National Library of Energy BETA

Sample records for total energy input

  1. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  2. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  3. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  4. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  5. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  6. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion

  7. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS"

  8. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  9. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  10. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  11. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," "

  12. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  13. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  14. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  15. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  16. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  17. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  18. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  19. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  20. U.S. Total Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    670 16,711 16,725 16,725 16,748 16,689 1982-2016 Gross Inputs 16,957 16,999 16,994 17,008 17,011 16,988 1990-2016 Operable Capacity (Calendar Day) 18,317 18,320 18,320 18,320 18,320 18,320 1990-2016 Percent Operable Utilization 92.6 92.8 92.8 92.8 92.9 92.7 1990-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components 790 821 948 1,053 1,041 989 2008-2016 RBOB 271 297 418 463 452 458 2010-2016 CBOB 8 90 145 174 167 39 2010-2016 GTAB 182 148 162 169 127 125 2010-2016 All Other 329

  1. Clean Energy Investment Center Seeks Input to Enhance Its Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Investment Center Seeks Input to Enhance Its Services Clean Energy Investment Center Seeks Input to Enhance Its Services March 2, 2016 - 9:21am Addthis On March 1, the ...

  2. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  3. NREL Seeks Industry Input to Illuminate Trends in Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financing - News Releases | NREL NREL Seeks Industry Input to Illuminate Trends in Renewable Energy Financing August 8, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is seeking input from energy developers and financiers as part of an ongoing effort to collect and share quantitative data on renewable energy financing terms and to assess barriers to renewable energy development. The current Renewable Energy Finance Tracking Initiative (REFTI)

  4. USDA, Departments of Energy and Navy Seek Input from Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and ...

  5. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  6. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  7. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  8. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  9. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  10. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview (4.73 MB) More ...

  11. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    SciTech Connect (OSTI)

    Pinckard, Margaret J.; Brown, Richard E.; Mills, Evan; Lutz, James D.; Moezzi, Mithra M.; Atkinson, Celina; Bolduc, Chris; Homan, Gregory K.; Coughlin, Katie

    2005-07-13

    The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

  12. Total Energy - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections Major Topics Most popular Annual Monthly Projections Recurring U.S. States All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Composition of trade influences goods output, shaping industrial sector energy intensity exportsimportsindustrialAEO2016 Changing U.S. energy mix reflects growing use of natural gas, petroleum, and renewables natural

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  15. Prioritization Tool Measurement Input Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard Buildings Home About Emerging Technologies Residential...

  16. Achieving Total Employee Engagement in Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010

  17. Achieving Total Employee Engagement in Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 ... and Safety (EHS) - Earth Day events, employee contests Human Resources - New ...

  18. USDA, Departments of Energy and Navy Seek Input from Industry to Advance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels for Military and Commercial Transportation | Department of Energy Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation August 30, 2011 - 12:23pm Addthis WASHINGTON, Aug. 30, 2011 -Secretary of Agriculture Tom Vilsack, Secretary of Energy Steven Chu, and Secretary of the Navy Ray Mabus today

  19. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  20. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. Spatial Statistical Procedures to Validate Input Data in Energy Models

    SciTech Connect (OSTI)

    Johannesson, G.; Stewart, J.; Barr, C.; Brady Sabeff, L.; George, R.; Heimiller, D.; Milbrandt, A.

    2006-01-01

    Energy modeling and analysis often relies on data collected for other purposes such as census counts, atmospheric and air quality observations, economic trends, and other primarily non-energy related uses. Systematic collection of empirical data solely for regional, national, and global energy modeling has not been established as in the abovementioned fields. Empirical and modeled data relevant to energy modeling is reported and available at various spatial and temporal scales that might or might not be those needed and used by the energy modeling community. The incorrect representation of spatial and temporal components of these data sets can result in energy models producing misleading conclusions, especially in cases of newly evolving technologies with spatial and temporal operating characteristics different from the dominant fossil and nuclear technologies that powered the energy economy over the last two hundred years. Increased private and government research and development and public interest in alternative technologies that have a benign effect on the climate and the environment have spurred interest in wind, solar, hydrogen, and other alternative energy sources and energy carriers. Many of these technologies require much finer spatial and temporal detail to determine optimal engineering designs, resource availability, and market potential. This paper presents exploratory and modeling techniques in spatial statistics that can improve the usefulness of empirical and modeled data sets that do not initially meet the spatial and/or temporal requirements of energy models. In particular, we focus on (1) aggregation and disaggregation of spatial data, (2) predicting missing data, and (3) merging spatial data sets. In addition, we introduce relevant statistical software models commonly used in the field for various sizes and types of data sets.

  3. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  4. Compare All CBECS Activities: Total Energy Use

    U.S. Energy Information Administration (EIA) Indexed Site

    are more likely to contain specialized, high energy-consuming equipment-food service (cooking and ventilation equipment), inpatient health care (medical equipment), and food sales...

  5. Clean Energy Investment Center Seeks Input to Enhance Its Services

    Broader source: Energy.gov [DOE]

    On March 1, the Clean Energy Investment Center (CEIC) in the Office of Technology Transitions (OTT) issued a Request for Information on ways the Center can improve and expand access to the Department of Energy’s (DOE’s) people and information.

  6. Tribes Provide Input on 10-Year Plan for Renewable Energy in the Arctic Region

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Office of Indian Energy hosted a second round of tribal consultations and outreach meetings throughout Alaska in February and March to gather input on the National Strategy for the Arctic Region (NSAR).

  7. Table 17. Total Delivered Residential Energy Consumption, Projected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  8. "Table 17. Total Delivered Residential Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2...

  9. Achieving Total Employee Engagement in Energy Efficiency | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation. Achieving Total Employee Engagement in ...

  10. "Table 18. Total Delivered Commercial Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,20...

  11. High-Frequency Matrix Converter with Square Wave Input - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Geothermal Geothermal Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search High-Frequency Matrix Converter with Square Wave Input DOE Grant Recipients Contact GRANT About This Technology Publications: PDF Document Publication 8995159.pdf (1,648 KB) Technology Marketing Summary As the use of renewable energy sources increase, there is an increasing need for power converters capable of

  12. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  13. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200...

  14. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  15. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Per Household Member Average Square Feet Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC1.2.2 ...

  17. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  18. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  19. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy ...

  20. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  1. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-10-01

    The energy and crude oil requirements for the production of reformulated gasoline (RFG) are estimated. The scope of the study includes both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components. The effects on energy and crude oil use of employing various oxygenates to meet the minimum oxygen-content level required by the Clean Air Act Amendments are evaluated. The analysis shows that production of RFG requires more total energy, but uses less crude oil, than that of conventional gasoline. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than does RFG with methyl tertiary butyl ether (MTBE) or ethyl tertiary butyl ether. A specific proposal by the US Environmental Protection Agency, designed to allow the use of ethanol in RFG, would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over the corresponding values for the base RFG with MTBE.

  2. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-11-01

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  3. Total-energy and pressure calculations for random substitutional alloys

    SciTech Connect (OSTI)

    Johnson, D.D. ); Nicholson, D.M. ); Pinski, F.J. ); Gyoerffy, B.L. ); Stocks, G.M. )

    1990-05-15

    We present the details and the derivation of density-functional-based expressions for the total energy and pressure for random substitutional alloys (RSA) using the Korringa-Kohn-Rostoker Green's-function approach in combination with the coherent-potential approximation (CPA) to treat the configurational averaging. This includes algebraic cancellation of various electronic core contributions to the total energy and pressure, as in ordered-solid muffin-tin-potential calculations. Thus, within the CPA, total-energy and pressure calculations for RSA have the same foundation and have been found to have the same accuracy as those obtained in similar calculations for ordered solids. Results of our calculations for the impurity formation energy, and for the bulk moduli, the lattice parameters, and the energy of mixing as a function of concentration in fcc Cu{sub {ital c}}Zn{sub 1{minus}{ital c}} alloys show that this generalized density-functional theory will be useful in studying alloy phase stability.

  4. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC","

  5. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate","

  6. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC","

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  10. Table A13. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural

  11. Table A39. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use

  12. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  14. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  15. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  16. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  18. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  19. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  20. Table A13. Total Consumption of Offsite-Produced Energy for...

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Census Region ... Office of Energy Markets and End" "Use, Energy End Use and ...

  1. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  2. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  3. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  4. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  5. U.S. Department of Energy Schedules Regional Workshops to Provide Expert Input on 2009 Transmission Congestion Study

    Broader source: Energy.gov [DOE]

    As part of the Bush Administration's comprehensive effort to provide wide-ranging data and thorough statistical analysis in its 2009 National Transmission Congestion Study (Congestion Study), U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability (OE) Kevin Kolevar today announced that the Department will hold six regional technical workshops across the country, to seek input on available transmission congestion data to be considered during preparation of the Congestion Study.

  6. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  7. "Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a

  8. "Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of

  9. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent

  10. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  11. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  12. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  13. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  14. Summary, Attendee Input, and Day 1 Wrap Up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day 1 Wrap Up Summary, Attendee Input, and Day 1 Wrap Up Addthis Description Summary and wrap up of day 1 presentations and preview of day 2 by DOE Integrated Safety Management Co-champions Patricia R. Worthington, HSS Director, Office of Health and Safety; and and Ray J. Corey, Assistant Manager for Safety and Environment, DOE Richland Operations Office

  15. Summary, Attendee Input, and Final Day 2 Wrap up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Day 2 Wrap up Summary, Attendee Input, and Final Day 2 Wrap up Addthis Description Summary and wrap up by DOE Integrated Safety Management Co-champions Patricia R. Worthington, HSS Director, Office of Health and Safety; and and Ray J. Corey, Assistant Manager for Safety and Environment, DOE Richland Operations Office of day 2 presentations and discussions

  16. Colorado Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural ...

  17. Arkansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural ...

  18. Georgia Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural ...

  19. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  20. Florida Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " ...

  1. Alaska Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577...

  2. Arizona Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural ...

  3. Illinois Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural ...

  4. California Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural ...

  5. Idaho Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " ...

  6. Hawaii Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural ...

  7. Texas Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " ... " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 ...

  8. Kansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural ...

  9. Iowa Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural ...

  10. Iowa Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",37014,41388,42734,38621,42749 " Coal",34405,37986,40410,37351,41283 " Petroleum",208,312,161,85,154 " Natural ...

  11. Indiana Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",129345,129576,128206,114118,121101 " Coal",123645,122803,122036,108312,112328 " Petroleum",148,170,178,157,155 " Natural ...

  12. Idaho Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other ...

  13. Property:Geothermal/TotalProjectCost | Open Energy Information

    Open Energy Info (EERE)

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  14. Washington Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14255,16215,18879,19747,19211 " Coal",6373,8557,8762,7478,8527 " Petroleum",38,37,35,54,32 " Natural ...

  15. Wisconsin Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",46352,47530,47881,43477,46384 " Coal",40116,40028,41706,37280,40169 " Petroleum",877,1013,931,712,718 " Natural ...

  16. Nevada Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28459,29370,31801,33436,30702 " Coal",7254,7091,7812,7540,6997 " Petroleum",17,11,14,16,11 " Natural Gas",21184,22263,2397...

  17. Tennessee Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",61336,61205,57753,42242,46203 " Coal",60498,60237,57058,41633,43670 " Petroleum",160,232,216,187,217 " Natural ...

  18. Montana Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural ...

  19. Virginia Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",42343,48422,42242,38888,43751 " Coal",34288,35421,31776,25599,25459 " Petroleum",839,2097,1150,1088,1293 " Natural ...

  20. Utah Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural ...

  1. New Mexico Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35790,34308,35033,37823,34180 " Coal",29859,27604,27014,29117,25618 " Petroleum",41,44,53,45,50 " Natural ...

  2. Minnesota Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36125,36463,34879,32263,32454 " Coal",33070,32190,31755,29327,28083 " Petroleum",494,405,232,65,31 " Natural ...

  3. Oregon Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,...

  4. Missouri Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural ...

  5. Texas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",349849,351720,344813,333227,341054 " Coal",146391,147279,147132,139107,150173 " Petroleum",1789,1309,1034,1405,708 " ...

  6. Nebraska Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21461,20776,22273,23684,23769 " Coal",20683,19630,21480,23350,23363 " Petroleum",19,36,35,23,31 " Natural ...

  7. Ohio Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",137494,138543,134878,119712,126652 " Coal",133400,133131,130694,113712,117828 " Petroleum",1355,1148,1438,1312,1442 " ...

  8. Oklahoma Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural ...

  9. New York Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69880,75234,66756,57187,64503 " Coal",20968,21406,19154,12759,13583 " Petroleum",6778,8195,3745,2648,2005 " Natural ...

  10. Wyoming Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural ...

  11. Vermont Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9,10,7,7,8 " Coal","-","-","-","-","-" " Petroleum",7,8,4,2,5 " Natural Gas",2,2,3,4,4 " Other Gases","-","-","-","-","-" ...

  12. New Jersey Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26910,29576,30264,26173,31662 " Coal",10862,10211,9028,5100,6418 " Petroleum",270,453,325,278,235 " Natural ...

  13. Tribes Provide Input on 10-Year Plan for Renewable Energy in...

    Broader source: Energy.gov (indexed) [DOE]

    energy project deployment through federal efforts, including the START Program Leverage science and innovative technologies in renewable energy. Read the DOE news release....

  14. "Table A45. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  15. "Table A46. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  16. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a

  17. "Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  18. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent

  19. Hydrocarbon/Total Combustibles Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HydroNEXT Fact Sheet HydroNEXT Fact Sheet Through its HydroNEXT initiative, the U.S. Department of Energy (DOE) invests in the development of innovative technologies that dramatically change the way we think about hydropower by lowering cost, improving performance, and promoting environmental stewardship of hydropower development. HydroNEXT is pursuing a comprehensive technology research, development, demonstration, and deployment strategy across three resource classes to increase the

  20. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  1. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  2. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  3. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  4. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  5. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  6. Michigan Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural Gas",11410,13141,9602,8420,12249 " Other Gases",412,282,264,203,299 "Nuclear",29066,31517,31484,21851,29625 "Renewables",3963,3687,3956,3995,4083 "Pumped Storage",-1039,-1129,-916,-857,-1023 "Other",563,303,286,344,332

  7. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    SciTech Connect (OSTI)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J.

    2015-05-07

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.

  8. U.S. Department of Energy Releases Revised Total System Life...

    Energy Savers [EERE]

    U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report ... U.S. Department of Energy Awards Contracts for Waste Storage Canisters for ...

  9. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  10. Consent-Based Siting Summary of Public Input Meeting | Department of Energy

    Energy Savers [EERE]

    About Us » News » Congressional Testimony Congressional Testimony October 6, 2011 Statement Before the Subcommittee on Children's Health and Environmental Responsibility, Committee on Environment and Public Works, United States Senate (10/6/2011) Statement Before the Subcommittee on Children's Health and Environmental Responsibility, Committee on Environment and Public Works, United States Senate By: David Geiser, Director, Office of Legacy Management, Department of Energy Subject: UMTRCA

  11. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect (OSTI)

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  12. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimate and Fee Adequacy Report for Yucca Mountain Project | Department of Energy Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca

  13. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  14. Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (Pseudotsuga menziesii)

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Bi, X.T.; Lim, C. Jim; Melin, Staffan

    2011-01-01

    Ground softwood Douglas fir (Pseudotsuga menziesii) was treated with pressurized saturated steam at 200-220 C (1.6-2.4 MPa) for 5-10 min in a sealed container. The contents of the container were released to the atmosphere for a sudden decompression. The steam-exploded wood particles were dried to 10% moisture content and pelletized in a single-piston-cylinder system. The pellets were characterized for their mechanical strength, chemical composition, and moisture sorption. The steamtreated wood required 12-81% more energy to compact into pellets than the untreated wood. Pellets made from steam-treated wood had a breaking strength 1.4-3.3 times the strength of pellets made from untreated wood. Steam-treated pellets had a reduced equilibrium moisture content of 2-4% and a reduced expansion after pelletization. There was a slight increase in the high heating value from 18.94 to 20.09 MJ/kg for the treated samples. Steam-treated pellets exhibited a higher lengthwise rigidity compared to untreated pellets.

  15. decreasing water input and waste generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  16. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  17. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  18. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  19. Table A20. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy

  20. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994:...

  1. "Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and

  2. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel

  3. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    SciTech Connect (OSTI)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.

  4. "Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and

  5. "Table A32. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  6. "Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and

  7. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," ","

  8. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  9. The contribution of low-energy protons to the total on-orbit SEU rate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, Nathaniel Anson; Martinez, Marino J.; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Black, Jeffrey D.; Lee, David S.; Swanson, Scot E.; Bhuva, B. L.; Warren, K. M.; et al

    2015-11-10

    Low- and high-energy proton experimental data and error rate predictions are presented for many bulk Si and SOI circuits from the 20-90 nm technology nodes to quantify how much low-energy protons (LEPs) can contribute to the total on-orbit single-event upset (SEU) rate. Every effort was made to predict LEP error rates that are conservatively high; even secondary protons generated in the spacecraft shielding have been included in the analysis. Across all the environments and circuits investigated, and when operating within 10% of the nominal operating voltage, LEPs were found to increase the total SEU rate to up to 4.3 timesmore » as high as it would have been in the absence of LEPs. Therefore, the best approach to account for LEP effects may be to calculate the total error rate from high-energy protons and heavy ions, and then multiply it by a safety margin of 5. If that error rate can be tolerated then our findings suggest that it is justified to waive LEP tests in certain situations. Trends were observed in the LEP angular responses of the circuits tested. As a result, grazing angles were the worst case for the SOI circuits, whereas the worst-case angle was at or near normal incidence for the bulk circuits.« less

  10. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect (OSTI)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution

  11. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    SciTech Connect (OSTI)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  12. Refiner Crude Oil Inputs

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Inputs (Refiner and Blender) of RBOB Blending Components Net Inputs (Refiner and Blender) of CBOB Blending Components Net Inputs (Refiner and Blender) of GTAB Blending ...

  13. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  14. "Table A28. Total Expenditures for Purchased Energy Sources by Census Region"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke","

  15. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," ","

  16. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," ","

  17. U.S. Department of Energy Schedules Regional Workshops to Provide Expert Input on 2009 Transmission Congestion Study

    Broader source: Energy.gov [DOE]

    Second Congestion Study to Further Evaluate our Nation's Electricity Reliability in the Face of Growing Energy Demand

  18. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    11:31:21 PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS...NUS1","MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum ...

  19. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  20. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    SciTech Connect (OSTI)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM™) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM™ advances a radically different approach to commercial building design, operation, maintenance, and end-­‐of-­‐life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM™ courses and certificates to the professional community and continuously improve TE2AM™ course materials. The TE2AM™ project supports the DOE Strategic Theme 1 -­‐ Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM™ curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM™ curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was

  1. New York Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) New York Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New York Supplemental Supplies ...

  2. New Mexico Natural Gas Input Supplemental Fuels (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Input Supplemental Fuels (Million Cubic Feet) New Mexico Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New Mexico Supplemental Supplies ...

  3. New Jersey Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New Jersey Supplemental Supplies ...

  4. North Carolina Natural Gas Input Supplemental Fuels (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Carolina Natural Gas Input ... Referring Pages: Total Supplemental Supply of Natural Gas North Carolina Supplemental ...

  5. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas North Dakota Supplemental ...

  6. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect (OSTI)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M.; Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N.; Freeman, S.; Humphreys, K.; Placet, M.

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  7. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund

  8. Table A26. Total Quantity of Purchased Energy Sources by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... purchased by a central purchasing office offsite, and quantities for" "which payment is made in-kind." " Source: Energy Information Administration, Office of Energy ...

  9. Table A32. Total Consumption of Offsite-Produced Energy for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by ... The derived estimates presented" "in this table represent the consumption of energy ...

  10. Table 3. U.S. Inputs to biodiesel production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production" "million pounds" ,"Feedstock inputs" ,"Vegetable ... Administration, Form EIA-22M ""Monthly Biodiesel Production Survey""" "U.S. Energy ...

  11. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...petpnpinpt2dcnusmbbla.htm" ,"Source:","Energy Information Administration" ,"For Help, ... Barrels)","U.S. Refinery Net Input of Hydrogen (Thousand Barrels)","U.S. Refinery Net ...

  12. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    dEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003...

  13. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  14. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  15. "Table B29. Primary Space-Heating Energy Sources, Total Floorspace...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... ......",2853,2734,"Q",339,"Q",2165 "Propane ......",7076,6790,1323,1947,930,"Q" "Other ......",1401,1399,"Q",713,"Q","Q" "Energy End Uses ...

  16. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  17. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:21:53 PM" "Back to Contents","Data 1: U.S. Blender Net Input" "Sourcekey","MTXRBNUS1...US1","MO7RBNUS1","MO9RBNUS1" "Date","U.S. Blender Net Input of Total Petroleum ...

  18. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOE Patents [OSTI]

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  19. Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}

    SciTech Connect (OSTI)

    Rubio-Ponce, A.; Olgun, D.

    2014-05-15

    To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 , and the apical oxygen atoms move to the same plane by approximately 0.14 . These results are discussed in comparison with experimental data.

  20. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  1. District of Columbia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",806,806,790,790,790 " Coal","-","-","-","-","-" " Petroleum",806,806,790,790,790 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  2. An estimation of the total atmospheric pollution in the city of Thessaloniki using solar energy data

    SciTech Connect (OSTI)

    Sahsamanoglou, H.S.; Makrogiannis, T.I.; Meletis, H. )

    1991-01-01

    The atmospheric mass over the city of Thessaloniki is characterized by a generally increased pollution due to solid particles in the lower atmosphere. This conclusion has been reached after a comparison between values of total solar radiation, taken in the city center during clear sky days, and values predicted by the model of D.F. Heermann et al. for corresponding days. Pollution varies between a minimum value which is constant over the year and independent of weather situations (pollution background), and a maximum value. The minimum pollution causes an attenuation of solar radiation about 15%, compared to the values given by the above model. The atmospheric pollution in the city, during a usual day with clear sky, causes an attenuation varying between 10% in the summer and 20% in the winter, when compared to the constant background of the pollution. During the most unfavorable days with clear sky, the percentages are 30% in the summer and 40% in the winter.

  3. Kansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural Gas",3824,3932,4262,4611,4573 " Other Gases","-","-","-","-","-" "Nuclear",1166,1166,1160,1160,1160 "Renewables",366,366,815,1014,1082 "Pumped

  4. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  5. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and

  6. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  7. Maine Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,1645 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1418,1462,1478,1606,1692 "Pumped

  8. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  9. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  10. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  11. Minnesota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9714,9550,10548,10752,10519 " Coal",5444,5207,5235,4826,4789 " Petroleum",746,764,782,801,795 " Natural Gas",3524,3579,4531,5126,4936 " Other Gases","-","-","-","-","-" "Nuclear",1668,1668,1668,1668,1594 "Renewables",1259,1658,2008,2192,2588 "Pumped

  12. Nevada Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6996 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1236,1316,1355,1446,1507 "Pumped

  13. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  14. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  15. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  16. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  17. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  18. Oregon Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " Coal",585,585,585,585,585 " Petroleum","-","-","-","-","-" " Natural Gas",2764,3101,3068,3041,2992 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  19. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  20. Rhode Island Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " Coal","-","-","-","-","-" " Petroleum",31,29,26,16,16 " Natural Gas",1712,1725,1728,1738,1738 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  1. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  2. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  3. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    SciTech Connect (OSTI)

    Yong, G J; Kolagani, R M; Adhikari, S; Mundle, R M; Cox, D W; Davidson III, A L; Liang, Y; Drury, O B; Hau-Riege, S P; Gardner, C; Ables, E; Bionta, R M; Friedrich, S

    2008-12-17

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd{sub 0.67}Sr{sub x0.33}MnO{sub 3}, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors.

  8. Total Refinery Net Input of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    3,070 2,749 2,923 2005-2015 PADD 2 65,167 70,767 68,865 61,444 54,690 59,836 2005-2015 Ind., Ill. and Ky. 39,434 44,601 42,709 39,206 34,355 39,460 2005-2015 Minn., Wis., N....

  9. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect (OSTI)

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  10. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect (OSTI)

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  11. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  12. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  13. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect (OSTI)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  14. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at...

  15. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect (OSTI)

    Dong, Xue; Niu, Tianye; Zhu, Lei

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order

  16. Influential input classification in probabilistic multimedia models

    SciTech Connect (OSTI)

    Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.; Geng, Shu

    1999-05-01

    Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions one should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.

  17. Prioritization Tool Measurement Input Form

    Office of Energy Efficiency and Renewable Energy (EERE)

    BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form.

  18. US Nuclear Regulatory Commission Input to DOE Request for Information Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Implementation Input | Department of Energy US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New

  19. Energy Systems Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Analysis All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the public to use in conducting their own assessments. All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the public to use in conducting their own assessments. Consumer behavior, economic conditions and market forces interact on

  20. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical,

  1. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  2. Summary of Public Input

    Energy Savers [EERE]

    of Energy 9, 2015 - January 23, 2015 Summary of Decisions - January 19, 2015 - January 23, 2015 January 23, 2015 - 9:17am Addthis Personnel Security Decision (10 CFR Part 710) On January 23, 2013, an OHA Administrative Judge issued a decision in which he determined that an individual's DOE access authorization should not be granted. A local security office (LSO) had alleged that the individual: (1) is currently in possession of an active passport issued by a foreign country, which may

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  4. DOE Seeks Input On Addressing Contractor Pension and Medical Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liabilities | Department of Energy Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique

  5. Property:ExternalInput | Open Energy Information

    Open Energy Info (EERE)

    + trigger + MHK ISDBInstrumentsNortek Acoustic Doppler Velocimeter + 2 Analog +, 0-5 V +, 16 bit AD + MHK ISDBInstrumentsNortek Acoustic Wave and Current Meter + 2 Analog...

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,15,"NA",17,"NA","NA","NA"," " "Number of retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,34,"NA",19,"NA","NA","NA"," " "Number of retail

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,"NA","NA","NA","NA",26,1," " "Number of retail

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",11,33,"NA",16,"NA","NA","NA"," " "Number of retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",14,"NA","NA",1,2,"NA","NA"," " "Number of retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,72,"NA",39,"NA","NA","NA"," " "Number of retail

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,137,"NA",42,"NA","NA","NA"," " "Number of retail

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,22,"NA",12,"NA","NA","NA"," " "Number of retail

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,86,"NA",42,"NA","NA","NA"," " "Number of retail

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities","NA",148,1,10,"NA","NA","NA"," " "Number of retail

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,22,"NA",21,"NA","NA","NA"," " "Number of retail

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,2,"NA",2,"NA","NA","NA"," " "Number of retail

  18. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  19. Stepped-anneal and total helium/hydrogen measurements in high-energy proton-irradiated tungsten

    SciTech Connect (OSTI)

    Oliver, B.M.; Hamilton, M.L.; Garner, F.A.; Sommer, W.F.; Maloy, S.A.; Ferguson, P.D.

    1998-12-31

    To provide structural material design data for the Accelerator Production of Tritium (APT) project, a 1 mA, 800 MeV proton beam at the Los Alamos Neutron Science Center (LANSCE) was used to irradiate a large number of metal samples, including a tungsten target similar to that being considered as the neutron source for the tritium production. The maximum proton fluence to the tungsten target was {approximately} 10{sup 21} protons/cm{sup 2}. An unavoidable byproduct of spallation reactions is the formation of large amounts of hydrogen and helium. Postulated accident scenarios for APT involving the use of tungsten rods clad with Alloy 718, raise concerns as to the amount and rate of release of these gases due to temperatures increases from afterheat accumulation, with the major concern being pressurizing and possibly failure of the cladding. To address these issues, portions of the LANSCE tungsten rods were subjected to temperature histories calculated as likely to occur, and the time-dependent evolution of helium and hydrogen gases was measured. Stepped-anneal and total helium/hydrogen measurements were conducted on multiple samples of the tungsten material. Helium measurements were conducted at Pacific Northwest National Laboratory (PNNL) using a high-sensitivity magnetic-sector isotope-dilution helium analysis system. Stepped-anneal measurements were conducted at temperatures from {approximately} 25 C to {approximately} 1,600 C in {approximately} 100 C steps. Total helium measurements were conducted by rapid vaporization after completion of the stepped-anneal process, and are compared with Monte Carlo calculations performed at Los Alamos National Laboratory (LANL) using the LAHET code system. Hydrogen measurements were conducted between {approximately} 750 C and {approximately} 1,200 C using a high-temperature furnace that had been extensively modified for the application. Hydrogen detection was accomplished by periodic sampling of the furnace gas using a separate

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  2. Developing a low input and sustainable switchgrass feedstock production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system utilizing beneficial bacterial endophytes | Department of Energy Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Dr. Chuansheng Mei gave this presentation at the Symbiosis Conference. symbiosis_conference_mei.pdf (2.47 MB) More Documents & Publications Symbiosis Biofeedstock Conference:

  3. CASIM input parameters for various materials

    SciTech Connect (OSTI)

    Malensek, A.J.; Elwyn, A.J.

    1994-07-14

    During the past year, the computer program CASIM has been placed in a common area from which copies can be obtained by a wide array of users. The impetus for this arrangement was the need to have a standard code that could be maintained and transported to other platforms. In addition, an historical record would be kept of each version as the program evolved. CASIM requires a series of parameters (input by the user) that describe the medium in which the cascade develops. Presently a total of 9 materials can be defined. Occasions arise when one needs to know the properties of materials (elements, compounds, and mixtures) that have not been defined. Because it is desirable to have a uniform set of values for all CASIM users, this note presents a methodology for obtaining the input parameters for an arbitrary material. They are read in by the Subroutine CASIM{underscore}PROG from the user supplied file CASIM.DAT.

  4. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,36,1,24,"NA","NA","NA"," " "Number of retail customers",1450921,538966,11,548029,"NA","NA","NA",2537927

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",23,29,3,9,11,"NA","NA"," " "Number of retail customers",1675038,1078638,16690,187629,12,"NA","NA",2958007 "Retail sales

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",29,41,2,4,65,17,3," " "Number of retail customers",11676056,3110257,2197,16506,69,185755,"NA",14990840 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,29,1,28,7,"NA","NA"," " "Number of retail customers",1500660,428854,13,632335,7,"NA","NA",2561869 "Retail sales

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,8,"NA","NA",3,35,2," " "Number of retail customers",948486,71741,"NA","NA",3,597272,"NA",1617502 "Retail sales

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,9,"NA",1,1,27,1," " "Number of retail customers",267434,66283,"NA",88026,1,38537,"NA",460281 "Retail sales

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,53,"NA",42,1,"NA","NA"," " "Number of retail customers",2410042,333203,"NA",1966788,31,"NA","NA",4710064

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,11,2,17,"NA","NA","NA"," " "Number of retail customers",693393,43895,1,84578,"NA","NA","NA",821867 "Retail

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,"NA",26,2,53,3," " "Number of retail customers",1911129,270483,"NA",301219,318,3268220,"NA",5751369 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,118,1,29,"NA","NA","NA"," " "Number of retail customers",953679,235288,4,292717,"NA","NA","NA",1481688 "Retail

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,30,1,24,2,"NA","NA"," " "Number of retail customers",1220619,210206,17,813201,4,"NA","NA",2244047 "Retail sales

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,4,"NA",2,1,32,6," " "Number of retail customers",39,10603,"NA",2535,1,788335,"NA",801513 "Retail sales

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,5,"NA",3,8,52,5," " "Number of retail customers",1638979,28808,"NA",208447,8,610640,"NA",2486882 "Retail sales

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,40,"NA","NA",27,40,5," " "Number of retail customers",2182382,399857,"NA","NA",40,544399,"NA",3126678 "Retail

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,41,"NA",10,2,12,3," " "Number of retail customers",4177118,306315,"NA",318985,2,6419,"NA",4808839 "Retail sales

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,124,1,46,4,"NA","NA"," " "Number of retail customers",1498737,369257,4,772733,6,"NA","NA",2640737 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,23,1,25,"NA","NA","NA"," " "Number of retail customers",628656,134500,7,741758,"NA","NA","NA",1504921

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,1,3,29,"NA",2,1," " "Number of retail customers",377770,983,20971,197627,"NA",419,"NA",597770 "Retail sales

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,9,1,8,1,3,3," " "Number of retail customers",1204604,29842,2,37040,1,10,"NA",1271499 "Retail sales

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,5,"NA",1,"NA",20,4," " "Number of retail customers",496060,12226,"NA",78794,"NA",128985,"NA",716065 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,9,"NA",1,35,58,4," " "Number of retail customers",3270179,55120,"NA",11581,39,649669,"NA",3986588 "Retail sales

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,8,1,20,6,"NA","NA"," " "Number of retail customers",723562,85741,5,208702,10,"NA","NA",1018020 "Retail sales

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",19,48,"NA",4,5,69,9," " "Number of retail customers",5052054,1270394,"NA",18139,15,1751992,"NA",8092594 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,72,1,31,"NA","NA","NA"," " "Number of retail customers",3318839,598354,4,1052477,"NA","NA","NA",4969674

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,12,1,21,"NA","NA","NA"," " "Number of retail customers",238608,11023,21,186997,"NA","NA","NA",436649 "Retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,85,"NA",25,6,52,6," " "Number of retail customers",2143362,375117,"NA",383167,12,2618989,"NA",5520647 "Retail sales

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,62,1,31,"NA","NA","NA"," " "Number of retail customers",1291253,204450,1,508162,"NA","NA","NA",2003866

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,18,1,19,"NA",4,3," " "Number of retail customers",1421279,294747,1,203211,"NA",484,"NA",1919722 "Retail sales

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",15,35,"NA",13,5,73,10," " "Number of retail customers",3554206,83922,"NA",219570,5,2146096,"NA",6003799 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,1,"NA","NA","NA",17,1," " "Number of retail customers",462381,4658,"NA","NA","NA",32071,"NA",499110

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,36,1,31,"NA","NA","NA"," " "Number of retail customers",243148,60553,22,154530,"NA","NA","NA",458253 "Retail

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,61,1,26,1,"NA","NA"," " "Number of retail customers",47264,2213496,23,969214,1,"NA","NA",3229998 "Retail sales

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",89,72,"NA",68,13,"NA","NA"," " "Number of retail customers",7744205,1849743,"NA",2076859,50,"NA","NA",11670857

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,40,1,9,1,"NA","NA"," " "Number of retail customers",835233,244217,7,48538,1,"NA","NA",1127996 "Retail sales

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,14,"NA",2,1,"NA","NA"," " "Number of retail customers",258928,54912,"NA",49378,1,"NA","NA",363219 "Retail

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,16,"NA",13,"NA",1,1," " "Number of retail customers",2934456,166751,"NA",629034,"NA",20,"NA",3730261 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,2,18,1,3,1," " "Number of retail customers",1460672,1669068,10,167371,1,17,"NA",3297139 "Retail sales

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,82,"NA",24,2,"NA","NA"," " "Number of retail customers",2439647,282258,"NA",260892,2,"NA","NA",2982799

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,13,1,18,"NA","NA","NA"," " "Number of retail customers",198292,36318,5,99606,"NA","NA","NA",334221 "Retail

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",256,1948,6,810,144,188,67," " "Number of retail customers",93329397,21335809,40029,19096482,656,13411030,"NA",147213403 "Retail sales

  5. Summary of Input Request for Information DE-FOA-0001346 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Input Request for Information DE-FOA-0001346 Summary of Input Request for Information DE-FOA-0001346 September 2015 (140.96 KB) More Documents & Publications Summary of Stakeholder Input From May 2015 Request for Information Summary of Input Request for Information DE-FOA-0001346 DE-FOA-0001346 -- Request for Information (RFI) Summary of Input Request for Information DE-FOA-0001346

  6. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; et al

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  7. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    SciTech Connect (OSTI)

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; Swetz, Daniel; Ullom, Joel N.

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  8. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results should include a working policy that requires; 1) benchmarking of all public and ... Additional Funding: No other funding has been utilized Budget History 090112- FY2013 ...

  9. Generation Inputs Workshop June 25, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inputs Workshop 25 June 2014 BPA's Centralized Wind Power Forecasting Initiative Scott Winner June 25, 2014 Generation Inputs Workshop Predecisional. For Discussion Purposes Only....

  10. Comparison of approaches to Total Quality Management. Including an examination of the Department of Energy`s position on quality management

    SciTech Connect (OSTI)

    Bennett, C.T.

    1994-03-01

    This paper presents a comparison of several qualitatively different approaches to Total Quality Management (TQM). The continuum ranges from management approaches that are primarily standards -- with specific guidelines, but few theoretical concepts -- to approaches that are primarily philosophical, with few specific guidelines. The approaches to TQM discussed in this paper include the International Organization for Standardization (ISO) 9000 Standard, the Malcolm Baldrige National Quality Award, Senge`s the Learning Organization, Watkins and Marsick`s approach to organizational learning, Covey`s Seven Habits of Highly Successful People, and Deming`s Fourteen Points for Management. Some of these approaches (Deming and ISO 9000) are then compared to the DOE`s official position on quality management and conduct of operations (DOE Orders 5700.6C and 5480.19). Using a tabular format, it is shown that while 5700.6C (Quality Assurance) maps well to many of the current approaches to TQM, DOE`s principle guide to management Order 5419.80 (Conduct of Operations) has many significant conflicts with some of the modern approaches to continuous quality improvement.

  11. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total Input 242,396 238,655 257,960 253,448 266,176 262,899 2005-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,044 1,531 1,783 1,315 339 414 2008-2016 Pentanes Plus 489 347 423 177 194 276 2005-2016 Liquid Petroleum Gases 1,555 1,184 1,360 1,138 145 138 2008-2016 Normal Butane 1,555 1,184 1,360 1,138 145 138 2005-2016 Isobutane 2005-2015 Other Liquids 240,352 237,124 256,177 252,133 265,837 262,485 2008-2016

  12. U.S. Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Input 2,166,784 2,331,109 2,399,318 2,539,812 2,824,480 2,987,634 2005-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 6,538 7,810 10,663 12,304 14,038 16,334 2008-2015 Pentanes Plus 1,989 2,326 4,164 4,241 3,184 2,554 2005-2015 Liquid Petroleum Gases 4,549 5,484 6,499 8,063 10,854 13,780 2008-2015 Normal Butane 4,549 5,484 6,499 8,063 10,823 13,741 2005-2015 Isobutane 31 39 2005-2015 Other Liquids 2,160,246 2,323,299 2,388,655

  13. Abandoned Uranium Mines Report to Congress: LM Wants Your Input |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder

  14. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...RONUS1","MO9RONUS1","MBARONUS1" "Date","U.S. Refinery Net Input of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Refinery Net Input of Crude Oil (Thousand ...

  15. Recommendation 177: Facilitating Early Public Input

    Broader source: Energy.gov [DOE]

    DOE should initiate consultation meetings with stake holders immediately to allow early public input into the planning for IFDP

  16. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  17. Home Energy Score Data Collection Form | Department of Energy

    Energy Savers [EERE]

    Data Collection Form Home Energy Score Data Collection Form Input sheet for qualified assessors to collect data for input into the Home Energy Scoring Tool for evaluation. Data ...

  18. Climate Action Planning Tool | Open Energy Information

    Open Energy Info (EERE)

    a report Inputs and Outputs Inputs include: Inputs are collected in a baseline energy consumption data sheet. Data includes: Scope 1: Emissions (Direct Combustion) in units of...

  19. DOE Seeking Input on Alternative Uses of Nickel Inventory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory March 9, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking input from industry representatives on the safe disposition of approximately 15,300 tons of nickel scrap recovered from uranium enrichment process equipment at the Department's Oak Ridge, TN, and Paducah, KY, facilities. The Expression of Interest (EOI), released today, will

  20. DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest

  1. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  2. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  3. ,"Texas Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  4. ,"Washington Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","09...

  5. ,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  6. Input apparatus for dynamic signature verification systems

    DOE Patents [OSTI]

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  7. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  8. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart ...

  9. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  10. DOE Seeks Public Input on an Integrated, Interagency Pre-Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Transmission Authorizations | Department of Energy Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations DOE Seeks Public Input on an Integrated, Interagency Pre-Application Process for Transmission Authorizations August 29, 2013 - 9:09am Addthis A Request for Information (RFI) seeking public input for a draft Integrated, Interagency Pre-application (IIP) Process was published in the Federal Register on August 29, 2013. The

  11. Wireless, relative-motion computer input device

    DOE Patents [OSTI]

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  12. U-147:Red Hat Enterprise MRG Grid Input Validation Flaw

    Office of Energy Efficiency and Renewable Energy (EERE)

    The MRG Management Console (Cumin) does not properly filter HTML code from user-supplied input before displaying the input.

  13. U-139: IBM Tivoli Directory Server Input Validation Flaw

    Broader source: Energy.gov [DOE]

    The Web Admin Tool does not properly filter HTML code from user-supplied input before displaying the input.

  14. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  15. DOE Seeks Further Public Input on How Best To Streamline Existing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Seeks Further Public Input on How Best To Streamline Existing Regulations December 7, 2011 - 12:34pm Addthis The Department of Energy (DOE) has announced a further step to ...

  16. Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Total Supplemental Supply of Natural Gas Alaska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels

  17. DOE Seeks Further Public Input on How Best To Streamline Existing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulations | Department of Energy Further Public Input on How Best To Streamline Existing Regulations DOE Seeks Further Public Input on How Best To Streamline Existing Regulations December 7, 2011 - 12:34pm Addthis The Department of Energy (DOE) has announced a further step to implementing the President's Executive Order on Improving Regulatory Review. The Executive Order directs federal agencies to review existing regulations and determine whether they are still necessary and crafted

  18. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 : U.S. Energy Markets Summary Either scripts and active content are not permitted to run or Adobe Flash Player version ${version_major}.${version_minor}.${version_revision} or greater is not installed. Get Adobe Flash Player a Includes lease condensate. b Total consumption includes Independent Power Producer (IPP) consumption. c Renewable energy includes minor components of non-marketed renewable energy that is neither bought nor sold, either directly or indirectly, as inputs to marketed

  19. U.S. Weekly Inputs & Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 09/02/16 View History Refiner Inputs and Utilization Crude Oil Inputs 16,852 16,597 16,865 16,679 16,615 16,930 1982-2016 Gross Inputs 17,097 16,883 17,127 16,937

  20. Total U.S......................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Below Poverty Line Energy Information Administration 2005 Residential Energy Consumption ... Below Poverty Line Age of Most-Used Refrigerator Less than 2 Years......

  1. Clean Energy Transmission at

    Broader source: Energy.gov (indexed) [DOE]

    (unpopular) and renewable energy development (popular). * Facilitate - Attend meetings. - Solicit community input. - Meet with developers to share feedback. Information...

  2. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  3. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  6. EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 18, 2015 - 1:00pm Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  7. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 17, 2015 - 9:48am Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  13. PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS

    SciTech Connect (OSTI)

    , K; Jonathan Lowrie, J; David Thoman , D; Austin Keller , A

    2008-07-30

    Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases.

  14. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  15. Addressing Uncertainties in Design Inputs: A Case Study of Probabilist...

    Office of Environmental Management (EM)

    Addressing Uncertainties in Design Inputs: A Case Study of Probabilistic Settlement Evaluations for Soft Zone Collapse at SWPF Addressing Uncertainties in Design Inputs: A Case ...

  16. T-701: Citrix Access Gateway Enterprise Edition Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input...

  17. V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated...

  18. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting...

  19. Developing a low input and sustainable switchgrass feedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing a low input and sustainable switchgrass feedstock production system utilizing beneficial bacterial endophytes Developing a low input and sustainable switchgrass ...

  20. Tribal Leaders Provide White House with Input on Bolstering Climate...

    Office of Environmental Management (EM)

    Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am ...

  1. STCH Annual Merit Review Input - EERE Hydrogen Program. (Conference...

    Office of Scientific and Technical Information (OSTI)

    STCH Annual Merit Review Input - EERE Hydrogen Program. Citation Details In-Document Search Title: STCH Annual Merit Review Input - EERE Hydrogen Program. Abstract not provided. ...

  2. T-693: Symantec Endpoint Protection Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Input Validation Hole Permits Cross-Site Scripting and Cross-Site Request Forgery Attacks T-693: Symantec Endpoint Protection Manager Input Validation Hole Permits Cross-Site...

  3. U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

  4. XBox Input -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position,more » and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  5. PADD 2 Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    3 3,834 3,663 3,734 3,734 3,802 1992-2016 Gross Inputs 3,719 3,835 3,666 3,734 3,752 3,806 1990-2016 Operable Capacity (Calendar Day) 3,924 3,924 3,924 3,924 3,924 3,924 2010-2016 Percent Operable Utilization 94.8 97.7 93.4 95.2 95.6 97.0 2010-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components 473 498 590 583 331 302 2004-2016 RBOB 68 52 121 69 -1 56 2010-2016 CBOB 331 433 450 513 227 261 2004-2016 GTAB 0 0 0 0 0 0 2004-2016 All Other 74 13 19 1 105 -15 2004-2016 Fuel Ethanol

  6. OECD Input-Output Tables | Open Energy Information

    Open Energy Info (EERE)

    714271111,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India,...

  7. Midwest (PADD 2) Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    M068(2011) The Electricity Market Module of the National Energy Modeling System Model Documentation Report July 2011 U.S. Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 ii U.S. Energy Information Administration/Electricity Market Module Documentation Contacts This report was prepared by the staff of the Office of Electricity, Coal, Nuclear and Renewables Analysis, U.S. Energy Information Administration. General

  8. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  9. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  10. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  11. Summary of Input to DOE Request for Information DE-FOA-0000225 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FOA-0000225 Summary of Input to DOE Request for Information DE-FOA-0000225 Presentation on Sumary of Input to DOE Request for Information DE-FOA-0000225 - U.S. DOE Fuel Cells Technology Program fuelcell_pre-solicitation_wkshop_mar10_kleen.pdf (200.64 KB) More Documents & Publications Long Term Innovative Technologies Summary of Input to DOE Request for Information DE-PS36-08GO38002 (Presentation) Balance of Plant (BoP) Components Vali

  12. T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scripting Attacks Arbitrary Code | Department of Energy 6: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code T-546: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code January 31, 2011 - 7:00am Addthis PROBLEM: Microsoft MHTML Input Validation Hole May Permit Cross-Site Scripting Attacks Arbitrary Code. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: A

  13. T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-Site Scripting Attacks | Department of Energy 2: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks September 21, 2011 - 8:15am Addthis PROBLEM: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks. PLATFORM: WebSphere Commerce Edition V7.0 ABSTRACT: A remote user can access the target user's cookies (including

  14. Total Space Heat-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  15. "Table 20. Total Delivered Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,...

  16. Table 20. Total Delivered Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 ...

  17. Property:TotalValue | Open Energy Information

    Open Energy Info (EERE)

    22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid...

  18. BETO Seeks Stakeholder Input on Achieving High Yields from Algal Feedstocks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office (BETO) has released a Request for Information (RFI) titled “High Yields through Productivity and Integration Research.” BETO is seeking input from industry, academia, and other stakeholders regarding supply systems and services for the cultivation, logistics, and preprocessing of algal feedstocks.

  19. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office has released a Request for Information (RFI) seeking stakeholder input on the following topics related to the use of advanced biofuel blends in small engines

  20. Preliminary Inputs for Wisconsin RPS Analysis

    U.S. Energy Information Administration (EIA) Indexed Site

    Cashing in on Clean Energy: A National Renewable Electricity Standard will Benefit the Environment and the Economy Renewable Energy & Economic Development Session EIA 30 th Anniversary conference Washington DC April 7, 2008 Alan Nogee Director, Clean Energy Program Union of Concerned Scientists www.ucsusa.org Renewable electricity standards: a primary driver of new renewables Ø The #1 driver of renewable energy development. Goldman Sachs Ø"... the most important driver for new

  1. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  2. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  3. PADD 3 Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    8,788 8,791 8,855 8,956 8,712 8,580 1992-2016 Gross Inputs 8,889 8,871 8,976 9,014 8,783 8,817 1990-2016 Operable Capacity (Calendar Day) 9,515 9,515 9,515 9,515 9,515 9,515 2010-2016 Percent Operable Utilization 93.4 93.2 94.3 94.7 92.3 92.7 2010-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components -2,249 -1,993 -2,117 -2,108 -2,293 -2,034 2004-2016 RBOB -419 -380 -321 -406 -471 -291 2010-2016 CBOB -1,794 -1,684 -1,852 -1,798 -1,870 -1,981 2004-2016 GTAB 0 0 0 0 0 0 2004-2016

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  5. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  6. ,"U.S. Blender Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    File Name:","petpnpinpt3dcnusmbblm.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetpnpinpt3dcnusmbblm.htm" ,"Source:","Energy Information ...

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  10. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  11. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect (OSTI)

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  12. Stanford's input to the Commission to Review the Effectiveness of the

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Laboratories | Department of Energy Stanford's input was presented to the Commission to Review the Effectiveness of the National Energy Laboratories by Bill Madia, Vice President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. Governance and Contracting Models (971.8 KB) More Documents & Publications October 6, 2014 Lab Commission Meeting Minutes WC_1996_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf Department of

  13. Environmental geological input into urban construction planning

    SciTech Connect (OSTI)

    Berry, W.B.N. . Dept. of Geology and Geophysics)

    1992-01-01

    Environmental issues resulting from planning new construction in urban areas requires understanding of geological processes at many steps in project development. Steps include: assessments of geological characteristics of the proposed construction site, building design features in light of the geological characteristics, development of the geology component of the EIR as well as any mitigations required, and writing special environmental geological concerns into specifications required of the contractor. The latter step may be exemplified in planning a new underground library being constructed in the center of the Berkeley Campus. The site is within 50 yards of a creek that has been restored such that fish now live in it whereas none could three years ago. Runoff from paved parking lots and walkways around existing buildings goes into storm drains that empty directly into the creek. Because they do, creek water is monitored for chemical and solid wastes as well as turbidity. Based on geological input, special project procedures were written to which the contractor must adhere during site preparation and construction. These include: all liquid wastes must be contained in impermeable containers, all hazardous wastes must be removed under state waste removal guidelines, dewatering procedures were developed to remove groundwater that flows through permeable sands and gravels from the creek bed into the construction site and must be followed, and soil flux into the creek must be prevented. Mitigation of soil flux includes watering areas of the site as soil is excavated. Watering must be monitored because the contractor tends to overwater which flushes soil down nearby storm drains into the creek. As well, soil control monitoring includes preventing the contractor from sweeping soil into the storm drains and flushing it into the creek. Geological input has proven valuable in addressing different environmental concerns.

  14. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  15. Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wyoming Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Missouri Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Minnesota Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Louisiana Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Michigan Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Maryland Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  5. Virginia Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Virginia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Washington Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. U-144:Juniper Secure Access Input Validation Flaw Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks U-144:Juniper Secure Access Input Validation Flaw Permits Cross-Site Scripting Attacks April 10,...

  12. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks July 5, 2013 -...

  13. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64 ...

  14. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46 ...

  15. New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. ,"U.S. Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Catalytic Cracking Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input ...

  17. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  18. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  19. U-001:Symantec IM Manager Input Validation Flaws

    Broader source: Energy.gov [DOE]

    Symantec IM Manager Input Validation Flaws Permit Cross-Site Scripting, SQL Injection, and Code Execution Attacks.

  20. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  1. Analysis of Stochastic Response of Neural Networks with Stochastic Input

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    Software permits the user to extend capability of his/her neural network to include probablistic characteristics of input parameter. User inputs topology and weights associated with neural network along with distributional characteristics of input parameters. Network response is provided via a cumulative density function of network response variable.

  2. Office of Indian Energy Policy and Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information to gain input from tribes to develop Inter-Tribal Technical Assistance Energy Provider Network. Read more Remote Alaskan Communities Energy Efficiency...

  3. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect (OSTI)

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  4. High-frequency matrix converter with square wave input

    SciTech Connect (OSTI)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  5. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  6. Field measurement of moisture-buffering model inputs for residential buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  7. Country/Continent Total Percent of U.S. Total Africa/Europe

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts Country/Continent Total Percent of U.S. Total Africa/Europe 53,898 29% Asia/Australia 107,460 59% South/Central America 11,692 6% Canada 4,378 2% Mexico 5,556 3% Total 182,984 100% Table 8. Destination of photovoltaic module export shipments, 2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  8. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation NREL: Building America Total Quality Management - 2015 Peer Review (2.43 MB) More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  9. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,178,588 4,091,601 4,007,375 4,037,265 3,954,862 3,894,471 2005-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 2005-2015 Natural Gas Plant Liquids 154,941 171,074 175,607 168,808 172,563 171,936 2005-2015 Pentanes Plus 54,697 61,059 59,432 56,153 52,853 50,850 2005-2015 Liquefied Petroleum Gases 100,244 110,015 116,175 112,655 119,710 121,086 2005-2015 Normal Butane 39,253 42,087 45,747 42,461 45,916 47,870 2005-2015

  10. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO2 emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  11. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  12. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attacks | Department of Energy 9: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August 28, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in IBM Lotus iNotes PLATFORM: IBM Lotus iNotes 8.5.x ABSTRACT: IBM Lotus iNotes 8.5.x contains four cross-site scripting vulnerabilities REFERENCE LINKS: Security Tracker Alert ID 1028954 IBM Security Bulletin 1647740

  13. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    SciTech Connect (OSTI)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.

    2015-09-22

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  14. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    process requires significant energy input for heat (often unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is...

  15. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  16. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  17. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  18. NIDR (New Input Deck Reader) V2.0 2

    Energy Science and Technology Software Center (OSTI)

    2010-03-31

    NIDR (New Input Deck Reader) is a facility for processing block-structured input to large programs. NIDR was written to simplify maintenance of DAKOTA (a program for uncertainty quantification and optimization), to provide better error checking of input and to allow use of aliases in the input. While written to support DAKOTA input conventions, NIDR itself is independent of DAKOTA and can be used in many kinds of programs. The initial version of NIDR was copyrightedmore » in 2008. We have since extended NIDR to support a graphical user interface called Jaguar for DAKOTA. In the Review and Approval process for an updated paper on NIDR, the Classification Approver states that a new copyright assertion should be performed.processing input to programs. NIDR is not primarily for military applications.« less

  19. Generates 2D Input for DYNA NIKE & TOPAZ

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 302,955 290,718 325,588 311,454 327,623 327,323 2005-2016 Crude Oil 495,806 460,629 499,255 478,254 504,549 492,960 2005-2016 Natural Gas Plant Liquids 18,673 14,924 13,318 12,174 12,857 12,478 2005-2016 Pentanes Plus 4,389 3,616 3,922 4,036 4,765 4,354 2005-2016 Liquefied Petroleum Gases 14,284 11,308 9,396 8,138 8,092 8,124 2005-2016 Normal Butane 7,947 5,592 2,866 1,791 1,812 1,829 2005-2016 Isobutane 6,337 5,716 6,530 6,347 6,280

  1. BETO Seeks Stakeholder Input on Achieving High Yields from Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO is seeking input from industry, academia, and other stakeholders regarding supply systems and services for the cultivation, logistics, and preprocessing of algal feedstocks. ...

  2. V-192: Symantec Security Information Manager Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flaws Permit Cross-Site Scripting, SQL Injection, and Information Disclosure Attacks V-192: Symantec Security Information Manager Input Validation Flaws Permit Cross-Site...

  3. ,"New Mexico Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  4. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  5. Steering and focusing effects in TESLA cavity due to high order mode and input couplers

    SciTech Connect (OSTI)

    Piot, P.; /Fermilab; Dohlus, M.; Flottmann, K.; Marx, M.; Wipf, S.G.; /DESY

    2005-05-01

    Many state-of-art electron accelerator proposals incorporate TESLA-type superconducting radio-frequency (rf) cavities [1]. These standing wave rf cavities include rf input couplers and a pair of high order mode (HOM) couplers to absorb the energy associated to HOM field excited as the bunch passes through the cavity. In the present paper we investigate, using numerical simulations, the impact of the input and HOM couplers on the beam dynamics to zeroth and first order in initial position, and present parametric studies of the strength of these effects for various incoming beam energies. We finally study the impact of this asymmetric field on the beam dynamics, taking as an example the low energy section of the X-ray FEL injector.

  6. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the energy and carbon implications of altering the current U.S. energy profile. Users can explore a TEF scenario output in BITES using inputs based on study findings, or ...

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  8. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  9. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  10. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  11. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  12. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  13. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  14. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  15. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  16. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  17. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  18. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  19. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  20. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  1. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  2. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  3. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  4. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  5. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  6. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  7. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  8. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  9. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  10. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  11. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  14. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  19. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  20. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  1. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  2. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  3. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  4. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  6. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  7. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  8. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  10. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  12. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  13. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  14. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  15. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  17. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  19. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  20. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...