boiler, a steam superheater in heat exchange relationship with the exhaust system of the gas turbine disposed between the economizer and the steam turbine, and controllable means for bypassing superheated steam from the superheater around the steam turbine to maximize steam or electric power output of the system selectively.

Joy, J.R.

1986-06-17T23:59:59.000Z

429

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

430

J. Phyr. A Math. Gen. 24 (1991)3611.3623. Printed in the UK Non-analytic behaviour of the free energy of fermions coupled  

E-Print Network (OSTI)

to yield non-analytic terms in the free energy ofthe form A" In A where A is a parameter proponional to the size of the soliton. A representation of the free energy that is suitable for a small &expansion is derived for general soliton profiles. The non-analytic expansion of the free energy about A = 0 is found

Waxman, David

431

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

432

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

433

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

434

Total electron scattering cross sections of ethane, propane, n-butane, 1,3-butadiene and butylene in the energy range 0.3 to 4.0 keV.  

E-Print Network (OSTI)

??The total electron scattering cross sections of Ethane, Propane, n-Butane, 1,3-Butadiene and Butylene were measured in the energy range 0.3 to 4.0 keV using linear (more)

Wickramarachchi, Priyangika.

2006-01-01T23:59:59.000Z

435

Universal breaking point asymptotic for energy spectrum of Riemann waves in weakly nonlinear non-dispersive media  

E-Print Network (OSTI)

In this Letter we study the form of the energy spectrum of Riemann waves in weakly nonlinear non-dispersive media. For quadratic and cubic nonlinearity we demonstrate that the deformation of an Riemann wave over time yields an exponential energy spectrum which turns into power law asymptotic with the slope being approximately -8/3 at the last stage of evolution before breaking. We argue, that this is the universal asymptotic behaviour of Riemann waves in any nonlinear non-dispersive medium at the point of breaking. The results reported in this Letter can be used in various non-dispersive media, e.g. magneto-hydro dynamics, physical oceanography, nonlinear acoustics.

Kartashova, Elena

2013-01-01T23:59:59.000Z

436

BIM Game : a "serious game" to educate non-experts about energy related design and living  

E-Print Network (OSTI)

Climate Change is one defining issue of our time. With the increasingly sophisticated uses of energy, we have to face the problem as energy shortage and global warming. Since almost one-fourth of US energy is consumed by ...

Yang, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

437

AIJ in the Non-Energy Sector in India: Opportunities and Concerns  

E-Print Network (OSTI)

energy requirement (through biogas systems) and electricitybioenergy technologies, biogas and producer gas systems,

Ravindranath, N.H.; Meili, Anandi; Anita, R.

1998-01-01T23:59:59.000Z

438

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

4 Appendix F Table F10. Total Non-OECD delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sectorfuel Projections Average annual percent change,...

439

IEP - Water-Energy Interface: Non-Traditional Sources of Process and  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water Research and analysis are being conducted to evaluate and develop cost-effective approaches to using non-traditional (aka impaired or alternative) sources of water to supplement or replace freshwater for cooling and other power plant needs. Opportunities exist for the utilization of lower-quality, non-traditional water sources. Examples of non-traditional waters include surface and underground mine pool water, coal-bed methane produced waters, and industrial and/or municipal wastewater. Read More! IEP research in this area has focused on a variety of issues including feasibility studies for a variety of non-traditional water types and research into developing advanced water treatment technologies to enable coal-based power plants to use impaired water in recirculating cooling systems without notably increased scaling and without significant decreases in cycles of concentration. Feasibility studies involve multiple issues such as the flow of different non-traditional waters available in different regions, such as abandoned mine water, costs associated with collecting and treating each of the variety of non-traditional waters, like oil and natural gas produced water, and consideration of the variety of state-specific regulations pertaining to non-traditional water use.

440

Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy  

Reports and Publications (EIA)

This report summarizes the methodology used to split the heat content of municipal solid waste (MSW) into its biogenic and non-biogenic shares.

Marie LaRiviere

2007-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design, fabrication and test on piezoelectric energy harvesters with non-traditional geometries.  

E-Print Network (OSTI)

??Unimorph piezoelectric cantilevers with non-traditional surface geometries were investigated by theoretical calculations, finite element models, and sample tests. The study shows the average output voltage (more)

Wang, Lei, 1987-

2011-01-01T23:59:59.000Z

442

The Total Cost and Measured Performance of Utility-Sponsored...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency Programs Title The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency...

443

Minimization of the Energy of the Non-Relativistic One-Electron Pauli-Fierz Model over Quasifree States  

E-Print Network (OSTI)

In this article is proved the existence and uniqueness of a minimizer of the energy for the non-relativistic one electron Pauli-Fierz model, within the class of pure quasifree states. The minimum of the energy on pure quasifree states coincides with the minimum of the energy on quasifree states. Infrared and ultraviolet cutoffs are assumed, along with sufficiently small coupling constant and momentum of the dressed electron. A perturbative expression of the minimum of the energy on quasifree states for a small momentum of the dressed electron and small coupling constant is then given. We also express the Lagrange equation for the minimizer, in terms of the generalized one particle density matrix of the pure quasifree state.

Volker Bach; Sbastien Breteaux; Timmy Tzaneteas

2013-01-05T23:59:59.000Z

444

Energy 2050: Bio-inspired Renewable Non-Fossil Liquid Fuel  

E-Print Network (OSTI)

We propose an intelligent Energy Transparency model and a bio-inspired hypothetical mechanical mitochondria to optimize energy efficiency. iET seeks learning algorithms to build intelligence in order to pursue carbon-based ...

Datta, Shoumen

445

Today in Energy - EIA projects U.S. non-hydro renewable power ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

446

Total Building Air Management: When Dehumidification Counts  

E-Print Network (OSTI)

Industry trends toward stringent indoor air quality codes, spearheaded by ASHRAE 62-89: Ventilation for Acceptable Indoor Air Quality, present four challenges to the building industry in hot and humid climates: 1. Infusion of large quantities of make-up air to code based on zone requirements 2. Maintenance of tight wet bulb and dry bulb temperature tolerances within zones based on use 3. Energy management and cost containment 4. Control of mold and mildew and the damage they cause Historically, total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform specific, independent functions in the total control of the indoor air environment. Composite systems have a high up-front cost, are difficult to maintain and are costly to operate. Today, emerging technologies allow the implementation of fully integrated system for total building air management. These systems provide a single-vendor solution that is cost effective to purchase, maintain and operate. Operating saving of 23% and ROIs of 2.3 years have been shown. Equipment specification is no longer based primarily on total building load. Maximum benefits of these dynamic systems are realized when systems are designed with a total operating strategy in mind. This strategy takes into consideration every factor of building air management including: 1. Control of sensible heat 2. Balance management of heat rejection 3. Latent heat management 4. Control of process hot water 5. Indoor air quality management 6. Containment of energy consumption 7. Load shedding

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

447

Dark Matter and a Definite Non-Definite | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dark Matter and a Definite Non-Definite Dark Matter and a Definite Non-Definite Dark Matter and a Definite Non-Definite April 17, 2013 - 4:22pm Addthis The Alpha Magnetic Spectrometer experiment is a particle detector which was lofted to the International Space Station onboard the Space Shuttle Endeavour about two years ago. | Image courtesy of NASA. The Alpha Magnetic Spectrometer experiment is a particle detector which was lofted to the International Space Station onboard the Space Shuttle Endeavour about two years ago. | Image courtesy of NASA. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science LEARN MORE Several national labs are involved with the search for dark matter including Berkeley Lab, Fermilab and SLAC National Accelerator Laboratory. When is a definite non-definite worth noting? Perhaps when there's

448

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

449

DOE O 481.1C, WORK FOR OTHERS (NON-DEPARTMENT OF ENERGY FUNDED WORK)  

Energy.gov (U.S. Department of Energy (DOE))

Work-for-Others (WFO) Agreements permit DOE laboratories and facilities to conduct work for other federal agencies and non-federal entities (including state and local governments, universities) on...

450

Figure 68. Cumulative growth in value of shipments from non-energy ...  

U.S. Energy Information Administration (EIA)

Computer and electronic products Transportation equipment Non-manufacturing Mining Agriculture Construction $151.96 $97.47 $60.25 $74.32 $46.43 $23.24 $185.96 $111.50 ...

451

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ;

452

Residential energy consumption of low-income and elderly households: how non-discretionary is it  

SciTech Connect

The energy literature is replete with opinions that the poor and elderly have cut their residential energy consumption to a minimum. This paper challenges such conclusions through an analysis of data on a sample of 319 Decatur, Illinois homeowners. The data include utility bill histories and survey information on housing characteristics, energy-related behaviors, attitudes, and socio-economic and demographic characteristics. It shows that residential energy consumption per square foot of living space is significantly higher for the elderly and poor than for other groups of Decatur homeowners. By breaking energy use into seasonal components, the paper estimates consumption for various household uses. This information, combined with the survey data, suggests that both subgroups heat and cool their homes inefficiently, due in part to the conditions of their homes, but also due to energy-related behaviors. The public policy implications of the findings are discussed.

Brown, M.A.; Rollinson, P.A.

1984-01-01T23:59:59.000Z

453

Interacting new agegraphic dark energy in non-flat Brans-Dicke cosmology  

E-Print Network (OSTI)

We construct a cosmological model of late acceleration based on the new agegraphic dark energy model in the framework of Brans-Dicke cosmology where the new agegraphic energy density $\\rho_{D}= 3n^2 m^2_p /\\eta^{2}$ is replaced with $\\rho_{D}= {3n^2\\phi^2}/({4\\omega \\eta^2}$). We show that the combination of Brans-Dicke field and agegraphic dark energy can accommodate $w_D = -1 $ crossing for the equation of state of \\textit{noninteracting} dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of $w_D $ to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made. In the limiting case $\\alpha = 0$ $(\\omega\\to \\infty)$, all previous results of the new agegraphic dark energy in Einstein gravity are restored.

Ahmad Sheykhi

2009-08-05T23:59:59.000Z

454

Non-invasive energy meter for fixed and variable flow systems ...  

An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising ...

455

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions for the IEO2006 Kyoto Protocol Case Energy-Related Emissions of Greenhouse Gases The System for the Analysis of Global energy Markets (SAGE)-the model used by EIA to prepare the IEO2006 mid-term projections-does not include non-energy- related emissions of greenhouse gases, which are esti- mated at about 15 to 20 percent of total greenhouse gas emissions, based on inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC). SAGE models global energy supply and demand and, therefore, does not address agricultural and other non-energy-related emissions. EIA implicitly assumes that percentage reductions of non-energy-related emissions and their associated abatement costs will be similar to those for energy- related emissions. Non-energy-related greenhouse gas emissions are likely to grow faster than energy-related

456

Multi-scale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its non-linear dependence on the 11-year solar cycle  

E-Print Network (OSTI)

Herein we adopt a multi-scale dynamical spectral analysis technique to compare and study the dynamical evolution of the harmonic components of the overlapping ACRIMSAT/ACRIM3, SOHO/VIRGO and SORCE/TIM total solar irradiance (TSI) records during 2003.15 to 2013.16 in solar cycles 23 and 24. The three TSI time series present highly correlated patterns. Significant power spectral peaks are common to these records and are observed at the following periods: 0.070 year, 0.097 year, 0.20 year, 0.25 year, 0.30-0.34 year, 0.39 year. Less certain spectral peaks occur at about 0.55 year, 0.60-0.65 year and 0.7-0.9 year. Four main frequency periods at 24.8 days (0.068 year), 27.3 days (0.075 year), at 34-35 days (0.093-0.096 year) and 36-38 days (0.099-0.104 year) characterize the solar rotation cycle. The amplitude of these oscillations, in particular of those with periods larger than 0.5 year, appears to be modulated by the 11-year solar cycle. Similar harmonics have been found in other solar indices. The observed periodicities are found highly coherent with the spring, orbital and synodic periods of Mercury, Venus, Earth and Jupiter. We conclude that solar activity is likely modulated by planetary gravitational and electromagnetic forces acting on the sun. The strength of the sun's response to planetary forcing depends non-linearly on the state of internal solar dynamics: planetary-sun coupling effects are enhanced during solar activity maxima and attenuated during minima.

Nicola Scafetta; Richard C. Willson

2013-11-26T23:59:59.000Z

457

Handbook of solar energy data for south-facing surfaces in the United States. Volume II. Average hourly and total daily insolation data for 235 localities (Alaska - Montana)  

DOE Green Energy (OSTI)

Average hourly and daily total insolaion estimates are given for 235 US sites at a variety of array tilt angles. (MHR)

Smith, J.H.

1980-01-15T23:59:59.000Z

458

1 | Fuel Cell Technologies Program eere.energy.gov US DOE Non-Metallic Materials  

E-Print Network (OSTI)

, Toyota, UTC Power, Nissan, Ballard, Plug Power, Panasonic, Delphi Technologies Clean Energy Patent Growth ­ 2015 timeframe, including Toyota, Honda, GM, Daimler, Hyundai-Kia. Projected Global Market Revenues Matthew, Nissan, Scottish & Southern Energy, Tata Motors, The BOC Group, Toyota, Vauxhall Motors

459

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. ... Total Oil Supply (Thousand Barrels Per Day) Loading ... Units Conversion ...

460

A versatile detector for total fluorescence and electron yield experiments  

Science Conference Proceedings (OSTI)

The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modified non-local-F(R) gravity as the key for the inflation and dark energy  

E-Print Network (OSTI)

We consider FRW cosmology in non-local modified gravity. Its local scalar-tensor formulation is developed. It is explicitly demonstrated that such theory may lead to the unification of early-time inflation with late-time cosmic acceleration. The quintessence or phantom era may emerge for specific form of the action. The coupled non-local-F(R) gravity is also investigated. It is shown that such theory being consistent with Solar System tests may lead to the known universe history sequence: inflation, radiation/matter dominance and dark epoch.

Shin'ichi Nojiri; Sergei D. Odintsov

2007-08-07T23:59:59.000Z

462

Department of Energy Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

463

Energy Refits in Philadelphia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

464

Non-linear QCD dynamics in two-photon interactions at high energies  

SciTech Connect

Assuming that the dipole - dipole cross section can be related with the dipole - proton cross section, we calculate the total {gamma}{gamma}, {gamma}*{gamma}* cross-sections and the real photon structure function F{sup {gamma}}{sub 2}(x,Q{sup 2}) using the recent solution of the BK equation with running coupling constant.

Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo Rua Arthur Riedel 275, Jd. Eldorado, Cep 09972-270, Diadema, SP (Brazil); Navarra, F. S.; Cazaroto, E. [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas Caixa Postal 354, 96010-900, Pelotas, RS (Brazil)

2013-03-25T23:59:59.000Z

465

File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy  

Open Energy Info (EERE)

UTDGeothermalSteamLeaseUtahNonTrustLands.pdf UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:14, 30 August 2012 Thumbnail for version as of 12:14, 30 August 2012 1,275 × 1,650 (42 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-UT-d - Geothermal Steam Lease (Utah Non-Trust Lands)

466

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

1993-11-01T23:59:59.000Z

467

How are non-standard walls input in REScheck? | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Details of how to perform a U-factor calculation can be found in any basic heat transfer text book or handbook. Contacts Web Site Policies U.S. Department of Energy USA.gov...

468

AIJ in the Non-Energy Sector in India: Opportunities and Concerns  

E-Print Network (OSTI)

and management staff Biomass feedstock supply arrangement:Biomass-based electricity, generated from a sustainable wood supply,supply system based largely on renewable sources of energy. In rural areas of India, sustainable biomass-

Ravindranath, N.H.; Meili, Anandi; Anita, R.

1998-01-01T23:59:59.000Z

469

Assessment of Non-Fuel, Advanced Compressed Air Energy Storage Systems to Support High Wind Penetration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the RD&D work at EPRI on adiabatic no-fuel Compressed Air Energy Storage (CAES) for wind integration. Bulk energy storage (BES) has latent value in the electric grid, enhances grid reliability, and is well suited to address wind integration related challenges. Without storage, extensive ramping and spinning reserve backup of thermal generators is required, at associated high costs, poor thermal performance, poor down ramp capability and high emissions. Fu...

2009-11-16T23:59:59.000Z

470

Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders  

E-Print Network (OSTI)

We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindri...

Ferroni, Valerio

2010-01-01T23:59:59.000Z

471

Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders  

E-Print Network (OSTI)

We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.

Valerio Ferroni; Alexander Silbergleit

2010-09-16T23:59:59.000Z

472

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. ... Total Primary Energy Consumption (Quadrillion Btu) Loading ...

473

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this table. ... non-combustion use of fossil fuels.

474

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. 2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this ... non-combustion use of fossil ...

475

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All Reports ... Non-weather related energy use for appliances, electronics, water heating, and lighting now accounts for 52% of total consumption, ...

476

A computer simulation appraisal of non-residential low energy cooling systems in California  

SciTech Connect

An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-05-17T23:59:59.000Z

477

Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators  

Science Conference Proceedings (OSTI)

As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer???¢????????s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

Rose, James; Varnado, Laurel

2009-04-01T23:59:59.000Z

478

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ;

479

SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Bill Financing Program On-Bill Financing Program SoCalGas - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Program Info State California Program Type Utility Loan Program Rebate Amount General Minimum Loan Amount: $5,000/meter minimum Non-Institutional Customers: up to $100,000/meter with 5 year max payback Taxpayer Funded Institutions: up to $250,000/meter with 10 year max payback State of California: up to $1,000,000 with 10 year max payback Provider Southern California Gas Company The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

480

SCE - Non-Residential On-Bill Financing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Bill Financing Program On-Bill Financing Program SCE - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Maximum Rebate Taxpayer Funded Institutions: up to $250,000/meter with 5 year max payback Non-Institutional Customers: up to $100,000/meter with 5 year max payback State of California: up to $1,000,000 with 10 year max payback Program Info Start Date 8/2/2010 State California Program Type Utility Loan Program Rebate Amount 5,000 minimum Provider Business Programs The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

Note: This page contains sample records for the topic "total energy non" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Strict convexity of the free energy for non-convex gradient models at moderate $?$  

E-Print Network (OSTI)

We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. We show using a one-step multiple scale analysis the strict convexity of the surface tension at high temperature. This is an extension of Funaki and Spohn's result, where the strict convexity of potential was crucial in their proof that for every tilt there is a unique, shift invariant, ergodic Gibbs measure for the $\

Codina Cotar; Jean-Dominique Deuschel; Stefan Mller

2008-01-08T23:59:59.000Z

482

An investigation of methods for reducing the use of non-renewable energy resources for housing in Thailand  

E-Print Network (OSTI)

The purpose of this research is to develop methods that reduce energy consumption in a residential building in a hot and humid climate region (Thailand) using efficient architectural building components and renewable energy (solar energy) to produce electricity, domestic hot water, and supplemental cooling by night sky radiation. Improving the architectural building components, including building materials, is an option to reduce energy consumption in a building. Using renewable energy sources is another option to reduce the consumption of non-renewable energy. In residential buildings, solar energy has been utilized for space heating and domestic hot water using active solar collector systems and for generating electricity using photovoltaic (PV) systems. One photovoltaic system, the hybrid photovoltaic-thermal (PV-T) collector system, has been developed by several researchers over the last 20 years. The hybrid photovoltaic-thermal (PV-T) collector system is a combination photovoltaic (for producing electricity) and solar thermal collector (for producing hot water). Theoretical and experimental studies of this collector have highlighted the advantages of the hybrid PV-T collector system over separate systems of PV and solar collector in term of system efficiency and economics. Unfortunately, very little experimental data exists that demonstrates the advantages of a combined system. Therefore, one of the objectives of this study conducted was an experimental study of this system as an auxiliary energy source for a residential building. Night sky radiation has also been studied as a cooling strategy. However, no attempt so far could be found to integrate it to a hybrid PV-T collector system. The night sky radiation strategy could be operated with the hybrid PV/T collector system by using existing resources that are already present in the solar system. The integration of the night sky radiation into the hybrid PV-T collector system should yield more productivity of the system than the operation of the Hybrid PVT system alone. The research methods used in this work included instrumentation of a case-study house in Thailand, an experimental PV-T collector system, and a calibrated building thermal simulation. A typical contemporary Thai residential building was selected as a case-study house. Its energy use and local weather data were measured and analyzed. Published energy use of Thai residential buildings was also analyzed as well to determine average energy consumption. A calibrated computer model of the case-study building was constructed using the DOE-2 program. A field experiment of the thermal PV system was constructed to test its ability to simultaneously produce electricity and hot water in the daytime, and shed heat at night as a cooling strategy (i.e., night sky radiation). The resultant electricity and hot water produced by the hybrid PV-T collector system helped to reduce the use of non-renewable energy. The cooling produced by the night sky radiation also has to potential to reduce the cooling load. The evaluation of the case-study house and results of the field experiment helped to quantify the potential reduction of energy use in Thai residential buildings. This research provided the following benefits: 1) experimental results of a hybrid PV-T solar collector system that demonstrates its performance compared to typical system of separate photovoltaic and solar collector, 2) results of night sky radiation experiments using a photovoltaic panel as a radiator to demonstrate the performance of this new space cooling strategy, and 3) useful data from the case-study house simulation results and guidelines to assist others in transferring the results to other projects.

Rasisuttha, Sakkara

2003-05-01T23:59:59.000Z

483

File:03ORBEasementsOnTrustAndNonTrustLand (2).pdf | Open Energy Information  

Open Energy Info (EERE)

ORBEasementsOnTrustAndNonTrustLand (2).pdf ORBEasementsOnTrustAndNonTrustLand (2).pdf Jump to: navigation, search File File history File usage File:03ORBEasementsOnTrustAndNonTrustLand (2).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 33 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:59, 28 September 2012 Thumbnail for version as of 12:59, 28 September 2012 1,275 × 1,650 (33 KB) Dklein2012 (Talk | contribs) 12:57, 28 September 2012 Thumbnail for version as of 12:57, 28 September 2012 1,275 × 1,650 (33 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

484

Total Scattering Developments for Total Scattering ...  

Science Conference Proceedings (OSTI)

... Density Functional Theory Molecular Dynamics ... of nuclear scattering from different nuclei in a sample) Large when energy nuclei in a sample). ...

2013-06-07T23:59:59.000Z

485

EIA - Assumptions to the Annual Energy Outlook 2010 - International Energy  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2010 International Energy Module Figure 2. World Oil Prices in Three Cases, 1995-2035 Figure 2. World Oil Prices in three Cases, 1995-2035 (2008 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 3. OPEC Total Liquids Production in the Reference Case, 1980-2035 Figure 3. OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 4. Non-OPEC Total Liquids Production in the Reference Case, 1980-2035 Figure 4. Non-OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

486